

 LOGISCOPE

RuleChecker & QualityChecker C Reference Manual

ii Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Before using this information, be sure to read the general information under “Notices” section, on

page 149.

© Copyright Kalimetrix 2014

Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual iii

About This Manual

Audience

This manual is intended for Kalimetrix Logiscope™ RuleChecker & QualityChecker

users for C source code verification.

Related Documents

Reading first the following manuals is highly recommended:

• Kalimetrix Logiscope - Basic Concepts.

• Kalimetrix Logiscope - RuleChecker & QualityChecker - Getting Started.

Additional information on how to write new C rule verification scripts can be found in:

• Kalimetrix Logiscope - Writing C rule using RuleChecker Tcl Verifier.

Overview

C Project Settings

Chapter 1 presents basic concepts of Logiscope RuleChecker & QualityChecker C, its

input and output data, its prerequisites and its limitations.

C Parsing Options

Chapter 2 describes the way to adapt Logiscope RuleChecker & QualityChecker C to the

application. It also specifies the specifics of the C dialects supported by Logiscope

RuleChecker & QualityChecker C.

Command Line Mode

Chapter 3 specifies how to run Logiscope RuleChecker & QualityChecker C using a

command line interface.

iv Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Standard Metrics

Chapter 4 specifies the metrics computed by Logiscope QualityChecker C.

Standard Programming Rules

Chapter 5 specifies the programming rules checked by Logiscope RuleChecker C.

Customizing Standard Rules and Rule Sets

Chapter 6 describes the way to modify standard predefined rules and to create new ones

with Logiscope RuleChecker C.

Developing New Rule Scripts

Chapter 7 provides some basics to write new rule verification scripts to be run by Logis-

cope RuleChecker C.

Logiscope C Data Model

Chapter 8 specifies the C Data Model used by Logiscope Logiscope RuleChecker C to

locate and report programming rules violations in the source code under analysis.

Conventions

The following typographical conventions are used:

bold
literals such as tool names (studio)
and file extensions (*.c),

bold italics literals such as type names (integer),
 names that are user-defined such as directory names

italics (log_installation_dir),

typewriter

notes and documentation titles,

file printouts.

Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual v

Contacting Kalimetrix Software Support

If the self-help resources have not provided a resolution to your problem, you

can contact KalimetrixSupport for assistance in resolving product issues.

Prequisites

To submit your problem to Kalimetrix Software Support, you must have an
active support agreement. You can subscribe by visiting http://www.kalime-
trix.com .

• To submit your problem online (from the KalimetrixWeb site) you need to be a
registered user on the Kalimetrix Support Web site :

http://support.kalimetrix.com/

Submitting problems

To submit your problem to Kalimetrix Software Support:

1) Determine the business impact of your problem. When you report a
problem to Kalimetrix, you are asked to supply a severity level.
Therefore, you need to understand and assess the business impact of the
problem that you are reporting.Use the following table to determine the
severity level.

Severity

Description

Block

The problem has a critical business impact. You are
unable to use the program, resulting in a critical impact on
operation. This condition requires an immediate solution.

Crash

The problem has a significant business impact.
The program is usable, but it is severely limited

Major

The problem has a some business impact.
The program is usable, but less significant features
(not critical to operation) are unavailable.

Minor

The problem has a minimal business impact.
The problem causes little impact on operations or a
reasonable circumvention to the problem was
implemented.

2) Describe your problem and gather background information, When

describing a problem to Kalimetrix, be as specific as possible. Include all
relevant background information so that Kalimetrix Software Support

http://support.kalimetrix.com/

vi Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

specialists can help you solve the problem efficiently. To save time, know
the answers to these questions:

• What software versions were you running when the problem
occurred?

To determine the exact product name and version, start your
product, and click Help > About to see the offering name and
version number.

• What is your operating system and version number (including any
service packs or patches)?

• Do you have logs, traces, and messages that are related to the
problem symptoms?

• Can you recreate the problem? If so, what steps do you
perform to recreate the problem?

• Did you make any changes to the system? For example, did
you make changes to the hardware, operating system, networking
software, or other system components?

• Are you currently using a workaround for the problem? If so,
be prepared to describe the workaround when you report the prob-
lem.

3) Submit your problem to Kalimetrix Software Support. You can submit
your problem to Kalimetrix Software Support in the following ways:

• Online: Go to the Kalimetrix Software Support Web site at
http://support.kalimetrix.com

http://support.kalimetrix.com/

November 2014 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual vii

Table of Contents

Chapter 1 C Project Settings

1.1 Starting a Logiscope Studio Session ... 1

1.2 Creating a Logiscope Project .. 2

1.3 Relaxation Mechanism ... 12

Chapter 2 C Parsing Options

2.1 Dialects ... 15

2.2 Definition File ... 16

2.3 Ignore File .. 18

2.4 Supported C Dialects Specification .. 19

2.4.1 ANSI 89 / ISO 90 .. 19

2.4.2 ANSI / ISO 99 ... 20

2.4.3 DIAB C ... 20

2.4.4 GNU C .. 21

2.4.5 GNU C D950 .. 21

2.4.6 GNU C Red Hat Linux 3 ... 22

2.4.7 GNU C Red Hat Linux 4 ... 23

2.4.8 GNU C Red Hat Linux 5 ... 23

2.4.9 HP C .. 24

2.4.10 IAR C ... 24

2.4.11 Kernighan and Ritchie 78 ... 25

2.4.12 Microsoft C 1.5 ... 26

2.4.13 Microsoft Developer / Visual Studio ... 27

2.4.14 Microtec Research C ... 29

2.4.15 SUN C ... 30

Chapter 3 Command Line Mode

3.1 Logiscope create ... 31

3.1.1 Command Line Mode ... 31

3.1.2 Makefile mode ... 32

3.1.3 Options .. 33

3.2 Logiscope batch .. 35

3.2.1 Options .. 35

3.2.2 Examples of Use .. 36

vi Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Chapter 4 Standard Metrics

4.1 Function Scope .. 38

4.1.1 Line Counting .. 38

4.1.2 Data Flow ... 41

4.1.3 Halstead Metrics .. 42

4.1.4 Keywords ... 45

4.1.5 Structured Programming .. 47

4.1.6 Control Graph .. 48

4.1.7 Relative Call Graph .. 49

4.2 Module Scope. ... 51

4.2.1 Line Counting .. 51

4.3 Application Scope ... 52

4.3.1 Line Counting .. 52

4.3.2 Application Aggregates .. 53

4.3.3 Application Call Graph .. 53

Chapter 5 Standard Programming Rules

5.1 Standard Programming Rules .. 55

5.1.1 Presentation of rules ... 56

5.1.2 Rule Sets .. 56

5.2 MISRA Programming Rules ... 71

5.2.1 Presentation of the rules ... 71

5.2.2 MISRA-C:1998 Rule Package ... 72

5.2.3 MISRA-C:2004 Rule Package ... 87

Chapter 6 Customizing Standard Rules and Rule Sets

6.1 Modifying the Rule Set ... 103

6.2 Modifying Standard Rule Scripts .. 104

6.2.1 Rule File Location .. 104

6.2.2 Rule File Syntax ... 104

6.2.3 Creating a New Rule from a Standard Rule ... 106

6.2.4 Renaming Rules ... 106

Chapter 7 Developing New Rule Scripts

7.1 Introduction ... 109

7.2 Using the Perl Verifier ... 110

7.3 Using the Tcl Verifier .. 112

7.3.1 Access commands .. 113

7.3.2 Report commands .. 114

7.3.3 Debugging aid commands .. 115

7.4 Using RuleChecker Libraries ... 115

November 2014 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual vii

Chapter 8 Logiscope C Data Model

8.1 Introduction ... 117

8.2 Concepts and Symbolism .. 118

8.2.1 Class ... 118

8.2.2 Attribute ... 118

8.2.3 Operation ... 118

8.2.4 Link and association .. 119

8.2.5 Multiplicity .. 119

8.2.6 Role .. 120

8.2.7 Inheritance ... 120

8.2.8 Abstract class ... 121

8.3 The data model. ... 122

8.3.1 Graphic Representation .. 122

8.3.2 Text presentation .. 130

Chapter 9 Notices

x Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual November 2014

C Project Settings
11

Kalimetrix Logiscope

Chapter 1

C Project Settings

A Logiscope project mainly consists in:

• the list of source files to be analysed,

• applicable source code parsing options according to the compilation environment,

• the verification modules to be activated on the source code files and the associated

controls (e.g. metrics to be computed, rules to be checked).

A source file is a file containing C source code. This file is not necessarily compilable. It

only has to conform to the C syntax.

Logiscope C projects can be created using:

• Logiscope Studio: a graphical interface requiring a user interaction, as described in

the following sub-sections introducing the Logiscope C project settings,

• Logiscope create: a tool to be used from a standalone command line or within

makefiles, please refer to Chapter Command Line Mode to learn how to create a

Logiscope project using Logiscope create.

1.1 Starting a Logiscope Studio Session

To begin a Logiscope Studio session:

• On UNIX (i.e. Solaris or Linux):

- launch the vcs binary .

• On Windows:

- click the Start button and select the Kalimetrix Logiscope <version> item in the

Kalimetrix Programs Group.

Kalimetrix Logiscope

2 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

1.2 Creating a Logiscope Project

Once the Logiscope Studio main window is displayed, select the New... command in the

File menu or click on the icon, you get the following dialog box:

The Project name: pane allows to enter the name for the new Logiscope project to be

created.

Location: allows to specify the directory where the Logiscope project and the associated

Logiscope repository will be created. For more details, see the next section.

By default, the project name is automatically added to the specified location. This

implies that a subdirectory named <ProjectName> is automatically created.

Kalimetrix Logiscope

C Project Settings 3

Defining the type of the Logiscope project

The Logiscope Project Definition dialog box allows to specify the type of Logiscope

projects to be created.

The Project Language: is the programming language in which are written the source

code files to be analysed. Of course, select C.

Note: Only one language can be selected. If your application contains source code files

written in several languages e.g. C and C++ source files, you should create several

distinct Logiscope projects: one for each language.

The Project Modules: lists the verification modules to be activated on the source code

files of the project .

For instance, you can select both RuleChecker and QualityChecker.

Notes: At least one module should be selected. The TestChecker module cannot be

selected with an other module.

For more details on TestChecker module, please refer to Kalimetrix Logiscope -

TestChecker - Getting Started.

For more details on CodeReducer module, please refer to Kalimetrix Logiscope -

CodeReducer - Getting Started.

Kalimetrix Logiscope

4 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Specifying the source files to be analysed

The Project Source Files dialog box allows to specify what source files are to be

analysed and where they are located.

Source files root directory: shall specify the directory including all the source files to

be analyzed.

If necessary, use the Directories choices to select the list of subdirectories covering the

application source files.

- Include all subdirectories means that selected files will be searched for in every sub-

directory of the source files root directory.

- Do not include subdirectories means that only files included in the application

directory will be selected.

- Customize subdirectories to include allows the user to select the list of directories

that include application files through a new page.

Suffixes choices allow to specify applicable source file extensions needed in the above

selected directories. Extensions shall be separated with a semi-colon.

Kalimetrix Logiscope

C Project Settings 5

Setting Parsing Options

The C Language Settings dialog box allows to set up C source code parsing options:

C Dialect:

A dialect is used to specify some default specifics of the C development environment

(e.g. compilers, IDE) in use for the project under analysis:

• access paths to standard inclusion directories,

• predefined macro definitions.

• inclusion directories where rule violations shall not be reported.

In case the proposed C dialects do not match the specifics of the project C development

environment, the user can provide a dedicated Definition file specifying preprocessor

macro definitions and include files paths applicable to the project.

The source code files composing a Logiscope project may contain portions of code that

are not written in C (SQL commands, assembler language etc.). To avoid parsing errors

or inappropriate counting, the user can provide a dedicated Ignore file specifying the

syntax of the portions of code to be ignored when parsing the source files.

Please refer to the next chapter C Parsing Options for more details on the supported C

dialects and the associated Definition file and Ignore file.

Kalimetrix Logiscope

6 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Preprocessor

In addition to the predefined preprocessing information associated to the selected C

dialect, the user can use the Preprocessor pane to provide complementary preprocessing

and compilation options:

• access paths to project specific inclusion directories,

• project macro definitions.

The syntax is as for a C compiler:

[-Idirectory]*

[-Dname_of_macro1_with_no_argument [=definition]]*

[-Uname_of_macro2_with_no_argument [=definition]]*

The number of occurrences of options -I, -D, -U is unlimited.

A “-I” option defines directory as access paths to inclusion directories.

A “-D” option defines name_of_macro1_with_no_argument as if it were in a #define
directive.

A “-U” option considers name_of_macro2_with_no_argument as undefined as if it were

part of an #undef directive.

In the example below:

-I./include -DUNIX -DDEBUG -USUPER_DEBUG

• Logiscope C parser will search for include files in the sub directory ./include;

• the UNIX and DEBUG option are defined, so the corresponding conditional code will

be parsed;

• the SUPER_DEBUG option is considered as undefined so the corresponding

conditional options will not be parsed.

Note: The option -nowarning allows to turn off Logiscope warning messages when

parsing C files.

Expanding or not expanding macros

By default, macros are expanded by the Logiscope C parser unless other macro

processing modes are specified (non expansion, expansion of a subset of macros).

Macro expansion makes it possible to take into account the control structure and the

textual elements of a macro. In this way, the constitutive elements of the macro will

appear on the control graphs displayed by Logiscope Viewer.

Kalimetrix Logiscope

C Project Settings 7

Once the macros are expanded, the code is syntactically correct and thus analyzable.

This is not guaranteed with no expansion or partial expansion.

If the expansion is partial or absent, the Logiscope C parser will consider:

• non-expanded macros with arguments as functions,

• those with no arguments as identifiers.

Those which are considered as functions will appear on the control graph displayed by

Logiscope Viewer.

The reason for not expanding macros is to avoid result overload.

It is possible to invert the macro processing mode for the macros listed in the file

specified in the last pane of the C Language Settings dialog box. For example, if the

macro expansion is requested, the macros in the specified file will not be expanded and

others will be. The file should contain a list of macro names (one per line).

Kalimetrix Logiscope

8 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Setting QualityChecker Parameters

The QualityChecker Settings dialog box allows to specify the applicable Project

quality model: how the QualityChecker module evaluates software quality

characteristics (e.g. Maintainability) based on a standard factors / criteria / metrics

approach.

Note: Quality models are textual files (also called Reference files). Default quality

models are provided with the standard Logiscope installation. They should be

customized to take into account the verification objectives and contexts applicable to the

project.

For more information, see the Kalimetrix Logiscope Basic Concepts manual.

For your project verification, you should define and select your own applicable quality

model.

Kalimetrix Logiscope

C Project Settings 9

Setting RuleChecker Parameters

The RuleChecker Settings dialog box allows to specify the applicable Project rule

sets: i.e. the rules / coding standards the Logiscope RuleChecker module shall verify on

the project source files.

At least one rule set should be selected for the Logiscope RuleChecker projects.

Several rule sets can be selected. If so, Logiscope RuleChecker will check the union of

the rules specified in all selected rule sets.

For more details on available rules and rule sets, please refer to the chapter Standard

Programming Rules.

Kalimetrix Logiscope

10 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

The next RuleChecker Settings dialog box allows to fine tune the list of Project rules.

It is possible to select or unselect some of the rules available.

The rules that are selected are those listed in the Project rule sets selected in the previous

RuleChecker Settings dialog box

You can check / uncheck the rules.The description of the selected rule and the rule

severity are displayed in the bottom pane

Kalimetrix Logiscope

C Project Settings 11

The last RuleChecker Settings dialog box allows to use some advanced features of the

Logiscope RuleChecker module.

Advanced Settings:

Allow violation relaxation mechanism: when the box is checked, rule violations

can be relaxed using special comments in the code. For more details, please refer to

Kalimetrix Logiscope - Basic Concepts document..

Activate external violation import mechanism: when the box is checked, the

files in the specified project folder can be used to import violations generated by an

external tool.

For more details, please refer to the Kalimetrix Logiscope - RuleChecker &

QualityChecker - Getting Started document.

Generate flat rule set file (no include): when the box is checked, the project rule

set file (i.e. with a “.rst”) extension) that is generated for the project doesn’t contain

any includes of other rule set files. It will contain an expanded copy of the contents

of any rule sets that were used for the project.

For more details, please refer to the Chapter Customizing Rules and Rule Sets.

Generated Source Code:

Source Code generated by: when the box is checked, allows to specify the tool

(e.g. Kalimetrix Rhapsody) used to generate all or part of the source code under

analysis. Thus, Logiscope RuleChecker will not considered the violations found in

the generated code. For more details, please refer to section 1.5.8.

Show violations in generated code as relaxations: when the box is checked, the

violations found in generated code are reported as “relaxations”.

For more details on all these options, please refer to the Kalimetrix Logiscope -

Basic Concepts document.

Kalimetrix Logiscope

12 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

1.3 Relaxation Mechanism

When the Relaxation mechanism is activated for a Logiscope RuleChecker project, rule

violations that have been checked and that you have decided are acceptable exceptions to

the rule, can be relaxed for future builds: they will no longer appear in the list of rule

violations. This can be very useful when checking violations in a context where multiple

reviews are performed.

The violations that have been relaxed will remain accessible for future reference in the

Relaxed Violations folder.

The relaxation mechanism is based on comments inserted into the code where the

tolerated violations are. There are two ways to do this, depending on whether there is a

single rule violation to relax on the line, or multiple ones to relax on the given line.

Relaxing a single rule violation

If there is a single violation to relax, it can be done as a comment on the same line as the

code, using the following syntax:

some code /* %RELAX<rule_mnemonic> justification */

where:

• rule_mnemonic: is the mnemonic of the rule that you want to ignore violations of

on the current line.

• justification: is free text, allowing to justify the relaxation of the rule violation.

If justification carries over several lines, they will not be included as part of the

justification of the relaxation. In order for the justification to be written on several lines,

the second syntax which is presented in the next section should be used.

Relaxing several violations and/or adding a longer justification

If there are several violations to relax for a same line (several violations occurring in

different places in the code at the same time cannot be relaxed), or if the justification of

the violation should have several lines, the following syntax should be used.

/* >RELAX<rule_mnemonic> justification */

followed by any number of empty lines, comment lines, or relaxations of other rules

relating to the same code line, then by the code line of the violation.

Kalimetrix Logiscope

C Project Settings 13

Relaxing all violations in pieces of code

If all the violations of one or more rules are to be relaxed in a given piece of code (e.g.

reused code included in a newly developed file), the piece of code should be surrounded

by:

where:

/* {{RELAX<list_of_rule_mnemonics> justification */

the piece of code

/* }}RELAX<list of rule mnemonics> */

• list_of_rule_mnemonics: is the list of all mnemonics of the rules that you want

to ignore violations of on the piece of code.

The rule mnemonics shall be separated by a comma.

Kalimetrix Logiscope

14 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Kalimetrix Logiscope

C Parsing Options 15

Chapter 2

C Parsing Options

2.1 Dialects

Logiscope uses source code parsers to extract all necessary information from the source

code files specified in the project under analysis.

In order to extract accurate information from the source code under analysis, the

Logiscope C parser behaves as a C compiler. Therefore, all information requested for

correct preprocessor operation shall be provided to the Logiscope C parser to correctly

translate all C units available in the code.

For instance, expanding a macro definition involves during the code analysis,

substitution of each macro occurrence by its definition.

The C unit translation is impacted by:

• some default specifics of the C development environments (e.g. compilers, IDE) in

use for the project under analysis :

• access paths to standard inclusion directories,

• predefined macro definitions,

• project specific preprocessor macro definitions and include file paths.

Once the macro definitions are expanded, the code is syntactically correct and thus

analyzable. This is not guaranteed with no expansion or partial expansion.

To consider those specifics when parsing the source code and thus avoid parsing errors

and warnings, the user shall select the appropriate C dialect when setting up the

Logiscope project (see previous chapter).

The C dialects supported by Logiscope C are listed in section 2.4.

In fact, each C dialect is associated to predefined configuration files for parsing:

• the Definition file : that specifies access paths to standard inclusion directories and

predefined macro definitions,

• the Ignore File that allows to ignore non C code ((e.g; SQL commands, assembler

language) during parsing.

These two types of configuration file are respectively detailed in section 2.2 and 2.3.

Kalimetrix Logiscope

16 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

These files can be modified to match the specifics of the C development environments

(e.g. compilers, IDE) in use for the project under analysis.

In case of a C dialect not supported by Logiscope, the user can define dedicated

Definition files and, if applicable, Ignore files. The syntax of these user specified parsing

configuration files shall follow the same syntax of the dialect file specified in the next

sections.

2.2 Definition File

For correct and accurate preprocessing operation, the Definition file shall contain:

• the access paths to inclusion directories,

• the list of the predefined macro definitions.

The list of predefined macro definitions for a given compiler is usually provided in the

reference manual of the compiler. Compiling code using the “-v” option may also be

used to know it.

Since these items are machine/environment configuration dependent (e.g. access path to

the system include files), it may be necessary to adapt the Definition file associated to a

given dialect or to create a new Definition file.

In case of a user specified Definition file, it shall be provided to Logiscope C:

• using the Project - Settings ... command of Logiscope Studio once the Logiscope

project has been created,

• using the “-ddef” option of the Logiscope Create tool.

Syntax: The Definition file syntax is as follows:

[I<directory>]*

[D<macro_with_no_argument> [=definition]]*

[U<macro_with_no_argument> [=definition]]*

[E<directory>]*

A “I” option defines directory as access paths to inclusion directories.

A “D” option defines macro1_with_no_argument as if it were in a #define directive.

A “U” option considers macro2_with_no_argument as undefined as if it were part of an

#undef directive.

A “E” option allows to hide the rules violations in source files located in directory.

Kalimetrix Logiscope

C Parsing Options 17

Example:

On Windows, to analyze Microsoft Visual Studio .NET 2003 C code, Logiscope will

read the information predefined in the msc70.def Definition file.

The content of this file located by default in the <log_install_dir>/util directory is listed

below:

I.

IC:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\INCLUDE

IC:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\atlmfc\INCLUDE

D_M_IX86=600

D_MSC_VER=1310

D_WIN32

D STDC

D_INTEGRAL_MAX_BITS=64

In this example, “C:\Program Files\Microsoft Visual Studio .NET 2003\

Vc7\INCLUDE“ corresponds to the name of the standard include directory and _M_IX86

is the name of a compiler predefined macro.

Note:

If Microsoft Visual Studio is installed on another drive than C:, change access paths in

the Definition file.

The Definition file will be sought in the following sequence:

1 from the access file indicated in the LOG_CC_DEF environment variable,

2 from the Logiscope startup directory,

3 from the directory indicated in the LOG_UTIL environment variable.

Kalimetrix Logiscope

18 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

2.3 Ignore File

The source code files composing a Logiscope project may contain portions of code that

are not written in C (e.g. SQL commands, assembler language).

To ignore these portions of code during C source code parsing, just define the sequences

of code that delimit the portions of code to be ignored and place them in a text file

(suggested extension .ign).

