

 LOGISCOPE

RuleChecker & QualityChecker C++ Reference Manual

ii Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Before using this information, be sure to read the general information under “Notices” section, on

page 145.

© Copyright Kalimetrix 2014

Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual iii

About This Manual

Audience

This manual is intended for Kalimetrix Logiscope™ RuleChecker & QualityChecker

users for C++ source code verification.

Related Documents

Reading first the following manual is highly recommended:

• Kalimetrix Logiscope - Basic Concepts.

• Kalimetrix Logiscope - RuleChecker & QualityChecker - Getting Started.

Creating new scripts to check specific / non standard programming rules is addressed in

dedicated document:

• Kalimetrix Logiscope - Adding Java, Ada and C++ scriptable rules metrics and con-

texts.

Overview

C++ Project Settings

Chapter 1 presents basic concepts of Logiscope RuleChecker & QualityChecker C++ ,

its input and output data, its prerequisites and its limitations.

C++ Parsing Options

Chapter 2 describes the way to adapt Logiscope RuleChecker & QualityChecker C++ to

the application. It also specifies the specifics of the C++ dialects supported by Logiscope

RuleChecker & QualityChecker C++

Command Line Mode

Chapter 3 specifies how to run Logiscope RuleChecker & QualityChecker C++ using a

command line interface.

iv Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Standard Metrics

Chapter 4 specifies the metrics computed by Logiscope QualityChecker C++.

Programming Rules

Chapter 5 specifies the programming rules checked by Logiscope RuleChecker C++ .

Customizing Standard Rules and Rule Sets

Chapter 6 describes the way to modify standard predefined rules and to create new ones

with Logiscope RuleChecker C++.

Conventions

The following typographical conventions are used:

bold
literals such as tool names (studio)
and file extension (*.cpp),

bold italics literals such as type names (integer),
 names that are user-defined such as directory names

italics (log_installation_dir),

typewriter

notes and documentation titles,

file printouts.

Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual v

Contacting Kalimetrix Software Support

If the self-help resources have not provided a resolution to your problem, you

can contact KalimetrixSupport for assistance in resolving product issues.

Prequisites

To submit your problem to Kalimetrix Software Support, you must have an
active support agreement. You can subscribe by visiting http://www.kalime-
trix.com .

 To submit your problem online (from the KalimetrixWeb site) you need to be a
registered user on the Kalimetrix Support Web site :

http://support.kalimetrix.com/

Submitting problems

To submit your problem to Kalimetrix Software Support:

1) Determine the business impact of your problem. When you report a
problem to Kalimetrix, you are asked to supply a severity level.
Therefore, you need to understand and assess the business impact of the
problem that you are reporting.Use the following table to determine the
severity level.

Severity

Description

Block

The problem has a critical business impact. You are
unable to use the program, resulting in a critical impact on
operation. This condition requires an immediate solution.

Crash

The problem has a significant business impact.
The program is usable, but it is severely limited

Major

The problem has a some business impact.
The program is usable, but less significant features
(not critical to operation) are unavailable.

Minor

The problem has a minimal business impact.
The problem causes little impact on operations or a
reasonable circumvention to the problem was
implemented.

2) Describe your problem and gather background information, When

describing a problem to Kalimetrix, be as specific as possible. Include all
relevant background information so that Kalimetrix Software Support

http://support.kalimetrix.com/

vi Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

specialists can help you solve the problem efficiently. To save time, know
the answers to these questions:

 What software versions were you running when the problem
occurred?

To determine the exact product name and version, start your
product, and click Help > About to see the offering name and
version number.

 What is your operating system and version number (including any
service packs or patches)?

 Do you have logs, traces, and messages that are related to
the problem symptoms?

 Can you recreate the problem? If so, what steps do you
perform to recreate the problem?

 Did you make any changes to the system? For example, did
you make changes to the hardware, operating system,
networking software, or other system components?

 Are you currently using a workaround for the problem? If so,
be prepared to describe the workaround when you report the
problem.

3) Submit your problem to Kalimetrix Software Support. You can submit
your problem to Kalimetrix Software Support in the following ways:

 Online: Go to the Kalimetrix Software Support Web site at
http://support.kalimetrix.com

http://support.kalimetrix.com/

Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual vii

Table of Contents

Chapter 1 C++ Project Settings

1.1 Starting a Logiscope Studio Session ... 1

1.2 Creating a Logiscope Project .. 2

1.3 Logiscope Repository ... 11

1.4 Relaxation Mechanism ... 12

Chapter 2 C++ Parsing Options

2.1 Reserved Keywords .. 15

2.2 Choosing the Appropriate Dialect .. 17

2.2.1 Available C++ Dialects ... 17

2.2.2 Reference Documentation ... 18

2.2.3 Dialect Specifics .. 19

2.3 Configuring the Logiscope C++ Parser .. 23

2.3.1 Type - Syntax Item Association ... 23

2.3.2 Syntax of the Parser Configuration File .. 25

2.4 Managing pre-processing directives ... 26

2.4.1 Impact on Analysis Results ... 26

2.4.2 Restrictions ... 27

Chapter 3 Command Line Mode

3.1 Logiscope create ... 29

3.1.1 Command Line Mode ... 29

3.1.2 Makefile mode ... 30

3.1.3 Options .. 31

3.2 Logiscope batch .. 33

3.2.1 Options .. 33

3.2.2 Examples of Use .. 34

Chapter 4 Standard Metrics

4.1 Function Scope ... 36

4.1.1 Line Counting .. 36

4.1.2 Lexical and syntactic items ... 38

4.1.3 Data Flow .. 38

4.1.4 Halstead Metrics .. 41

4.1.5 Structured Programming ... 47

4.1.6 Control Flow ... 48

4.1.7 Relative Call Graph ... 49

vi Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

4.2 Class Scope ... 52

4.2.1 Comments ... 52

4.2.2 Data Flow .. 52

4.2.3 Statistical Aggregates of Function Metrics .. 55

4.2.4 Inheritance Tree ... 58

4.2.5 Use Graph .. 59

4.3 Module Scope. .. 60

4.3.1 Line Counting .. 60

4.3.2 Lexical and syntactic items ... 61

4.3.3 Data Flow ... 61

4.3.4 Halstead Metrics .. 62

4.4 Application Scope ... 64

4.4.1 Line Counting .. 64

4.4.2 Application Aggregates ... 65

4.4.3 Application Call Graph .. 66

4.4.4 Inheritance Tree ... 67

4.4.5 MOOD Metrics ... 69

Chapter 5 Programming Rules

5.1 Rule Sets. .. 77

5.2 Rule Scripts ... 78

5.2.1 Basic Rules .. 78

5.2.2 Customizable Rules ... 90

5.2.3 MISRA-C++ 2008 Programming Rules .. 105

5.3 Scott Meyers Rules .. 119

Chapter 6 Customizing Standard Rules and Rule Sets

6.1 Modifying the Rule Set ... 125

6.2 Customizing Standard Rule Scripts .. 126

6.3 Renaming Rules .. 143

6.4 Creating New Rule Scripts .. 144

Chapter 7 Notices

C++ Project Settings 9

Kalimetrix Logiscope

Chapter 1

C++ Project Settings

A Logiscope project mainly consists in:

• the list of source files to be analysed,

• applicable source code parsing options according to the compilation environment,

• the verification modules to be activated on the source code files and the associated

controls (e.g. metrics to be computed, rules to be checked).

A source file is a file containing C++ source code. This file is not necessarily compilable.

It only has to conform to the C++ syntax.

Logiscope C++ projects can be created using:

• Logiscope Studio Wizard: a graphical interface requiring a user interaction, as

described in the following sub-sections introducing the Logiscope C++ project settings,

• Logiscope Create: a tool to be used from a standalone command line or within

makefiles, please refer to Chapter Command Line Mode to learn how to create a

Logiscope project using Logiscope Create.

1.1 Starting a Logiscope Studio Session

To begin a Logiscope Studio session:

• On UNIX (i.e. Solaris or Linux):

- launch the vcs binary .

• On Windows:

- click the Start button and select the Kalimetrix Logiscope <version> item in the

Kalimetrix Programs Group.

Kalimetrix Logiscope

2 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

1.2 Creating a Logiscope Project

Once the Logiscope Studio main window is displayed, select the New... command in the

File menu or click on the icon, you get the following dialog box:

The Project name: pane allows to enter the name for the new Logiscope project to be

created.

Location: allows to specify the directory where the Logiscope project and the associated

Logiscope repository will be created. For more details, see the next section.

By default, the project name is automatically added to the specified location. This

implies that a subdirectory named <ProjectName> is automatically created.

Kalimetrix Logiscope

C++ Project Settings 3

Defining the type of the Logiscope project

The following Logiscope Project Definition dialog box appears:

The Project Language: is the programming language in which are written the source

code files to be analysed. Of course, select C++.

Note: Only one language can be selected. If your application contains source code files

written in several languages e.g. C and C++ source files, you should create several

distinct Logiscope projects: one for each language.

The Project Modules: lists the verification modules to be activated on the source files

of the project .

For instance, you can select both QualityChecker and RuleChecker.

Notes: At least one module should be selected. The TestChecker module cannot be

selected with an other module.

For more details on TestChecker module, please refer to Kalimetrix Logiscope -

TestChecker - Getting Started.

For more details on CodeReducer module, please refer to Kalimetrix Logiscope -

CodeReducer - Getting Started.

Kalimetrix Logiscope

4 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Specifying the source files to be analysed

The Project Source Files dialog box allows to specify what source files are to be

analysed and where they are located.

Source files root directory shall specify the directory including all the source files to be

analyzed.

If necessary, use the Directories choice to select the list of repertories covering the

application source files.

- Include all subdirectories means that selected files will be searched for in every sub-

directory of the source file root directory.

- Do not include subdirectories means that only files included in the application

directory will be selected.

- Customize subdirectories to include allows the user to select the list of directories

that include application files through a new page.

Suffixes choices allow to specify applicable source, header and inline file extensions

needed in the above selected directories. Extensions shall be separated with a semi-

colon.

Kalimetrix Logiscope

C++ Project Settings 5

Setting Parsing Options

The next dialog box allows to set up C++ source code parsing options:

C++ Dialect: A dialect is used to specify parsing actions associated to some types,

“keywords” according to the source code compiler specifics.

For more details on available dialects, please refer to the next chapter Parsing Options.

Kalimetrix Logiscope

6 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Preprocessor: The source code files to be analyzed may contain some preprocessing

directives (e.g. #ifdef). In some cases, these directives can lead to parsing errors and

warnings by breaking up the code structure.

Logiscope allows to parse C++ files taking into account part of the preprocessing

directives.

In the Macro definitions (-D & -U) pane, you can define and or undefine some

preprocessing options by respectively using:

• -D<name>: defines <name> as if it were in a #define directive.

• -U<name>: considers <name> as undefined as if it were part of an #undef

directive.

The number of occurrences of option -D and/or option -U is unlimited.

In the example below, the DEBUG option is defined, so the corresponding conditional

code will be parsed. The SUPER_DEBUG option is considered as undefined so the
corresponding conditional options will not be parsed.

For more details on the Preprocessor: settings, please refer to the next chapter Parsing

Options.

Kalimetrix Logiscope

C++ Project Settings 7

Setting QualityChecker Parameters

The next dialog box allows to specify the applicable Project quality model: how the

QualityChecker module evaluates software quality characteristics (e.g. Maintainability)

based on a standard factors / criteria / metrics approach.

Note: Quality models are textual files (also called Reference files). Default quality

models are provided with the standard Logiscope installation. They should be

customized to take into account the verification objectives and contexts applicable to the

project.

For more information, see the Kalimetrix Logiscope - Basic Concepts manual.

For your project verification, you should define and select your own applicable quality

model.

Kalimetrix Logiscope

8 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Setting RuleChecker Parameters

The RuleChecker Settings dialog box allows to specify the applicable Project rule

sets: i.e. the rules / coding standards the Logiscope RuleChecker module shall verify on

the project source files.

For more details on available rules and rule sets, please refer to the chapter Standard

Programming Rules.

At least one rule set should be selected for the Logiscope RuleChecker projects.

Several rule sets can be selected. If so, Logiscope RuleChecker will check the union of

the rules specified in all selected rule sets.

Kalimetrix Logiscope

C++ Project Settings 9

The next RuleChecker Settings dialog box allows to fine tune the list of Project rules.

It is possible to select or unselect some of the rules available.

The rules that are selected are those listed in the Project rule sets selected in the previous

RuleChecker Settings dialog box

You can check / uncheck the rules.The description of the selected rule and the rule

severity are displayed in the bottom pane.

Kalimetrix Logiscope

10 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

The last RuleChecker Settings dialog box allows to use some advanced features of the

Logiscope RuleChecker module.

Relaxation mechanism: when the box is checked, rule violations can be relaxed using

special comments in the code. For more details, please refer to the next section.

External violation import: when the box is checked, the files in the specified project

folder can be used to import violations generated by an external tool.

For more details, please refer to the Kalimetrix Logiscope - RuleChecker &

QualityChecker - Getting Started document.

Rule set file format: when the box is checked, the project rule set file (i.e. with a “.rst”)

extension) that is generated for the project doesn’t contain any includes of other rule set

files. It will contain an expanded copy of the contents of any rule sets that were used for

the project.

For more details, please refer to the Chapter Customizing Rules and Rule Sets.

Kalimetrix Logiscope

C++ Project Settings 11

1.3 Logiscope Repository

The Logiscope Repository is the directory where Logiscope will create and maintain all

internal files storing the necessary information. The Logiscope Repository is specified

using the location pane in the Project Creation window (see previous section).

At the end of the of a Logiscope project creation process, the following files are

generated in the Logiscope Repository:

• <ProjectName>.ttw for Logiscope workspace,

• <ProjectName>.ttp for Logiscope project,

• <ProjectName>.rst for Logiscope Rule Set.