Examples of such a file are provided in the <log_install_dir>/util directory.

The syntax of the Ignore file defining the code to be ignored is as follows:

• To ignore a portion of code between two keyword sequences:

word1 word2 ... wordn --> word1’ word2’ ... wordm’

Example:

SQL BEGIN --> SQL END

Code between SQL BEGIN and SQL END is ignored.

• To ignore a portion of code between a keyword sequence and the end of the line:

word1 word2 ... wordn --> $

Examples:

_asm --> $

The portion of code between _asm and the end of the line is ignored.

pragma --> # pragma end

(Please note the spaces between # and pragma)

The portion of code between #pragma and #pragma end is ignored.

• To ignore a keyword sequence:

word1 word2 ... wordn - ->

Example:

user input -->

The keyword sequence user input is ignored.

Note:

A portion of code starting with the same keyword as another portion of code and whose

left sequence is a subsequence of the portion is prohibited.

Example:

m1 m2 m3 m4 --> x y z

m1 m2 --> $

Kalimetrix Logiscope

C Parsing Options 19

2.4 Supported C Dialects Specification

The current list of available C dialects is the following:

• ANSI 89 / ISO 90

• ANSI / ISO 99

• DIAB C

• GNU C

• GNU C D950

• GNU C Red Hat Linux 3

• GNU C Red Hat Linux 4

• GNU C Red Hat Linux 5

• HP C

• IAR C

• Kernighan and Ritchie 78

• Microsoft C 1.5

• Microsoft Developer Studio 4

• Microsoft Developer Studio 5

• Microsoft Visual Studio 6 -VC98-

• Microsoft Visual Studio .NET 2003 -VC7-

• Microtec Reseach C

• Microtec Reseach C ANSI

• SUN C

The specifics of each dialect are specified in the following subsections.

2.4.1 ANSI 89 / ISO 90

Definition Files

ansi.def file on Windows

.log_cc_sun4os5_ansi.def on UNIX

.log_cc_linux_ansi.def on Linux

Kalimetrix Logiscope

20 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Reference Documentation

ISO / IEC 9899

Programming languages - C

ISO / IEC 9899 : 1990 (E)

2.4.2 ANSI / ISO 99

Definition Files

iso99.def file on Windows

.log_cc_sun4os5_iso99.def on UNIX

.log_cc_linux_iso99.def on Linux

Reference Documentation

ISO / IEC 9899

Programming languages - C

ISO / IEC 9899 : 1999 (E)

2.4.3 DIAB C

Definition Files

diab.def file on Windows

.log_cc_sun4os5_diab.def on UNIX

.log_cc_linux_diab.def on Linux

Ignore File

• diab.ign

The

asm { text } and

asm text_until_end_of_line instructions are ignored.

Reference Documentation

D-CCTM & D-C++TM Compiler Suites

NEC V800 Series Family User's Guide and Getting Started Version 4.4

Language Specifics

The macros PPC and DIAB are recognized.

Kalimetrix Logiscope

C Parsing Options 21

2.4.4 GNU C

Definition Files

gnu.def file on Windows

.log_cc_sun4os5_gnu.def on UNIX

.log_cc_linux_gnu.def on Linux

Reference Documentation

GNU C Compiler - ST9 Family - User Manual SGS-

THOMSON Microelectronics

Release 3.0

May 1993

Preprocessor Specifics

The #pragma directives are not interpreted by the analyzer.

Language Specifics

The following keywords are recognized:

• asm, asm

• typeof, typeof

• inline, inline

• alignof

• signed

• const

• volatile

2.4.5 GNU C D950

Definition Files

gnu_d950.def file on Windows

.log_cc_sun4os5_gnu_d950.def on UNIX

.l og_cc_linux_gnu_d950.def on Linux

Kalimetrix Logiscope

22 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Ignore File

• gnu_D950.ign

Reference Documentation

GNU C Compiler - D950 Family of DSP Processors SGS-

THOMSON Microelectronics

Release 1.1

January 1995

Preprocessor Specifics

The #pragma directives are not interpreted by the analyzer.

Language Specifics

The following keywords are recognized:

• asm, asm

• typeof, typeof

• inline, inline

• __alignof

• __signed

• __const

• volatile

• space

2.4.6 GNU C Red Hat Linux 3

Definition Files

gnu_rhel_3.def file on Windows

.log_cc_sun4os5_gnu_rhel_3.def on UNIX

.log_cc_linux_gnu_rhel_3.def on Linux

Ignore Files

Gnu_Rhel_3.ign file on Windows

.log_cc_sun4os5_gnu_rhel_3.ign on UNIX

.log_cc_linux_gnu_rhel_3.ign on Linux

Kalimetrix Logiscope

C Parsing Options 23

Reference Documentation

GNU C 3.2.3 Manual

2.4.7 GNU C Red Hat Linux 4

Definition Files

gnu_rhel_4.def file on Windows

.log_cc_sun4os5_gnu_rhel_4.def on UNIX

.log_cc_linux_gnu_rhel_4.def on Linux

Ignore Files

Gnu_Rhel_4.ign file on Windows

.log_cc_sun4os5_gnu_rhel_4.ign on UNIX

.log_cc_linux_gnu_rhel_4.ign on Linux

Reference Documentation

GNU C 3.4.4 Manual

2.4.8 GNU C Red Hat Linux 5

Definition Files

gnu_rhel_5.def file on Windows

.log_cc_sun4os5_gnu_rhel_5.def on UNIX

.log_cc_linux_gnu_rhel_5.def on Linux

Ignore Files

Gnu_Rhel_5.ign file on Windows

.log_cc_sun4os5_gnu_rhel_5.ign on UNIX

.log_cc_linux_gnu_rhel_5.ign on Linux

Reference Documentation

GNU C 4.1 Manual

Kalimetrix Logiscope

24 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

2.4.9 HP C

Definition Files

hp.def file on Windows

.log_cc_sun4os5_hp.def on UNIX

.log_cc_linux_hp.def on Linux

Reference Documentation

HP C / HP-UX Reference Manual (Hp 9000 Series 800 Computers)

Hewlett Packard

First Edition

August 1989

The list of predefined macro definitions can be obtained by compiling a file with the -v

option of the HP C compiler.

2.4.10 IAR C

Definition Files

iar.def file on Windows

.log_cc_sun4os5_iar.def on UNIX

.log_cc_linux_iar.def on Linux

Reference Documentation

IAR C COMPILER FOR THE H8/300 SERIES

Fourth Edition: January 1995

Part Number: ICCH83-4

Language Specifics

The following keywords are recognized:

Kalimetrix Logiscope

C Parsing Options 25

• ANSI_main,

• banked_func, non_banked, banked

• C_task

• far, far_func

• huge

• near, near_func

• no_init

• tiny, tiny_func

• version_2

• zpage

• monitor

• interrupt

• ccr_mask

• bit

• sfr, sfrp

The following macros are recognized:

• STDC 0

• IAR_SYSTEMS_ICC

• ON_SIZEOF_NOT_SUPPORTED 4

• _argt$(a) 1

• _arg$ "1"

• TID 1

2.4.11 Kernighan and Ritchie 78

Definition Files

kr78.def file on Windows

.log_cc_sun4os5_kr78.def on UNIX

.log_cc_linux_kr78.def on Linux

Reference Documentation

The C Programming Language

Kernighan and Ritchie

Prentice Hall Software Series 78

Kalimetrix Logiscope

26 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

2.4.12Microsoft C 1.5

Definition Files

msc15.def on Windows

.log_cc_sun4os5_microsoft_15.def on UNIX.

.log_cc_linux_microsoft_15.def on UNIX.

Ignore File

• msc15.ign

Reference Documentation

Extract related to C MICROSOFT 1.5 language of the CD-ROM

Microsoft Visual C++

Development System and Tools for Windows

Language Specifics

The following keywords are recognized, ignored and copied in the instrumented source

code:

• __based, _based

• __cdecl, _cdecl, cdecl

• __export, _export

• __far, _far, far

• fastcall, _fastcall

• __fortran, _fortran

• __huge, _huge, huge

• __inline, _inline

• __interrupt, _interrupt

• __loadds, _loadds

• near, _near, near

• pascal, _pascal

• saveregs, _saveregs

• __segment, _segment

• __segname, _segname

The asm (or _asm) instruction is recognized in different forms but not in cases listed

with the following limitations header.

Kalimetrix Logiscope

C Parsing Options 27

Limitations

• The asm { text } instruction is recognized if character ”}” does not appear in text

(nor in comments).

• The #@ (Charizing Operator) preprocessor operator is not accepted.

• The (:>) base operator is not recognized.

2.4.13 Microsoft Developer / Visual
Studio

Definition Files

On Windows:

• msc40.def for Microsoft Developer Studio 4.X,

• msc50.def for Microsoft Developer Studio 5.0,

• msc60.def for Microsoft Visual Studio 6.0 -VC98,

• msc70.def for Microsoft Visual Studio .NET 2003 -VC7-,

On UNIX:

• .log_cc_sun4os5_microsoft_20.def for Microsoft Developer Studio 4.X,

• .log_cc_sun4os5_microsoft_50.def for Microsoft Developer Studio 5.0,

• .log_cc_sun4os5_microsoft_60.def for Microsoft Visual Studio 6.0 -VC98,

• .log_cc_sun4os5_microsoft_70.def for Microsoft Visual Studio .NET 2003 -VC7-,

On Linux:

• .log_cc_linux_microsoft_20.def for Microsoft Developer Studio 4.X,

• .log_cc_linux_microsoft_50.def for Microsoft Developer Studio 5.0,

• .log_cc_linux_microsoft_60.def for Microsoft Visual Studio 6.0 -VC98,

• .log_cc_linux_microsoft_70.def for Microsoft Visual Studio .NET 2003 -VC7-,

Ignore Files

• msc40.ign for Microsoft Developer Studio 4.X,

• msc50.ign for Microsoft Developer Studio 5.0,

• msc60.ign for Microsoft Visual Studio 6.0 -VC98,

• msc70.ign for Microsoft Visual Studio .NET 2003 -VC7-,

Reference Documentation

Extract on the CD-ROM C MICROSOFT 2.0 language

Microsoft Visual C++

Development System and Tools for Windows

Kalimetrix Logiscope

28 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Language Specifics

The following keywords are recognized but ignored:

• __based, _based

• __cdecl, _cdecl, cdecl

• declspec, _declspec

• except

• fastcall, _fastcall

• finally

• __inline, _inline

• __int8, _int8

• __int16, _int16

• __int32, _int32

• __int64, _int64

• leave

• stdcall, _stdcall

• try

The asm (or _asm) instruction is recognized in different forms but not in cases listed

with the following limitations header.

Limitations

• The asm { text } instruction is recognized if character ”}” does not appear in text

(nor in comments).

• The #@ (Charizing Operator) preprocessor operator is not accepted.

Kalimetrix Logiscope

C Parsing Options 29

2.4.14Microtec Research C

Definition Files for Standard Mode

mcc_std.def file on Windows

.log_cc_sun4os5_mcc_std.def on UNIX

.log_cc_linux_mcc_std.def on Linux

Definition Files for ANSI Mode

mcc.def file on Windows

.log_cc_sun4os5_mcc.def on UNIX

.log_cc_linux_mcc.def on Linux

Reference Documentation

MCC68K C Compiler

Microtec Research Inc.

Version 4.4 - December 1993

The list of compiler specifics can be obtained by compiling a file containing the #pragma

macro directive.

Language Specifics (Standard and ANSI Modes)

The following keywords are recognized but ignored:

• interrupt

• packed

• unpacked

• typeof

The asm pseudo function is recognized.

Preprocessor Specifics (Standard and ANSI Modes)

The following directives are recognized but ignored:

• #info, #inform, #informing

• #pragma eject, #pragma error, #pragma info, #pragma list, #pragma macro, #pragma

option, #pragma warn

• #warn, #warning

The following directives are recognized and the portions of code found between the two

directives are ignored:

#pragma asm, #pragma endasm

Kalimetrix Logiscope

30 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

2.4.15SUN C

Definition Files

sun.def file on Windows

.log_cc_sun4os5_sun.def on UNIX

.log_cc_linux_sun.def on Linux

Reference Documentation

The C Programming Language - Kernighan and Ritchie

Prentice Hall Software Series 78

Language Specifics

The $ character is authorized in identifiers.

Kalimetrix Logiscope

Command Line Mode 31

Chapter 3

Command Line Mode

3.1 Logiscope create

Logiscope projects: i.e. “.ttp” file are usually built using Logiscope Studio as described

in chapter Project Settings or in the Logiscope RuleChecker & QualityChecker Getting

Started documentation.

The logiscope create tool builds Logiscope projects from a standalone command line or

within makefiles (replacing the compiler command) .

3.1.1 Command Line Mode

When started from a standard command line, The create tool creates a new project file

with the information provided on the command line.

For a complete description of the command line options, please refer to the Command

Line Options paragraph.

When used in this mode, there are two different ways for providing the files to be

included into the project:

Automatic search

This is the default mode where the tool automatically searches the files in the directories.

Key options having effect on this modes are:

-root <root_dir> : the root directory where the tool will start the search for source

files. This option is not mandatory, and if omitted the default is to start the search in the

current directory.

-recurse : if present indicates to the tool that the search for source files has to be

recursive, meaning that the tool will also search the subdirectories of the root directory.

File list

In this mode, the tool will look for the –list option which has to be followed by a file

name. This provided file contains a list of files to be included into the project. The file

shall contain one filename per line.

Kalimetrix Logiscope

32 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Example: Assuming a file named filelist.lst containing the 3 following lines:

/users/logiscope/samples/C/mstrmind/master.c

/users/logiscope/samples/C/mstrmind/player.c

/users/logiscope/samples/C/mstrmind/machine.c

Using the command line:
create aProject.ttp –audit -rule –lang c –list filelist.lst

will create a new Logiscope C project file named aProject.ttp containing 3 files: master.c,

player.c and machine.c on which RuleChecker and QualityChecker verification modules

will be activated.

3.1.2 Makefile mode

When launched from makefiles, create is designed to intercept the command line usually

passed to the compiler and uses the arguments to build the Logiscope project.

The project makefiles must be modified in order to launch create instead of the compiler.

In this mode, the name of the project file (“.ttp” file) has to be an absolute path,

otherwise the process will stop.

When used inside a Makefile, create uses the same options as in command line mode,

except for:

-root, -recurse, -list : which are not available in this mode

-- : which introduces the compiler command.

The following lines can be introduced in a Makefile to build a Logiscope project file :

CREATE=create /users/projects/myProject.ttp –audit -rule –lang c

CC=$(CREATE) -- gcc

CPP=$(CC) -E

...

In this mode, the project file building process is as follows:

1. create is invoked for each file by the make utility, instead of the compiler.

2. When create is invoked for a file it adds the file to the project, with appropriate

preprocessor options if any, then Create starts the normal compilation command which

will ensure that the normal build process will continue.

3. At the end of the make process, the Logiscope project is completed and can be used

either using Logiscope Studio or with the batch tool (see next section).

Note: Before executing the makefile, first clean the environment in order to force a full

rebuild and to ensure that the create will catch all files.

Kalimetrix Logiscope

Command Line Mode 33

3.1.3 Options

The create options are the following:

create -lang c

<ttp_file> name of a Logiscope project to be created

(with the .ttp extension).
Path has to be absolute if the option -- is used.

[-root <directory>] where <directory> is the starting point of the

source search. Default is the current directory.

This option is exclusive with -list option.

[-recurse] if present the source file search is done recur-

sively in subfolders.

[-list <list_file>] where <list_file> is the name of a file contain-

ing the list of filenames to add to the project

(one file per line).

This option is exclusive with -root option.

[-repository <directory>] where <directory> is the name of the direc-

tory where Logiscope internal files will be

stored.

[-no_compilation] avoid compiling the files if the -- option is

used

[--] when used in a makefile, introduces the com-

pilation command with its arguments.

[-audit] to activate the QualityChecker verification

module

[-ref <Quality_model>] where <Quality_model> is the name of the

Quality Model file (“.ref”) to add to the

project.

Default is <install_dir>/Ref/Logiscope.ref

[-rule] to select the RuleChecker verification module

[-rules <rules_file>] where <rule_file> is the name of the rule set

file (.rst) to be included into the project.

Default is the RuleChecker.rst file located in

the /Ref/RuleSets/C/ will be used.

[-relax] to activate the violation relaxation mechanism

for the project.

[-import <folder_name>] where <folder_name> is the name of the

project folder which will contain the external

violation files to be imported.

When this option is used the external viola-

tion importation mechanism is activated.

Kalimetrix Logiscope

34 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

[-external <file_name>]* where <file_name> is the name of a file to be

added into the import project folder.

This option can be repeated as many times as

needed.

Only applicable if the -import option is acti-

vated.

[-source <suffixes>] where <suffixes> is the list of accepted suf-

fixes for the source files. Default is "*.c;*.C".

[-dial <dialect_name>] where <dialect_name> is one of the available

C dialects.

[-def <definition_file>] where <definition_file> is a definition file

(.def) containing include paths and macro def-

initions.

[-ign <ignore_file>] where <ignore_file> is an ignore file (.ign)

specifying code to be ignored during parsing.

[-I<include_path>]* same syntax as a preprocessor.

Only if option -- is not used.

[-D<macro_name>]* same syntax as a preprocessor.

Only if option -- is not used.

[-U<macro_name>]* same syntax as a preprocessor.

Only if option -- is not used.

[-mode=exp|noexp] to specify the mode of preprocessing of the

macros statements.

Default is exp: macros are expanded.

[-mac <macro_file>] where <macro_file> is a text file specifying a

list of macros statements to be or not to be

expanded according to the value of the -mode

option.

Kalimetrix Logiscope

Command Line Mode 35

3.2 Logiscope batch

Logiscope batch is a tool designed to work with Logiscope in command line to:

• parse the source code files specified in a Logiscope project: i.e. “.ttp” file,

• generate reports in HTML and/or CSV format automatically.

Note that before using batch, a Logiscope project shall have been created:

• using Logiscope Studio, refer refer to Section 1 or to Kalimetrix Logiscope

RuleChecker & QualityChecker Getting Started documentation,

• or using Logiscope create, refer to the previous section.

Once the Logiscope project is created, batch is ready to use.

3.2.1 Options

The batch command line options are the following:

batch

<ttp_file> name of a Logiscope project.

[-tcl <tcl_file>] name of a Tcl script to be used to generate the

reports instead of the default Tcl scripts.

[-o <output_directory>] directory where the all reports are generated.

[-external <violation_file>]* name of the file to be added into the import

project folder. This option can be repeated as

many times as needed.

This option is only significant for RuleCh-

ecker module for which the external violation

importation mechanism is activated

[-nobuild] generates reports without rebuilding the

project. The project must have been built at

least once previously.

[-clean] before starting the build, the Logiscope build

mechanism removes all intermediate files and

empties the import project folder when the

external violation importation mechanism is

activated.

[-addin export -format csv] generates the reports in csv format available

using the file/export command.

[-addin <addin> options] where addin is the name of the addin to be

activated and options the associated options
generating the reports.

Kalimetrix Logiscope

36 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

[-table] generates tables in predefined HTML reports

instead of slices or charts. By default, slices or

charts are generated (depending on the project

type).

This option is available only on Windows as

on Unix there are no slices or charts, only

tables are generated.

[-noframe] generates HTML reports with no left frame.

[-v] displays the version of the batch tool.

[-h] displays help and options for batch.

[-err <log_err_folder>] directory where troubleshooting files

batch.err and batch.out should be put. By

default, messages are directed to standard out-

put and error.

3.2.2 Examples of Use

Considering a previously created Logiscope project named MyProject.ttp where:

• RuleChecker and QualityChecker verification modules have been activated,

• the Logiscope Repository is located in the folder MyProject/Logiscope,

(Refer to the previous section or to the RuleChecker & QualityChecker Getting Started

documentation to learn how creating a Logiscope project).

Executing the command on a command line or in a script:

batch MyProject.ttp

will:

• perform the parsing of all source files specified in the Logiscope project

MyProject.ttp,

• run the standard TCL script QualityReport.tcl located in <log_install_dir>/Scripts

to generate the standard QualityChecker HTML report named

MyProjectquality.html in the default MyProject/Logiscope/reports.dir folder.

• run the standard TCL script RuleReport.tcl located in <log_install_dir>/Scripts to

generate the standard RuleChecker HTML report named MyProjectrule.html in the

default MyProject/Logiscope/reports.dir folder.

Kalimetrix Logiscope

Standard Metrics 37

Chapter 4

Standard Metrics

Logiscope QualityChecker C proposes a set of standard source code metrics. Source

code metrics are static measurements (i.e. obtained without executing the program) to be

used to assess attributes (e.g. complexity, self-descriptiveness) or characteristics (e.g.

Maintainability, Reliability) of the C source code under evaluation.

The metrics can be combined to define new metrics more closely adapted to the quality

evaluation of the source code. For example, the “Comments Frequency” metric, well

suited to evaluate quality criteria such as self-descriptiviness or analyzability, can be

defined by combining two standard metrics: “Number of Comments” and “Number of

Statements”.

The user can associate threshold values with each of the quality model metrics,

indicating minimum and maximum reference values accepted for the metric.

Source code metrics apply to different domains (e.g. line counting, control flow, data

flow, calling relationship) and the range of their scope varies.

The scope of a metric designates the element of the source code the metric will apply to.

The following scopes are available for Logiscope QualityChecker C.

• The Function scope: the metrics are available for each C functions defined in the

source files specified in the Logiscope Project under analysis.

• The Module scope: the metrics are available for each C source files specified in the

Logiscope Project under analysis; header files (i.e. suffixed by “.h” and referenced in

#include preprocessor directives) are not considered.

• The Application scope: the metrics are available for the set of C source files specified

in the Logiscope Project .

Kalimetrix Logiscope

38 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

4.1 Function Scope

4.1.1 Line Counting

For more details on Line Counting Metrics, please refer to:

• Kalimetrix Logiscope - Basic Concepts.

lc_cline Total number of lines

Definition Total number of lines within the function.

lc_cloc Number of lines of code

Definition Total number of lines containing executable code within the function.

lc_cblank Number of empty lines

Definition Number of lines containing only non printable characters within the func-

tion.

lc_comm Number of lines of comments and header

Definition Number of lines of comment s

- between the function header and the closing curly bracket of the previ-

ous function) and,

- within the function.

Alias LCOM

lc_ccomm Number of lines of comments

Definition Number of lines of comments within the function.

lc_csbra Number of lines with lone braces

Definition Number of lines containing only a single brace character : i.e. “{“ or “}” in

the function.

Kalimetrix Logiscope

Standard Metrics 39

lc_ccpp Number of preprocessor statements

Definition Number of preprocessor directives (e.g. #include, #define, #ifdef)

in the function.

lc_stat Number of statements

Definition Number of executable statements in the function.