Once a Logiscope project has been “built”: i.e. the source files of the project have been

parsed to extract all necessary information for code verfication, a Logiscope folder is

created containing several Logiscope internal ASCII format files files among which:

• a file named standards.chk containing all the violations found for the source code

file of the project under analysis.

• a control graph file (suffixed by .cgr) for each source code file,

• global analysis result files (suffixed by .dat, .tab and .graph).

All files stored in the Logiscope Repository are internal data files to be used by

Logiscope Studio, Viewer and Batch. They are not intended to be directly used by

Logiscope users. The format of these files is clearly subject to changes.

Kalimetrix Logiscope

12 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

1.4 Relaxation Mechanism

When Relaxation mechanism is activated for a Logiscope RuleChecker project, rule

violations that have been checked and that you have decided are acceptable exceptions to

the rule, can be relaxed for future builds: they will no longer appear in the list of rule

violations. This can be very useful when checking violations in a context where multiple

reviews are performed.

The violations that have been relaxed will remain accessible for future reference in the

Relaxed Violations folder.

The relaxation mechanism is based on comments inserted into the code where the

tolerated violations are. There are two ways to do this, depending on whether there is a

single rule violation to relax on the line, or multiple ones to relax on the given line.

Relaxing a single rule violation

If there is a single violation to relax, it can be done as a comment on the same line as the

code, using the following syntax:

some code // %RELAX<rule_mnemonic> justification

where:

• rule_mnemonic: is the mnemonic of the rule that you want to ignore violations of

on the current line.

• justification: is free text, allowing to justify the relaxation of the rule violation.

If justification carries over several lines, they will not be included as part of the

justification of the relaxation. In order for the justification to be written on several lines,

the second syntax which is presented in the next section should be used.

Relaxing several violations and/or adding a longer justification

If there are several violations to relax for a same line (several violations occurring in

different places in the code at the same time cannot be relaxed), or if the justification of

the violation should have several lines, the following syntax should be used.

// >RELAX<rule_mnemonic> justification

followed by any number of empty lines, comment lines, or relaxations of other rules

relating to the same code line, then by the code line of the violation.

Kalimetrix Logiscope

C++ Project Settings 13

Relaxing all violations in pieces of code

If all the violations of one or more rules are to be relaxed in a given piece of code (e.g.

reused code included in a newly developed file), the piece of code should be surrounded

by:

where:

// {{RELAX<list_of_rule_mnemonics> justification

the piece of code

// }}RELAX<list of rule mnemonics>

• list_of_rule_mnemonics: is the list of all mnemonics of the rules that you want

to ignore violations of on the piece of code.

The rule mnemonics shall be separated by a comma.

Kalimetrix Logiscope

14 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Kalimetrix Logiscope

C++ Parsing Options 15

Chapter 2

C++ Parsing Options

Logiscope uses source code parsers to extract all necessary information from the source

code files specified in the project under analysis.

As the source code under analysis may contains compiler specifics, this chapter first

details the available options to adapt the default behavior of the Logiscope C++ parsing

to such specifics. They involve:

• choosing the appropriate dialect (cf.2.2),

• configuring the Logiscope C++ parser (cf. 2.3),

• managing pre-processing directives (cf. 2.4).

2.1 Reserved Keywords
The source code shall respect the C++ syntax defined in the reference document:

"Working Paper for Draft Proposed International Standard for Information Systems -

Programming Language C++", by Andrew Koenig, referenced X3J16/96-0225 WG21/

N1043, dated: December, 1996.

Because of the use of a parser configuration file to define type specifiers, type qualifiers

and access specifiers (cf. section 2.4), the list of keywords for Logiscope C++ is smaller

than the list of keywords of the language.

The list of C++ reserved words is the following:
asm
break
case
catch
class
const_cast
continue
default
delete
do
dynamic_cast
extern
else
enum
false
for

goto

Kalimetrix Logiscope

16 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

if
namespace
new
operator

reinterpret_cast

return

sizeof

static_cast
struct
switch

template
this
throw

true

try
typeid

typename
typeof
union

using
while

The $ character is not authorized in identifiers.

Kalimetrix Logiscope

C++ Parsing Options 17

2.2 Choosing the Appropriate Dialect

2.2.1 Available C++ Dialects

Compilers allow specifics that may not be correctly handled by the default Logiscope

C++ parsing. To consider those specifics when parsing the source code and thus avoid

parsing errors and warnings, the user shall choose the appropriate C++ dialect when

setting up the project.

The list of available C++ dialects is the following:

• Aix for the IBM C++ 3.1 dialect

• Alpha for the DIGITAL C++ 6.0 dialect.

• Borland_30 for the BORLAND C++ 3.0 dialect,

• Borland_50 for the BORLAND C++ 5.0 dialect,

• C++ for standard ISO C++,

• Gnu_27 for the GNU 2.7 dialect,

• Hp for the HP C++ dialect,

• Ilog_30 for the Ilog 3.0 dialect,

• MFC for the Microsoft Fundations Classes dialect,

• Microsoft_15 for the MICROSOFT C++ 1.5 dialect,

• Microsoft_20 for the MICROSOFT C++ 2.0 dialect,

• Microsoft_50 for the MICROSOFT C++ 5.0 dialect,

• Microsoft_60 for the MICROSOFT C++ 6.0 dialect,

• Rhapsody for source code file generated by IBM Rational Rhapsody,

• Object_5x for the ObjectStore 5 dialect,

• Orbix_2x for the Orbix 5 dialect,

• sun for the SUN C++ dialect,

The specifics of each dialect are specified in the following sections.

Kalimetrix Logiscope

18 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

2.2.2 Reference Documentation

AIX

IBM C++ Compiler User’s Guide

5/2/96 xIC 3.1 1.69

Alpha

DIGITAL C++ Version 6.0 for DIGITAL

C++ Programming Language, Third Edition, by Bjarne Stroustrup

Borland C++ 3.0

Borland TURBO C++ 3.0

User's Guide

Borland C++ 5.0

Borland C++ 5.0 Development Suite

CD User’s Guide

GNU 2.7

Info file `gcc' made from the Texinfo source file gcc.texinfo.

HP C++

The C++ Programming Language

Bjarne Stroustrup

Second Edition

Addison-Wesley Publishing Company, 1991.

Microsoft C++ 1.5

Extract related to MICROSOFT C++ 1.5 language of the compact disk

Microsoft Visual C++

Development System and Tools for Windows

Microsoft C++ 2.0, 5.0, and 6.0

Microsoft Visual C++

Development System and Tools for Windows

SUN C++

SPARCompiler (Extract on the compact disk)

C++ 4.0 Language System

Kalimetrix Logiscope

C++ Parsing Options 19

2.2.3 Dialect Specifics

Aix

The following keywords are recognized:

_offsetof

_System

Alpha

The following keywords are recognized:

 builtin_sizeof

 builtin_isfloat

Borland C++ 3.0

The following keywords are recognized:

_cdecl cdecl

_far far

_fastcall fastcall

_huge huge

_interrupt interrupt

_loadds

_near near

_pascal pascal

_saveregs

_seg

The following keywords are not recognized: _asm

Borland C++ 5.0

The following keywords are recognized:

_cdecl cdecl

_cs

 declspec

 ds _ds

 es _es

 except

 export _export

 far _far far

 fastcall _fastcall

 huge _huge huge

 import _import

 interrupt _interrupt interrupt

Kalimetrix Logiscope

20 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

 loadds _loadds

 near _near near

 pascal _pascal pascal

 rtti

 saveregs _saveregs

 seg _seg

_ss

 thread

The following keywords are not recognized:

 asm _asm

 finally try

Gnu 2.7

The following keywords are recognized:

bool

true false

explicit

mutable

 alignof

 asm

 attribute

 const

 extension

 inline

 label

 signed

 typeof

 volatile

 wchar_t

 alignof

 asm

 attribute

 const

 inline

 signed

 typeof

 volatile

typeof

The following keywords are not recognized:

<?=>?=

<?>?

signature

Overmore, the Gnu specific construction:

#define AAAA(prefix, string, args...) fprintf(stder, prefix string, ##args)

is not supported.

Microsoft C++ 1.5

The following keywords are recognized:

 based _based

 cdecl _cdecl cdecl

Kalimetrix Logiscope

C++ Parsing Options 21

 export _export

 far _far far

 fastcall _fastcall

 fortran _fortran

 huge _huge huge

 inline _inline

 interrupt _interrupt

 loadds _loadds

 near _near near

 pascal _pascal

 saveregs _saveregs

 segment _segment

 segname _segname

Microsoft C++ 2.0

The following keywords are recognized:

 based _based

 cdecl _cdecl cdecl

 declspec _declspec

 except

 fastcall _fastcall

 inline _inline

 int8 _int8

 int16 _int16

 int32 _int32

 int64 _int64

 leave

 stdcall _stdcall

The following keywords are not recognized:

 finally

 try

Microsoft C++ 5.0 and 6.0

The following keywords are recognized:

 based

 cdecl

 declspec

dllexport

dllimport

 except

 fastcall

 inline

 int16

 int32

Kalimetrix Logiscope

22 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

 int64

 int8

 leave

 multiple_inheritance

naked

 single_inheritance

 stdcall

thread

 virtual_inheritance

The following keywords are not recognized:

__asm

 finally

 try

Rhapsody

A source code file is is considered as a generated file if it contains one of the following:

• a comment starting by #[,

• a comment starting by ##,

• a comment containing //! Generated Date .:

Otherwise, the source code file is considered as “hand written”.

In generated file, user-written code is detected using the following rules:

• a line following a line starting by a comment starting with ## is a user code line,

• a line ending with comment starting with ## is a user code line,

• a line starting with a comment starting with #[open a block of user code ending on

a line starting with a comment starting with #].

Exception: if a comment ## is followed by « auto_generated » it does not introduce user

code.

Kalimetrix Logiscope

C++ Parsing Options 23

2.3 Configuring the Logiscope C++

Parser

In fact, each dialect is associated to a textual file that specifies the dialect specifics: the

parser configuration file.

The default parser configuration files are located in the directory data/env_c++/ in the

Logiscope installation directory.

If the C++ dialect or the C++ library used is not supported by one of the standard C++

dialects, the user can customize an existing Logiscope C++ parser configuration file to

better suit the application source code syntax specifics.

2.3.1 Type - Syntax Item Association

The parser configuration file allows the description of specifics types, keywords and

macros in order to improve the source code parsing. For each identifier, a type may be

associated. This type corresponds to an item of the C++ syntax.

The following table details the relation between the type of identifiers and the C++

syntax.

Type Syntax item

IDENTIFIER
A simple identifier.

Allows to mask predefined keywords.

STORAGE_CLASS static, extern, register, ...

TYPE_SPECIFIER int, char, float, unsigned, ...

TYPE_NAME Allows to specify an identifier is a type name.

TYPE_QUALIFIER const, volatile, ...

ACCESS_SPECIFIER private, public, protected, ...

STRING_MACRO A macro defined as a character string "..."

EXPRESSION_MACRO
A macro defined as an expression

3, t[i], f(a, b), ...

STATEMENT_MACRO
A macro defined as a statement

a = 3; , f(a, b); , ...

DECLARATION_MACRO
A macro defined as a declaration

int a; , myclass obj(a,b); , ...

TYPE_MACRO
A macro defined as a typename

mytempl<int> , x##_ptr, ...

OPEN_BLOCK_MACRO A macro that replaces {

CLOSE_BLOCK_MACRO A macro that replaces }

Kalimetrix Logiscope

24 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

OPEN_LOOP_MACRO A macro that replaces for(;;) {

CLOSE_LOOP_MACRO
A macro that replaces } corresponding to

for(;;) {

COMMENT_MACRO A macro that replaces a comment

STRING_FUNC_MACRO
A macro function defined as a character string

"..."

EXPRESSION_FUNC_MACRO
A macro function defined as an expression

3, t[i], f(a, b), ...

STATEMENT_FUNC_MACRO
A macro function defined as an statement

a = 3; , f(a, b); , ...

DECLARATION_FUNC_MACRO
A macro function defined as an declaration

int a; , myclass obj(a,b); , ...

TYPE_FUNC_MACRO
A macro function defined as a typename

mytempl<int> , x##_ptr, ...

OPEN_BLOCK_FUNC_MACRO A macro function that replaces {

CLOSE_BLOCK_FUNC_MACRO A macro function that replaces }

OPEN_LOOP_FUNC_MACRO
A macro function that replaces

for(;;) {

CLOSE_LOOP_FUNC_MACRO

A macro function that replaces } correspond-

ing to

for(;;) {

COMMENT_FUNC_MACRO A macro function that replaces a comment

SQL_MACRO_START
Starts an SQL embedded statement.

EXEC

SQL_MACRO_TYPE
Type of SQL embedded statement.

SQL, ORACLE, IAF, ...

The definition of ..._FUNC_MACRO types allows to pass parameters to these macros

that should not be allowed for function calls.

Examples:

LIST_MAP(mylist, char *, str)
OPER_NAME(struct)

Kalimetrix Logiscope

C++ Parsing Options 25

2.3.2 Syntax of the Parser Configuration File

The EBNF notation is used to describe the syntax of the C++ parser configuration file.