The following are statements:

IF

[ELSE]

SWITCH

WHILE

DO

FOR

GOTO

BREAK

CONTINUE

RETURN

THROW

TRY

ASM

; (empty statement)

expression; (simple statement)

Statements located in external declarations are not taken into account.

Alias STMT

lc_bcob Number of comments blocks before

Definition 1 if at least a comment is located between the function header and the

closing curly bracket of the previous function or between the function

header and the beginning of the file.

0 if not.

Example /* this comment is not counted */

/* as a comment before the function */

int i;

/* this one is counted

as a comment */

/* before the function */

funct() ;

{

printf ("----------------------") ;

printf ("----------------------") ;

}

lc_bcob = 1

Kalimetrix Logiscope

40 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Alias BCOB

lc_bcom Number of comments blocks

Definition Number of comment blocks used between the function header and the

closing curly bracket (Blocks of COMments).

Several consecutive comments are counted as a single comment block.

Example funct() ;

{

/* this is a comment */

printf ("----------------------") ;

/* this is a second */

/* comment */

printf ("----------------------") ;

/* this is a third

comment */

}

lc_bcom value = 3

Alias BCOM

CCOM Number of characters in the comments

Definition Number of alphanumeric characters in comments located between the

function header and the closing curly bracket.

CCOB Number of characters in the comments before

Definition Number of alphanumeric characters in comments located between the

function’s header and the closing curly bracket of the previous function or

between the function’s header and the beginning of the file

LCOB Number of lines of comments before

Definition Number of comments lines located between the function header and the

closing curly bracket of the previous function or between the function

header and the beginning of the file.

Kalimetrix Logiscope

Standard Metrics 41

4.1.2 Data Flow

dc_lvars Number of local variables

Definition Number of local variables declared in the function.

Alias LVAR

ic_param Number of parameters

Definition Number of formal parameters of the function.

Alias PARA

UPRO Number of functions used but not yet defined

Definition Number of functions with an unknown prototype used in the function.

MACC Number of macros used as constants

Definition Number of macro-instructions used as constants in the function.

MACP Number of macros with parameters

Definition Number of macro-instructions with parameters used in the function.

Kalimetrix Logiscope

42 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

4.1.3 Halstead Metrics

For more details on Halstead Metrics, please refer to:

• Kalimetrix Logiscope - Basic Concepts.

n1 Number of distinct operators

Definition Number of different operators between the function’s header and its clos-

ing curly bracket.

Alias ha_dopt

The following are C operators:

• Expressions:

n Unary operators:

+ - unary plus or minus

++ -- pre-/post- increment or decrement

! negation

~ complement of 1

* indirection

& address

sizeof sizeof

. dot

-> arrow

() expression in parenthesis

n Binary Operators:

+ - * / % arithmetic operators

<< >> & | ^ bitwise operators

> < <= >= == != comparison operators

&& || logical operators

->* .* pointer to member operators

n Ternary conditional operator: ?:

n Assignment operators: = *= /= %= += -= >>= <<= &= ^= |=

n Other operators:

(...) cast (ex: (float)1)

dynamic_cast cast (ex: dynamic_cast<T>(v))

static_cast cast (ex: static_cast<T>(v))

reinterpret_cast cast (ex: reinterpret_cast<T>(v))

Kalimetrix Logiscope

Standard Metrics 43

const_cast cast (ex: const_cast<T>(v))

[] subscripting (ex: a[i])

...() function call (ex: func(1))

(.., .., ..) expressions list (ex: func(1,2,3))

• Statements:

IF

RETURN

CONTINU

E LABEL

ELSE

FOR(;;)

GOTO label

WHILE()

SWITCH

CASE

DO WHILE()

BREAK

DEFAULT

{ }

;

(compound)

(empty statement)

• Declarations:

ASM (ex: asm("foo"))

EXTERN (ex: extern "C" { ... })

; (empty declaration)

(member) declaration (ex: int i; int i = 1;)

type specifier (ex: int)

storage class (ex: auto, register, static, extern, mutable)

enumerator specifier (ex: enum X { ... };)

enumerator-list (ex: enum X {a, b, c};)

enumerator-definition (ex: enum X {a=1, b=2};)

typename (ex: typedef typename X::a b;)

• Declarators:

 function declarator (ex: int func();)

[] array declarator (ex: int tab[5];)

* pointer declarator (ex: int *i;)

& reference declarator (ex: int& i;)

(.., .., ..) parameter-declaration-list (ex: int func(int i, char *j);)

{.., .., ..} initializer-list (ex: int tab[] = {1, 3, 5};)

 type qualifier (ex: const, volatile)

 type identifier (ex: sizeof(int), new (int))

Kalimetrix Logiscope

44 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

N1 Total number of operators

Definition Total number of operators between the function’s header and its closing

curly bracket.

Alias ha_topt

n2 Number of distinct operands

Definition Number of different operands between the function’s header and its clos-

ing curly bracket.

Alias ha_dopd

The following are operands:

• Literals:

n Decimal literals (ex: 45, 45u, 45U, 45l, 45L, 45uL)

n Octal literals (ex: 0177, 0177u, 0177l)

n Hexadecimal literals (ex: 0x5f, 0X5f, Ox5fu, 0x5fl)

n Floating literals (ex: 1.2e-3, 1e+4f, 3.4l)

n Character literals (ex: ’c’, L’c’, ’cd’, ’\a’, ’\177’, ’\x5f’)

n String literals (ex: "hello", L" world\n")

n Boolean literals (true or false)

• Identifiers: variable names, type names, function names, etc.)

• File names in #include clauses (ex: #include <stdlib.h>, #include "foo.h")

• Operator names:

new delete new[] delete[] **

+ - * / % ^ & | ~

! = < > += -= *= /= %=

^= &= |= << >> >>= <<= == !=

<= >= && || ++ -- , ->* ->

() [] and or xor mod rem abs not

N2 Total number of operands

Definition Total number of operands between the function’s header and its closing

curly bracket.

Alias ha_topd

Kalimetrix Logiscope

Standard Metrics 45

4.1.4 Keywords

ct_andthen Number of “and_then” operators

Definition Number of occurrences of the logical operator “&& ” in the function.

ct_break_inloop Number of break in loop

Definition Number of break statements used to exit from embedding loop struc-

tures in the function.

ct_break_inswitch Number of break in switch

Definition Number of break statements used to exit from embedding switch state-

ments in the function.

ct_case Number of case labels

Definition Total number of case and default labels in the function.

Example switch(var) ;

{

case A:

case B: ;

case C:

/* A first block of statements */

i = j + 1;

break;

case D:

case E:

/* A second block of statements */

i = k + 1;

break;

default:

/* A third block of statements */

break;

}

ct_case = 6

ct_casepath Number of case block statements

Definition Total number of blocks of statements in switch statements in the func-

tion.

Sequential case labels are counted for one block of statements.

Kalimetrix Logiscope

46 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Example switch(var) ;

{

case A:

case B: ;

case C:

/* A first block of statements */

i = j + 1;

break;

case D:

case E:

/* A second block of statements */

i = k + 1;

break;

default:

/* A third block of statements */

break;

}

ct_casepath = 3

ct_continue Number of continue statements

Definition Number of continue statements in the function.

ct_dowhile Number of do while statements

Definition Number of do ... while statements in the function.

ct_for Number of for statements

Definition Number of for statements in the function.

ct_if Number of if statements

Definition Number of if statements in the function.

ct_orelse Number of “or_else” operators

Definition Number of occurrences of the logical operator “||” in the function.

ct_ternary Number of ternary operators

Definition Number of occurrences of the ternary operator “?:” in the function.

ct_return Number of return statements

Definition Number of return statements in the function plus one if the last state-

ment of the function is not a return.

Alias RETU

Kalimetrix Logiscope

Standard Metrics 47

ct_switch Number of switch statements

Definition Number of switch statements in the function.

ct_while Number of while statements

Definition Number of while statements in the function.

4.1.5 Structured Programming

In structured programming:

• a function shall have a single entry point and a single exit point,

• each iterative of selective structures shall have a single exit point: i.e. no goto,

break,continue or return statement in the structure.

Structured programming improves source code maintainability.

ct_bran Number of destructuring statements

Definition Number of destructuring statements in a function (break and continue

in loops, and goto statements).

ct_bran = ct_break_inloop + ct_continue + ct_goto

For structured programming, ct_bran shall be equal to 0.

ct_break Number of break and continue branchings

Definition Number of break or continue statements used to exit from loop struc-

tures in the function.

break statements in switch structures are not counted (cf.

ct_breakinswitch).

ct_break = ct_break_inloop + ct_continue

For structured programming, ct_break shall be equal to 0.

Alias COND_STRUCT

ct_exit Number of out statements

Definition Number of nodes associated with an explicit exit from a function

(return, exit).

For structured programming, ct_exit shall be equal to 1.

Alias N_OUT

ct_goto Number of gotos

Definition Number of goto statements in the function.

Kalimetrix Logiscope

48 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

For structured programming, ct_goto shall be equal to 0.

Alias GOTO

ESS_CPX Essential complexity

Definition Cyclomatic number of the “reduced” control graph of the function.

The “reduced” control graph is obtained by removing all structured con-

structs from the control graph of the function.

A structured contruct is a selective or iterative structure that does not con-

tain auxiliary exit statements: goto, break, continue or return.

Justification When the Essential Complexity is equal to 1, the function complies with

the structured programming rules.

Note that the ct_exit and ct_bran metrics already provide such an infor-

mation on the structuring of the function with more details.

4.1.6 Control Graph

For more details on Control Graph Metrics, please refer to:

• Kalimetrix Logiscope - Basic Concepts.

ct_decis Number of decisions

Definition Number of selective statements in a function : if,switch

Alias N_STRUCT

ct_loop Number of loops

Definition Number of iterative statements in a function (pre- and post- tested loops):

for, while, do while

ct_nest Maximum nesting level

Definition Maximum nesting level of control structures in a function.

Also available: LEVL = ct_nest + 1

ct_npath Number of non-cyclic paths

Definition Number of non-cyclic execution paths of the control graph of the function.

Note Since version 6.6.1, ct_npath replaces the previous ct_path metric, now

considered as deprecated due to inaccurate results in some contexts but

kept only for non regression purpose.

ct_vg Cyclomatic number (VG)

Definition Cyclomatic number of the control graph of the function.

Kalimetrix Logiscope

Standard Metrics 49

Alias VG, ct_cyclo

DES_CPX Design complexity

Definition Cyclomatic number of the “design” control graph of the function.

The “design” control graph is obtained by removing all constructs that do

not contain calls from the control graph of the function.

4.1.7 Relative Call Graph

For more details on Call Graph Metrics, please refer to:

• Kalimetrix Logiscope - Basic Concepts.

CALL Number of calls

Definition Number of calls in the function.

Each call to the same function counts for one.

cg_entropy Relative call graph entropy

Definition SCHUTT entropy of the relative call graph of the function.

Alias ENTROPY

cg_ hiercpx Relative call graph hierarchical complexity

Definition Average number of components per level(i.e. number of components

divided by number of levels) of the relative call graph of the function..

Alias HIER_CPX

cg_levels Relative call graph levels

Definition Depth of the relative call graph of the function.

Alias LEVELS

cg_strucpx Relative call graph structural complexity

Definition Average number of calls per component: i.e. number of calling relations

between components divided by the number of components of the relative

call graph of the function..

Alias STRU_CPX

cg_testab Relative call graph testability

Definition Mohanty system testability of the relative call graph of the function.

Kalimetrix Logiscope

50 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Alias TESTBTY

dc_calls Number of direct calls

Definition Number of direct calls in the function.

Different calls to the same function count for one call.

Alias DRCT_CALLS

dc_calling Number of callers

Definition Number of functions calling the designated function.

Alias NBCALLING

IND_CALLS Relative call graph call-paths

Definition Number of call paths in the relative call graph of the function.

Kalimetrix Logiscope

Standard Metrics 51

4.2 Module Scope

4.2.1 Line Counting

For more details on Line Counting Metrics, please refer to:

• Kalimetrix Logiscope - Basic Concepts.

md_blank Number of empty lines

Definition Number of lines containing only non printable characters in the module.

md_comm Number of lines of comments

Definition Number of lines of comments in the module.

Alias LCOM

md_cpp Number of preprocessor statements

Definition Number of statements computed by the preprocessor (e.g. #include,

#define, #ifdef) in the module.

md_line Total number of lines

Definition Total number of lines in the module.

md_loc Number of lines of code

Definition Total number of lines containing executable code in the module.

md_sbra Number of lines with lone braces

Definition Number of lines containing only a single brace character : i.e. “{“ or “}” in

the module.

md_stat Number of statements

Definition Total number of executable statements in the functions defined in the

module.

Kalimetrix Logiscope

52 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

4.3 Application Scope

Metrics presented in this section are based on the set of C source files specified in

Logiscope C Project under analysis. It is therefore recommended to use these metrics

values exclusively for a complete application or for a coherent subsystem.

4.3.1 Line Counting

For more details on Line Counting Metrics, please refer to:

• Kalimetrix Logiscope - Basic Concepts.

Note that the line counting only considers the C source files specified in the Logiscope

project: i.e. usually files suffixed by “.c”. Header files are not taken into account in line

counting for the application.

ap_sline Total number of lines

Definition Total number of lines in the application source files.

ap_sloc Number of lines of code

Definition Total number of lines containing executable in the application source files.

ap_sblank Number of empty lines

Definition Total number of lines containing only non printable characters in the

application source files.

ap_scomm Total number of lines of comments

Definition Number of lines of comments in the application source files.

ap_scpp Number of preprocessor statements

Definition Number of preprocessor directives (e.g. #include, #define, #ifdef).

in the application source files.

ap_ssbra Number of lines with lone braces

Definition Number of lines containing only a single brace character : i.e. “{“ or “}” in

the application source files.

Kalimetrix Logiscope

Standard Metrics 53

4.3.2 Application Aggregates

ap_func Number of application functions

Definition Number of functions defined in the application.

Alias LMA

ap_stat Number of statements

Definition Sum of numbers of statements (i.e. lc_stat) of all the functions defined in

the application source files.

ap_vg Sum of cyclomatic numbers

Definition Sum of cyclomatic numbers (i.e. ct_vg) of all the functions defined in the

application source files.

Alias VGA, ap_cyclo

4.3.3 Application Call Graph

For more details on Call Graph Metrics, please refer to:

• Kalimetrix Logiscope - Basic Concepts.

ap_cg_cycle Call graph recursions

Definition Number of recursive paths in the call graph for the application’s functions.

A recursive path can be for one or more functions.

Alias GA_CYCLE

ap_cg_edge Call graph edges

Definition Number of edges in the call graph of application functions.

Alias GA_EDGE

ap_cg_leaf Call graph leaves

Definition Number of functions executing no call.

In other words, number of leaves nodes in the application call graph.

Alias GA_NSS

ap_cg_levl Call graph depth

Definition Depth of the Call Graph: number of call graph levels.

Alias GA_LEVL

Kalimetrix Logiscope

54 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

ap_cg_maxdeg Maximum callers/called

Definition Maximum number of calling/called for nodes in the call graph of applica-

tion functions.

Alias GA_MAXDEG

ap_cg_maxin Maximum callers

Definition Maximum number of “callings” for nodes in the call graph of Application

functions.

Alias GA_MAX_IN

ap_cg_maxout Maximum called

Definition Maximum number of called functions for nodes in the call graph of Appli-

cation functions.

Alias GA_MAX_OUT

ap_cg_node Call graph nodes

Definition Number of nodes in the call graph of Application functions. This metric

cumulates Application’s member and non-member functions as well as

called but not analyzed functions.

Alias GA_NODE

ap_cg_root Call graph roots

Definition Number of roots functions in the application call graph.

Alias GA_NSP

Kalimetrix Logiscope

Standard Programming Rules 55

Chapter 5

Standard Programming Rules

5.1 Standard Programming Rules

Logiscope RuleChecker C comes with programming rules based on:

• Industrial C language programming standards,

• Kalimetrix experience in Software Product Evaluation.

Different industrial programming standards sometimes contain contradictory rules. For

example, the character ‘_’ is sometimes authorized under certain conditions (not at the

beginning or at the end of a key, or no consecutive ‘_’ characters), and sometimes

prohibited altogether.

Therefore some of the rules resulting from these standards may be contradictory.

However, they are made available to the user for selecting the appropriate sub-set of

applicable rules in his/her context.

Rules are organized in Rule Sets according to their type. Logiscope RuleChecker C

comes with several default Rule Sets:

- Code Presentation,

- Complexity,

- Control Flow,

- Naming,

- Portability,

- Resource.

Kalimetrix Logiscope

56 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

5.1.1 Presentation of rules

Each rule is described as follows:.

Key: Summary the Key of the rule file as specified in the .KEY field; the Key is

made of :

- a prefix related to the rule set the rule belongs to: e.g.

CodePres_, ControlFlow_, Complexity_, Naming_,

Portability_ or Resource_;

- an ordering number;

- a nmenomic;

a summary of the rule as specified in the .NAME field of the rule

file.

Description the description of the programming rule as provided in the

description and/or role options of the .TITLE field of the corre-

sponding rule file.

Role the software characteristic(s) enforced by the rule.

The complete name of the rule file is <log_install_dir>/Ref/Rules/C/builtin/Key.rl

where <log_install_dir> is the Logiscope installation directory.

5.1.2 Rule Sets

Code Presentation

Code Presentation rules are rules restricting how code is presented, in order to improve

code analysability and prevent maintenance problems, etc.

CodePres_1_DeclarationPerLine: One declaration per line

Definition Each line must contain no more than one declaration.

Role Maintainability.

CodePres_2_NumberStatements: limited number of statements

Definition The number of statements shall not exceed 100 in a function and 1000

in a module.

Role Maintainability, Reliability

CodePres_3_FileLength: Length of files

Definition A file shall not exceed 2000 lines.

Role Maintainability.

CodePres_4_StatementSwitch: Number of first level statements per switch branch

Definition The number of first level statements in each clause of a switch state-

ment shall not exceed 10.

Kalimetrix Logiscope

Standard Programming Rules 57

Role Maintainability.

CodePres_5_StatementSwitch: Limited total number of statements per switch

branch

Definition The total number of statements in each clause of a switch statement

shall not exceed 25 (all levels included).

Role Maintainability.

CodePres_6_CommentStatementLine: No comment and statement on the same line

Definition A comment must be on a line without any statement. The exception

concerns a comment written on a single line after a statement.

Example: while ((a>0) || (b>0) || (c>0)) { /* Comment

* on several lines

* and barely readable

*/

}

while (a>0) { /* Accepted comment */

Role Maintainability.

CodePres_7_ExtensionHeader: Included files have the extension .h

Definition Included files have the extension .h. If those files contain data defini-

tion or code, the user can define another extension (.db for example for

tables of a database.)

Role Maintainability..

CodePres_8_EnumBoolean: Enum boolean type

Definition Systematically define a Boolean enumerated type containing two values

: true and false.

Role Maintainability.

CodePres_9_ParamFunction: Maximum number of parameters

Definition The number of parameters of a function is limited to 7.

This number may be customized.

Role Maintainability.

CodePres_10_StatementPerLine: One statement per line

Definition No more than one basic statement per line.

Role Maintainability.

CodePres_11_ControlStructure: Control structure on a new line

Definition A control structure (do, while, for, if, else, switch, return, break, con-

tinue) shall start on a new line.

Role Maintainability.

Kalimetrix Logiscope

58 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

CodePres_12_BlankLine: Blank line after definitions

Definition Function definition/declaration and function body must be separated by

a blank line.

Role Maintainability.

CodePres_13_Brace: Braces alone on a line

Definition Each brace (opening and closing) must be placed alone on a line.

Role Maintainability.

Parameter If the value of the variable “exceptionAllowed” is set to 1, then some

exceptions are allowed:

- the block only includes one instruction:

- the braces and the instruction are placed on a single line.

- Inside a block, the instructions are indented by 2 spaces with respect

to the braces.

Note: avoid using tabulations for indentations, the way they are inter-

preted depends on the editor used (portability). No automatic alignment

check

CodePres_14_CommentDeclaration: Comment for declaration

Definition Declarations must be commented:

Each declaration (type, variable, enumeration item, structure field) is

commented.

The directives to the pre-processor are commented with the name of the

associated variable.

Role Maintainability.

CodePres_15_PointerDeclaration: Pointer declaration

Definition In the declaration of a pointer to a data type, the * character shall be

stuck to the pointer’s identifier.

Role Maintainability.

CodePres_16_SpacingRef: No space before and after ‘.’ and ‘-> ’

Definition There shall be no blank before or after the . and -> operators.

Role Maintainability

CodePres_17_SpacingOperator: No space between operators and operands

Definition Operators ++, -, & (functionAddress), * (functionRef) shall be stuck to

their operand.

Role Maintainability.

Kalimetrix Logiscope

Standard Programming Rules 59

CodePres_18_SpacingParameter: Function parameters spacing

Definition Do not insert a blank after the opening parenthesis or before the closing

one.

Insert a blank before the opening parenthesis of a function or macro

call.

Role Maintainability.

CodePres_19_LineLength: Length of lines

Definition A line in a source file shall not exceed 80 characters.

Role Maintainability, Portability.

CodePres_21U_InclusionLevel: Number of inclusion levels

Definition The inclusion relation graph of a file shall not have more than 2 levels.

Role Portability.

Note Not available on Windows platforms.

CodePres_22U_CommentPrepro: Comment directivess

Definition The directives #else and #elif shall have a comment.

Role Portability.

Note Not available on Windows platforms.

CodePres_23U_Antislash: Use of \ s

Definition Declarations using ”\” shall not be used.

Role Portability.

Note Not available on Windows platforms.

CodePres_24U_Indent: Indentations

Definition Statements, comments, { and } shall be indented.

Role Maintainability.

CodePres_25_SingleLineComment: Use of comments

Definition Comments shall be one line long.

Role Maintainability.

CodePres_26_CommentDefinition: Definition comments

Definition All the definitions got a comment.

Role Maintainability.

Kalimetrix Logiscope

60 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

CodePres_28_Definitions: Definitions

Definition A module’s “.c” body file must contain the “in public” definitions of

the exported functions, and the “in public” definitions of the exported

variables.

Role Maintainability.

CodePres_29_SpacingUnaryOperator: No space after unary operators

Definition Unary operators ! and ~ must be stuck to their operand to avoid confu-

sion with binary operators.

Role Maintainability.

CodePres_30_Define: Define altogether after include

Definition The #define preprocessing directives shall be grouped altogether.

This group shall follow the #include directives.

Role Maintainability.

Complexity

Complexity rules concern operators, statements and language traps in order to improve

code reliability and maintainability.

Complexity_1_MultipleAssignment: No multiple assignments

Definition Multiple assignments shall not be used.

Example x = y = z ;

Role Maintainability.

Complexity_2_NoTernaryOp: No ternary operator

Definition The ternary operator (?:) shall not be used.

Example z = (a>b) ? a : b

Role Maintainability.

Complexity_3_NoUnary+: No unary + operator

Definition The unary + operator shall not be used

Example x = +10;

Role Maintainability.