<conf> ::= "%START_C_CONFIGURATION" <head> <defs>
"%END_C_CONFIGURATION"

<head> ::= "=" <init> ";"

<init> ::= {"copy" <predefined>} | {"add" <predefined>}

<predefined> ::= "EMPTY" | "C++"
<defs> ::=

| <defs> <def>

<def> ::= <type> ":" <idents> ";"
<type> ::= "%IDENTIFIER"

| "%STORAGE_CLASS"

| "%TYPE_SPECIFIER"
| "%TYPE_QUALIFIER"
| "%TYPE_NAME"

| "%ACCESS_SPECIFIER"
| "%STRING_MACRO"
| "%EXPRESSION_MACRO"

| "%STATEMENT_MACRO"
| "%DECLARATION_MACRO"
| "%TYPE_MACRO"

| "%OPEN_BLOCK_MACRO"
| "%CLOSE_BLOCK_MACRO"
| "%OPEN_LOOP_MACRO"

| "%CLOSE_LOOP_MACRO"
| "%COMMENT_MACRO"
| "%STRING_FUNC_MACRO"

| "%EXPRESSION_FUNC_MACRO"
| "%STATEMENT_FUNC_MACRO"
| "%DECLARATION_FUNC_MACRO"

| "%TYPE_FUNC_MACRO"
| "%OPEN_BLOCK_FUNC_MACRO"
| "%CLOSE_BLOCK_FUNC_MACRO"

| "%OPEN_LOOP_FUNC_MACRO"
| "%COMMENT_FUNC_MACRO"
| "%CLOSE_LOOP_FUNC_MACRO"

| "%SQL_MACRO_START"
| "%SQL_MACRO_TYPE"

<idents> ::=

| <idents> <ident>
<ident> ::=[a-zA-Z0-9_][a-zA-Z0-9_]*

Comments begin with /* and end with */. They cannot be nested.

Separators are blanks, tabulations, ends of lines, and comments.

Kalimetrix Logiscope

26 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

2.4 Managing pre-processing directives

C++ source code can be analyzed either expanded or not, this means after or before use

of the preprocessor. The user shall supply Logiscope with the more suitable source code

according to the analysis goals. The explanations below are intended to help choosing

between these two solutions.

2.4.1 Impact on Analysis Results

As a general rule, if the purpose is to assess the maintainability of the software, the non-

expanded source code suits better as it is near the developer point of view. For example,

a piece of source code with a low complexity but using a lot of macro calls, can have a

very high complexity after the preprocessing. Analyzing preprocessed code can generate

unjustified alarms. In the same way, a piece of source code with a high complexity

because of the use of a lot of #if statements, can be very simple after preprocessing.

Analyzing preprocessed code can omit to raise important alarms.

More detailed considerations have to be taken into account. Within non-expanded code,

conditional statements (#if, #ifdef, ...) are considered as if statements. Macro calls

are considered as function calls.

Analyzing non preprocessed code has an influence on measurements when the same

variable, the same type or the same function is declared in both branches of a #if ...

#else ... #endif.

In the following example, the number of declared variables is equal to 2 instead of 1.

...

#ifdef POSIX

void *ptr;

#else

char *ptr;

#endif

...

In the same way, the following source code has a number of functions equal to 2.

...

#ifdef POSIX

int fn()

{ ... }

#else

int fn()

{ ... }

#endif

...

fn();

Choosing between both solutions shall be done according to the analysis goals and

programming styles (macro often used or not, for example).

Kalimetrix Logiscope

C++ Parsing Options 27

2.4.2 Restrictions

The Logiscope way of parsing source code imposes restrictions on the use of

preprocessing statements in C++ programs. A file which does not follow the restrictions

may be incompletely parsed by Logiscope (this yields syntax error... messages).

The main limitations are:

• Only the following macro types are allowed:

• Macros used in place of an identifier or an expression.

Example:

#define ZERO 0

...
a=ZERO;

• Macros used in place of a statement or a declaration.

Example:

#define PERROR(errno)

....
if (ret_code < 0)

PERROR (7);

• Macros used in place of the beginning or the end of a block.

Example:

#define WHEN(x) if (x) {

#define END }
....
WHEN(ret_code < 0)

...
END

Among the above three types of macros, only part of the first one can be parsed without

using the configuration file. The following example shows the use of invalid macros.

:

#define IS_NEG < 0

#define STRUCT(x) struct x

foo () {

STRUCT(point) pt1;/* should be defined as TYPE_FUNC_MACRO */

if (i IS_NEG) /* invalid */

i=0;

}

Kalimetrix Logiscope

28 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

• The preprocessing directives can only be located in a place where an instruction, a

declaration or an expression can be found. A preprocessing directive must not "cut" a

declaration or an instruction.

Examples of invalid source code:

main () {

int

#ifdef OK /* #ifdef inside a declaration */

i;

#else

j;

#endif

#ifdef OK

if (i == 1) /* invalid */

#else

if (i == 0)

#endif

printf("OK\n") ;

else

printf("ERROR\n") ;

}

char *day_name (int n) {

static char *name[] = {

#ifdef FRENCH /* invalid */

"jour inconnu",

"lundi", "mardi", "mercredi", "jeudi",

"vendredi", "samedi", "dimanche"

#else

"unknown day",

"Monday", "Tuesday", "Wednesday", "Thursday",

"Friday", "Saturday", "Sunday"

#endif

} ;

return (n < 1 || n > 7) ? name[0] : name[n];

}

Kalimetrix Logiscope

Command Line Mode 29

Chapter 3

Command Line Mode

3.1 Logiscope create

Logiscope projects: i.e. “.ttp” file are usually built using Logiscope Studio as described

in chapter Project Settings or in the Logiscope RuleChecker & QualityChecker Getting

Started documentation.

The logiscope create tool builds Logiscope projects from a standalone command line or

within makefiles (replacing the compiler command) .

3.1.1 Command Line Mode

When started from a standard command line, The create tool creates a new project file

with the information provided on the command line.

For a complete description of the command line options, please refer to the Command

Line Options paragraph.

When used in this mode, there are two different ways for providing the files to be

included into the project:

Automatic search

This is the default mode where the tool automatically searches the files in the directories.

Key options having effect on this modes are:

-root <root_dir> : the root directory where the tool will start the search for source

files. This option is not mandatory, and if omitted the default is to start the search in the

current directory.

-recurse : if present indicates to the tool that the search for source files has to be

recursive, meaning that the tool will also search the subdirectories of the root directory.

File list

In this mode, the tool will look for the –list option which has to be followed by a file

name. This provided file contains a list of files to be included into the project. The file

shall contain one filename per line.

Kalimetrix Logiscope

30 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Example: Assuming a file named filelist.lst containing the 3 following lines:

/users/logiscope/samples/C++/Hangman/GenericDlg.cpp

/users/logiscope/samples/C++/Hangman/Hangman32.cpp

/users/logiscope/samples/C++/Hangman/Hangman.cpp

Using the command line:
create –audit –lang c++ aProject.ttp –list filelist.lst

will create a new Logiscope C++ project file aProject.ttp containing 3 files:

GenericDlg.cpp, Hangman32.cpp and Hangman.cpp on which QualityChecker and

RuleChecker verification modules will be activated.

3.1.2 Makefile mode

When launched from makefiles, create is designed to intercept the command line usually

passed to the compiler and uses the arguments to build the Logiscope project.

The project makefiles must be modified in order to launch create instead of the compiler.

In this mode, the name of the project file (“.ttp” file) has to be an absolute path,

otherwise the process will stop.

When used inside a Makefile, create uses the same options as in command line mode,

except for:

-root, -recurse, -list : which are not available in this mode

-- : which introduces the compiler command.

The following lines can be introduced in a Makefile to build a Logiscope project file :

CREATE=create /users/projects/my.ttp –audit -rule –lang c++

CC=$(CREATE) -- gcc

CPP=$(CC) -E

...

In this mode, the project file building process is as follows:

1. create is invoked for each file by the make utility, instead of the compiler.

2. When create is invoked for a file it adds the file to the project, with appropriate

preprocessor options if any, then create starts the normal compilation command which

will ensure that the normal build process will continue.

3. At the end of the make process, the Logiscope project is completed and can be used

either using Logiscope Studio or with the batch tool (see next section).

Note: Before executing the makefile, first clean the environment in order to force a full

rebuild and to ensure that the create will catch all files.

Kalimetrix Logiscope

Command Line Mode 31

3.1.3 Options

The create options are the following:

create -lang cpp

<ttp_file> name of a Logiscope project to be created

(with the .ttp extension).
Path has to be absolute if the option -- is used.

[-root <directory>] where <directory> is the starting point of the

source search. Default is the current directory.

This option is exclusive with -list option.

[-recurse] if present the source file search is done recur-

sively in subfolders.

[-list <list_file>] where <list_file> is the name of a file contain-

ing the list of filenames to add to the project

(one file per line).

This option is exclusive with -root option.

[-repository <directory>] where <directory> is the name of the direc-

tory where Logiscope internal files will be

stored.

[-no_compilation] avoid compiling the files if the -- option is

used

[--] when used in a makefile, this option intro-

duces the compilation command with its argu-

ments.

[-audit] to activate the QualityChecker verification

module

[-ref <Quality_model>] where <Quality_model> is the name of the

Quality Model file (“.ref”) to add to the

project.

Default is <install_dir>/Ref/Logiscope.ref

[-rule] to select the RuleChecker verification module

[-rules <rules_file>] where <rule_file> is the name of the rule set

file (.rst) to be included into the project.

Default is the RuleChecker.rst file located in

the /Ref/RuleSets/<lang>/ will be used.

[-relax] to activate the violation relaxation mechanism

for the project.

Kalimetrix Logiscope

32 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

[-import <folder_name>] where <folder_name> is the name of the

project folder which will contain the external

violation files to be imported.

When this option is used the external viola-

tion importation mechanism is activated.

[-external <file_name>]* where <file_name> is the name of a file to be

added into the import project folder.

This option can be repeated as many times as

needed.

Only applicable if the -import option is acti-

vated.

[-dial <dialect_name>] where <dialect_name> is one of the available

C++ dialects.

[-source <suffixes>] where <suffixes> is the list of accepted suf-

fixes for the source files.

Default is "*.cpp;*.cc;*.cxx".

[-header <suffixes>] where <suffixes> is the list of accepted suf-

fixes for header files.

Default is "*.h;*.hxx;*.hh"

[-inline <suffixes>] where <suffixes> is the list of accepted suf-

fixes for inline files .

Default is "*.inl".

[-D<macro_name>]* same syntax as a preprocessor.

When used, this option activates the unifdef

tool when parsing the code.

[-U<macro_name>]* same syntax as a preprocessor.

When used, this option activates the unifdef

tool when parsing the code.

Kalimetrix Logiscope

Command Line Mode 33

3.2 Logiscope batch

Logiscope batch is a tool designed to work with Logiscope in command line to:

• parse the source code files specified in a Logiscope project: i.e. “.ttp” file,

• generate reports in HTML and/or CSV format automatically.

Note that before using Logiscope batch, a Logiscope project shall have been created:

• using Logiscope Studio, refer refer to Section 1 or IBM Rational Logiscope

RuleChecker & QualityChecker Getting Started documentation,

• or using Logiscope create, refer to the previous section.

Once the Logiscope project is created, Logiscope batch is ready to use.

3.2.1 Options

The batch command line options are the following:

batch

<ttp_file> name of a Logiscope project.

[-tcl <tcl_file>] name of a Tcl script to be used to generate the

reports instead of the default Tcl scripts.

[-o <output_directory>] directory where the all reports are generated.

[-external <violation_file>]* name of the file to be added into the import

project folder. This option can be repeated as

many times as needed.

This option is only significant for RuleCh-

ecker module for which the external violation

importation mechanism is activated

[-nobuild] generates reports without rebuilding the

project. The project must have been built at

least once previously.

[-clean] before starting the build, the Logiscope build

mechanism removes all intermediate files and

empties the import project folder when the

external violation importation mechanism is

activated.

[-addin export -format csv] generates the reports in csv format available

using the file/export command.

[-addin <addin> options] where addin nis the name of the addin to be

activated and options the associated options

generating the reports.

Kalimetrix Logiscope

34 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

[-table] generates tables in predefined HTML reports

instead of slices or charts. By default, slices or

charts are generated (depending on the project

type).

This option is available only on Windows as

on Unix there are no slices or charts, only

tables are generated.

[-noframe] generates HTML reports with no left frame.

[-v] displays the version of the batch tool.

[-h] displays help and options for batch.

[-err <log_err_folder>] directory where troubleshooting files

batch.err and batch.out should be put.

By default, messages are directed to standard

output and error.

3.2.2 Examples of Use

Considering a previously created Logiscope project named MyProject.ttp where:

• RuleChecker and QualityChecker verification modules have been activated,

• the Logiscope Repository is located in the folder MyProject/Logiscope,

(Refer to the previous section or to the RuleChecker & QualityChecker Getting Started

documentation to learn how creating a Logiscope project).

Executing the command on a command line or in a script:

batch MyProject.ttp

will:

• perform the parsing of all source files specified in the Logiscope project

MyProject.ttp,

• run the standard TCL script QualityReport.tcl located in <log_install_dir>/Scripts

to generate the standard QualityChecker HTML report named

MyProjectquality.html in the default MyProject/Logiscope/reports.dir folder.

• run the standard TCL script RuleReport.tcl located in <log_install_dir>/Scripts to

generate the standard RuleChecker HTML report named MyProjectrule.html in the

default MyProject/Logiscope/reports.dir folder.

Kalimetrix Logiscope

Standard Metrics 35

Chapter 4

Standard Metrics

Logiscope QualityChecker C++ proposes a set of standard source code metrics. Source

code metrics are static measurements (i.e. obtained without executing the program) to be

used to assess software attributes (e.g. complexity, self-descriptiveness) or

characteristics (e.g. Maintainability, Reliability) of the C++ functions, classes, modules,

application under evaluation.

The metrics can be combined to define new metrics more closely adapted to the quality

evaluation of the source code. For example, the “comments frequency” metric, well

suited to evaluate quality criteria such as self-descriptiviness or analyzability, can be

defined by combining two basic metrics: “number of comments” and “number of

statements”.