Complexity_4_NoAssignmentOp: Assignment operators not recommended

Definition Assignment operators other than = (e.g. *=, /=, %=, &=) shall not be

used.

Role Maintainability.

Kalimetrix Logiscope

Standard Programming Rules 61

Complexity_5_CallResult: Use of the result of the function calls

Definition A function call must never appear as an independent statement.

A function shall never be used for its side-effects

Role Reliability.

Complexity_6_++--Operators: Use of ++ and --

Definition The use of ++ and -- shall be limited to simple cases. They shall not be

used in statements where other operators occur.

The prefix use is always forbidden.

Role Maintainability.

Complexity_7_NoCast: No explicit casting

Definition Cast functions shall not be used..

Role Maintainability, Portability.

Complexity_8_NoMultipleInit: Initialisations in multiple declarations

Definition Initialisations in multiple declarations are forbidden

Initialisations only occur on single expressions and are done, when pos-

sible, through symbolic constants.

Role Maintainability.

Complexity_9_Macro: One statement by macro

Definition A macro shall not contain several statements.

Multi-line macros shall not be used.

Role Maintainability.

Complexity_10_FieldAddressing: No (*ptr). field

Definition To address a structure field via a pointer to the structure, the notation

ptr>Field shall be used.

Example: struct foo {

int a;
int b;

} ;

struct foo *p_foo ; p_foo-

>a ; /* Correct */

(*p_foo).a ; /* Rejected */

Role Maintainability.

Complexity_11_NoCommaAndTernary: ?: and , operators

Definition ?: and , shall not be used

Role Maintainability.

Kalimetrix Logiscope

62 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Complexity_12_OperatorInCondition: Operator in conditions

Definition A condition with more than 4 operators shall not contain several dis-

tinct operators.

Role Maintainability.

Complexity_13_SimpleTest: No simple statements

Definition Statements like x == y ; or x != y ; shall not be used..

Role Reliability.

Complexity_14_InclusionLevel: Only one inclusion level

Definition File inclusion shall not exceed one level. Include are therefore forbid-

den in header files.

Role Maintainability.

Complexity_15_Sizeof: Parentheses for sizeofl

Definition Always uses parentheses to isolate the sizeof operand.

Role Maintainability.

Control Flow

These rules deal with the control flow of the program in order to improve its

maintainability and reliability.

ControlFlow_1_NoDeadCode: No inaccessible code

Description There shall be no dead code, especially after goto and return state-

ments.

Role Maintainability.

ControlFlow_2_FunctionReturn: Use of return

Description One return statement per function. It shall be the last statement of the

function.

Role Maintainability.

ControlFlow_3_NoGoto: No goto

Description Goto statement, especially local goto statement, shall not be used.

Role Maintainability.

ControlFlow_4_ThenElse: Then and else parts of if instructions

Description The then and else parts of if statements shall not be void.

Role Maintainability.

Kalimetrix Logiscope

Standard Programming Rules 63

ControlFlow_5_NoBreakContinue: Use of break and continue

Description Break and continue shall not be used in loops (for, do, while)

Role Maintainability.

ControlFlow_6_DefaultInSwitch: Default in switch

Description The default clause is mandatory in a switch statement.

Role Reliability.

ControlFlow_7_BreakInSwitch: Break in case clauses

Description Break is mandatory for case clauses containing statements and shall

be the last statement of the clause.

Role Reliability.

ControlFlow_8_BreakPathInSwitch: Break in paths of switch branch

Description Break is mandatory for case clauses containing statements. If break is

not the last instruction of a switch branch, one break shall be added

for each path.

Role Reliability.

ControlFlow_9_ControlStructureNesting: Control structure nesting limited

Description Control structure nesting is limited to 6 levels

Role Understandability, Maintainability.

ControlFlow_10_SwitchBetterThanIf: Switch and several if

Description It is better to use a switch than several if statements.

Example if ()

else if ()
[else if ()]*

else

will provoke violations (only 3 nested if statements).

Role Maintainability.

ControlFlow_11_OneBreakContinue: One break or continue

Description Only one continue or break statement is authorized in the body of for,

do or while loops.

Role Maintainability.

Naming

Naming rules define the way the different entities of the application can be named.

They improve maintainability of the code.

Kalimetrix Logiscope

64 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Naming_1_MinLength: Minimum length of identifiers

Description Identifiers shall be at least X+1 characters long.

X may be customized.

Role Maintainability.

Naming_2_Underscore: ‘_’ at the beginning or at the end of an identifier

Description Identifiers shall not start or finish with the character underscore ‘_’

Example It is difficult to distinguish _name, name and name_.

Role Maintainability.

Naming_3_DoubleUnderscore: No double underscore

Description Identifiers shall not contain two underscore ‘_’ characters consecu-

tively.

Example It is difficult to distinguish _name and name.

Role Maintainability.

Naming_4_NoUnderscore: Underscore in identifiers

Description The underscore character ‘_’ shall not be used.

Role Maintainability.

Naming_5_GlobalVariable: Global variable naming

Description The first character of a global variable identifier is upper-case. The

others are lower-case letters, numbers or the underscore character.

Role Maintainability.

Naming_6_LocalVariable: Local variable naming

Description The first character of a local variable identifier is lower-case. The

others are lower-case letters, numbers or the underscore character.

Role Maintainability.

Naming_7_Function: Function naming

Description The first character of a function identifier is lower-case. The others

are lower-case letters, numbers or the underscore character.

Role Maintainability.

Naming_8_Constant: Constant naming

Description The first character of a constant identifier is upper-case. The others

are upper-case letters, numbers or the underscore character.

Role Maintainability.

Naming_9_Macro: Macro naming

Description The first character of a macro identifier is upper-case. The others are

upper-case letters, numbers or the underscore character.

Kalimetrix Logiscope

Standard Programming Rules 65

Role Maintainability.

Naming_10_Type: Type naming

Description The first character of a type identifier is upper-case. The others are

upper-case letters, numbers or the underscore character.

Role Maintainability.

Naming_11_StructField: Structure type fields naming

Description The first character of a structured type component identifier is upper-

case. The others are lower-case letters, numbers or the underscore

character.

Role Maintainability.

Naming_12_MainParam: Parameters of main:

Description Parameters of main shall be named:

- argc: integer representing the command parameter number

- argv: array of strings of length of argc

Role Maintainability.

Naming_13_EnumConstant: Enum constant naming

Description Enum constants shall be written with upper-case letters.

Role Maintainability.

Naming_14U_Module: Module naming

Description All C modules consist of a body file and an interface file.

These two files have the same root which is the module name.

Role Maintainability.

Naming_15_Prefix: Name prefix

Description This concerns module level entities (internal and external). Choosing

a module name as prefix guarantees that all prefixes are distinct.

Role Maintainability.

Naming_16_SymbolNaming: Symbol naming

Description This rule concerns all symbols of an application:

- Language keyword: Lower-case letters,

- [macro-]function: First letter upper-case and the others lower-case,

- [macro-]constant: Upper-case letters,

- Type: First letter upper-case, the others lower-case,

- Structure Field: Lower-case letters,

- Enumeration items: Lower-case letters,

- Variable: Lower-case letters,

- Parameters: Lower-case letters.

Kalimetrix Logiscope

66 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Role Maintainability.

Portability

This set of rules concern characters, keywords and C Standard. They improve portability

of the program.

Portability_1_C++Keywords: C++ keywords use

Description Keywords from C++ language (class, new, friend...) shall not be

used.

Role Portability.

Portability_2_NoDollar: No ‘$’ in identifier

Description The ‘$’ character shall not be used in an identifier.

Restriction imposed by the C ANSI standard.

Role Portability.

Portability_4_CharIdentifier: Authorized characters

Description The only authorized characters in identifiers shall be:

- letters (upper- and lower-case),

- numbers,

- underscore character ‘_’ ;

Role Portability.

Portability_5_NoSignedRightShift: Use of >>

Description The right shift operator >> shall not be used on signed integer.

Role Portability.

Portability_6_MainNaming: Exit from main

Description Only the exit function shall be used to go out from main.

Role Portability.

Portability_7_NoRecursiveHeader: No recursive inclusion

Description Header files shall not include themselves recursively.

Role Portability.

Portability_8U_ConditionalCompilation: Conditional compilation

Description Header files shall have the following structure :

#ifndef ModuleName_h_

#define ModuleName_h_

....

#endif

Role Portability.

Kalimetrix Logiscope

Standard Programming Rules 67

Note Not available on Windows platforms.

Portability_9U_AbsolutePathInclude: #include

Description File names in #include directives must be in the same case than the

file name and shall not contain any absolute path.

Role Portability.

Portability_10U_DirectiveFirstColumn: Compilation directive

Description The character # of compilation directives shall be on the first column.

Role Portability.

Note Not available on Windows platforms.

Portability_11U_NoAsmDirective: #asm

Description #asm directive shall not be used.

Role Portability.

Note Not available on Windows platforms.

Portability_12U_FilenameLength: File naming

Description File names shall be lower-case and shall not exceed 8 characters for

the name and 3 characters for the extension.

Role Portability.

Portability_13_NoTab: Use of tabulations

Description Tabulations shall not be used in source files.

Role Portability.

Resource

Resource rules are rules restricting how resources in the application are used, in order to

improve code maintainability, efficiency and reliability.

Resource_1_AccessArray: Access to an array

Description A pointer shall be used to run through successive elements of an

array rather than an index.

Role Efficiency.

Kalimetrix Logiscope

68 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Resource_2_ForCounter: Counter in for statements

Description Loop counters and control variables shall not be modified within the

body of a for statement.

The loop counter shall be a local variable.

Loop control information should be located inside the loop header.

Role Reliability.

Resource_3_DeclarationInitSeparate: Declaration and initialisation separate

Description Declaration and initialisation of a variable shall be separate.

Role Maintainability.

Resource_4_DeclarationInitCombine: Declaration and initialisation combined

Description Declaration and initialisation of a variable shall be done at the same

time, if possible.

Role Reliability.

Resource_5_LocalDeclaration: Local variable declaration

Description Declaration of local variables in an instruction block shall not be

used.

Role Maintainability.

Resource_6_GlobalDeclaration: Global variable declaration

Description Global objects shall be declared in an inclusion file.

Role Maintainability

Resource_7_VariableUse: Use of variables

Description Declared variables shall be used.

Role Maintainability.

Resource_8_FunctionUse: Use of functions

Description Declared functions shall be used.

Role Maintainability.

Resource_9_ParameterUse: Use of parameters

Description Function parameters shall be used.

Role Maintainability.

Resource_10_NoGlobalParameter: Global variable as a parameter

Description A global variable shall not be used as a parameter.

Role Maintainability.

Kalimetrix Logiscope

Standard Programming Rules 69

Resource_11_InputParameter: Entry parameter

Description A function’s input parameter shall be either a pointer to const, or

passed by value.

Role Reliability.

Resource_12_NoExternBody: No extern in body file

Description The keyword extern shall not be used in a.c file.

Role Maintainability.

Resource_13_NoStaticInFunc: Static in functions

Description The keyword static shall not be used in the body of a function.

Role Reliability.

Resource_14_ExternHeader: Variable in header files

Description Declarations of variables in an header file shall be preceded by

extern.

Role Reliability.

Resource_15_NoFunctionHeader: Definition of functions

Description Functions (other than macros) shall not be defined in an header file.

Role Maintainability.

Resource_16_FileExtension: File extension

Description The header file shall have the extension .h and the body file the

extension .c.

Role Maintainability.

Resource_18_NoBodyInclusion: Body inclusion

Description A .c file shall not be included in another file, it shall be compiled to

give an object module.

Role Maintainability.

Resource_19_NoBitfield: No bitfields

Description Bitfields shall not be used.

Role Reliability.

Resource_20_NoAuto: Auto attribute

Description Declaration of variables local to a function shall never be made with

.

Role Reliability.

Resource_21_ArrayInit: Array initialization

Description Initialization of an array shall conform to its structure.

Kalimetrix Logiscope

70 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Role Readability.

Resource_22_PointerInit: Pointer initialization

Description A pointer shall always be initialized. If it points to no known vari-

able, it shall be initialized to NULL.

Role Reliability.

Resource_23_WhileInit: Initialization of while statement variables

Description The initial value of a parameter of a while loop shall be known before

entering the loop.

If not, there shall be a comment explaining the initial state of the

parameter, the comment shall be situated at MaxLine of the while

statement. MaxLine may be customized.

Role Reliability.

Resource_24_ConstVolatileInit: Initialization of const and volatile variables

Description Only const and volatile variables to a function shall be initialized

when they are defined.

Role Reliability.

Resource_26_TypedefUnionStruct: Typedef for unions and structures

Description A typedef shall not be used to mask structures or unions.

Role Maintainability.

Resource_30_EnumInit: Initialization of enumerations

Description The initialization of enumeration fields shall not be explicit.

Role Reliability.

Resource_31_StructUnion: Union and structure

Description Using the union type shall be limited to declaring partially variable

types.

Role Maintainability.

Resource_32_ForSpecification: Specification of for

Description All parts a for statement shall be filled.

Role Reliability.

Kalimetrix Logiscope

Standard Programming Rules 71

5.2 MISRA Programming Rules

The Motor Industry Software Reliability Association has published guidelines

containing list of rules for the use of the C programming language for embedded

systems, especially for embedded automotive systems:

• Guidelines For The Use Of The C Language In Vehicle Based Software - April 1998

[MISRA-C:1998],

• MISRA-C:2004 Guidelines for the use of the C language critial systems - October

2004 [MISRA-C:2004].

Apart from standard programming rules, MISRA programming rules packages are

available. These packages are not shipped with Logiscope RuleChecker C and have to be

purchased in addition to the product. Compressed and encrypted files are available in the

<log_install_dir> directory.

Rules are organized in rule sets according to their classification i.e. Required or

Advisory in the corresponding MISRA Guidelines:

• the MISRA Required rule set,

• the MISRA Advisory rule set,

• the MISRA “All” rule set containing all of the rule sets presented above.

When using the MISRA packages, please rename the rulesets.lst.MISRA file to

rulesets.lst in the directory where the packages have been extracted.

5.2.1 Presentation of the rules

Each rule is described as follows:.

Key: Summary the Key of the rule file as specified in the .KEY field; the Key is

made of the MISRA_ prefix followed by the rule identifier in the

corresponding MISRA Guidelines.

a summary of the rule as specified in the .NAME field of the rule

file.

Description the description of the programming rule as provided in the

description and/or role options of the .TITLE field of the corre-

sponding rule file.

Role the software characteristic(s) enforced by the rule.

Classification the classification of the rule as specified in the corresponding

MISRA Guidelines: i.e. Required or Advisory

The complete name of the rule file is <log_install_dir>/Ref/Rules/C/Key.rl where

<log_install_dir> is the Logiscope installation directory. The syntax of this file is

described in the reference part in the “File - programming rules” field.

Kalimetrix Logiscope

72 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

5.2.2 MISRA-C:1998 Rule Package

83 of the 93 “Required” rules specified in the MISRA-C:1998 document can be checked

using the Logiscope RuleChecker C MISRA 1998 programming rule package as well as

23 of the 34 “Advisory” rules.

MISRA_Rule5: ISO C standard Characters only

Description Only those characters and escape sequences which are defined in the

ISO C standard shall be used.

Role Maintainability.

Classification Required.

MISRA_Rule7: Trigraphs

Description Trigraphs shall not be used.

Role Maintainability.

Classification Required.

MISRA_Rule8: Multibyte characters

Description Multibyte characters and wide string literals shall not be used.

Role Reliability.

Classification Required.

MISRA_Rule9: Nested comments

Description Comments shall not be nested.

Role Portability.

Classification Required.

MISRA_Rule11: Length of identifiers

Description Identifiers shall not exceed 31 characters.

Restriction imposed by the C ANSI standard.

Role Portability.

Classification Required.

MISRA_Rule12: Name of identifiers

Description No identifier in one name space shall have the same spelling as an

identifier in another name space.

Role Reliability.

Classification Advisory.

MISRA_Rule13: Basic types

Description The basic types of char, int, short, long, float and double should not

be used, but specific-length equivalents should be typedef ’d for the

specific compiler.

Kalimetrix Logiscope

Standard Programming Rules 73

Role Reliability.

Classification Advisory.

MISRA_Rule14: Type char

Description The type char shall always be declared as unsigned char or signed

char.

Role Portability.

Classification Required.

MISRA_Rule16: Underlying representation of floating point numbers

Description The underlying bit representation of floating point numbers shall not

be used in any way by the programmer.

Role Reliability.

Classification Required.

MISRA_Rule17: Typedef names

Description Typedef names shall not be reused.

Role Reliability.

Classification Required.

MISRA_Rule18: Numeric constants and suffixes

Description Numeric constants should be suffixed to indicate type, where an

appropriate suffix is available.

Role Reliability.

Classification Advisory.

MISRA_Rule19: Octal constants

Description Octal constants other than zero shall not be used.

Role Maintainability.

Classification Required.

MISRA_Rule20: Declaration before use

Description All objects and functions identifiers shall be declared before use.

Role Reliability.

Classification Required.

MISRA_Rule21: Hidden identifiers linkage of identifiers

Description Identifiers in an inner scope shall not use the same name as an identi-

fier in an outer scope, and therefore hide that identifier.

Identifiers shall not simultaneously have both internal and external

linkage in the same translation unit.

Rule 24 violations will be caught by this rule and flagged as rule 21

violations.

Kalimetrix Logiscope

74 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Role Reliability.

Classification Required.

MISRA_Rule22: Object declarations

Description Declarations of objects should be at function scope unless a wider

scope is necessary.

Role Reliability.

Classification Advisory.

MISRA_Rule23i: Functions declaration

Description A declaration of function at file scope should be static where possi-

ble.

Role Maintainability, Reliability

Classification Advisory.

MISRA_Rule25: External definition

Description An identifier with external linkage shall have exactly one external

definition.

Role Reliability.

Classification Required.

MISRA_Rule26: Declarations of functions must be compatible

Description If objects or functions are declared more than once their types shall

be compatible.

Role Reliability, Portability.

Classification Required.

MISRA_Rule27: External declarations

Description External objects should not be declared in more than one file.

Role Reliability.

Classification Advisory.

MISRA_Rule28: Use of register

Description The register storage class specifier shall not be used.

Role Portability.

Classification Advisory.

MISRA_Rule29:Use of tags

Description Use of tags shall agree with its declaration.

Role Reliability.

Classification Required.

Kalimetrix Logiscope

Standard Programming Rules 75

MISRA_Rule30: Assignment

Description All automatic variables must have been assigned a value before being

used.

Role Reliability.

Classification Required.

MISRA_Rule31: Structured initialisation

Description Braces shall be used to indicate and match the structure in the non-

zero initialisation of arrays and structures.

Role Reliability.

Classification Required.

MISRA_Rule32: Enumeration initialization

Description In an enumerator list, the ‘=’ construct shall not be used to explicitly

initialize members other than the first, unless all items are explicitly

initialized.

Role Reliability.

Classification Required.

MISRA_Rule33: Side effects

Description The right hand operand of a && or || operator shall not contain side

effects.

Role Reliability, Portability.

Classification Required.

MISRA_Rule34: Logical operand

Description Operands of a logical && and || shall be primary expressions.

Role Reliability.

Classification Required.

MISRA_Rule35: Test and assignment result

Description Assignment operators shall not be used in expressions which returns

Boolean values.

Example:

if (x = y) { /* Violation */ }

if ((x = y) != 0) { /* Violation */ }

x = y ;

if (x != 0) { /* Correct */ }

Role Reliability.

Classification Required.

Kalimetrix Logiscope

76 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

MISRA_Rule37: Bitwise operations

Description Bitwise operations (~, <<, >>, &, ^ and |) shall not be performed

on signed integer types.

Role Reliability.

Classification Required.

MISRA_Rule38: Shift operator and right hand operand

Description The right hand operand of a shift operator shall lie between zero and

one less than the width in bits of the left hand operand (inclusive).

Role Reliability.

Classification Required.

MISRA_Rule39: Unary minus operator

Description The unary minus operator shall not be applied to an unsigned expres-

sion.

Role Reliability.

Classification Required.

MISRA_Rule40: Operator sizeof

Description The sizeof operator should not be used on expressions that contain

side effects.

Role Reliability.

Classification Advisory.

MISRA_Rule42: Comma operator

Description The comma operator shall not be used, except in the control expres-

sion of a for loop.

Role Reliability.

Classification Required.

MISRA_Rule43: Conversions

Description Implicit conversions which may result in a loss of information shall

not be used.

Role Reliability.

Classification Required.

MISRA_Rule44: Redundant casts

Description Redundant explicit casts should not be used.

Role Reliability

Classification Advisory.

MISRA_Rule45: Cast and pointers

Description Type casting from any type to or from pointers shall not be used.

Kalimetrix Logiscope

Standard Programming Rules 77

Role Reliability.

Classification Required.

MISRA_Rule46: Evaluation order

Description The value of an expression shall be the same under any order of eval-

uation that standard permits.

Role Reliability

Classification Required.

MISRA_Rule48: Mixed precision arithmetic and cast

Description Mixed precision arithmetic should use explicit casting to generate the

desired result.

Role Reliability

Classification Advisory.

MISRA_Rule50: Test between floats

Description Floating point variables shall not be tested for exact equality or ine-

quality.

Role Reliability.

Classification Required.

MISRA_Rule52: Unreachable code

Description There shall be no unreachable code.

Role Reliability.

Classification Required.

MISRA_Rule53: Non-null statements

Description Non-null statements shall have a side-effect.

Role Reliability.

Classification Required.

MISRA_Rule54: Location of null statements

Description A null statement shall occur on a line by itself, and shall not have any

other text on the same line.

Role Reliability.

Classification Required.

MISRA_Rule55: No labels

Description Labels should not be used, except in switch statements.

Role Understandability

Classification Advisory.

Kalimetrix Logiscope

78 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

MISRA_Rule56: Goto

Description The goto statement shall not be used.

Role Maintainability.

Classification Required.

MISRA_Rules5758: Break and continue

Description The continue statement shall not be used.

The break statement shall not be used (except to terminate the cases

of a switch statement).

Role Maintainability.

Classification Required.

MISRA_Rule59: Use of braces

Description Statements forming the body of an if, else if, else, while, do ... while

or for statement shall always be in brackets.

Role Maintainability.

Classification Required.

MISRA_Rule60: Then and else

Description All if, else if constructs should contain a final else clause.

Role Reliability, Understandability

Classification Advisory.

MISRA_Rule61: Break in switch

Description Every non-empty case clause in a switch statement shall be termi-

nated with a break statement.

Role Reliability.

Classification Required.

MISRA_Rule62: Default in switch

Description All switch statements should contain a final default clause.

Role Reliability.

Classification Required.

MISRA_Rule63: Switch and boolean

Description A switch expression should not represent a Boolean value.

Role Maintainability.

Classification Advisory.

MISRA_Rule64: Switch without case

Description Every switch statement shall have at least one case.

Role Maintainability.

Kalimetrix Logiscope

Standard Programming Rules 79

Classification Required.