The user can associate threshold values with each of the quality model metrics,

indicating minimum and maximum reference values accepted for the metric.

For more details on Source Code Metrics, please refer to:

• Kalimetrix Logiscope - Basic Concepts.

Source code metrics apply to different domains (e.g. line counting, control flow, data

flow, calling relationship) and the range of their scope varies.

The scope of a metric designates the element of the source code the metric will apply to.

The following scopes are available for Logiscope QualityChecker C++.

• The Function scope: the metrics are available for each member and non-member

function defined in the source files specified in the Logiscope Project under analysis.

• The Class scope: the metrics are available for each C++ class defined in the header

and source files specified in the Logiscope Project under analysis. Classes contain

member functions and member data.

• The Module scope: the metrics are available for each C++ header or source file

specified in the Logiscope Project under analysis.

• The Application scope: the metrics are available for the set of C++ header and source

files specified in the Logiscope Project .

Kalimetrix Logiscope

36 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

4.1 Function Scope

4.1.1 Line Counting

For more details on Line Counting Metrics, please refer to:

• Kalimetrix Logiscope - Basic Concepts.

lc_cline Total number of lines

Definition Total number of lines in the function.

lc_cloc Number of lines of code

Definition Total number of lines containing executable code in the function.

lc_cblank Number of empty lines

Definition Number of lines containing only non printable characters in the function.

lc_ccomm Number of lines of comments

Definition Number of lines of comment in the function.

lc_ccpp Number of preprocessor statements

Definition Number of preprocessor directives (e.g. #include, #define, #ifdef)

in the function.

lc_csbra Number of lines with lone braces

Definition Number of lines containing only a single brace character : i.e. “{“ or “}” in

the function.

lc_pro_c Number of lines in Pro*C

Definition Number of lines written in Pro*C in the function.

Kalimetrix Logiscope

Standard Metrics 37

lc_bcom Number of comment blocks.

Definition Number of comment blocks used between a function's header and the

closing curly bracket (Blocks of COMments). Several consecutive com-

ments are counted as a single comment block.

Example funct() ;

{

/* this is a comment */

printf ("----------------------") ;

/* this is a second */

/* comment */

printf ("----------------------") ;

/* this is a third

comment */

}

lc_bcom= 3

Alias BCOM

lc_bcob Number of comment blocks before

Definition 1 if there is a block of comments used just before a function (Blocks of

COmments Before). 0 either.

Example /* this comment is not counted */

/* as a comment before the function */

int i;

/* this one is counted

as a comment */

/* before the function */

funct() ;

{

printf ("----------------------") ;

printf ("----------------------") ;

}

lc_bcob = 1

Alias BCOB

lc_parse Number of lines not parsed

Definition Number of lines which cannot be parsed in a function because of syntax

errors or of some particular uses of macros.

Kalimetrix Logiscope

38 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

4.1.2 Lexical and syntactic items

lc_algo Number of syntactic entities in algorithms

Definition Number of syntactic entities inside statements of a function that are not

counted as declarations.

lc_decl Number of syntactic entities in declarations

Definition Number of syntactic entities in the declaration part of a function.

lc_stat Number of Statements

Also called STMT.

Definition Number of statements in the function body

Without an optional parameter, following statements are counted:

• Control statements: break, statement block, continue, do, for, goto, if, labels,

return, switch, while, case, default,

• Statements followed by ; ,

• Empty statement.

This metric can be parametrized to count the statements in a familiar way:

• if no parameter is provided, all statements listed above are counted,

• if the parameter "no_null_stat" is provided, block statements, empty statements and

labeled statements (including case and default labels in switch statements) are

omitted.

lc_synt Number of syntactic entities

Definition Number of syntactic entities used in the function.

Note lc_synt is the sum of lc_decl and lc_algo.

4.1.3 Data Flow

dc_consts Numbers of declared constants

Definition Number of constants in a function declared by:

• the #define statement,

Kalimetrix Logiscope

Standard Metrics 39

• variables having a simple type declared as const,

• enum elements.

dc_types Number of declared types

Definition Number of types declared in a function with the typedef, struct,

class or enum statement.

dc_vars Number of declared variables

Definition Number of variables declared in a function.

dc_lvars Number of local variables

Also called LVAR.

Definition Total number of variables declared in a function (Local VARiables).

dc_clas_var Number of class-type local variables

Also called LVARop.

Definition Number of class type variables which are local to a function. This metric

shows a specific type of coupling between classes.

dc_other_clas_var Number of other class-type local variables

Definition Number of class type variables which are local to a function, where the

class is different from the current class.

If the function being analyzed is a non-member function, the value is 0.

ic_param Number of parameters

Also called PARA.

Definition Number of parameters of a function.

ic_parvar Variable number of parameters

Definition Equals 1 if the function has a variable number of parameters, 0 otherwise.

ic_paradd Number of parameters passed by reference

Also called PARAadd.

Kalimetrix Logiscope

40 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Definition Number of parameters passed by reference of a function. If the function

returns a value, then the returned value is considered as a passed by refer-

ence parameter.

ic_parcl Number of class-type parameters

Also called PARAc.

Definition Number of class-type parameters of a function. If the function returns a

class-type value then the returned value is considered as a class-type

parameter. This metric shows a specific type of coupling between classes.

ic_par_othercl Number of other class-type parameters

Definition Number of class-type parameters of a function, where the class is different

from the current class. If the function being analyzed is a non-member

function, then the value is 0.

ic_parval Number of parameters passed by value

Also called PARAval.

Definition Number of parameters passed by value of a function.

ic_usedp Number of parameters used

Also called U_PARA.

Definition Number of function parameters used in a function body. A parameter is

said to be used wherever it appears in the function code. Combined with

the number of function parameters, this metric is a good indicator of the

consistency of the function's interface.

ic_vare Number of uses of external attributes

Also called VARe
.

Definition Number of uses of attributes defined outside the class. An attribute is said

to be "external" if it belongs to another class.

All attribute occurrences are counted.

ic_vari Number of uses of internal attributes

Also called VARi.

Kalimetrix Logiscope

Standard Metrics 41

Definition Number of uses of attributes defined in the class. An attribute is said to be

"local" if it belongs to the class of the function being analyzed.

All attribute occurrences are counted.

ic_varpe Number of distinct uses of external Aattributes

Also called VAR_PATHSe.

Definition Number of distinct times attributes defined outside the class are used. An

attribute is said to be "external" if it belongs to another class.

Different uses of the same attribute count for one.

ic_varpi Number of distinct uses of local attributes

Also called VAR_PATHSi.

Definition Number of times the distinct class attributes are used. An attribute is said

to be "local" if it belongs to the class of the function being analyzed.

Different uses of the same attribute count for one.

4.1.4 Halstead Metrics

For more details on Halstead Metrics, please refer to:

• Kalimetrix Logiscope - Basic Concepts.

n1 Number of distinct operators

Also called ha_dopt.

Definition Number of different operators used in a function.

This metric can be parametrized to count the operators in a familiar way:

• if no parameter is provided, operators are counted between the begin-

ning of the function’s definition and its closing curly bracket,

• if the parameter "in_body" is provided, operators are only counted in

the function body (that is between the function’s opening and closing

curly brackets).

For the use of this parameter, see Chapter Customizing Metrics & Rules.

The following are operators:

• Expressions:

• Unary operators:

Kalimetrix Logiscope

42 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

+ - unary plus or minus

++ -- pre-/post- increment or decrement

! negation

~ complement of 1 or destructor

* indirection

& address

sizeof sizeof

throw throw

new new

::new global scope new

delete delete

::delete global scope delete

delete [] array delete

::delete [] global scope array delete

. dot

-> arrow

() expression in parenthesis

• Binary Operators:

+ - * / % arithmetic operators

<< >> & | ^ bitwise operators

> < <= >= == != comparison operators

&& || logical operators

->* .* pointer to member operators

• Ternary conditional operator: ?:

• Assignment operators: = *= /= %= += -= >>= <<= &= ^= |=

• Other operators:

(...) cast (ex: (float)1)

dynamic_cast cast (ex: dynamic_cast<T>(v))

static_cast cast (ex: static_cast<T>(v))

reinterpret_cast cast (ex: reinterpret_cast<T>(v))

const_cast cast (ex: const_cast<T>(v))

[] subscripting (ex: a[i])

Kalimetrix Logiscope

Standard Metrics 43

:: (global) scope (ex: X::i, ::i)

...() function call (ex: func(1))

(.., .., ..) expressions list (ex: func(1,2,3))

this

• Statements:

IF

ELSE

WHILE()

DO WHILE()

RETURN

CONTINUE

LABEL

FOR(;;)

GOTO label

SWITCH CASE BREAK

DEFAULT

{ }

;

(compound)

(empty statement)

• Declarations:

ASM (ex: asm("foo"))

EXTERN (ex: extern "C" { ... })

; (empty declaration)

(member) declaration (ex: int i; int i = 1;)

type specifier (ex: int)

storage class (ex: auto, register, static, extern, mutable)

enumerator specifier (ex: enum X { ... };)

enumerator-list (ex: enum X {a, b, c};)

enumerator-definition (ex: enum X {a=1, b=2};)

typename (ex: typedef typename X::a b;)

namespace definition (ex: namespace N { ... })

using declaration (ex: using A::x;)

using directive (ex: using namespace M;)

• Declarators:

 function declarator (ex: int func();)

[] array declarator (ex: int tab[5];)

* pointer declarator (ex: int *i;)

& reference declarator (ex: int& i;)

::* pointer to member declarator (ex: int X::* i;)

(.., .., ..) parameter-declaration-list (ex: int func(int i, char *j);)

Kalimetrix Logiscope

44 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

{.., .., ..} initializer-list (ex: int tab[] = {1, 3, 5};)

 type qualifier (ex: const, volatile)

 type identifier (ex: sizeof(int), new (int))

• Classes:

class keys class struct union

access specifiers private public protected

• Derived classes:

base classes (ex : class Z : public X , public Y)

• Special member functions

: constructor initializer (ex: C::C(): A() { ...} try : i(f(ii)), d(id))

.., .., .. member initializer list (ex: i(f(ii)), d(id))

 member initializer id (ex: i(f(ii)))

• Overloading: operator ...

• Templates:

template parameters (ex: template<class K, class V>)

type parameter (ex: template<class K = int>

template<template<class T> class K = int>)

template name (ex: T1<T2>)

template argument list (ex: T<T1,T2,T3>)

explicit instantiation (ex: template A::operator void*();)

explicit specialization (ex: template <> A::operator char*() { return 0; })

• Exceptions:

throw (.., ..) exception specification (ex: int func() throw(X,Y)

try { ... } try block

catch (..) { ... } handler

• Preprocessing directives:

#define #undef

#if #ifdef #ifndef

#elif #else #endif

Kalimetrix Logiscope

Standard Metrics 45

#line #error #pragma

#define func(.., .., ..)

#include

macro arguments

N1 Total number of operators

Also called ha_topt.

Definition Total number of operators used in a function.

Note The function area where operators are counted depends on the parameter

of the n1 metric (see above).

n2 Number of distinct operands

Also called ha_dopd.

Definition Number of different operands used in a function.

This metric can be parameterized to count the operands in a familiar way:

• if no parameter is provided, operands are counted between the begin-

ning of the function’s definition and its closing curly bracket,

• if the parameter "in_body" is provided, operands are only counted in

the function’s body (that is between the function’s opening and closing

curly brackets).

For the use of this parameter, see Chapter Customizing Metrics & Rules.

The following are operands:

• Literals:

• Decimal literals (ex: 45, 45u, 45U, 45l, 45L, 45uL)

• Octal literals (ex: 0177, 0177u, 0177l)

• Hexadecimal literals (ex: 0x5f, 0X5f, Ox5fu, 0x5fl)

• Floating literals (ex: 1.2e-3, 1e+4f, 3.4l)

• Character literals (ex: ’c’, L’c’, ’cd’, ’\a’, ’\177’, ’\x5f’)

• String literals (ex: "hello", L" world\n")

• Boolean literals (true or false)

• Identifiers (variable names, type names, function names, etc.)

• File names in #include clauses (ex: #include <stdlib.h>, #include "foo.h")

• Operator names:

new delete new[] delete[]

+ - * / % ^ & | ~

! = < > += -= *= /= %=

Kalimetrix Logiscope

46 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

^= &= |= << >> >>= <<= == !=

<= >= && || ++ -- , ->* ->

() []

N2 Total number of operands

Also called ha_topd.

Definition Total number of operands used in a function.

Note The function area where operands are counted depends on the parameter

of the n2 metric (see above).

n Halstead vocabulary

Definition Halstead vocabulary of the function: n = n1 + n2

Alias ha_voc

N Halstead length

Definition Halstead length of the function: N = N1 + N2

Alias ha_olg

CN Halstead estimated length

Definition Halstead estimated length of the function:

CN= n1 * log2(n1) + n2 * log2(n2)

Alias ha_elg

V Halstead volume

Definition Halstead volume of the function: V = N * log2(n)

Alias ha_vol

L Halstead level

Definition Halstead level of the function: L = (2 * n2) / (n1 * N2)

Alias ha_lev

Kalimetrix Logiscope

Standard Metrics 47

D Halstead difficulty

Definition Halstead difficulty of the function: D = 1/L

Alias ha_dif

I Halstead intelligent content

Definition Halstead intelligent content of the function: I = L * V

Alias ha_int

E Halstead mental effort

Definition Halstead mental effort of the function: E = V / L

Alias ha_eff

4.1.5 Structured Programming

In structured programming:

• a function shall have a single entry point and a single exit point,

• each iterative of selective structures shall have a single exit point: i.e. no goto,

break,continue or return statement in the structure.

Structured programming improves source code maintainability.

ct_bran Number of destructuring statements

Definition Number of destructuring statements in a function (break and continue

in loops, and goto statements).

ct_break Number of break and continue branchings

Definition Number of break or continue statements used to exit from loop struc-

tures in the function.

break statements in switch structures are not counted.

ct_exit Number of out statements

Definition Number of nodes associated with an explicit exit from a function

(return, exit).

Alias N_OUT

Kalimetrix Logiscope

48 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

ct_goto Number of gotos

Definition Number of goto statements.

Alias GOTO

ESS_CPX Essentiel complexity

Definition Cyclomatic number of the “reduced” control graph of the function.

The “reduced” control graph is obtained by removing all structured con-

structs from the control graph of the function.

A structured contruct is a selective or iterative structure that does not con-

tains auxiliary exit statements: goto, break, continue or return.

Justification When the Essentiel Complexity is equal to 1, the function complies with

the structured programming rules.

Note that the ct_exit and ct_bran metrics already provide such an infor-

mation on the structuring of the function with more details.

4.1.6 Control Flow

For more details on Control Graph Metrics, please refer to:

• Kalimetrix Logiscope - Basic Concepts.

ct_decis Number of decisions

Definition Number of selective statements in a function : if,switch

Alias N_STRUCT

ct_degree Maximum degree

Definition Maximum number of edges departing from a node.

ct_edge Number of edges

Definition Number of edges of the control graph of a function.

ct_nest Maximum nesting level

Definition Maximum nesting level of control structures in a function.

ct_node Number of nodes

Definition Number of nodes of the control graph of a function.

Kalimetrix Logiscope

Standard Metrics 49

ct_loop Number of loops

Definition Number of iterative statements in a function (pre- and post- tested loops):

for, while, do while,

ct_path Number of non-cyclic paths

Definition Number of non-cyclic execution paths of the control graph of the function.

Note Since version 6.6.1, ct_npath replaces the previous ct_path metric, now

considered as deprecated due to inaccurate results in some contexts but

kept only for non regression purpose.

ct_raise Number of exceptions raised

Definition Number of occurrences of the throw clause within a function body.

Alias N_RAISE

ct_try Number of exceptions handlers

Definition Number of try blocks in a function.

Alias N_EXCEPT

ct_vg Cyclomatic number (VG)

Definition Cyclomatic number of the control graph of the function.

Alias VG, ct_cyclo

DES_CPX Design complexity

Definition Cyclomatic number of the “design” control graph of the function.

The “design” control graph is obtained by removing all constructs that do

not contain calls from the control graph of the function.

4.1.7 Relative Call Graph

For more details on Call Graph Metrics, please refer to:

• Kalimetrix Logiscope - Basic Concepts.

cg_entropy Relative call graph entropy

Definition SCHUTT entropy of the relative call graph of the function.

Alias ENTROPY

Kalimetrix Logiscope

50 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

cg_ hiercpx Relative call graph hierarchical complexity

Definition Average number of components per level(i.e. number of components

divided by number of levels) of the relative call graph of the function..

Alias HIER_CPX

cg_levels Relative call graph levels

Definition Depth of the relative call graph of the function..

Alias LEVELS

cg_strucpx Relative call graph structural complexity

Definition Average number of calls per component: i.e. number of calling relations

between components divided by the number of components) of the rela-

tive call graph of the function..

Alias STRU_CPX

cg_testab Relative call graph testability

Definition Mohanty system testability of the relative call graph of the function.

Alias TESTBTY

dc_calls Number of direct calls

Definition Number of direct calls in a function.

Different calls to the same function count for one call.

Alias DRCT_CALLS

dc_calle Number of external calls

Definition Number of calls to functions defined outside the class.
All call occurrences are counted.

A function is said to be "defined outside" the class if the function does not

belong to the same class as the function being analyzed. If the function

being analyzed is a non-member function, then all functions called by the

function being analyzed are considered as "defined outside" the class.

Alias CALLe

Kalimetrix Logiscope

Standard Metrics 51

dc_calli Number of internal calls

Definition Number of calls to functions defined within the class.

All call occurrences are counted.

A function is said to be "defined in" the class if the function belongs to the

same class as the function being analyzed. If the function being analyzed

is a non-member function, then there is no function "defined in" the class

(the value is 0).

Alias CALLi

dc_calling Number of callers

Definition Number of functions calling the designated function.

Alias NBCALLING

dc_callpe Number of external direct calls

Definition Number of distinct calls to functions defined outside the class of the func-

tion being analyzed (see dc_calle above).

Different calls to the same function count for one call.

Alias CALL_PATHSe

dc_callpi Number of internal direct calls

Definition Number of distinct calls to functions defined in the class of the function

being analyzed (see dc_calli above).

Different calls to the same function count for one call.

Alias CALL_PATHSi

dc_stat_call Number of calls to static members

Definition Number of calls to static member functions in a function.

IND_CALLS Relative call graph call-paths

Definition Number of call paths in the relative call graph of the function.

Kalimetrix Logiscope

52 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

4.2 Class Scope

4.2.1 Comments

cl_bcob Number of comment blocks before

Also called BCOBc.

Definition Number of blocks of comments located between a class header and the

curly bracket of the previous class or between a class header and the

beginning of the file.

cl_bcom Number of comment blocks

Also called BCOMc.

Definition Number of comment blocks in a class. Consecutive comments are counted

as belonging to the same block. Comments located outside the class are

not counted.

4.2.2 Data Flow

cl_base_priv Number of private base classes

Definition Number of declared classes from which a class inherits, whose names

appear after the private keyword.

cl_base_prot Number of protected base classes

Definition Number of declared classes from which a class inherits, whose names

appear after the protected keyword.

cl_base_publ Number of public base classes

Definition Number of declared classes from which a class inherits, whose names

appear after the public keyword.

Kalimetrix Logiscope

Standard Metrics 53

cl_base_virt Number of virtual base classes

Definition Number of declared classes from which a class inherits, whose names

appear after the virtual keyword.

cl_clas_frnd Number of friend classes

Definition Number of classes declared in a class definition, whose names appear after

the friend keyword.

cl_cobc Coupling between classes

Also called COBC, cl_dep_deg

Definition Coupling between classes is the sum of:

• the number of inherited classes (see in in_data_class Number of Direct

Base Classes),

• the number of class type attributes for the class (see cl_data_class

below),

• two times the number of calls to static member functions for class

methods (see in dc_stat_call Number of Calls to Static Member Func-

tions).

• two times the number of class-type parameters for the class methods,

• three times the number of class-type local variables for the class meth-

ods (see in dc_clas_var Number of Class Type Local Variables).

cl_cobc = in_dbases + cl_data_class + 
methods

2 ¥ dc_stat_call

+ 2 ¥ ic_parcl + 3 ¥ dc_clas_var

cl_data_class Sum of class-type attributes

Definition Number of class-type attributes for the class.

Alias LACT

cl_data_priv Number of private attributes

Definition Number of data members declared in the private section of a class.

Alias LAPI, cl_field_priv

cl_data_prot Number of protected attributes

Definition Number of data members declared in the protected section of a class.

Kalimetrix Logiscope

54 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Alias LAPO, cl_field_prot

cl_data_publ Number of public attributes

Definition Number of data members declared in the public section of a class.

Alias LAPU, cl_field_publ

cl_data_stat Number of static data members

Definition Number of data members declared after the static keyword in a class.

cl_data_inh Number of inherited attributes

Definition Number of public or protected attributes in the base classes of a class,

which are not overridden in that class.

cl_dep_meth Number of dependent methods

Definition Number of methods within the class depending on other classes. A method

is said to be dependent if:

• it calls a non-member function or other class methods (see in dc_calle

Number of Calls to functions Defined outside the Class),

• it uses an attribute which belongs to a different class (see in ic_vare

Number of Times External Attributes are used),

• it has a class instance parameter which belongs to a different class (see

in ic_par_othercl Number of Other Class Type Parameters),

• it declares a class instance variable which belongs to a different class

(see in dc_other_clas_var Number of other Class Type Local Vari-

ables).

cl_dep_meth =

Alias NMD


methods

1 dc_calle + ic_vare + ic_par_othercl + dc_other_clas_var 0


0 otherwise

cl_rfc Response for a class

Definition Number of methods that can be invoked in response to a message to an

object of the class or by some method in the class.

This includes all methods accessible within the class hierarchy.

cl_type Number of local types

Definition Number of types declared in a class.

Kalimetrix Logiscope

Standard Metrics 55

cl_const Number of local constants

Definition Number of constants declared in a class. Constants are data members

declared with the keyword const, like const type name ..., or

type * const name ... (constant pointer), or type C::* const

name (constant pointer to member) for instance (but not pointers to con-
stant).

cl_genp Number of of parameters for templates

Definition Number of parameters declared in a class for classes that are templates.

If cl_genp has the value 0 the class is not a template.

cl_oper_conv Number of conversion operators

Definition Number of conversion operators declared in a class declaration.

cl_oper_std Number of standard operators

Definition Number of operators declared in a class, whose names belong to a certain

list being a parameter of the metric (by default, this list is empty).

cl_oper_affc Number of assignment operators

Definition Number of operators declared in a class, whose names belong to a certain

list which is a parameter of the metric (by default, this list contains "=",

"+=", "-=", "*=", "/=", "%=", "^=", "&=", "|=", "<<=", ">>=",

"+", "-", "*", "/" and "[]").

cl_oper_spec Number of special operators

Definition Number of operators declared in a class, whose names belong to a certain

list which is a parameter of the metric (by default, this list contains "->",

"()", ",", "->*", "new", "delete", "new[]", and "delete[]").

4.2.3 Statistical Aggregates of Function Metrics

cl_func_priv Number of private methods

Definition Number of methods declared in the private section of a class.

Alias LMPL, cl_meth_priv

cl_func_prot Number of protected methods

Definition Number of methods declared in the protected section of a class.

Alias LMPO, cl_meth_prot

Kalimetrix Logiscope

56 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

cl_func_publ Number of public methods

Definition Number of methods declared in the public section of a class.

Alias LMPU, cl_meth_publ

cl_func_virt Number of virtual methods

Definition Number of methods declared after the virtual keyword in a class.

cl_func_pure Number of abstract methods

Definition Number of methods declared after the virtual keyword and followed by

=0 in a class.

Alias LMABS

cl_func_cons Number of constant methods

Definition Number of methods declared after the const keyword in a class.

cl_func_inln Number of inline methods

Definition Number of methods declared after the inline keyword in a class.

cl_func_excp Number of methods handling or raising exceptions

Definition Number of methods declared in a class declaration in which:

• the body of the function is a try block, or

• the function body contains a try block, or

• exceptions are specified using the throw keyword.

cl_func_frnd Number of friend functions

Definition Number of methods declared after the friend keyword in a class.

cl_func_inh Number of inherited methods

Definition Number of public or protected methods in the base classes of a class,

which are not overridden in that class.

cl_func_over Number of overridden methods

Definition Number of inherited methods which a class overrides.

Justification High values for cl_func_over tend to indicate design problems. Sub-

classes should generally add to and extend the functionality of the parent

classes rather than overriding them.

Alias LMRE

Kalimetrix Logiscope

Standard Metrics 57

cl_data_vare Sum of uses of external attributes

Definition Total number of times attributes defined in other classes (ic_varpe) are

used by the class methods.

Alias LMVAR_PATHSe

cl_data_vari Sum of uses of internal attributes

Definition Total number of times the class's attributes (ic_varpi) are used by the class

methods.

Alias LMVAR_PATHSi

cl_fpriv_path Sum of paths of private methods

Definition Sum of non-cyclic execution paths (cl_path) of the private methods of the

class.

Alias LMPIPATH

cl_fprot_path Sum of paths of protected methodss

Definition Sum of non-cyclic execution paths (cl_path) of the protected meth-

ods of the class.

Alias LMPOPATH

cl_fpubl_path Sum of paths of public methods

Definition Sum of non-cyclic execution paths (cl_path) of the public methods

of the class.

Alias LMPUPATH

cl_func_calle Sum of external calls

Definition Total number of calls from the class methods to non-member functions or

member functions of other classes (dc_callpi).

Alias LMCALL_PATHSe

cl_func_calli Sum of internal calls

Definition Total number of calls from class methods to member functions of the same

class (dc_callpi).

Alias LMCALL_PATHSi

cl_usedp Sum of parameters

Definition Total number of parameters (ic_usedp) used in the class methods.

Alias LMU_PARA

Kalimetrix Logiscope

58 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

=

The two following metrics have been introduced by Shyam R. Chidamber and Chris F.

Kemerer in "A Metrics Suite for Object Oriented Design" (IEEE Transactions on Software

Engineering, vol 20, pp. 476-493, June 1994).

cl_wmc Weighted Methods per Class

Definition Sum of static complexities of class methods.

Static complexity is represented in this calculation by the cyclomatic num-

bers (VG).

Alias LMVG, cl_cyclo

cl_locm Lack of cohesion of methods

Definition Percentage of methods that do not access a specific attribute of a class

averaged over all attributes in that class.

TA

 1 – Ac(A
i
)

where:

cl_locm =
i----= - 1---------------------------------

TA

TM

 is_accessed(A
i
, M

j
)

and:

Ac(A
i
) =

j----= -- 1--
TM

is_accessed(A
i
, M

j
)

1 ¤ M
j
accessesA

i


0 otherwise

4.2.4 Inheritance Tree

in_bases Number of base classes

Definition Number of classes from which a class inherits directly or not

If multiple inheritance is not used, the value of in_bases is equal to the

value of in_depth.

Alias in_inherits

Kalimetrix Logiscope

Standard Metrics 59

in_dbases Number of direct base classes

Definition Number of classes from which a class directly inherits.

Note A value of in_dbases upper than 1 denotes multiple inheritance.