MISRA_Rule65: Loop counter

Description Floating point variables shall not be used as loop counters.

Role Reliability.

Classification Required.

MISRA_Rule66: Loop control

Description Only expressions concerned with loop control should appear within a

for statement.

Role Reliability.

Classification Advisory.

MISRA_Rule67: Counter in for statements

Description Numeric variables being used within a for loop for iteration counting

should not be modified in the body of the loop.

Role Reliability.

MISRA_Rule68: Scope of functions

Description Functions shall always be declared at file scope.

Role Maintainability.

Classification Required.

MISRA_Rule69: Variable number of arguments

Description Functions with variable numbers of arguments shall not be used.

Role Reliability, Maintainability

Classification Required.

MISRA_Rule70: Recursion

Description Functions shall not call themselves, either directly or indirectly.

Role Reliability, Maintainability.

Classifica-

tion

Required.

MISRA_Rule71: Prototyping

Description Functions shall always have prototype declarations and the prototype

shall be visible at both the function declaration and call.

Role Reliability, Maintainability.

Classification Required.

Kalimetrix Logiscope

80 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

MISRA_Rule7576: Void type and functions

Description Every function shall have an explicit return type.

Functions with no parameters shall be declared with parameter type

void.

Role Reliability, Maintainability.

Classification Required.

MISRA_Rule78: Parameters

Description A parameter number passed to a function shall match the function

prototype.

Role Reliability, Maintainability.

Classification Required.

MISRA_Rule79: Values of void functions

Description Values returned by void functions shall not be used.

Role Reliability.

Classification Required.

MISRA_Rule80: Void expressions and function parameters

Description Void expressions shall not be passed as function parameters.

Role Reliability.

Classification Required.

MISRA_Rule81: Function parameters and const

Description Const qualification should be used on function parameters which are

passed by reference, where it is intended that the function will not

modify the parameter.

Role Reliability.

Classification Advisory.

MISRA_Rule82: Use of return

Description A function should have a single point of exit.

Role Maintainability.

Classification Advisory.

MISRA_Rule83i: Functions with non-void return types

Description For functions with non-void return type, there shall be one return

statement for every exit branch.

Role Reliability.

Classification Required.

Kalimetrix Logiscope

Standard Programming Rules 81

MISRA_Rule83ii: Functions with non-void return types

Description For functions with non-void return type, each return shall have an

expression.

Role Reliability.

Classification Required.

MISRA_Rule83iii: Functions with non-void return types

Description For functions with non-void return type, the return expression shall

match the declared return type.

Role Reliability.

Classification Required.

MISRA_Rule84: Void functions

Description For functions with void return type, return statements shall not have

an expression.

Role Reliability.

Classification Required.

MISRA_Rule85: Function with no parameters

Description Functions called with no parameters should have empty parentheses.

Role Reliability.

Classification Advisory.

MISRA_Rule87: Code structure

Description #include statements in a file shall only be preceded by other prepro-

cessor directives or comments.

Role Reliability.

Classification Required.

MISRA_Rules8889: #include syntax

Description Non-standard characters shall not occur in header file names in

#include directive.

The #include directive shall be followed by either a <filename> or

“filename” sequence.

Role Reliability.

Classification Required.

MISRA_Rule91: Define and undefine in a block

Description Macros shall not be #define'd and #undef'd within a block.

Role Reliability.

Classification Required.

Kalimetrix Logiscope

82 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

MISRA_Rule92: Use of #undef

Description #undef should not be used.

Role Reliability.

Classification Advisory.

MISRA_Rule93: Functions and macros

Description A function should be used in preference to a function-like macro.

Role Reliability.

Classification Advisory.

MISRA_Rule94: Function-like macro call

Description A function-like macro shall not be called without all of its arguments.

Role Reliability.

Classification Required.

MISRA_Rule95: Arguments to function-like macros

Description Arguments to a function-like macro shall not contain tokens that look

like pre-processing directives.

Role Reliability.

Classification Required.

MISRA_Rule96i: Parentheses for macro occurences

Description In a definition of a function-like macro, each instance of a parameter

shall be enclosed in parentheses.

Role Reliability.

Classification Required.

MISRA_Rule96ii: Parentheses for macro occurences

Description In a definition of a function-like macro, the whole definition shall be

enclosed in parentheses.

Role Reliability.

Classification Required.

MISRA_Rule97: Identifiers in pre-processor directives

Description Identifiers in pre-processor directives should be defined before use.

Role Reliability.

Classification Advisory.

M ISRA_Rule98: # and ## in macros

Description There shall be at most one occurence of the # or ## pre-processor

operators in a single macro definition.

Role Reliability.

Kalimetrix Logiscope

Standard Programming Rules 83

Classification Required.

M ISRA_Rule99: All uses of the #pragma directive shall be documented and

explained

Description The line beofre the #pragma directive shall containa comment.

Role Maintainability.

Classification Required.

MISRA_Rule100:Operator defined

Description The defined pre-processor operator shall only be used in one of the

two standard forms.

Role Reliability.

Classification Required.

MISRA_Rule101: Pointer arithmetic

Description Pointer arithmetic should not be used.

Role Reliability.

Classification Advisory.

MISRA_Rule102: Reference complexity

Description No more than 2 levels of pointer indirection should be used.

Role Maintainability.

Classification Advisory.

MISRA_Rule103: Pointers and operators

Description Relational operators shall not be applied to pointer types except

where both operands are of the same type and point to the same array,

structure or union.

Role Reliability.

Classification Required.

MISRA_Rule104: Pointers to functions

Description Non-constant pointers to functions shall not be used.

Role Reliability.

Classification Required.

MISRA_Rule105: Pointers to functions

Description All the functions pointed to by a single pointer to function shall be

identical in the number and type of parameters and the return type.

Role Reliability.

Classification Required.

Kalimetrix Logiscope

84 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

MISRA_Rule106: Address assignment

Description The address of an object with automatic storage shall not be assigned

to an object which may persist after the object has ceased to exit.

Role Reliability.

Classification Required.

MISRA_Rule107: Null pointer

Description The null pointer shall not be de-referenced.

Role Reliability.

Classification Required.

MISRA_Rule108: Members of structures and unions

Description In the specification of a structure or union type, all members of the

structure or union shall be fully specified.

Role Reliability.

Classification Required.

MISRA_Rule109: Variable storage

Description Overlapping variable storage shall not be used.

Role Reliability.

Classification Required.

MISRA_Rule110: Unions access

Description Unions shall not be used to access sub-parts of larger data types.

Role Reliability.

Classification Required.

MISRA_Rule111: Type of bitfields

Description Bit fields shall only be defined to be of type unsigned int or signed

int.

Role Reliability.

Classification Required.

MISRA_Rule112: Two bits long bit fields

Description Bit fields of type signed inst shall be at least two bits long.

Role Reliability.

Classification Required.

MISRA_Rule113: Structure fields

Description All members of a structure (or union) shall be named and shall only

be accessed via their name.

Role Reliability, Maintainability.

Kalimetrix Logiscope

Standard Programming Rules 85

Classification Required.

MISRA_Rule114: Define and undef

Description Reserved words and standard library function names shall be not

redefined or undefined.

Role Reliability, Maintainability.

Classification Required.

Note Implemented using 2 complementary rule scripts.

MISRA_Rule115: Redefinition of standard library function names

Description Standard library function names shall not be reused.

Role Maintainability.

Classification Required.

MISRA_Rule118: Dynamic heap memory

Description Dynamic heap memory allocation shall not be used.

Role Reliability, Maintainability.

Classification Required.

MISRA_Rule119: Errno

Description The error indicator errno shall not be used.

Role Reliability.

Classification Required.

MISRA_Rule120: Offsetof

Description The macro offsetof, in library <stddef.h> shall not be used.

Role Reliability.

Classification Required.

MISRA_Rule121Fct: <locale.h>

Description <locale.h> and the setlocale function shall not be used.

Role Reliability.

Classification Required.

MISRA_Rule122: Setjmp and longjmp

Description The setjmp macro and the longjmp function shall not be used.

Role Reliability.

Classification Required.

MISRA_Rule123: signal.h

Description Signal handling facilities of <signal.h> shall not be used.

Role Reliability.

Kalimetrix Logiscope

86 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Classification Required.

MISRA_Rule124Fct: stdio.h

Description The input/ouput library <stdio.h> shall not be used in production

code.

Role Reliability.

Classification Required.

MISRA_Rules121124Include: <locale.h> and <stdio.h>

Description <locale.h> and <stdio.h> shall not be used.

Role Reliability.

Classification Required.

MISRA_Rule125: atof, atoi and atol

Description Library functions atof, atoi and atol from library <stdlib.h> shall not

be used.

Role Reliability.

Classification Required.

MISRA_Rule126: abort, exit, getenv and system

Description Library functions abort, exit, getenv and system from library

<stdlib.h> shall not be used.

Role Reliability.

Classification Required.

MISRA_Rule127: time.h

Description Time handling functions of library <time.h> shall not be used.

Role Reliability.

Classification Required.

Kalimetrix Logiscope

Standard Programming Rules 87

5.2.3 MISRA-C:2004 Rule Package

95 of the 121 “Required” rules specified in the MISRA-C:2004 document can be

checked using the Logiscope RuleChecker C MISRA 2004 programming rule package

as well as 14 of the 20 “Advisory” rules.

MISRA_2_2: No // Comment

Description Source code shall only use / * ... */ style comments.

Role Portability.

Classification Required.

MISRA_2_3: No nested comments

Description The character sequence /* shall not be used within a comment.

Role Portability.

Classification Required.

MISRA_3_4: Use of the #pragma directive

Description All uses of the #pragma directive shall be documented and explained.

Role Reliability.

Classification Required.

MISRA_4_1: Escape sequences

Description Only those escape sequences which are defined in the ISO C standard

shall be used.

Role Maintainability.

Classification Required.

MISRA_4_2: Trigraphs

Description Trigraphs shall not be used.

Role Maintainability.

Classification Required.

MISRA_5_1: Length of identifiers

Description Identifiers (internal and external) shall not rely on the significance of

more than 31 characters.

Restriction imposed by the C ANSI standard.

Role Portability.

Classification Required.

MISRA_5_2: Identifiers linkage and scope

Description Identifiers in an inner scope shall not use the same name as an identi-

fier in an outer scope, and therefore hide that identifier.

Role Reliability.

Kalimetrix Logiscope

88 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Classification Required.

MISRA_5_3: Typedef names

Description A typedef name shall be a unique identifier.

Role Reliability.

Classification Required.

MISRA_5_4:Use of tags

Description A tag name shall be a unique identifier.

Role Reliability.

Classification Required.

MISRA_5_5: Do not reuse name of static objects

Description No object or function identifier with static storage duration should be

reused.

Role Reliability.

Classification Advisory.

MISRA_5_6: Name of identifiers

Description No identifier in one name space should have the same spelling as an

identifier in another name space, with the exception of structure and

union member names.

Role Reliability.

Classification Advisory.

MISRA_5_7: No reused identifiers

Description No identifier name should be reused.

Role Reliability.

Classification Advisory.

MISRA_6_1: Plain char type usage

Description The plain char type shall be used only for storage and use of character

values.

Role Reliability.

Classification Required.

MISRA_6_2: signed/unsigned char type usage

Description signed and unsigned char type shall be used only for the storage and

use of numeric values.

Role Reliability.

Classification Required.

Kalimetrix Logiscope

Standard Programming Rules 89

MISRA_6_3: Basic types

Description Typedefs that indicate size and signedness should be used in place of

the basic types.

Role Reliability.

Classification Advisory.

MISRA_6_4: Type of bitfields

Description Bit fields shall only be defined to be of type unsigned int or signed

int.

Role Reliability.

Classification Required.

MISRA_6_5: Two bits long bit fields

Description Bit fields of type signed inst shall be at least two bits long.

Role Reliability.

Classification Required.

MISRA_7_1: Octal constants

Description Octal constants other than zero shall not be used.

Role Maintainability.

Classification Required.

MISRA_8_1: Prototyping

Description Functions shall always have prototype declarations and the prototype

shall be visible at both the function declaration and call.

Role Reliability, Maintainability.

Classification Required.

MISRA_8_2: Use explicit types

Description Whenever an object or function is declared or defined, its type shall

be explicitly stated.

Role Reliability, Portability.

Classification Required.

MISRA_8_4: Declarations of functions must be compatible

Description If objects or functions are declared more than once their types shall

be compatible.

Role Reliability, Portability.

Classification Required.

MISRA_8_5:No definition in header

Description There shall be no definitions of objects or functions in a header file.

Kalimetrix Logiscope

90 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Role Reliability, Portability.

Classification Required.

MISRA_8_6: Scope of functions

Description Functions shall be declared at file scope.

Role Maintainability.

Classification Required.

MISRA_8_7: Object declarations

Description Objects shall be defined at block scope if they are only accessed from

within a single function.

Role Reliability.

Classification Advisory.

MISRA_8_8: External declarations

Description An external object or function shall be declared in one and only one

file.

Role Reliability.

Classification Required.

MISRA_8_9: External definition of identifiers

Description An identifier with external linkage shall have exactly one external

definition.

Role Reliability.

Classification Required.

MISRA_8_10: File scope declarations

Description All declarations and definitions of objects or functions at file scope

shall have internal linkage unless external linkage is required.

Role Maintainability, Reliability

Classification Required

MISRA_9_1: Assignment

Description All automatic variables must have been assigned a value before being

used.

Role Reliability.

Classification Required.

MISRA_9_2: Structured initialisation

Description Braces shall be used to indicate and match the structure in the non-

zero initialisation of arrays and structures.

Role Reliability.

Classification Required.

Kalimetrix Logiscope

Standard Programming Rules 91

MISRA_9_3: Enumeration initialization

Description In an enumerator list, the ‘=’ construct shall not be used to explicitly

initialize members other than the first, unless all items are explicitly

initialized.

Role Reliability.

Classification Required.

MISRA_10_1: Integer type conversions

Description The value of an expression of integer type shall not be implicitly con-

verted to a different underlying type if:

a) it is not a conversion to a wider integer type of the same signed-

ness, or

b) the expression is complex, or

c) the expression is not constant and is a function argument, or

d) the expression is not constant and is a return expression.

Role Reliability.

Classification Required.

MISRA_10_2: Floating type conversion

Description The value of an expression of floating type shall not be implicitly

converted to a different type, if :

a) it is not a conversion to a wider floating type, or

b) the expression is complex, or

c) the expression is a function argument, or

d) the expression is a return expression.

Role Reliability.

Classification Required.

MISRA_10_3: Integer type casting

Description The value of a complex expression of integer type may only be cast

to a type that is narrower and of the same signedness as the underly-

ing type of the expression..

Role Reliability.

Classification Required.

MISRA_10_5: Unsigned casting

Description If the bitwise operators ~ and << are applied to an operand of under-

lying type unsigned char or unsigned short, the result shall be imme-

diately cast to the underlying type of the operand..

Role Reliability.

Classification Required.

MISRA_10_6:U suffixing

Description A «U» suffix shall be applied to all constants of unsigned type..

Kalimetrix Logiscope

92 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Role Reliability.

Classification Required.

MISRA_11_3: Pointer / integral type cast

Description A cast should not be performed between a pointer type and an inte-

gral type.

Role Reliability.

Classification Advisory.

MISRA_11_4: Cast between pointers to different object type

Description A cast should not be performed between a pointer to object type and

a different pointer to object type.

Role Reliability.

Classification Advisory.

MISRA_12_1: Operator precedence

Description Limited dependence should be placed on C's operator precedence

rule in expression .

Role Reliability

Classification Advisory.

MISRA_12_2: Evaluation order

Description The value of an expression shall be the same under any order of eval-

uation that standard permits.

Role Reliability

Classification Required.

MISRA_12_3: Operator sizeof

Description The sizeof operator should not be used on expressions that contain

side effects.

Role Reliability.

Classification Required.

MISRA_12_4: Side effects

Description The right hand operand of a && or || operator shall not contain side

effects.

Role Reliability, Portability.

Classification Required.

MISRA_12_5: Logical operand

Description Operands of a logical && and || shall be primary expressions.

Role Reliability.

Classification Required.

Kalimetrix Logiscope

Standard Programming Rules 93

MISRA_12_7: Bitwise operations

Description Bitwise operations (~, <<, >>, &, ^ and |) shall not be appliedto

operands whose underlying type is signed.

Role Reliability.

Classification Required.

MISRA_12_8: Shift operator and right hand operand

Description The right hand operand of a shift operator shall lie between zero and

one less than the width in bits of the underlying type of the left-hand

operand.

Role Reliability.

Classification Required.

MISRA_12_9: Unary minus operator

Description The unary minus operator shall not be applied to an expression whose

underlying type is unsigned.

Role Reliability.

Classification Required.

MISRA_12_10: Comma operator

Description The comma operator shall not be used.

Role Reliability.

Classification Required.

MISRA_12_12: Underlying representation of floating point numbers

Description The underlying bit representation of floating point numbers shall not

be used.

Role Reliability, Portability.

Classification Required.

MISRA_12_13: Do not mix increment and decrement with other operators

Description The increment (++) and decrement (--) operators should not be mixed

with other operators in an expression.

Role Reliability.

Classification Advisory.

MISRA_13_1: Test and assignment result

Description Assignment operators shall not be used in expressions that yield a

Boolean value.

Kalimetrix Logiscope

94 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Example:

if (x = y) { /* Violation */ }

if ((x = y) != 0) { /* Violation */ }

x = y ;

if (x != 0) { /* Correct */ }

Role Reliability.

Classification Required.

MISRA_13_3: Test between floats

Description Floating point variables shall not be tested for exact equality or ine-

quality.

Role Reliability.

Classification Required.

MISRA_13_4: Loop counter

Description The controlling expression of a for statement shall not contain any

objects of floating type.

Role Reliability.

Classification Required.

MISRA_13_5: Loop control

Description The three expressions of a for statement shall be concerned only with

loop control.

Role Reliability.

Classification Required.

MISRA_13_6: Counter in for statements

Description Numeric variables being used within a for loop for iteration counting

should not be modified in the body of the loop.

Role Reliability.

MISRA_14_1: Unreachable code

Description There shall be no unreachable code.

Role Reliability.

Classification Required.

MISRA_14_2: Non-null statements

Description Non-null statements shall have a side-effect.

Role Reliability.

Classification Required.

Kalimetrix Logiscope

Standard Programming Rules 95

MISRA_14_3: Location of null statements

Description Before preprocessing, a null statement shall only occur on a line by

itself.

Role Reliability.

Classification Required.

MISRA_14_4: No goto statement

Description The goto statement shall not be used.

Role Maintainability.

Classification Required.

MISRA_14_5: No continue statement

Description The continue statement shall not be used.

Role Maintainability.

Classification Required.

MISRA_14_6: Break in loop

Description For any iteration statement there shall be at most one break statement

used for loop termination.

Role Maintainability.

Classification Required.

MISRA_14_7: Use of return

Description A function shall have a single point of exit at the end of the function

Role Maintainability.

Classification Required.

MISRA_14_8: Use of braces

Description The statement forming the body of a switch, while, do ... while or for

statement shall be a compound statement

Role Maintainability.

Classification Required.

MISRA_14_9: If statement

Description An if (expression) construct shall be followed by a compound state-

ment. The else keyword shall be followed by either a compound

statement, or another if statement

Role Maintainability.

Classification Required.

MISRA_14_10: Then and else

Description All if, else if constructs shall be terminated with an else clause.

Kalimetrix Logiscope

96 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Role Reliability.

Classification Required.

MISRA_15_1: Use of switch labels

Description A switch label shall only be used when the most closely-enclosing

compound statement is the body of a switch statement.

Role Maintainability.

Classification Required.

MISRA_15_2: Break in switch

Description An unconditional break statement shall terminate every non-empty

switch clause.

Role Reliability.

Classification Required.

MISRA_15_3: Default in switch

Description The final clause of a switch statement shall be the default clause.

Role Reliability.

Classification Required.

MISRA_15_4: Switch and boolean

Description A switch expression shall not represent a value that is effectively

Boolean.

Role Maintainability.

Classification Required.

MISRA_15_5: Switch without case

Description Every switch statement shall have at least one case clause.

Role Maintainability.

Classification Required.

MISRA_16_1: No function with variable number of arguments

Description Functions shall not be defined with variable numbers of arguments.

Role Reliability, Maintainability

Classification Required.

Note Implemented using 2 complementary rule scripts.

MISRA_16_2: Recursion

Description Functions shall not call themselves, either directly or indirectly.

Role Reliability, Maintainability

Classification Required.

Kalimetrix Logiscope

Standard Programming Rules 97

MISRA_16_5: Functions with no parameters use explicit void

Description Functions with no parameters shall be declared with parameter type

void.

Role Reliability, Maintainability.

Classification Required.

MISRA_16_6: Parameters

Description The number of arguments passed to a function shall match the num-

ber of parameters.

Role Reliability, Maintainability.

Classification Required.

MISRA_16_7: Function parameters and const

Description A pointer parameter in a function prototype should be declared as

pointer to const if the pointer is not used to modify the addressed

object.

Role Reliability.

Classification Advisory.

MISRA_16_8: Functions with non-void return types

Description All exit paths from a function with non-void return type shall have an

explicit return statement with an expression.

Role Reliability.

Classification Required.

Note Implemented using 3 complementary rule scripts.

MISRA_16_9: Use of function identiers

Description Afunction identifier shall only be used with either a preceding &, or

with a parenthesised parameter list, which may be empty.

Role Reliability.

Classification Required.

MISRA_17_3: Relational operators

Description Relational operators shall not be applied to pointer types except

where they point to the same array.

Role Reliability.

Classification Required.

MISRA_17_4: Pointer arithmetic only with array indexing

Description Array indexing shall be the only allowed form of pointer arithmetic.

Role Reliability.

Classification Required.

Kalimetrix Logiscope

98 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

MISRA_17_5: Reference complexity

Description The declaration of objects should contain nom ore than 2 levels of

pointer indirection.

Role Maintainability.

Classification Advisory.

MISRA_17_6: Address assignment

Description The address of an object with automatic storage shall not be assigned

to an object which may persist after the object has ceased to exit.

Role Reliability.

Classification Required.

MISRA_18_1: Members of structures and unions

Description All structure or union types shall be complete at the end of a transla-

tion unit.

Role Reliability.

Classification Required.

MISRA_18_2: Variable storage

Description An object shall not be assigned to an overlapping object.

Role Reliability.

Classification Required.

MISRA_18_4: Unions access

Description Unions shall not be used.

Role Reliability.

Classification Required.

MISRA_19_1: Code structure

Description #include statements in a file should only be preceded by other prepro-

cessor directives or comments.

Role Reliability.

Classification Advisory.

MISRA_19_2: Non-standard characters

Description Non-standard characters shall not occur in header file names in

#include directive.

Role Reliability.

Classification Advisory.

MISRA_19_3: #include syntax

Description The #include directive shall be followed by either a <filename> or

“filename” sequence.

Kalimetrix Logiscope

Standard Programming Rules 99

Role Reliability.