Alias MII, in_dinherits

in_depth Depth of the inheritance tree

Definition Maximum length of an inheritance chain starting from a class.

in_derived Number of derived classes

Definition Total number of classes which inherit from a class directly or indirectly.

in_noc Number of children

Definition Number of classes which inherit directly from a class.

Alias NOC, in_dderived

in_reinh Number of classes inherited several times

Definition Number of classes which directly inherit from a class.

4.2.5 Use Graph

cu_level Depth of use

Definition Maximum length of a chain of use starting from a class (not counting use

loop).

cu_cdused Number of direct used classes

Definition Number of classes used directly by a class.

cu_cused Number of used classes

Definition Number of classes used by the current class directly or not.

cu_cdusers Number of direct user classes

Definition Number of classes which use directly a class.

Kalimetrix Logiscope

60 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

cu_cusers Number of user classes

Definition Total number of classes which use directly or not a class.

Kalimetrix Logiscope

Standard Metrics 61

4.3 Module Scope

4.3.1 Line Counting

For more details on Line Counting Metrics, please refer to:

• Kalimetrix Logiscope - Basic Concepts.

md_blank Number of empty lines

Definition Number of lines containing only non printable characters in the module.

md_comm Number of lines of comments

Definition Number of lines of comments in the module.

Alias LCOM

md_cpp Number of preprocessor statements

Definition Number of preprocessor directives (e.g. #include, #define, #ifdef)

in the module.

md_line Total number of lines

Definition Total number of lines in the module.

md_loc Number of lines of code

Definition Total number of lines containing executable code in the module.

md_sbra Number of lines with lone braces

Definition Number of lines containing only a single brace character : i.e. “{“ or “}” in

the module.

md_pro_c Number of lines in Pro*C

Definition Total number of lines of PRO*C in the module.

Kalimetrix Logiscope

62 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

4.3.2 Lexical and syntactic items

md_algo Number of syntactic entities in algorithms

Definition Number of syntactic entities inside statements that are not counted as dec-

laration in the file.

md_decl Number of syntactic entities in declarations

Definition Number of syntactic entities in the declaration part of the module (func-

tion headers and declaration.

md_synt Number of syntactic entities

Definition Total number of syntactic entities in the module.

md_stat Number of statements

Definition Total number of executable statements in the functions defined in the

module.

4.3.3 Data Flow

md_consts Number of declared constants

Definition Number of constants declared in the module.

md_expfn Number of exported functions

Definition Number of non-static global functions defined in the module.

md_expva Number of exported variables

Definition Number of non-static global variables defined in the module.

md_impmo Number of imported modules

Definition Number of modules included inside a module.

md_types Number of declared types

Definition Number of types declared in the module.

md_vars Number of declared variables

Definition Number of variables declared in the module.

Kalimetrix Logiscope

Standard Metrics 63

4.3.4 Halstead Metrics

For more details on Halstead Metrics, please refer to:

• Kalimetrix Logiscope - Basic Concepts.

md_n1 Number of distinct operators

Definition Number of distinct operators referenced in the module.

See metric n1 in Function Scope section for the specification of operators.

md_n2 Number of distinct operands

Definition Number of distinct operands referenced in the module.

See metric n2 in Function Scope section for the specification of operands.

md_N1 Total number of operators

Definition Total number of operators referenced in the module.

md_N2 Total number of operands

Definition Total number of operands referenced in the module.

md_n Halstead vocabulary

Definition Halstead vocabulary of the module.

n = n1 + n2

md_N Halstead length

Definition Halstead observed length of the module.

N = N1 + N2

md_CN Halstead estimated length

Definition Halstead estimated length of the module.

N̂ = n1 * log2(n1) + n2 * log2(n2).

md_V Halstead volume

Definition Halstead Program Volume

V = N * log2(n)

Kalimetrix Logiscope

64 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

md_L Halstead level

Definition Halstead Program Level

L = (2 * n2) / (n1 * N2)

md_D Halstead difficulty

Definition Halstead Program Difficulty

D = 1/L

md_I Halstead intelligent content

Definition Halstead Intelligent Content

I = L * V

md_E Halstead mental effort

Definition Halstead Intelligent Content

E = V / L

Kalimetrix Logiscope

Standard Metrics 65

4.4 Application Scope

Metrics presented in this section are based on the set of C++ header and source files

specified in Logiscope Project under analysis. It is therefore recommended to use these

metrics values exclusively for a complete application or for a coherent subsystem.

4.4.1 Line Counting

For more details on Line Counting Metrics, please refer to:

• Kalimetrix Logiscope - Basic Concepts.

ap_sline Total number of lines

Definition Total number of lines in the application source files.

ap_sloc Number of lines of code

Definition Total number of lines containing executable in the application source files.

ap_sblank Number of empty lines

Definition Total number of lines containing only non printable characters in the

application source files.

ap_scomm Number of lines of comments

Definition Totam number of lines of comments in the application source files.

ap_scpp Number of preprocessor statements

Definition Number of preprocessor directives (e.g. #include, #define, #ifdef).

in the application source files.

ap_ssbra Number of “brace” lines

Definition Number of lines containing only a single brace character (“{“ or “}”) in

the application source files.

Kalimetrix Logiscope

66 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

4.4.2 Application Aggregates

ap_clas Number of application classes

Definition Number of classes defined in the header and source files.

Alias LCA

ap_func Number of application functions

Definition Number of member and non-member functionsdefined in the header and

source files.

Alias LMA

ap_stat Number of statements

Definition Number of executables statements (i.e. lc_stat) of all the functions defined

in the application functions.

ap_cbo Coupling between objects

Definition Sum of the relationships from class to class other than inheritance rela-

tionships.

Alias CBO

ap_mdf Number of defined methods

Definition Number of defined member functions in the application.

Alias MDF

ap_nmm Number of member functions

Definition Number of member functions in the application.

Alias NMM

ap_npm Number of public methods

Definition Number of public methods in the application.

Alias NPM

Kalimetrix Logiscope

Standard Metrics 67

ap_vg Sum of cyclomatic numbers

Definition Sum of cyclomatic numbers (i.e. ct_vg) for all the functions defined in the

application.

Alias VGA, ap_cyclo

4.4.3 Application Call Graph

For more details on Call Graph Metrics, please refer to:

• Kalimetrix Logiscope - Basic Concepts.

ap_cg_cycle Call graph recursions

Definition Number of recursive paths in the call graph for the application’s functions.

A recursive path can be for one or more functions.

Alias GA_CYCLE

ap_cg_edge Call graph edges

Definition Number of edges in the call graph of application functions.

Alias GA_EDGE

ap_cg_leaf Call graph leaves

Definition Number of functions executing no call.

In other words, number of leaves nodes in the application call graph.

Alias GA_NSS

ap_cg_levl Call graph depth

Definition Depth of the Call Graph: number of call graph levels.

Alias GA_LEVL

ap_cg_maxdeg Maximum callers/called

Definition Maximum number of calling/called for nodes in the call graph of applica-

tion functions.

Alias GA_MAXDEG

ap_cg_maxin Maximum callers

Definition Maximum number of “callings” for nodes in the call graph of Application

functions.

Alias GA_MAX_IN

Kalimetrix Logiscope

68 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

ap_cg_maxout Maximum called

Definition Maximum number of called functions for nodes in the call graph of Appli-

cation functions.

Alias GA_MAX_OUT

ap_cg_node Call graph nodes

Definition Number of nodes in the call graph of Application functions. This metric

cumulates Application’s member and non-member functions as well as

called but not analyzed functions.

Alias GA_NODE

ap_cg_root Call graph roots

Definition Number of roots functions in the application call graph.

Alias GA_NSP

4.4.4 Inheritance Tree

ap_inhg_cpx Inheritance tree complexity

Definition Thecomplexity of the inheritance tree is defined as a ratio between:

• the sum for all of the graph levels of the number of nodes on the level

times the level weight index,

• the number of graph nodes.

• Basic classes are on the top level and leaf classes on the lower levels

Alias GH_CPX

ap_inhg_edge Inheritance graph edges

Definition Number of inheritance relationships in the application.

Alias GH_EDGE

ap_inhg_leaf Number of final class

Definition Number of final classes in the inheritance tree of the application.

A class is said to be a final class if it has no child class.

Alias GH_NSP

ap_inhg_levl Depth of inheritance tree

Definition The Depth of the Inheritance Tree (DIT) is the number of classes in the

longest inheritance link.

Kalimetrix Logiscope

Standard Metrics 69

Alias GH_LEVL

ap_inhg_maxdeg Maximum Number of derived/inherited classes

Definition Maximum number of inheritance relationships for a given class. This met-

ric applies to the Application’s inheritance graph.

Alias GH_MAX_ DEG

ap_inhg_maxin Maximum Number of derived classes.

Definition Maximum number of derived classes for a given class in the inheritance

graph.

Alias GH_MAX_ IN

ap_inhg_maxout Maximum Number of inherited classes.

Definition Maximum number of inherited classes for a given class in the inheritance

graph.

Alias GH_MAX_ OUT

ap_inhg_node Inheritance tree classes

Definition Number of classes present in the inheritance tree of the application.

Alias GH_NODE

ap_inhg_pc Protocol complexity

Definition Depth of the Inheritance Tree times the maximum number of functions in

a class of the inheritance tree over the total number of functions in the

inheritance tree

Alias GH_PC

ap_inhg_root Number of basic classes

Definition Number of basic classes in the application. A class is said to be basic if it

does not inherit from any other class.

Alias GH_NSS

Kalimetrix Logiscope

70 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

ap_inhg_uri Number of repeated inheritances

Definition Repeated inheritances consist in inheriting twice from the same class. The

number of repeated inheritances is the number of inherited class couples

leading to a repeated inheritance.

Alias GH_URI

4.4.5 MOOD Metrics

The MOOD (Metrics for Object Oriented Design) set of metrics described in this chapter

has been introduced by Fernando Brito e Abreu in "Object-Oriented Software

Engineering: Measuring and Controlling the Development Process" (Proceedings of the

4th International Conference on Software Quality, ASQC, McLean, VA, USA, October

1994).

Their definitions have been refined since their first introduction. The MOOD metrics

computed by Logiscope C++ QualityChecker conform to the latest definitions and the

corresponding C++ bindings described in "Evaluating the Impact of Object-Oriented

Design on Software Quality" (Proceedings of the Third International Software Metrics

Symposium, IEEE, Berlin, Germany, March 1996).

Kalimetrix Logiscope

Standard Metrics 71

d i

ap_mhf Method Hiding Factor (MHF)

Definition

where:

and:

The MHF numerator is the sum of the invisibilities of all methods defined

in all classes. The invisibility of a method is the percentage of the total

classes from which this method is not visible.

The MHF denominator is the total number of methods defined in the

project.

The following C++ bindings are used to compute this metric:

MOOD C++

TC total classes total number of classes

methods
constructors; destructors; function members;

operator definitions

M (C)
methods defined (not
inherited)

visibility - percentage of

all methods declared in the class including

virtual (deferred) ones

= 1 for methods in public clauses; = 0 for methods in private clauses;

V(Mmi)
the total classes from
which the method Mmi is

visible

= DC(Ci)/(TC-1) for methods in protected

clauses (DC(Ci) = descendants of Ci)

Kalimetrix Logiscope

72 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Ad(Ci)

ap_ahf Attribute Hiding Factor (AHF)

Definition

where:

and:

The AHF numerator is the sum of the invisibilities of all attributes defined

in all classes. The invisibility of an attribute is the percentage of the total

classes from which this attribute is not visible.

The AHF denominator is the total number of attributes defined in the

project.

The following C++ bindings are used to compute this metric:

MOOD C++

attributes defined (not

inherited)
data members

V(Ami)

visibility - percentage of

the total classes from

which the attribute Ami is

visible

= 1 for attributes in public clauses;

= 0 for attributes in private clauses;

= DC(Ci)/(TC-1) for attributes in protected

clauses (DC(Ci) = descendants of Ci)

Kalimetrix Logiscope

Standard Metrics 73

den) in C

association with C

ap_mif Method Inheritance Factor (MIF)

Definition

where:

The MIF numerator is the sum of inherited methods in all classes of the

project.

The MIF denominator is the total number of available methods (locally

defined plus inherited) for all classes.

The following C++ bindings are used to compute this metric:

MOOD C++

Ma(Ci) available methods
function members that can be invoked in

i

Md(Ci) methods defined function members declared within Ci

Mi(Ci) inherited methods
function members inherited (and not overrid-

i

Kalimetrix Logiscope

74 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

in C

with C

ap_aif Attribute Inheritance Factor (AIF)

Definition

where:

The AIF numerator is the sum of inherited attributes in all classes of the

project.

The AIF denominator is the total number of available attributes (locally

defined plus inherited) for all classes.

The following C++ bindings are used to compute this metric:

MOOD C++

Aa(Ci) available attributes
data members that can be invoked associated

i

Ad(Ci) attributes defined data members declared within Ci

Ai(Ci) inherited attributes
data members inherited (and not overridden)

i

Kalimetrix Logiscope

Standard Metrics 75

MOOD C++

DC(Ci)

Mn(Ci)

descendants count

new methods

number of classes descending from Ci

function members declared within Ci

not override inherited ones

Mo(Ci)

overriding methods
function members declared within

override (redefine) inherited ones

ap_pof Polymorphism Factor (POF)

Definition

where:

The POF numerator is the sum of overriding methods in all classes. This is

the actual number of possible different polymorphic situations. Indeed, a

given message sent to a class can be bound, statically or dynamically, to a

named method implementation. The latter can have as many shapes (mor-

phos) as the number of times this same method is overridden (in that

class’s descendants).

The POF denominator represents the maximum number of possible dis-

tinct polymorphic situations for that class as the sum for each class of the

number of new methods multiplied by the number of descendants. This

value would be maximum if all new methods defined in each class would

be overridden in all of their derived classes.

The following C++ bindings are used to compute this metric:

that do

Ci that

Kalimetrix Logiscope

76 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

ap_cof Coupling Factor (COF)

Definition

where:

The COF denominator stands for the maximum possible number of cou-

plings in a system with TC classes.

The client-supplier relation (represented by Cc Cs) means that Cc (cli-

ent class) contains at least one non-inheritance reference to a feature

(method or attribute) of class Cs (supplier class). The COF numerator then

represents the actual number of couplings not imputable to inheritance.

Client-supplier relations can have several shapes:

Client-supplier shapes C++

regular message passing
call to the interface of a function member in

another class

"forced" message passing
call to a visible or hidden function member in
another class by means of a friend clause

object allocation and deallocation call to a class constructor or destructor

semantic associations among classes

with a certain arity (e.g. 1:1, 1:n or

n:m)

reference to a supplier class as a data member or

as a formal parameter in a function member inter-

face

Kalimetrix Logiscope

Programming Rules 77

Chapter 5

Programming Rules

This chapter describes the default programming rules that can be checked using

Logiscope C++ RuleChecker.

They are made available through various standard Rule Sets provided with the

Logiscope distribution. See §5.1.

Rule Sets and rules can be tailored to better fit to the effective coding standards and

quality requirements applicable to the project or organisation: e.g. naming rules.

For more details, see Chapter Customizing Metrics & Rules.

5.1 Rule Sets

Logiscope C++ RuleChecker comes with several standard Rule Sets

They are made available through various Rules Set

The rules specified in section 5.2 can be customized by modifying parameters in the

project Rule Set file (see Chapter Customizing Metrics & Rules).

The Motor Industry Software Reliability Association has published a list of rules for the

use of the C++ programming language for critical systems :

• MISRA-C++:2008 Guidelines for the use of the C++ language critial systems -

June 2008 [MISRA-C++:2008].

Logiscope RuleChecker C++ provides the MISRAC++2008 Rule Set including some of

the key MISRA C++ programming rules:

- Please refer to [MISRA-C++:2008] for a complete specification of the rules.

Kalimetrix Logiscope

78 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

5.2 Rule Scripts

5.2.1 Basic Rules

asscal Assignment inside function calls

Description Assignment operators (=, +=, -=, *=, /=, %=, >>=, <<=, &=, |=, ^=,

++, --) shall not be used inside function calls.

Justification Removes ambiguity about the evaluation order.

asscon Assignment inside conditions

Description Assignment operators (=, +=, -=, *=, /=, %=, >>=, <<=, &=, |=, ^=,

++, --) shall not be used inside conditional expression in control

statements if, while, for and switch.

Justification An instruction such as

if (x=y) {...

is ambiguous and unclear. One might think the author wanted to write
if (x==y) {...

Example:

// do not write
if (x -= dx) { ...

for (i=j=n; --i > 0; j--) {

..

// write
x -= dx;

if (x) { ...

for (i=j=n; i > 0; i--, j--)

{ ...

assexp Assignment inside expressions

Description Inside an expression:

• an lvalue has to be assigned only once,

• with multiple assignments, an assigned lvalue can appear only

where it has been assigned.

Justification Removes ambiguity about the evaluation order.

Kalimetrix Logiscope

Programming Rules 79

Example:

// do not write
i = t[i++];
a=b=c+a;
i=t[i]=15;

blockdecl Declarations in Blocks

Description Declarations must appear at the beginning of blocks.

Justification Makes the code easier to read.

boolean Use Proper Boolean Expressions

Description The tests in control structures must contain proper boolean

expressions.

Justification Makes the code easier to understand.

Example:

// do no write

while (1) {

if (test) {

for (i=1; function_call(i); i++) {

// write
AlwaysTrue = true;

while (AlwaysTrue == true) {
if (test == true) {

for (i=1; function_call(i); i++) {

brkcont Break and Continue Forbidden

Description Break and continue instructions are forbidden inside condi-

tional expressions in control statements (for, do, while).

Nevertheless, the break instruction is allowed in the block

instruction of the switch statement.

Justification Like a goto, these instructions break down code structure. Pro-

hibiting them in loops makes the code easier to understand.

classuse Hidden class uses

Description Following expressions are not allowed: u.v.a, u.v.f(),

u.g().a, u.g().f(), as well as expressions using the -> opera-
tor.

Justification Prevents from calling a class method not known in the user class

(hidden use), through calls in series.

Kalimetrix Logiscope

80 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Example:

// do not write

myWindow.itsButton.push();

Manipulate the myWindow object from the Window class; access to the itsButton

attribute; directly call the push method on it. But only the Window class and its interface,

containing itsButton, are normally known, and not the itsButton attribute class, neither its

public methods (including push).

Example:

// do not write Error-

>pos.line;

There is a hidden use of line, which is not known from Error.

condop No ternary operator

Description The ternary conditional operator ? ... : ... must not be used.

Justification Makes the code easier to read.

constrdef Default constructor

Description Each class must contain its default constructor explicitly.

Justification Makes sure the author has thought about the way to initialize an

object of the class.

Example:

// write
class aClass {

...

aClass();
...

};

ctrlblock Blocks in Control Statements

Description Block statements shall always be used in control statements (if,

for, while, do).

Justification Removes ambiguity about the scope of instructions and makes the

code easier to read and to modify.

Kalimetrix Logiscope

Programming Rules 81

Example:

// do not write

if (x == 0) return;
else

while (x > min)
x--;

// write

if (x == 0) {
return;

} else {
while (x > min) {

x--;

}

}

delarray Use Delete [] For Array

Description Empty brackets must be used for delete when de-allocating arrays.

Justification Reliability: Ensures that the appropriate amount of memory is

freed.

Example:

int *table = new int[7];

delete table; // violation

delete [10] table; // violation

delete [] table; // ok

Limitations There are some limitations to this rule when delete is used fol-

lowed by a variable name.

These limitations do not apply in the case where delete is followed

by a number in brackets.

This rule is not violated in the case of "complex" types:

Example 1:

int ** myarray = new int[2];

myarray[0] = new int[10];

delete myarray; // violation

delete myarray[0]; // no violation

Kalimetrix Logiscope

82 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Example 2:

class A

{

public:

int *tab;

...

};

A var;

var.tab = new int[10];

delete var.tab; // no violation

The rule is also not violated when the new operation is hidden:

int * create_array(int nb)

{

return (new int[nb]);

}

...

int * myarray = create_array(10);

delete myarray; // no violation

destr Destructor

Description Each class must contain its destructor explicitly.

Justification Reliability: being sure that the author has thought about the way to

destroy an object of the class.

Example:

// write
class aClass {

...

~aClass(aClass &object);
...
};

fntype Function Types

Description Each function has to declare its type. If nothing is returned, it must

be declared of void type.

Justification Portability.

Kalimetrix Logiscope

Programming Rules 83

forinit Initialize For Loop Counter In For Head

Description Loop counters (in for loops) are to be initialized in the initializa-

tion statement within the loop. The loop counter is determined by

the third element of the loop head, which is most frequently used

to increment the loop counter.

In all the following examples, i is the loop counter.

Justification This way the loop counter is certain to have been initialized, and

with a value that is visible alongside with the loop condition and

increment. The loop is easier to understand and to control.

Example:

for (int i = 0; i < 10; i++) ... // ok

for (int i; i < 10; i++) ... // violation

for (int j = 0; j < 10; i++) ... // violation

for (int j = 10; i < j; i++) ... // violation

for (int j = 1; i < funct(j); i+=j) ... // violation

frndclass Friend Classes

Description If friend classes are used, they must be declared at the beginning of

the class (before member declaration).

funcptr No Function Pointers

Description Do not use function pointers.

globinit Global Variable Initialization

Description Global variables must be initialized when they are defined.

Justification Not all compilers give the same default values. Unexpected

behaviour can be avoided with better control over variable values.

Initializing global variables when they are declared ensures that

they are initialized before being used.

imptype Do Not Use Implicit Typing

Description Function, parameter, attribute or variable types must be declared

explicitly.

This rule applies to non-ANSI compliant C++ code and should be

turned off when using an ANSI compliant C++ compiler.

Kalimetrix Logiscope

84 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Justification Improves code portability.

Example:

// write

void aFunction(int value);

// do not write
aFunction(value);

macroparenth Parenthesis in Macro Definitions

Description Each occurrence of the macro parameters shall be enclosed in

parenthesis (or braces) inside the macro definition.

Justification Makes the code easier to read.

Example:

// do not write

#define GET_NAME(obj,ind) obj->name[ind]

// write

#define GET_NAME(obj,ind) (obj)->name[ind]

mfunc Inline Functions instead of Macro-functions

Description Use inline functions instead of macro-functions.

Justification In comparison with macro-functions, inline functions enable the

checking of their parameters types and do not allow side effects

(such as MIN(++i, j) with the below example).

Example:

// write

inline char *GetName(aClass &object) {

return(object.name); }
inline min (int i, int j) { return (i<j)?i:j; }

// do not write

#define GetName(s) ((s)->name)
#define MIN(i,j) ((i)<(j)) ? (i) : (j)

multiass No Multiple Assignment

Description Assignment operators (=, +=, -=, *=, /=, %=, >>=, <<=, &=, |=,

^=, ++, --) must not be used more than once in each statement

(declarations are also checked).

Justification Removes ambiguity about the evaluation order.

Kalimetrix Logiscope

Programming Rules 85

Example:

// do not write

b = c = 5;

a = (b++ * c) + 5;

// write
c = 5;
b = c;

b++;

a = (b * c) + 5;

nostruct Keyword Struct Not Allowed

Description The keyword struct may not be used. If the parameter is specified,

only C-style structs may be used.

Parameters An optional string may be used (cstruct) to enable C-style structs

to be used. When the cstruct rule is used, the possibilities allowed

in C++ in a struct (such as access specifiers: private for example,

or methods) are not to be used.

notemplate Avoid Using Templates

Description Do not use templates.

Justification Efficiency.

nothrow No Throw Instructions

Description No exceptions may be raised by the user (the keyword throw may

not be used).

nounion No Union

Description The keyword union is not allowed.

parse Parse Error

Description This rule identifies module parts that could not be parsed.

Justification Enables to determine which portions of code have been analyzed

and which portions of code have been rejected by Logiscope C++

RuleChecker.

Kalimetrix Logiscope

86 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

pmfrtn Do Not Return Pointer To Member Data

Description Member functions must not return a pointer or a non-const refer-

ence to member data.

Justification Helps to ensure that data encapsulation is respected.

ptraccess Pointer Access

Description Use the ptr->fld syntax instead of the (*ptr).fld syntax.

ptrinit Pointers Initialization

Description Each auto variable that is explicitly declared as a pointer (using

"*"), must be initialized when declared.

Justification Makes sure pointer variables are correctly initialized before being

used.

Example:

// write

int* y=&x;

...

// do not write
int *y ;

*y=&x ;

...

rtnlocptr Do Not Return Pointer To Local Variable

Description Functions must not return a pointer to a non-static local variable.

Justification This avoids dangling references of the pointer to the variable

after its lifetime.

sgdecl A Single Variable per Declaration

Description Variable declarations have the following formalism:

type variable_name;

It is forbidden to have more than one variable for the same type

declarator.

Justification Makes the code easier to read.

Kalimetrix Logiscope

Programming Rules 87

Example:

// write
int width;
int length;

// do not write
int width, length;

sglreturn A Single Return per Function

Description Only one return instruction is allowed in a function.

Justification Maintainability : a basic rule for structured programming.

slcom Use // Comments

Description /* */ comments are forbidden. Use only // comments.

Justification Makes the code easier to read.

slstat One Statement per Line

Description There must not be more than one statement per line.

A statement followed by a curly bracket (instr {) or a curly

bracket followed by a statement ({ instr) is allowed in the same

line, but not both of them (instr { instr).

Justification Makes the code easier to read.

Example:

// write
x = x0;
y = y0;

while (IsOk(x)) {
x++;

}

// do not write
x = x0; y = y0;

while (IsOk(x)) {x++;}

while (IsOk(x)) {x++;
}

typeinher Inheritance Type

Description The inheritance type (public, protected, private) must be speci-

fied.

Justification Analysability

Kalimetrix Logiscope

88 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Example:

class inherclass : public Base1, private Base2

{...

vararg Variable Number of Arguments

Description Functions with a variable number of arguments are not allowed.

Parameters of va_list type and ... are forbidden in function

declarations.

Justification Makes the code easier to understand.

voidptr No Void Pointer

Description The void pointer (void *) should not be used.

varinit All Variables Must Be Initialized Before Being Used

Description All variables must be initialized before they are used, without

counting on the default value attributed by the compiler. Global

variables, parameters of a function in the function body, and data

fields of a class in its methods are considered to be initialized.

Justification Not all compilers give the same default values.

Unexpected behaviour can be avoided with better control over

variable values.

Kalimetrix Logiscope

Programming Rules 89

Limitations This rule is not violated in the following cases:

• If an array, a struct or a class are used, they will be considered

initialized as soon as a part of them has been initialized.

For example:
int a[2];

int b[2] = {6, 7};

int h;

a[0] = b[0]; // no violation

h = a[1]; // no violation

struct {

int i;

int j;

} e, f;

e.i = 0;

g = e; // no violation

This rule is violated in the following cases where initialization is

uncertain:

• Using a variable in a function call is considered as "being

used": if it is not initialized, the rule will be violated. This will

occur whatever the use of the function, even initializing the

variable.

• In cases including a conditional initialization, the rule is vio-

lated even though the variable may well be initialized.
int i, j, k;

j = func();

if (j)

i = 0;

k = i; // violation

• This applies even when there is an else branch:
int i, j, k;

j = func();

if (j)

i = 0;

else

i = 5;

k = i; // violation

where initialization is certain.