Classification Required.

MISRA_19_5: Define and undefine in a block

Description Macros shall not be #define'd and #undef'd within a block.

Role Reliability.

Classification Required.

MISRA_19_6: Use of #undef

Description #undef should not be used.

Role Reliability.

Classification Required.

MISRA_19_7: Functions and macros

Description A function should be used in preference to a function-like macro.

Role Reliability.

Classification Advisory.

MISRA_19_8: Function-like macro call

Description A function-like macro shall not be invoked without all of its argu-

ments.

Role Reliability.

Classification Required.

MISRA_19_9: Arguments to function-like macros

Description Arguments to a function-like macro shall not contain tokens that look

like pre-processing directives.

Role Reliability.

Classification Required.

MISRA_19_10: Parentheses for macro occurences

Description In the definition of a function-like macro each instance of a parame-

ter shall be enclosed in parentheses unless it is used as the operand of

or ##.

Role Reliability.

Classification Required.

Note Implemented using 2 complementary rule scripts.

MISRA_19_11: Identifiers in pre-processor directives

Description All macro identifiers in preprocessor directives shall be defined

before use, except in #ifdef and #ifndef preprocessor directives and

the defined() operator.

Role Reliability.

Kalimetrix Logiscope

100 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Classification Required.

M ISRA_19_12: Occurences of # and ## in macros

Description There shall be at most one occurence of the # or ## pre-processor

operators in a single macro definition.

Role Reliability.

Classification Required.

MISRA_19_13: # and ## preprocessor operators

Description The # and ## preprocessor operators should not be used.

Role Reliability.

Classification Advisory.

MISRA_19_14: Two forms for defined pre-processor operator

Description The defined preprocessor operator shall only be used in one of the

two standard forms.

Role Reliability.

Classification Required.

MISRA_19_15: Header inclusion

Description Precautions shall be taken in order to prevent the contents of a header

file being included twice.

Role Reliability, Portability.

Classification Required.

MISRA_19_17: Pre-processor directives

Description All #else, #elif and #endif preprocessor directives shall reside in the

same file as the #if or #ifdef directive to which they are related..

Role Reliability.

Classification Required.

MISRA_20_1: Define and undef standard names

Description Reserved identifiers, macros and functions in the standard library,

shall not be defined, redefined or undefined.

Role Reliability, Maintainability.

Classification Required.

Note Implemented using 2 complementary rule scripts.

MISRA_20_2: Redefinition of standard library function names

Description The names of standard library macros, objects and functions shall not

be reused.

Role Maintainability.

Classification Required.

Kalimetrix Logiscope

Standard Programming Rules 101

MISRA_20_4: Dynamic heap memory

Description Dynamic heap memory allocation shall not be used.

Role Reliability, Maintainability.

Classification Required.

MISRA_20_5: Errno

Description The error indicator errno shall not be used.

Role Reliability.

Classification Required.

MISRA_20_6: Offsetof

Description The macro offsetof, in library <stddef.h> shall not be used.

Role Reliability.

Classification Required.

MISRA_20_7: Setjmp and longjmp

Description The setjmp macro and the longjmp function shall not be used.

Role Reliability.

Classification Required.

MISRA_20_8: signal.h

Description Signal handling facilities of <signal.h> shall not be used.

Role Reliability.

Classification Required.

MISRA_20_9: No <stdio.h> functions

Description The input/ouput library <stdio.h> shall not be used in production

code.

Role Reliability.

Classification Required.

MISRA_20_10: atof, atoi and atol

Description Library functions atof, atoi and atol from library <stdlib.h> shall not

be used.

Role Reliability.

Classification Required.

MISRA_20_11: abort, exit, getenv and system

Description Library functions abort, exit, getenv and system from library

<stdlib.h> shall not be used.

Role Reliability.

Classification Required.

Kalimetrix Logiscope

102 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

MISRA_20_12: time.h

Description Time handling functions of library <time.h> shall not be used.

Classification Required.

Kalimetrix Logiscope

Customizing Standard Rules and Rule Sets 103

Chapter 6

Customizing Standard Rules and

Rule Sets

Logiscope RuleChecker C is an open-ended tool for which it is possible to customize

standard rule checking or even write new personal rule checking scripts to better fit to

your verification process.

This chapter presents how to customise Rule Sets and modify standard rules scripts to

adapt them to specifics of user coding standards / verification requirements.

To develop a new rule script, please refer to the next chapter.

6.1 Modifying the Rule Set

A Rule Set is user-accessible textual file containing the specification of the programming

rules to be checked by Logiscope RuleChecker. A Rule Set file extension is “.rst”.

Specifying one or more Rule Set files is mandatory when setting up a Logiscope

RuleChecker project.

The Rule Sets allow to adapt Logiscope RuleChecker verification to a specific context

taking into the applicable coding standard.

• Rule checking can be activated or de-activated.

• The default name of a standard rule can be changed to match the name and/or

identifier specified in the applicable coding standard.

• The default severity level of a rule can be modified.

• A new set of severity levels with a specific ordering: e.g. “Mandatory”, “Highly

Recommended”, “Recommended” can be specified.

All these actions can be done by editing the Logiscope Rule Set(s) and changing the

corresponding specifications. For more information on how to use and modify rule sets

in Logiscope projects, please refer to:

• Kalimetrix Logiscope RuleChecker & QualityChecker Getting Started.

• Kalimetrix Logiscope RuleChecker & QualityChecker Basic Concepts.

Kalimetrix Logiscope

104 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

The standard Rule Set files should be in the RuleSets\C folder:

1. in the standard Logiscope Reference: i.e. the Ref folder of the Kalimetrix Logiscope

installation directory ,

2. in one of the directories specified in the environment variable LOG_REF_ENV.

The syntax of LOG_REF_ENV is dir1;dir2;…;dirn (directory names separated by

semi-colons) on Windows and dir1:dir2:…:dirn (directory names separated by

colons) on Unix and Linux.

To customize a Rule Set, it is highly recommended to first make your own Rule Set, for

example from a copy of default Rule Set files provided with Logiscope.

6.2 Modifying Standard Rule Scripts

6.2.1 Rule File Location

Each rule must be stored in a Rule Script file (extension “.std” or “.rl”).

The Rule Scripts should be placed in the Rules\C folder:

1. in the standard Logiscope Reference: i.e. the Ref folder of the Kalimetrix Logiscope
installation directory ,

2. in one of the directories specified in the environment variable LOG_REF_ENV.

6.2.2 Rule File Syntax

A rule file is organized into fields following the syntax described below.

[.COMMENT comment]*

.DOMAIN [File | Application]

.KEY key_of_rule

.NAME name_of_rule

.SEVERITY severity_of_rule

.T ITLE title

free_text]+

.COMMAND [log_rchk_cc | r_perl_checker]

.CODE

code_of_rule

where:

comment is a one-line character string,

key_of_rule is a printable character string, including no spaces, which identifies the rule,

Kalimetrix Logiscope

Customizing Standard Rules and Rule Sets 105

name_of_rule is a one-line definition of the rule,

severity_of_rule is an string defining the level of severity of the rule,

title is a character string followed by a carriage return (,

free_text is plain text, which can be written over more than one line, provides a description

of the rule,

log_rchk_cc: to activate the Logiscope Tcl Verifier if the rule Code is written in Tcl,

r_perl_checker: to activate the Perl Verifier if the rule Code is written in Perl,

code_of_rule is the code of the rule written in Tcl or Perl according to the Logiscope

Verifier specified in the .COMMAND section.

Refer to the next chapter to more details on the Logiscope Tcl and Perl Verifiers.

Note1: name_of_rule, severity_of_rule, title, free_text fieds are not significant for

Logiscope RuleChecker C on Windows.

Note2: .DOMAIN is no longer used by the checking mechanism which is now always

performed on the full project.

Example of a Standard Rule

The Rule “Identifiers must not start or end with the character “_”,” looks like this:

.C OMMENT Naming_2_Underscore.rl

.D OMAIN File

.KEY Naming_2_Underscore

.SEVERITY Advisory

.NAME It is illegal to use ’_’ character at the beginning or at
the end of an identifier

.TITLE Description
Identifiers must not start or end with the character ’_’

.TITLE Role

Makes code easier to read. For example, the 3 identifiers name,

name and name could easily be confused.

.COMMAND log_rchk_cc

.CODE

proc noBeginOrEndUnderscore {identObj} {

global thisRule

set name [Get $identObj name]

if { [string match _* $name] || [string match *_ $name] }

{

Violation $identObj $thisRule \

”$name starts or finishes with character ’_’.”

}

return 1

Kalimetrix Logiscope

106 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

}

Running noBeginOrEndUnderscore on Symbol

Maprole application symbol noBeginOrEndUnderscore

6.2.3 Creating a New Rule from a Standard Rule

For example, if the rule to be checked is

“It is illegal to use ’%’ character at the beginning or at the
end of an identifier”,

it can be written by changing the rule

“It is illegal to use ’_’ character at the beginning or at the

end of an identifier”.

To do this change:

1. Duplicate the .std file containing the standard rule to be modified.

2. Use a text editor to edit this file.

3. Modify the .NAME field and write It is illegal to use ’%’ character at

the beginning or at the end of an identifier.

4. Modify the relevant text fields.

5. Modify the .CODE field lines, replacing three ’_’ character occurrences by ’%’ char-

acter.

6. To improve the analysability of the rule, enter relevant information in the .KEY and

.TITLE field lines.

7. Save the file.

8. Add description of the modified rule to the .rst file(s) the modified rule will belong to.

9. The new rule can now be loaded and be part of the rule list.

6.2.4 Renaming Rules

It is possible to rename standard rules to have as many versions of them as needed. The

renamed rules have their own definition. Creating rules in this way enables adapting the

names of the rules that are provided to your naming standard and their definitions to the

description you are used to seeing.

The rule used to create a new one can be a built-in rule, a user rule or even an already

renamed rule.

The rule file format

A rule file containing a renamed rule description should be created. It should be nammed

rule_name.std, where rule_name is the name of the rule being created. The contents of

the file should follow the following format:

Kalimetrix Logiscope

Customizing Standard Rules and Rule Sets 107

.NAME long_name

.DESCRIPTION user_description

.COMMAND rename mnemonic_of_the_renamed_rule

where

long_name is free text, that can include spaces. It’s a more detailed title of the rule. It

will appear as an explanation of the rule name in Logiscope.

user_description is the description of the rule, that will be available in Logiscope.

rename is the type of command used for this rule, and should not be changed.

mnemonic_of_the_renamed_rule is the name of the standard rule that the new rule is

based upon

Example of a renamed rule (rename of the Portability_1_C++Keywords rule):

.NAME No C++ keywords

.DESCRIPTION

In our standard no C++ keywords should be used.

.COMMAND rename Portability_1_C++Keywords

Activating the new rule

The new rule must be added to the Rule Set file (.rst) using the following syntax:

STANDARD new_std RENAMING old_std ON END STANDARD

where

new_std is the name of the rule being created.

old_std is the name of the existing rule.

Example:

STANDARD noC++ RENAMING Portability_1_CKeywords ON END STANDARD

For more details, please refer to the Kalimetrix Logiscope RuleChecker &

QualityChecker Basic Concepts manual.

Kalimetrix Logiscope

108 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Kalimetrix Logiscope

Developing New Rule Scripts 109

Chapter 7

Developing New Rule Scripts

7.1 Introduction

Two verifiers are available in Logiscope RuleChecker C:

• the Tcl verifier: log_rchk_cc

• the Perl verifier: r_perl_checker

Apart from the different scripting languages used by these two verifiers, their purpose

and inner working are very different: the Tcl verifier is based on a semantic data model

that is akin to an abstract syntax tree that closely follows the C ISO standard. On the

other hand, the Perl verifier is aimed to permit the lexical verification of the source

code.

When using the Tcl verifier, macros are expanded and #if constructs taken into

account.

When using the Perl verifier, macros are not expanded and #if constructs not taken

into account.

Choosing the Right Verifier

Given the above characteristics, you will want to use the Tcl verifier when you need

semantic and syntactical information to detect bad constructs, and the Perl verifier when

you need the exact layout of the file content or that macros not be expanded.

This, of course, is a simplification, since you may as well open and scan the files directly

from a Tcl verifier rule, and you can do the parsing from a Perl verifier rule. Thus the

domains of application of these two verifiers indeed overlap; in these cases, the choice

depends on which scripting language you feel the most comfortable with.

Examples:

Rule1: the goto instruction goto is forbidden.

There are two easy ways to check this rule:

• With the Tcl verifier, search for InstructionGoto objects.

• With the Perl verifier, search for the \bgoto\b pattern.

The results may be different: the Tcl verifier way will flag goto usage induced by

Kalimetrix Logiscope

110 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

macro (macros defined in system include files included) expansion at the point of expan-

sion of the macro, and #ifdef'ed out code will not be flagged; on the other hand, the

Perl verifier will flag goto usage at the point the goto instruction appears in the code

(for gotos in macros, at the point of definition).

Depending on the exact specification, and the compromises that are considered accept-

able, one or the other solution may be choosen.

Rule2: goto labels begin at the start of a line.

Here we have a condition on the physical layout of a construct. The easiest way is to go

with the Perl verifier, and check for the pattern ^(\s+)\w+\s*:; if $1 does not have

zero length, this is a violation.

Rule3: only tabs may be used for indentation.

A code layout question: the Perl verifier is thus the best fit: search for the pattern

^\s*[].

Rule4: structure field identifiers are all lowercase.

A semantic question. The Tcl verifier is thus the best fit: search for SymbolField

objects and check the conformance of their name attributes.

7.2 Using the Perl Verifier

The main support subroutines and variables used by the Perl verifier are the following:

@cList

The global array @cList contains the path names of all the files contained in the appli-

cation: C files and header files found in #include directives, provided these paths do

not match the NoReportList found in the file procedures.tcl.

This array may be used whenever it is useful to inspect the raw content of the files.

Example:

for my $pathName (@cList) {

open(C, “<$pathName”) || warn “$pathName: cannot read: $!\n”;

Do something with the content of the file.

close(F);

%TabPreprocessFile

The global hash %TabPreprocessFile is indexed by the path names of the files of

the application. The values are the contents of the files with backslash-newline
sequences and comments removed, and string and character literals contents removed.

Kalimetrix Logiscope

Developing New Rule Scripts 111

Line numbers are preserved.

These values are useful for searching for a pattern in the code without fearing that

the pattern may appear in a comment or a string literal.

Beware that this is not preprocessing in the C sense.

Example:

search for gotos

my $lineNumber = 1;

for my $pathName (keys %TabPreprocessFile) {

my $content = $TabPreprocessFile{$pathName};

while ($content =~ m{\bgoto\b}g) {

Do something.

}

}

If the content of the source file is:

#include "a.h"

C90comment1 /*

*/ C90comment2

C99comment1

// C99 comment

C99comment2

C90 comment

string1 "string" string2

char1 'char' char2

include <b.h>

then the content of the corresponding value of %TabPreprocessFile is:

#include ""

C90comment1 C90comment2

C99comment1

C99comment2

string1 "" string2

Kalimetrix Logiscope

112 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

char1 '' char2

include <b.h>

Violation

The Violation subroutine emits a violation notice. It takes three parameters:

• the path name of the file for which a violation was detected,

• the line number of the file of the occurrence of the violation (use 0 to designate the

whole file),

• a message string that is to be associated with this instance of violation (without new-

lines)

The Violation subroutine takes care of adding the rule .KEY to the violation report.

Preprocessor

The PreProcessor subroutine processes a string in the manner of the values of the

hash TabPreprocessFile. Use it to get the same result as a value of %TabPre-

processFile for a file that is not in the application.

Example:

my $prepro = &PreProcessor($rawText);

7.3 Using the Tcl Verifier

Commands described below will let define personal programming rules.

There are three types of TCL Verifier commands:

• Access commands to data about elements in the application code (its internal repre-
sentation is produced as per the data model described in Chapter 2).

• Commands to check progress reports.

• Debugging aid commands.

Tcl language [TCL94] typographical conventions are used for command syntax.

Examples below show how the data model is used by checker commands.

Naming and identifying

Any data model object is identifiable.

Any objects that can be designated by a key in the source code can be named. The abso-

lute name can be broken down as per its access path:

Example:

Kalimetrix Logiscope

Developing New Rule Scripts 113

• void f()

• {

n int i;

n i = 2;

• }

The instruction i=2 cannot be named, but it can be identified. The variable path f/i,

can be named and identified.

The application pseudo-object

All data model abstract classes can be scanned from the application pseudo-object.

7.3.1 Access commands

Access to the class attribute

Classobject

Returns the name of the class of object. An error is reported if object is not a valid key.

Access to other attributes

Get object attribute

Returns the value of attributes of object designated by attribute. An error is reported if

attribute does not designate an attribute of object or if object is not a valid key.

Access to a single cardinality role

GetRole source_object target_role

Applies to associations whose target class has cardinality 0 or 1().

Returns the key of the object which has the target_role in one of the associations of

source_object, or an empty string if there are no such associations. An error is reported if

source_object has no association with target_role as a role.

Access to a multiple cardinality role

MapRole source_object target_role -filter fscript script

fscript and script represent a sequence of commands.

Applies to associations whose cardinality is greater than or equal to 0().

Kalimetrix Logiscope

114 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

It scans objects associated with the source_object which have target_role as a role.

For each object which is the target_role in one of the associations of source_object, the

fscript command sequence is evaluated:

• if fscript returns a value greater than 0, the script sequence is evaluated,

• if fscript returns a value equal to 0, the script sequence is not evaluated.

If fscript is not present, script is always evaluated.

If script returns a value equal to 0, the MapRole command stops immediately.

At each evaluation, fscript and script receive as a parameter the identifier of the object to

process.

The MapRole command returns the number of times script has been evaluated. This

number represents the overall number of objects which have target_role as a role in one

of the associations of source_object or, if a filter is specified, it represents the number of

objects that match the filtering condition. An error is reported:

• if source_object has no association with, as a role, a target object: target_role,

• if fscript and script end with an uncontrolled value.

7.3.2 Report commands

Internal error display

• Internal Error message

message is a character string between quotes (“”).

Errors detected during checking are reported. The message entered as a parameter is sent

as the error message.

Rule violation display

• Violation object rule message

message is a character string between quotes (“”).

Reports a rule violation identified by rule and located by object. The optional message

parameter lets add specific information about the violation.

If a rule violation cannot be located (for example, if a limited number of files is exceeded

in an application), the value of object is application.

Kalimetrix Logiscope

Developing New Rule Scripts 115

7.3.3 Debugging aid commands

Roles of a class

• Roles Of object

Returns the role list for the class of which object is an instance.

Attributes of a class

• Attributes Of object

Returns the attribute list for the class of which object is an instance.

7.4 Using RuleChecker Libraries

Tcl Rules

Some functions used more than once in the code of rules can be stored in a specific file

called procedures.tcl. This file is loaded at the beginning of a Logiscope RuleChecker C

session. The user can write and add personal global functions to this file.

This file is searched in the following locations and in the following order:

1. in the RuleChecker startup directory,

2. in the <log_install_dir>/util directory.

Perl rules

Some functions used more than once in the code of rules are stored in a specific file

called r_perl_checker.perl. This file is used to check Perl rules. The user can write and

add personalized global functions to this file.

This file is sought in the <log_install_dir>/util directory.

Kalimetrix Logiscope

116 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Kalimetrix Logiscope

Logiscope C Data Model 117

Chapter 8

Logiscope C Data Model

8.1 Introduction

The Logiscope C data model is the result of C language modelization in a class diagram.

Each time a Logiscope C project is analyzed, Logiscope RuleChecker C instantiates this

data model with information found in C source files of the project.

The Logiscope C data model is then questionned by the Logiscope Tcl Verifier to locate

and report all violations of the programming rules selected in the Rules Set files based on

the Tcl code specified in each of the corresponding Rule files.

For more details on how to use the Logiscope C data model and the RuleChecker Tcl

Verifier, please refer to the Kalimetrix Logiscope - Writing C Rules Using RuleChecker

Tcl Verifier advanced guide.

The next section explains symbols used in the data model representation. Then, the data

model itself is specified, first in its graphic form, then in text format.

Kalimetrix Logiscope

118 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

8.2 Concepts and Symbolism

The data model is represented as a class diagram.

Here is the definition and representation of object-oriented concepts appearing in the

graphic form of the data model.

8.2.1 Class

A class is a set of objects with similar properties (attributes), common behaviors

(operations) and share relations with other objects.

8.2.2 Attribute

An attribute is a data item specific to objects of a given class. Each attribute name is

unique in its class. Each attribute has a value of the specified type (string, integer, etc.)

for every object instance.

8.2.3 Operation

An operation is a function or transformation that can be applied to objects of a class or

carried out by them. All of the objects in a given class share the same operations. The

type associated with an operation indicates the type of value returned by the operation.

Kalimetrix Logiscope

Logiscope C Data Model 119

8.2.4 Link and association

A link is a physical or conceptual connection between two instances of an object:

• A-to-B link and B-to-A link:

• A-to-B link only (the origin side of the link is indicated by the exclamation point!):

An association describes a set of links, just as a class describes a set of objects.

8.2.5 Multiplicity

The multiplicity specifies how many instances of a class are related to an instance of the

associated class. Multiplicity (or cardinality) can be a range of values, a set of values or a

specific number.

• 1 instance of A is linked to 0 or 1 instance of B:

• 1 instance of A is linked to 0 or more instances of B:

• 1 instance of A is linked to at least n instances of B (n > 0):

• 1 instance of A is linked to a number of instances of B between m and n inclusive:

Kalimetrix Logiscope

120 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

8.2.6 Role

A role is one end of an association. A binary association has two roles, each with its own

name. The name of a role is a name which clearly identifies one end of an association.

Roles make possible to consider a binary association as the link of one object to an

associated set of objects. Each role in a binary association identifies an object or set of

objects associated with an object at the other end.

The name of a role is a derivative attribute whose value is a set of associated objects.

There are two cases for which roles must absolutely be named:

• recursive associations,

• several associations involving the same classes.

If roles are not named, the class name is taken as the role name, with the first letter

changed to lower-case.

8.2.7 Inheritance

The “is a”, “kind of” relation allows classes to share similarities and retain their

differences.

Kalimetrix Logiscope

Logiscope C Data Model 121

8.2.8 Abstract class

An abstract class is a class with no instantiated objects. Attributes and operations it

describes are inherited by its sub-classes.

Kalimetrix Logiscope

122 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

0..1

*

e Scope Scop

8.3 The data model

8.3.1 Graphic Representation

File

pathname : string

1 *
Origin

!
line : UShort

* 1 included

1 !

*
FileInclusion

! *

Function

*

Variable

*

 Comment

lineCount : integ..

 *
Symbol

 *

Type

*

1 !

1 ! 1 !

1 ! 1 !

1 ! 1 !

Application

Scope

*

1 !

Expression

 *

1 !

Label
 *

1 !

Instruction

*

1 !

super

subScope

scopeKind

1

definedIn

*

functionDef

*

variableDef

*

instructionDef
*

symbolDef

Function

Variable

InstructionSymbol

Symbol

ScopeBlock ScopeFunction ScopeGlobal

1

ScopeStructure ScopeTranslationUnit

1

Application

Kalimetrix Logiscope

Logiscope C Data Model 123

InstructionBreak

InstructionContinue

InstructionSymbol

*

instruction

1

symbol

SymbolObject

instructionKind

1 ! * sameInstruction 1 ! 1 ! 1 !

InstructionDeclaration

*

InstructionTentativeDefiniti..

*

declaration

Label

* tag

InstructionDefinition

0..1

defin0it.io.1n

!

tentativeDefinition

*

InstructionGoto
!

1

1

target

LabelIdent

Instruction

instructionKind : InstructionKi..

1

body

instructionKind

1

body

1

body

0..1

!

0..1

!

0..1

!

InstructionExpression

InstructionWhile

InstructionFor

InstructionDoWhile

0..1

!

0..1

!

0..1

!

0..1

!

0..1

1

condition

0..1

initialization 0..1

conditio0n..1

increment

1

condition

Expression

expressionKind : ExpressionKi..

0..1

initialization

0..1

1ifFalse

ifTrue

0..1

0..1!

!

InstructionIf

0..1

!

1

condition

1

body

0..1

!

InstructionSwitch

0..1

!

1

condition

InstructionReturn
0..1

!

0..1

*

sequence

0..1

!

InstructionBlock

Kalimetrix Logiscope

124 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

qualifierKin d

QualifierConst QualifierVolatil

eFieldKi nd

TypeBitField

1

0-2

Qualifier

* !

1
Type e

1typeKind : TypeK* i..

isOpaque() : boo
0*pl

.
e
.a1..rameter

1

TypeTypeof

0..1 !

* !

TypePointer

expans1ion

ancestor

typeKind

* !* !

TypeSymbol

1

TypeTagged

typeKind

0..1 !

TypeArray

0..1 !

0..1 !

TypeMeta

TypeBuiltIn

typeKind

* ! * !

TypeFunction

arity : integer

TypeVararg

1
TypeStructured

TypeEnum

1

TypeVoid

typ

* !

TypeField

0..1 !

1..*

typeKin d

 TypeUnion TypeStruct

1..*

EnumValue

0..1 !

0..1 value
1

Expression
0..1

0..1 length
size

TypeInt

TypeUnsignedInt

TypeShort

TypeUnsignedSh..

TypeLong

TypeUnsignedLo..

TypeFloat

TypeDouble

TypeLongDouble

TypeChar

TypeSignedChar

TypeUnsignedCh..

Kalimetrix Logiscope

Logiscope C Data Model 125

1 * Label

 labelKind : LabelKind

0..1

1

!

target

Expression

Instruction

tag

labelKind

LabelCase LabelIdent

0..1

1 symbol

SymbolLabel

LabelDefault

Kalimetrix Logiscope

126 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Symbol

...

symbolKind

InstructionSymbol

* instruction

1

SymbolObject

SymbolLabel

SymbolField

1

symbol

1

symbol

0..1

0..1

TypeField

LabelIdent

symbol
symbolKind

SymbolType

*

SymbolTag

1

symbol

SymbolEnum

0..1

tag

1

symbol

1
EnumValue

1

TypeTagged

*
TypeSymbol

1

SymbolVariable

*

SymbolFunction
symbol

symbol
0..1

Variable

Function

symbolKind

SymbolMacro

K
a

lim
e
trix

 L
o
g

is
c
o

p
e

L
o

g
is

c
o
p
e
 C

 D
a

ta
 M

o
d
e

l 1
2

7

1..* Expression

operand expressionKind : ExpressionKind

expressionKind

InstructionBlock

1 instruction

1 ! 0..1 !

*

!
ExpressionComplex ExpressionType

0..1 !

ExpressionSimple

expressionKind

ExpressionInstruction

1

TypeFunction

1

Type

0..1

1 *

!
ExpressionConstant

ExpressionSymbol

* !

0..1

Function

0..1 !
* !

0..1 *

1

Symbol

functionKind : FunctionKind
Variable

persistent : boolean

functionKind

FunctionMacro FunctionBuiltin FunctionBuiltout

functionKind

FunctionAdd FunctionBnot FunctionAnd FunctionAssign FunctionBandAssign FunctionSizeof FunctionCall

FunctionMul FunctionBand FunctionOr FunctionAddAssign FunctionBorAssign FunctionCast FunctionSelect

FunctionDiv FunctionBor FunctionNot FunctionSubAssign FunctionBxorAssign FunctionAddress FunctionPointerSelect

FunctionSub FunctionBxor FunctionLe FunctionMulAssign FunctionRshAssign FunctionRef FunctionSequence

FunctionMinus FunctionLsh FunctionLt FunctionDivAssign FunctionLshAssign FunctionTernary FunctionCompoundInit

FunctionMod FunctionRsh FunctionGe FunctionModAssign FunctionIndex FunctionAlignof

FunctionPlus FunctionGt FunctionPostInc

FunctionEq FunctionPreInc

FunctionNe FunctionPostDec

FunctionPreDec

Kalimetrix Logiscope

128 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

*

Variable

1 1
ScopeStructure TypeStructured

ScopeBlock
0..1 1

InstructionBlock

ScopeFunction
0..1 1

Function

0..1

1 !

* allScope

Scope

Symbol

1 !

Expression

1 ! * subExpression

* allExpression *

1 ! 1 !

Instruction

1 ! * subInstruction

* allInstruction

Kalimetrix Logiscope

Logiscope C Data Model 129

Xiident

Function

functionKind : FunctionKind

Variable

Kalimetrix Logiscope

130 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

8.3.2 Text presentation

The data model is presented class by class. Classes appear in alphabetical order.

For each class, existing associations and attributes are listed in the following

format:

class_name class

Associations with:

target_class_nametarget_role number_instances_target_class

Attributes:

attribute_name

Application class

Associations with:

Comment comment n

Expression expression n

File file n

FileInclusion fileInclusion n

Function function n

Instruction instruction n

Label label n

Scope scope n

ScopeGlobal scopeGlobal 1

Symbol symbol n

Type type n

Variable variable n

Comment class

Associations with:

File file 1

Attributes:

line

lineCount

EnumValue class

Associations with:

Expression value 1

SymbolEnum symbol 1

TypeEnum typeEnum 1

Expression class

Associations with:

Kalimetrix Logiscope

Logiscope C Data Model 131

Expression allExpression n

Expression subExpression n

File file 1

Attributes:

line

ExpressionComplex class

Associations with:

Expression allExpression n

Expression operand n

Expression subExpression n

File file 1

Function function 1

Attributes:

line

ExpressionConstant class

Associations with:

Expression allExpression n

Expression subExpression n

File file 1

Type type 1

Attributes:

line

value

ExpressionInstruction class

Associations with:

Expression allExpression n

Expression subExpression n

File file 1

InstructionBlock instruction 1

Attributes:

line

ExpressionSimple class

Associations with:

Expression allExpression n

Expression subExpression n

File file 1

Attributes:

line

Kalimetrix Logiscope

132 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

ExpressionSymbol class

Associations with:

Expression allExpression n

Expression SubExpression n

File file 1

Symbol symbol 1

Attributes:

lin

e

ExpressionType class

Associations with:

Expression allExpression n

Expression subExpression n

File file 1

Type type 1

Attributes:

lin

e

File class

Associations with:

Comment comment n

Attributes:

pathname

FileInclusion class

Associations with:

File file 1

File included 1

Attributes:

lin

e

Function class

Associations with:

Scope definedIn 1

ScopeFunction scopeFunction 1

SymbolFunction symbol n

TypeFunction typeFunction 1

Variable variable n

The list of roles of the abstract class Functions applies for all its sub-classes:

Kalimetrix Logiscope

Logiscope C Data Model 133

FunctionAdd, FunctionAddAssign, FunctionAddress,

Kalimetrix Logiscope

134 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

FunctionAlignof, FunctionAnd, FunctionAssign,

FunctionBand, FunctionBandAssign, FunctionBnot,

FunctionBor, FunctionBorAssign, FunctionBuiltin,

FunctionBuiltout, FunctionBxor, FunctionBxorAssign,

FunctionCall, FunctionCast, FunctionCompoundInit,

FunctionDiv, FunctionDivAssign, FunctionEq, FunctionGe,

FunctionGt, FunctionIndex, FunctionLe, FunctionLsh,

FunctionLshAssign, FunctionLt, FunctionMacro,

FunctionMinus, FunctionMod, FunctionModAssign,

FunctionMul, FunctionMulAssign, FunctionNe, FunctionNot,

FunctionOr, FunctionPlus, FunctionPointerSelect,

FunctionPostDec, FunctionPostInc, FunctionPreDec,

FunctionPreInc, FunctionRef, FunctionRsh,

FunctionRshAssign, FunctionSelect, FunctionSequence,

FunctionSizeof, FunctionSub, FunctionSubAssign,

FunctionTernary.

Instruction class

Associations with:

Expression expression n

File file 1

Instruction allInstruction n

Instruction subInstruction n

Label tag n

Attributes:

line

InstructionBlock class

Associations with:

Expression expression n

File file 1

Instruction allInstruction n

ScopeBlock scopeBlock 1

Instruction sequence n

Instruction subInstruction n

Label tag n

Attributes:

line

InstructionBreak class

Associations with:

Expression expression n

File file 1

Instruction allInstruction n

Kalimetrix Logiscope

Logiscope C Data Model 135

Instruction subInstruction n

Label tag n

Attributes:

lin

e

InstructionContinue class

Associations with:

Expression expression n

File file 1

Instruction allInstruction n

Instruction subInstruction n

Label tag n

Attributes:

lin

e

InstructionDeclaration class

Associations with:

Expression expression n

File file 1

Instruction allInstruction n

Instruction subInstruction n

Label tag n

Scope definedIn 1

SymbolObject symbol 1

Attributes:

lin

e

InstructionDefinition class

Associations with:

Expression expression n

Expression initialization 1

File file 1

Instruction allInstruction n

Instruction subInstruction n

Label tag n

Scope definedIn 1

SymbolObject symbol 1

Attributes:

lin

e

InstructionDoWhile class

Kalimetrix Logiscope

136 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Associations with:

Kalimetrix Logiscope

Logiscope C Data Model 137

Expression condition 1

Expression expression n

File file 1

Instruction allInstruction n

Instruction body 1

Instruction subInstruction n

Label tag n

Attributes:

line

InstructionExpression class

Associations with:

Expression expression n

Expression expression 1

File file 1

Instruction allInstruction n

Instruction subInstruction n

Label tag n

Attributes:

line

InstructionFor class

Associations with:

Expression condition 1

Expression expression n

Expression increment 1

Expression initialization 1

File file 1

Instruction allInstruction n

Instruction body 1

Instruction subInstruction n

Label tag n

Attributes:

line

InstructionGoto class

Associations with:

Expression expression n

File file 1

Instruction allInstruction n

Instruction subInstruction n

LabelIdent target 1

Label tag n

Attributes:

Kalimetrix Logiscope

138 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

line

InstructionIf class

Associations with:

Expression condition 1

Expression expression n

File file 1

Instruction allInstruction n

Instruction ifFalse 1

Instruction ifTrue 1

Instruction subInstruction n

Label tag n

Attributes:

line

InstructionReturn class

Associations with:

Expression expression n

Expression expression 1

File file 1

Instruction allInstruction n

Instruction subInstruction n

Label tag n

Attributes:

line

InstructionSwitch class

Associations with:

Expression condition 1

Expression expression n

File file 1

Instruction allInstruction n

Instruction body 1

Instruction subInstruction n

Label tag n

Attributes:

line

InstructionSymbol class

Associations with:

Expression expression n

File file 1

Instruction allInstruction n

Kalimetrix Logiscope

Logiscope C Data Model 139

Instruction subInstruction n

Label tag n

Scope definedIn 1

SymbolObject symbol 1

Attributes:

line

InstructionTentativeDefinition class

Associations with:

Expression expression n

File file 1

Instruction allInstruction n

Instruction subInstruction n

Label tag n

Scope definedIn 1

SymbolObject symbol 1

Attributes:

line

InstructionWhile class

Associations with:

Expression condition 1

Expression expression n

File file 1

Instruction allInstruction n

Instruction body 1

Instruction subInstruction n

Label tag n

Attributes:

line

Label class

Associations with:

File file 1

Instruction instruction 1

Attributes:

line

LabelCase class

Associations with:

Expression target 1

File file 1

Instruction instruction 1

Kalimetrix Logiscope

140 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Attributes:

line

LabelDefault class

Associations with:

File file 1

Instruction instruction 1

Attributes:

line

LabelIdent class

Associations with:

File file 1

Instruction instruction 1

SymbolLabel symbol 1

Attributes:

line

Origin class

Associations with:

File file 1

Attributes:

line

Scope class

Associations with:

File file 1

Function functionDef n

InstructionSymbol instructionDef n

Scope allScope n

Scope subScope n

Scope superScope 1

Symbol symbolDef n

Type typeDef n

Variable variableDef n

Attributes:

line

ScopeBlock class

Associations with:

Kalimetrix Logiscope

Logiscope C Data Model 141

File file 1

Function functionDef n

InstructionBlock instructionBlock 1

InstructionSymbol instructionDef n

Scope allScope n

Scope subScope n

Scope superScope 1

Symbol symbolDef n

Type typeDef n

Variable variableDef n

Attributes:

line

ScopeFunction class

Associations with:

File file 1

Function function 1

Function functionDef n

InstructionSymbol instructionDef n

Scope allScope n

Scope subScope n

Scope superScope 1

Symbol symbolDef n

Variable variableDef n

Attributes:

line

ScopeGlobal class

Associations with:

Application application 1

File file 1

Function functionDef n

InstructionSymbol instructionDef n

Scope allScope n

Scope subScope n

Scope superScope 1

Symbol symbolDef n

Variable variableDef n

Attributes:

line

ScopeStructure class

Associations with:

File file 1

Function functionDef n

Kalimetrix Logiscope

140 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

InstructionSymbol instructionDef n

Scope allScope n

Scope subScope n

Scope superScope 1

Symbol symbolDef n

TypeStructured typeStructured 1

Variable variableDef n

Attributes:

line

ScopeTranslation class

Associations with:

File file 1

Function functionDef n

InstructionSymbol instructionDef n

Scope allScope n

Scope subScope n

Scope superScope 1

Symbol symbolDef n

Variable variableDef n

Attributes:

line

Symbol class

Associations with:

File file 1

Scope definedIn 1

Attributes:

line

name

SymbolEnum class

Associations with:

EnumValue enumValue 1

File file 1

Scope definedIn 1

Attributes:

line

name

SymbolField class

Associations with:

Kalimetrix Logiscope

Logiscope C Data Model 141

File file 1

Scope definedIn 1

TypeField typeField 1

Attributes:

line

name

SymbolFunction class

Associations with:

File file 1

Function function 1

InstructionDeclaration declaration n

InstructionDefinition definition 1

InstructionSymbol instruction n

InstructionTentativeDefinition tentativeDefinition n

Scope definedIn 1

Attributes:

line

name

SymbolLabel class

Associations with:

File file 1

LabelIdent labelIdent 1

Scope definedIn 1

Attributes:

line

name

SymbolMacro class

Associations with:

File file 1

Function function 1

InstructionDeclaration declaration n

InstructionDefinition definition 1

InstructionSymbol instruction n

InstructionTentativeDefinition tentativeDefinition n

Scope definedIn 1

Attributes:

line

name

Kalimetrix Logiscope

142 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

SymbolObject class

Associations with:

Definition Scope definedIn 1

File file 1

Function function 1

InstructionDeclaration declaration n

InstructionDefinition definition 1

InstructionSymbol instruction n

InstructionTentativeDefinition tentative

Attributes:

line

name

SymbolTag class

Associations with:

File file 1

Scope definedIn 1

TypeTagged typeTagged 1

Attributes:

line

name

SymbolType class

Associations with:

File file 1

Scope definedIn 1

TypeSymbol typeSymbol 1

Attributes:

line

name

SymbolVariable class

Associations with:

File file 1

InstructionDeclaration declaration n

InstructionDefinition definition 1

InstructionSymbol instruction n

InstructionTentativeDefinition tentativeDefinition n

Scope definedIn 1

Variable variable 1

Attributes:

line

name

Kalimetrix Logiscope

Logiscope C Data Model 143

Type class

Associations with:

File file 1

Qualifier qualifier n

Attributes:

line

TypeArray class

Associations with:

Expression size 1

File file 1

Qualifier qualifier n

Type type 1

Attributes:

line

TypeBitField class

Associations with:

Expression length 1

SymbolField symbol 1

Type type 1

TypeStructured typeStructured 1

TypeBuiltIn class

Associations with:

File file 1

Qualifier qualifier n

Attributes:

line

The lists of roles and attributes of the abstract class TypeBuiltIn apply to all its

sub-classes:

TypeChar, TypeDouble, TypeFloat, TypeInt,

TypeLong, TypeLongDouble, TypeShort,

TypeSignedChar, TypeUnsignedChar,

TypeUnsignedInt, TypeUnsignedLong,

TypeUnsignedShort, TypeVararg, TypeVoid.

TypeEnum class

Associations with:

EnumValue enumValue n

File file 1

Kalimetrix Logiscope

144 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Qualifier qualifier n

SymbolTag tag 1

Attributes:

line

TypeField class

Associations with:

SymbolField symbol 1

Type type 1

TypeStructured typeStructured 1

TypeFunction class

Associations with:

File file 1

Qualifier qualifier n

Type parameter n

Type type 1

Attributes:

arity

line

TypeMeta class

Associations with:

File file 1

Qualifier qualifier n

Type type 1

Attributes:

line

TypeOf class

Associations with:

Expression expression 1

File file 1

Qualifier qualifier n

Type type 1

Attributes:

line

TypePointer class

Associations with:

Kalimetrix Logiscope

Logiscope C Data Model 145

File file 1

Qualifier qualifier n

Scope definedIn 1

Type type 1

Attributes:

line

TypeStructured class

Associations with:

File file 1

Qualifier qualifier n

ScopeStructure scopeStructure 1

SymbolTag tag 1

TypeField typeField n

Attributes:

line

The lists of roles and attributes of the abstract class TypeStructured apply for

all its sub-classes: TypeStruct, TypeUnion.

TypeSymbol class

Associations with:

File file 1

Qualifier qualifier n

SymbolType symbol 1

Type ancestor 1

Type expansion 1

Attributes:

line

TypeTagged class

Associations with:

File file 1

Qualifier qualifier n

SymbolTag tag 1

Attributes:

line

TypeVararg class

Associations with:

File file 1

Qualifier qualifier n

Scope definedIn1

Kalimetrix Logiscope

146 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Attributes:

line

Variable class

Associations with:

Function function 1

Scope definedIn 1

SymbolVariable symbol n

Type type 1

Kalimetrix Logiscope

Logiscope C Data Model 147

Kalimetrix Logiscope

148 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Kalimetrix Logiscope

Notices 149

Notices

© Copyright 2014

The licensed program described in this document and all licensed material

available for it are provided by Kalimetrix under terms of the Kalimetrix

Customer Agreement, Kalimetrix International Program License Agreement or

any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-Kalimetrix products was obtained from the suppliers

of those products, their published announcements or other publicly available

sources. Kalimetrix has not tested those products and cannot confirm the accuracy

of performance, compatibility or any other claims related to non-Kalimetrix

products. Questions on the capabilities of non-Kalimetrix products should be

addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Copyright license

This information contains sample application programs in source language,

which illustrate programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to Kalimetrix, for the purposes of developing, using, marketing or

distributing application programs conforming to the application programming

interface for the operating platform for which the sample programs are written.

These examples have not been thoroughly tested under all conditions.

Kalimetrix, therefore, cannot guarantee or imply reliability, serviceability, or

function of these programs.

Kalimetrix Logiscope

150 Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from Kalimetrix

Corp. Sample Programs. © Copyright Kalimetrix Corp. _enter the year or years_.

Trademarks

Kalimetrix, the Kalimetrix logo, Kalimetrix.com are trademarks or registered

trademarks of Kalimetrix, registered in many jurisdictions worldwide. Other

product and services names might be trademarks of Kalimetrix or other companies.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript

are trademarks of Adobe Systems Incorporated or its subsidiaries and may be

registered in certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International

Business Machines Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Macrovision and FLEXnet are registered trademarks or trademarks of Macrovision

Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other

Microsoft products referenced herein are either trademarks or registered

trademarks of Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of Netscape

Communications Corporation in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks

of Sun Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

ITIL is a registered trademark, and a registered community trademark of the Office

of Government Commerce, and is registered in the U.S Patent and Trademark

Office.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product or service names may be trademarks or service marks of

others.

	C Project Settings
	1.1 Starting a Logiscope Studio Session
	1.2 Creating a Logiscope Project
	Defining the type of the Logiscope project
	Specifying the source files to be analysed
	Setting Parsing Options
	C Dialect:
	Preprocessor
	Expanding or not expanding macros

	Setting QualityChecker Parameters
	Setting RuleChecker Parameters
	Advanced Settings:
	Generated Source Code:

	1.3 Relaxation Mechanism
	Relaxing a single rule violation
	Relaxing several violations and/or adding a longer justification
	Relaxing all violations in pieces of code

	C Parsing Options
	2.1 Dialects
	2.2 Definition File
	2.3 Ignore File
	2.4 Supported C Dialects Specification
	2.4.1 ANSI 89 / ISO 90
	Definition Files
	Reference Documentation

	2.4.2 ANSI / ISO 99
	Definition Files
	Reference Documentation

	2.4.3 DIAB C
	Definition Files
	Ignore File
	• diab.ign

	Reference Documentation
	Language Specifics

	2.4.4 GNU C
	Definition Files
	Reference Documentation
	Preprocessor Specifics
	Language Specifics

	2.4.5 GNU C D950
	Definition Files
	Ignore File
	• gnu_D950.ign

	Preprocessor Specifics
	Language Specifics

	2.4.6 GNU C Red Hat Linux 3
	Definition Files
	Ignore Files
	Reference Documentation

	2.4.7 GNU C Red Hat Linux 4
	Definition Files
	Ignore Files
	Reference Documentation

	2.4.8 GNU C Red Hat Linux 5
	Definition Files
	Ignore Files
	Reference Documentation

	2.4.9 HP C
	Definition Files
	Reference Documentation

	2.4.10 IAR C
	Definition Files
	Reference Documentation
	Language Specifics

	2.4.11 Kernighan and Ritchie 78
	Definition Files
	Reference Documentation

	2.4.12 Microsoft C 1.5
	Definition Files
	Ignore File
	• msc15.ign

	Language Specifics
	Limitations

	2.4.13 Microsoft Developer / Visual Studio
	Definition Files
	• msc40.def for Microsoft Developer Studio 4.X,
	• .log_cc_sun4os5_microsoft_60.def for Microsoft Visual Studio 6.0 -VC98,
	• .log_cc_linux_microsoft_20.def for Microsoft Developer Studio 4.X,

	Language Specifics
	Limitations

	2.4.14 Microtec Research C
	Definition Files for Standard Mode
	Definition Files for ANSI Mode
	Reference Documentation
	Language Specifics (Standard and ANSI Modes)
	Preprocessor Specifics (Standard and ANSI Modes)

	2.4.15 SUN C
	Definition Files
	Reference Documentation
	Language Specifics

	Command Line Mode
	3.1 Logiscope create
	3.1.1 Command Line Mode
	Automatic search
	File list

	3.1.2 Makefile mode
	3.1.3 Options

	3.2 Logiscope batch
	3.2.1 Options

	Standard Metrics
	4.1 Function Scope
	4.1.1 Line Counting
	lc_cline Total number of lines
	lc_cloc Number of lines of code
	lc_cblank Number of empty lines
	lc_comm Number of lines of comments and header
	lc_ccomm Number of lines of comments
	lc_csbra Number of lines with lone braces
	lc_ccpp Number of preprocessor statements
	lc_stat Number of statements
	lc_bcob Number of comments blocks before
	lc_bcom Number of comments blocks
	CCOM Number of characters in the comments
	CCOB Number of characters in the comments before
	LCOB Number of lines of comments before

	4.1.2 Data Flow
	dc_lvars Number of local variables
	ic_param Number of parameters
	UPRO Number of functions used but not yet defined
	MACC Number of macros used as constants
	MACP Number of macros with parameters

	4.1.3 Halstead Metrics
	n1 Number of distinct operators
	N1 Total number of operators
	n2 Number of distinct operands
	N2 Total number of operands

	4.1.4 Keywords
	ct_andthen Number of “and_then” operators
	ct_break_inloop Number of break in loop
	ct_break_inswitch Number of break in switch
	ct_case Number of case labels
	ct_casepath Number of case block statements
	ct_continue Number of continue statements
	ct_dowhile Number of do while statements
	ct_for Number of for statements
	ct_if Number of if statements
	ct_orelse Number of “or_else” operators
	ct_ternary Number of ternary operators
	ct_return Number of return statements
	ct_switch Number of switch statements
	ct_while Number of while statements

	4.1.5 Structured Programming
	ct_bran Number of destructuring statements
	ct_break Number of break and continue branchings
	ct_exit Number of out statements
	ct_goto Number of gotos
	ESS_CPX Essential complexity

	4.1.6 Control Graph
	ct_decis Number of decisions
	ct_loop Number of loops
	ct_nest Maximum nesting level
	ct_npath Number of non-cyclic paths
	ct_vg Cyclomatic number (VG)
	DES_CPX Design complexity

	4.1.7 Relative Call Graph
	CALL Number of calls
	cg_entropy Relative call graph entropy
	cg_ hiercpx Relative call graph hierarchical complexity
	cg_levels Relative call graph levels
	cg_strucpx Relative call graph structural complexity
	cg_testab Relative call graph testability
	dc_calls Number of direct calls
	dc_calling Number of callers
	IND_CALLS Relative call graph call-paths

	4.2 Module Scope
	4.2.1 Line Counting
	md_blank Number of empty lines
	md_comm Number of lines of comments
	md_cpp Number of preprocessor statements
	md_line Total number of lines
	md_loc Number of lines of code
	md_sbra Number of lines with lone braces
	md_stat Number of statements

	4.3 Application Scope
	4.3.1 Line Counting
	ap_sline Total number of lines
	ap_sloc Number of lines of code
	ap_sblank Number of empty lines
	ap_scomm Total number of lines of comments
	ap_scpp Number of preprocessor statements
	ap_ssbra Number of lines with lone braces

	4.3.2 Application Aggregates
	ap_func Number of application functions
	ap_stat Number of statements
	ap_vg Sum of cyclomatic numbers

	4.3.3 Application Call Graph
	ap_cg_cycle Call graph recursions
	ap_cg_edge Call graph edges
	ap_cg_leaf Call graph leaves
	ap_cg_levl Call graph depth
	ap_cg_maxdeg Maximum callers/called
	ap_cg_maxin Maximum callers
	ap_cg_maxout Maximum called
	ap_cg_node Call graph nodes
	ap_cg_root Call graph roots

	Standard Programming Rules
	5.1 Standard Programming Rules
	5.1.1 Presentation of rules
	5.1.2 Rule Sets
	Code Presentation
	CodePres_1_DeclarationPerLine: One declaration per line
	CodePres_2_NumberStatements: limited number of statements
	CodePres_3_FileLength: Length of files
	CodePres_4_StatementSwitch: Number of first level statements per switch branch
	CodePres_5_StatementSwitch: Limited total number of statements per switch branch
	CodePres_6_CommentStatementLine: No comment and statement on the same line
	CodePres_7_ExtensionHeader: Included files have the extension .h
	CodePres_8_EnumBoolean: Enum boolean type
	CodePres_9_ParamFunction: Maximum number of parameters
	CodePres_10_StatementPerLine: One statement per line
	CodePres_11_ControlStructure: Control structure on a new line
	CodePres_12_BlankLine: Blank line after definitions
	CodePres_13_Brace: Braces alone on a line
	CodePres_14_CommentDeclaration: Comment for declaration
	CodePres_15_PointerDeclaration: Pointer declaration
	CodePres_16_SpacingRef: No space before and after ‘.’ and ‘-> ’
	CodePres_17_SpacingOperator: No space between operators and operands
	CodePres_18_SpacingParameter: Function parameters spacing
	CodePres_19_LineLength: Length of lines
	CodePres_21U_InclusionLevel: Number of inclusion levels
	CodePres_22U_CommentPrepro: Comment directivess
	CodePres_23U_Antislash: Use of \ s
	CodePres_24U_Indent: Indentations
	CodePres_25_SingleLineComment: Use of comments
	CodePres_26_CommentDefinition: Definition comments
	CodePres_28_Definitions: Definitions
	CodePres_29_SpacingUnaryOperator: No space after unary operators
	CodePres_30_Define: Define altogether after include

	Complexity
	Complexity_1_MultipleAssignment: No multiple assignments
	Complexity_2_NoTernaryOp: No ternary operator
	Complexity_3_NoUnary+: No unary + operator
	Complexity_4_NoAssignmentOp: Assignment operators not recommended
	Complexity_5_CallResult: Use of the result of the function calls
	Complexity_6_++--Operators: Use of ++ and --
	Complexity_7_NoCast: No explicit casting
	Complexity_8_NoMultipleInit: Initialisations in multiple declarations
	Complexity_9_Macro: One statement by macro
	Complexity_10_FieldAddressing: No (*ptr). field
	Complexity_11_NoCommaAndTernary: ?: and , operators
	Complexity_12_OperatorInCondition: Operator in conditions
	Complexity_13_SimpleTest: No simple statements
	Complexity_14_InclusionLevel: Only one inclusion level
	Complexity_15_Sizeof: Parentheses for sizeofl

	Control Flow
	ControlFlow_1_NoDeadCode: No inaccessible code
	ControlFlow_2_FunctionReturn: Use of return
	ControlFlow_3_NoGoto: No goto
	ControlFlow_4_ThenElse: Then and else parts of if instructions
	ControlFlow_5_NoBreakContinue: Use of break and continue
	ControlFlow_6_DefaultInSwitch: Default in switch
	ControlFlow_7_BreakInSwitch: Break in case clauses
	ControlFlow_8_BreakPathInSwitch: Break in paths of switch branch
	ControlFlow_9_ControlStructureNesting: Control structure nesting limited
	ControlFlow_10_SwitchBetterThanIf: Switch and several if
	ControlFlow_11_OneBreakContinue: One break or continue

	Naming
	Naming_1_MinLength: Minimum length of identifiers
	Naming_2_Underscore: ‘_’ at the beginning or at the end of an identifier
	Naming_3_DoubleUnderscore: No double underscore
	Naming_4_NoUnderscore: Underscore in identifiers
	Naming_5_GlobalVariable: Global variable naming
	Naming_6_LocalVariable: Local variable naming
	Naming_7_Function: Function naming
	Naming_8_Constant: Constant naming
	Naming_9_Macro: Macro naming
	Naming_10_Type: Type naming
	Naming_11_StructField: Structure type fields naming
	Naming_12_MainParam: Parameters of main:
	Naming_13_EnumConstant: Enum constant naming
	Naming_14U_Module: Module naming
	Naming_15_Prefix: Name prefix
	Naming_16_SymbolNaming: Symbol naming

	Portability
	Portability_1_C++Keywords: C++ keywords use
	Portability_2_NoDollar: No ‘$’ in identifier
	Portability_4_CharIdentifier: Authorized characters
	Portability_5_NoSignedRightShift: Use of >>
	Portability_6_MainNaming: Exit from main
	Portability_7_NoRecursiveHeader: No recursive inclusion
	Portability_8U_ConditionalCompilation: Conditional compilation
	Portability_9U_AbsolutePathInclude: #include
	Portability_10U_DirectiveFirstColumn: Compilation directive
	Portability_11U_NoAsmDirective: #asm
	Portability_12U_FilenameLength: File naming
	Portability_13_NoTab: Use of tabulations

	Resource
	Resource_1_AccessArray: Access to an array
	Resource_2_ForCounter: Counter in for statements
	Resource_3_DeclarationInitSeparate: Declaration and initialisation separate
	Resource_4_DeclarationInitCombine: Declaration and initialisation combined
	Resource_5_LocalDeclaration: Local variable declaration
	Resource_6_GlobalDeclaration: Global variable declaration
	Resource_7_VariableUse: Use of variables
	Resource_8_FunctionUse: Use of functions
	Resource_9_ParameterUse: Use of parameters
	Resource_10_NoGlobalParameter: Global variable as a parameter
	Resource_11_InputParameter: Entry parameter
	Resource_12_NoExternBody: No extern in body file
	Resource_13_NoStaticInFunc: Static in functions
	Resource_14_ExternHeader: Variable in header files
	Resource_15_NoFunctionHeader: Definition of functions
	Resource_16_FileExtension: File extension
	Resource_18_NoBodyInclusion: Body inclusion
	Resource_19_NoBitfield: No bitfields
	Resource_20_NoAuto: Auto attribute
	Resource_21_ArrayInit: Array initialization
	Resource_22_PointerInit: Pointer initialization
	Resource_23_WhileInit: Initialization of while statement variables
	Resource_24_ConstVolatileInit: Initialization of const and volatile variables
	Resource_26_TypedefUnionStruct: Typedef for unions and structures
	Resource_30_EnumInit: Initialization of enumerations
	Resource_31_StructUnion: Union and structure
	Resource_32_ForSpecification: Specification of for

	5.2 MISRA Programming Rules
	5.2.1 Presentation of the rules
	5.2.2 MISRA-C:1998 Rule Package
	MISRA_Rule5: ISO C standard Characters only
	MISRA_Rule7: Trigraphs
	MISRA_Rule8: Multibyte characters
	MISRA_Rule9: Nested comments
	MISRA_Rule11: Length of identifiers
	MISRA_Rule12: Name of identifiers
	MISRA_Rule13: Basic types
	MISRA_Rule14: Type char
	MISRA_Rule16: Underlying representation of floating point numbers
	MISRA_Rule17: Typedef names
	MISRA_Rule18: Numeric constants and suffixes
	MISRA_Rule19: Octal constants
	MISRA_Rule20: Declaration before use
	MISRA_Rule21: Hidden identifiers linkage of identifiers
	MISRA_Rule22: Object declarations
	MISRA_Rule23i: Functions declaration
	MISRA_Rule25: External definition
	MISRA_Rule26: Declarations of functions must be compatible
	MISRA_Rule27: External declarations
	MISRA_Rule28: Use of register
	MISRA_Rule29:Use of tags
	MISRA_Rule30: Assignment
	MISRA_Rule31: Structured initialisation
	MISRA_Rule32: Enumeration initialization
	MISRA_Rule33: Side effects
	MISRA_Rule34: Logical operand
	MISRA_Rule35: Test and assignment result
	MISRA_Rule37: Bitwise operations
	MISRA_Rule38: Shift operator and right hand operand
	MISRA_Rule39: Unary minus operator
	MISRA_Rule40: Operator sizeof
	MISRA_Rule42: Comma operator
	MISRA_Rule43: Conversions
	MISRA_Rule44: Redundant casts
	MISRA_Rule45: Cast and pointers
	MISRA_Rule46: Evaluation order
	MISRA_Rule48: Mixed precision arithmetic and cast
	MISRA_Rule50: Test between floats
	MISRA_Rule52: Unreachable code
	MISRA_Rule53: Non-null statements
	MISRA_Rule54: Location of null statements
	MISRA_Rule55: No labels
	MISRA_Rule56: Goto
	MISRA_Rules5758: Break and continue
	MISRA_Rule59: Use of braces
	MISRA_Rule60: Then and else
	MISRA_Rule61: Break in switch
	MISRA_Rule62: Default in switch
	MISRA_Rule63: Switch and boolean
	MISRA_Rule64: Switch without case
	MISRA_Rule65: Loop counter
	MISRA_Rule66: Loop control
	MISRA_Rule67: Counter in for statements
	MISRA_Rule68: Scope of functions
	MISRA_Rule69: Variable number of arguments
	MISRA_Rule70: Recursion
	MISRA_Rule71: Prototyping
	MISRA_Rule7576: Void type and functions
	MISRA_Rule78: Parameters
	MISRA_Rule79: Values of void functions
	MISRA_Rule80: Void expressions and function parameters
	MISRA_Rule81: Function parameters and const
	MISRA_Rule82: Use of return
	MISRA_Rule83i: Functions with non-void return types
	MISRA_Rule83ii: Functions with non-void return types
	MISRA_Rule83iii: Functions with non-void return types
	MISRA_Rule84: Void functions
	MISRA_Rule85: Function with no parameters
	MISRA_Rule87: Code structure
	MISRA_Rules8889: #include syntax
	MISRA_Rule91: Define and undefine in a block
	MISRA_Rule92: Use of #undef
	MISRA_Rule93: Functions and macros
	MISRA_Rule94: Function-like macro call
	MISRA_Rule95: Arguments to function-like macros
	MISRA_Rule96i: Parentheses for macro occurences
	MISRA_Rule96ii: Parentheses for macro occurences
	MISRA_Rule97: Identifiers in pre-processor directives
	M ISRA_Rule98: # and ## in macros
	M ISRA_Rule99: All uses of the #pragma directive shall be documented and explained
	MISRA_Rule100:Operator defined
	MISRA_Rule101: Pointer arithmetic
	MISRA_Rule102: Reference complexity
	MISRA_Rule103: Pointers and operators
	MISRA_Rule104: Pointers to functions
	MISRA_Rule105: Pointers to functions
	MISRA_Rule106: Address assignment
	MISRA_Rule107: Null pointer
	MISRA_Rule108: Members of structures and unions
	MISRA_Rule109: Variable storage
	MISRA_Rule110: Unions access
	MISRA_Rule111: Type of bitfields
	MISRA_Rule112: Two bits long bit fields
	MISRA_Rule113: Structure fields
	MISRA_Rule114: Define and undef
	MISRA_Rule115: Redefinition of standard library function names
	MISRA_Rule118: Dynamic heap memory
	MISRA_Rule119: Errno
	MISRA_Rule120: Offsetof
	MISRA_Rule121Fct: <locale.h>
	MISRA_Rule122: Setjmp and longjmp
	MISRA_Rule123: signal.h
	MISRA_Rule124Fct: stdio.h
	MISRA_Rules121124Include: <locale.h> and <stdio.h>
	MISRA_Rule125: atof, atoi and atol
	MISRA_Rule126: abort, exit, getenv and system
	MISRA_Rule127: time.h

	5.2.3 MISRA-C:2004 Rule Package
	MISRA_2_2: No // Comment
	MISRA_2_3: No nested comments
	MISRA_3_4: Use of the #pragma directive
	MISRA_4_1: Escape sequences
	MISRA_4_2: Trigraphs
	MISRA_5_1: Length of identifiers
	MISRA_5_2: Identifiers linkage and scope
	MISRA_5_3: Typedef names
	MISRA_5_4:Use of tags
	MISRA_5_5: Do not reuse name of static objects
	MISRA_5_6: Name of identifiers
	MISRA_5_7: No reused identifiers
	MISRA_6_1: Plain char type usage
	MISRA_6_2: signed/unsigned char type usage
	MISRA_6_3: Basic types
	MISRA_6_4: Type of bitfields
	MISRA_6_5: Two bits long bit fields
	MISRA_7_1: Octal constants
	MISRA_8_1: Prototyping
	MISRA_8_2: Use explicit types
	MISRA_8_4: Declarations of functions must be compatible
	MISRA_8_5:No definition in header
	MISRA_8_6: Scope of functions
	MISRA_8_7: Object declarations
	MISRA_8_8: External declarations
	MISRA_8_9: External definition of identifiers
	MISRA_8_10: File scope declarations
	MISRA_9_1: Assignment
	MISRA_9_2: Structured initialisation
	MISRA_9_3: Enumeration initialization
	MISRA_10_1: Integer type conversions
	MISRA_10_2: Floating type conversion
	MISRA_10_3: Integer type casting
	MISRA_10_5: Unsigned casting
	MISRA_10_6:U suffixing
	MISRA_11_3: Pointer / integral type cast
	MISRA_11_4: Cast between pointers to different object type
	MISRA_12_1: Operator precedence
	MISRA_12_2: Evaluation order
	MISRA_12_3: Operator sizeof
	MISRA_12_4: Side effects
	MISRA_12_5: Logical operand
	MISRA_12_7: Bitwise operations
	MISRA_12_8: Shift operator and right hand operand
	MISRA_12_9: Unary minus operator
	MISRA_12_10: Comma operator
	MISRA_12_12: Underlying representation of floating point numbers
	MISRA_12_13: Do not mix increment and decrement with other operators
	MISRA_13_1: Test and assignment result
	MISRA_13_3: Test between floats
	MISRA_13_4: Loop counter
	MISRA_13_5: Loop control
	MISRA_13_6: Counter in for statements
	MISRA_14_1: Unreachable code
	MISRA_14_2: Non-null statements
	MISRA_14_3: Location of null statements
	MISRA_14_4: No goto statement
	MISRA_14_5: No continue statement
	MISRA_14_6: Break in loop
	MISRA_14_7: Use of return
	MISRA_14_8: Use of braces
	MISRA_14_9: If statement
	MISRA_14_10: Then and else
	MISRA_15_1: Use of switch labels
	MISRA_15_2: Break in switch
	MISRA_15_3: Default in switch
	MISRA_15_4: Switch and boolean
	MISRA_15_5: Switch without case
	MISRA_16_1: No function with variable number of arguments
	MISRA_16_2: Recursion
	MISRA_16_5: Functions with no parameters use explicit void
	MISRA_16_6: Parameters
	MISRA_16_7: Function parameters and const
	MISRA_16_8: Functions with non-void return types
	MISRA_16_9: Use of function identiers
	MISRA_17_3: Relational operators
	MISRA_17_4: Pointer arithmetic only with array indexing
	MISRA_17_5: Reference complexity
	MISRA_17_6: Address assignment
	MISRA_18_1: Members of structures and unions
	MISRA_18_2: Variable storage
	MISRA_18_4: Unions access
	MISRA_19_1: Code structure
	MISRA_19_2: Non-standard characters
	MISRA_19_3: #include syntax
	MISRA_19_5: Define and undefine in a block
	MISRA_19_6: Use of #undef
	MISRA_19_7: Functions and macros
	MISRA_19_8: Function-like macro call
	MISRA_19_9: Arguments to function-like macros
	MISRA_19_10: Parentheses for macro occurences
	MISRA_19_11: Identifiers in pre-processor directives
	M ISRA_19_12: Occurences of # and ## in macros
	MISRA_19_13: # and ## preprocessor operators
	MISRA_19_14: Two forms for defined pre-processor operator
	MISRA_19_15: Header inclusion
	MISRA_19_17: Pre-processor directives
	MISRA_20_1: Define and undef standard names
	MISRA_20_2: Redefinition of standard library function names
	MISRA_20_4: Dynamic heap memory
	MISRA_20_5: Errno
	MISRA_20_6: Offsetof
	MISRA_20_7: Setjmp and longjmp
	MISRA_20_8: signal.h
	MISRA_20_9: No <stdio.h> functions
	MISRA_20_10: atof, atoi and atol
	MISRA_20_11: abort, exit, getenv and system
	MISRA_20_12: time.h

	Customizing Standard Rules and Rule Sets
	6.1 Modifying the Rule Set
	6.2 Modifying Standard Rule Scripts
	6.2.1 Rule File Location
	6.2.2 Rule File Syntax
	6.2.3 Creating a New Rule from a Standard Rule
	6.2.4 Renaming Rules
	The rule file format
	Activating the new rule

	Developing New Rule Scripts
	7.1 Introduction
	7.2 Using the Perl Verifier
	7.3 Using the Tcl Verifier
	7.3.1 Access commands
	Access to the class attribute
	Access to other attributes
	Access to a single cardinality role
	Access to a multiple cardinality role

	7.3.2 Report commands
	Internal error display
	Rule violation display

	7.3.3 Debugging aid commands
	Roles of a class
	Attributes of a class
	Tcl Rules
	Perl rules

	Logiscope C Data Model
	8.1 Introduction
	8.2 Concepts and Symbolism
	8.2.1 Class
	8.2.2 Attribute
	8.2.3 Operation
	8.2.4 Link and association
	8.2.5 Multiplicity
	8.2.6 Role
	8.2.7 Inheritance
	8.2.8 Abstract class

	8.3 The data model
	8.3.1 Graphic Representation
	8.3.2 Text presentation
	Application class
	Comment class
	EnumValue class
	Expression class
	ExpressionComplex class
	ExpressionConstant class
	ExpressionInstruction class
	ExpressionSimple class
	ExpressionSymbol class
	ExpressionType class
	File class
	FileInclusion class
	Function class
	Instruction class
	InstructionBlock class
	InstructionBreak class
	InstructionContinue class
	InstructionDeclaration class
	InstructionDefinition class
	InstructionDoWhile class
	InstructionExpression class
	InstructionFor class
	InstructionGoto class
	InstructionIf class
	InstructionReturn class
	InstructionSwitch class
	InstructionSymbol class
	InstructionTentativeDefinition class
	InstructionWhile class
	Label class
	LabelCase class
	LabelDefault class
	LabelIdent class
	Origin class
	Scope class
	ScopeBlock class
	ScopeFunction class
	ScopeGlobal class
	ScopeStructure class
	ScopeTranslation class
	Symbol class
	SymbolEnum class
	SymbolField class
	SymbolFunction class
	SymbolLabel class
	SymbolMacro class
	SymbolObject class
	SymbolTag class
	SymbolType class
	SymbolVariable class
	Type class
	TypeArray class
	TypeBitField class
	TypeBuiltIn class
	TypeEnum class
	TypeField class
	TypeFunction class
	TypeMeta class
	TypeOf class
	TypePointer class
	TypeStructured class
	TypeSymbol class
	TypeTagged class
	TypeVararg class
	Variable class

	Notices