• In the case of a loop, for example:
int j, k;

for (int i=0; i<glob; i++)

{

j=func(i);

}

k = j; // violation

where glob is a global variable, depending on the value of

glob, j will have been initialized or not: the rule is violated,
whether the loop condition occurs or not.

Kalimetrix Logiscope

90 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

5.2.2 Customizable Rules

The rules specified in this section have parameters that can be modified to better fit to the

effective programming rules applicable to the project or organisation: e.g. naming rules.

Please, refer to the Chapter Customizing Metrics & Rules for more details on how

tailoring rule checking using Rule Set file.

ansi Function Declarations in ANSI Syntax

Description Function declaration and definition shall be written in ANSI syntax.

It is possible to select two options among the following:

• name: parameters shall be named and their type indicated in

function declaration,

• void: empty parameter lists are forbidden.

By default, both options are selected.

Parameters A list of character strings composed of chosen options listed above.

Justification Makes the code easier to read and improves its portability.

Example:

// do not write
f(int, char*);

f();

// write

f(int a, char *b);

f(void);

cmclass A Single Class per Code File

Description In a code file, every function must belong to the same class.

A C function is considered to belong to the main class.

The first funtion encountered in the file sets the class for that file.

By default, a code file has one of the suffixes *.cc, *.cxx, *.cpp,

*.C or *.c.

Parameters A string representing the types of modules (metric type) that

should be considered as code files.

Justification Makes the code easier to read.

Limitation Friend functions of a class that don’t have a scope are considered

to belong to the main class.

Kalimetrix Logiscope

Programming Rules 91

cmdef Classes in Code File

Description A code file must not contain any class declaration.

A C function is considered to belong to the main class.

By default, a code file has one of the suffixes *.cc, *.cxx, *.cpp,

*.C or *.c.

Parameters A string representing the types of modules (metric type) that

should be considered as code files.

Justification Makes the code easier to read.

const Literal Constants

Description Numbers and strings have to be declared as constants instead of

being used as literals inside a program.

Specify allowed literal constants. By default allowed literal con-

stants are "", " ", "0" and "1".

Parameters A list of character strings representing allowed literal constants.

A special parameter can be used: LOG_SWITCH_CONST. If

present, it must be the first parameter of the list. When activated it

allows constants to be used in switch cases.

Justification Makes maintenance easier by avoiding the scattering of constants

among the code, often with the same value.

Note In the case of constants used in initializing lists (concerning array

and struct structures), only the first five violations are detected.

Example:

// do not write
char tab[100];
int i;

...

if (i == 7) {
p = "Hello World.\n";

}

// write

#define TAB_SIZE 100

enum i_val { ok =7; ko =11};
const char HelloWorld[] = "Hello World.\n";
char tab[TAB_SIZE];

i_val i;
...
if (i == ok) {

p = HelloWorld;

}

Kalimetrix Logiscope

92 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

constrcpy Copy Constructor

Description Each class must contain its copy constructor explicitly.

Parameters The string "dynalloc" which, if used, indicates that the rule has to

be checked only if there is a class member which is a pointer

Justification Makes sure the author has thought about the way to copy an object

of the class.

Example:

// write
class aClass {

...

aClass(const aClass &object); // "const" is optional

...
};

dmaccess Access to Data Members

Description The class interface must be purely functional: data members defi-

nitions can be limited.

By default, only the data members definition in the public part of a

class are forbidden.

Parameters A list of character strings corresponding to the forbidden access

specifiers for the data members.

Justification The good way to modify the state of an object is via its methods,

not its data members. The data members of a class should be pri-

vate or at least protected.

exprcplx Expressions Complexity

Description Expressions complexity must be smaller than a limit given as a

parameter. This complexity is calculated with the associated syn-

tactic tree, and its number of nodes.

By default, the maximum authorized complexity level is 13.

Parameters A number representing the maximum authorized complexity level.

Justification Makes the code easier to read.

Kalimetrix Logiscope

Programming Rules 93

Example:

For instance, this expression:
(b+c*d) + (b*f(c)*d)

is composed of 8 operators and 7 operands.

The associated syntactic tree has 16 nodes, so if the limit is under

16, there will be a rule violation.

exprparenth Parentheses in Expressions

Description In expressions, every binary and ternary operator shall be put

between parentheses.

It is possible to limit this rule by using the partpar option. The

following rule is then applied: when the right operand of a "+" or

"*" operator uses the same operator, omit parentheses for it. In the

same way, omit parentheses in the case of the right operand of an

assignment operator. Moreover, omit parentheses at the first level

of the expression.

By default, the partpar option is selected.

Parameters The character string "partpar", which, if used, allows program-

mers not to put systematically parentheses, according to the rule

above.

Justification Reliability, Maintainability: Removes ambiguity about the evalua-

tion priorities.

Example:

// do not write

result = fact / 100 + rem; // Violation
// write

result = ((fact / 100) + rem); // Ok
// or write, with the partpar option
result = (fact / 100) + rem;

// with the partpar option, write
result = (fact * ind * 100) + rem + 10 + power(coeff,c);
// instead of

result = ((fact * (ind * 100)) + (rem + (10 + power(coeff,c))));

funcres Reserved Functions

Description Certain names cannot be used for the declaration or definition of

functions, and for function calls.

By default, no function names are forbidden.

Parameters A list of character strings representing the function names consid-

ered as reserved.

Kalimetrix Logiscope

94 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Justification Portability: Prevents from the use of system functions that are non

portable or dangerous.

Example:

// if the system function is forbidden, do not write
int

system(char *command);
int

system(char *command)

{

...
}

system("cp file /tmp");

goto Goto Statement

Description The goto statement must not be used.

By default, all goto statements are forbidden.

Parameters A list of strings specifying labels which are authorized with the

goto statement.

Justification Maintainability Insures that structured programming rules are

respected, so the code is easier to understand. The goto statement

often reveals an analysis error and its systematic rejection

improves the code structure.

Headercom Module Header Comment

Description Modules must be preceded by a header comment.

It is possible to define a format for this comment depending on the

type of the module as it is defined in metric type.

By default, a header comment with the name of the file, its author,

its date and possible remarks is required for header and code files

(see below example).

Parameters Two lists of character strings: the first one for the header files, and

the second for the code files. Each list begins with the string

"HEADER" or "CODE", followed by strings representing the

associated regular expressions.

Justification Makes the code easier to read.

Kalimetrix Logiscope

Programming Rules 95

Example of the default required header comment:

///

/////
// Name: program

// Author: Andrieu
// Date: 08/07/96
// Remarks: example of comments

///
/////

headercom Function and Class Header Comments

Description Functions and classes must be preceded by a comment.

It is possible to define a format for this comment depending on the

type of the function definition or declaration, or class definition

(func_glob_def, func_glob_decl, func_stat_def, func_stat_decl,

class).

By default, only a comment beginning with "/*" is required for

functions or classes.

Parameters Five lists of character strings concerning the five cases listed

above. Each list begins with one of the five strings (func_glob_def

for instance), followed by a string representing the regular expres-

sion.

Justification Makes the code easier to read.

hmclass A Single Class Definition per Header File

Description A header file must not contain more than one class definition.

Nested classes are tolerated.

By default, a header file corresponds to the filter

*.{h,hh,H,hxx,hpp}.

Parameters A string representing types of modules (metric type) that should

be considered as header files.

Justification Makes the code easier to read.

hmdef Header File Contents

Description Header files may not contain some of language statements (data

and function definitions).

The forbidden language items are function definitions (func-stat-

def, func-glob-def) and data definitions (var-stat, var-glob).

Kalimetrix Logiscope

96 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

By default, a header file corresponds to the filter

*.{h,hh,H,hxx,hpp}.

Parameters A string representing types of modules (metric type) that should

be considered as header files.

Justification The implementation of a class should not be found in header files.

hmstruct Header File Structure

Description The main structure of header files should be:

#ifndef <IDENT>

#define <IDENT>
...
#endif

or

#if !defined (<IDENT>)

#define <IDENT>
...
#endif

where <IDENT> is an identifier built from the name of the header

file.

The comparison is made only on alphanumeric characters and is

not case sensitive.

The part of the filename taken into account is between the MINth

and the MAXth characters (including them). This character string

should be found in the identifier according to the above compari-

son rules.

By default, the MIN value is 1 and the MAX value is 999 and a

header file corresponds to the filter *.{h,hh,H,hxx,hpp}.

Parameters A MINMAX couple of values giving the part of the filename to

take into account, and a list of character strings giving the list of

file types to be considered as header files for this rule. The types

are those defined by the metric type.

Justification Prevents multiple inclusions of header files.

Example:

// if the parameter is MINMAX 4 9,the following contents

// of file div_audit_env.h is correct
#ifndef AUDIT_H

#define AUDIT_H
...
#endif

Kalimetrix Logiscope

Programming Rules 97

identfmt Identifier Format

Description The identifier of a function, type or variable declared in a module

must have a format corresponding to the category of the declara-

tion.

By default, the only restrictions concern the constants and the

macros, which must have no lower case letter.

Parameters A list of couples of character strings; the first string of the couple

represents the declaration category name, the second one the regu-

lar expression associated to that category.

Justification Makes the code easier to understand.

identl Identifier Length

Description The length of a function, type or variable identifier has to be

between a minimum and a maximum value.

By default, the methods and functions must have between 4 and

25 characters, the types, variables, constants, macros and classes

between 5 and 25, and the other identifiers between 1 and 25.

Parameters A list of couples of character strings; the first string of the couple

represents the declaration category name, the second one the

MINMAX expression associated.

Justification Makes the code easier to read.

identres Reserved Identifiers

Description Some identifiers may be forbidden in declarations. For instance,

names used in compilation directives or in libraries.

By default, there are no reserved identifiers.

Parameters A list of character strings representing reserved identifiers.

Justification Improves code portability.

incltype Included Modules Type

Description Only some types of modules are allowed to be included in other

modules.

By default, header modules can be included in header and code

modules.

Kalimetrix Logiscope

98 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Parameters Lists of lists of character strings, each list being comprised of a

string representing a type of module (metric type), followed by

strings representing the types of modules that may be included in

it.

Justification Improves code structuring.

inldef Inline Functions Declaration and Definition

Description Inline functions must be declared in their class and defined outside

of it.

Parameters The string “private” which is an optional parameter. When the

parameter is used, private inline functions must be defined in the

class definition file (.cpp file), other inline functions must be

defined in the class declaration file (.h file).

Justification Makes the code easier to read.

macrocharset Characters Used in Macros

Description Some characters may be forbidden in the writing of the definitions

of macro-functions and macro-constants (not in their name).

The two cases are treated separately.

By default, no characters are forbidden in macros.

Parameters A list of two couples of character strings; the first string of the

couple is "constant" or "function", and the second one a string

composed by the associated forbidden characters.

Justification Improves code portability.

mconst Macro Constant Usage

Description The usage of macro constants shall be limited.

It is possible to choose between three options:

• var: global or static variables are used for string constants,

other constants could be defined by macros (this is the default

option),

Example:

// write

const char *string = "Hello world!\n";
#define value 3

// do not write

#define string "Hello world!\n"

Kalimetrix Logiscope

Programming Rules 99

Example:

Example:

• const: const data are always used instead of macros,

// write

const char *string = "Hello world!\n";
const int value = 3;

// do not write

#define string "Hello world!\n"

#define value 3

• nodefine: only compilation flags and macro functions are

allowed.

// write

#define VERBOSE
#define min(x,y) ((x)<(y)?(x):(y))

// do not write

#define value 3

#define current_value f(tab[0])

Parameters One of the three character strings explained above.

Justification Limits the use of macro-constants.

mname File Names

Description A file name and the name of the class declared or defined in this

file must be closely related.

The comparison is made only on alphanumeric characters and is

not case sensitive.

The extension of the file name is not taken into account.

The part of the file name taken into account to correspond to the

name of the class is between the MIN and the MAX characters

(these included). This character string should be found in the

identifier according to the above comparison rules.

By default, the part of the file name taken into account is between

the characters 1 and 5.

Parameters A MINMAX couple of values giving the part of the file name to

take into account.

Justification Makes the application easier to understand.

Kalimetrix Logiscope

100 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Example:

if the MINMAX parameters are 4 and 10, and the file name

is

My_Graph_Node.h

then the part of the file name that should be found in
the class name is:

GRAPHN
(the first 10 characters: My_Graph_N,
minus the first 3: Graph_N,

minus non alphanumeric characters: GraphN)

Then, the class name that the file is based upon could
be one of the following declarations

class CLA_Graph_Node { ...}
class Graph_Node { ...}
class Graph_Node_Def { ...}
class graphnode { ...}

But not the following ones
class Graph { ...}
class NodeGraph { ...}

nopreproc No Pre-processing Instructions

Description No pre-processing instructions may be used, except for those

specified in the parameter list.

Parameters A list of strings defining the exceptions to this rule. The list can be

empty. By default, only #line and # alone may not be used.

“define”: #define may be used

“include”: #include may be used

“if”: #if, #ifdef and #ifndef may be used

“pragma”: #pragma may be used

“undef”: #undef may be used

“line”: #line may be used

“error”: #error may be used

“none”: # may be used alone

Justification Makes the code easier to read and understand.

operass Assignment Operator

Description Each class must explicitly contain at least one assignment opera-

tor.

Parameters The string "dynalloc" which, if used, indicates that the rule has to

be checked only if there is a class member which is a pointer

Justification Makes sure the author has thought about the way to assign an

object of the class.

Kalimetrix Logiscope

Programming Rules 101

Example:

// write

class aClass {

...

operator = (const aClass &object); // "const" is optional
...

};

parammode Parameters Mode

Description In function definitions, the parameters mode used (IN, OUT or

INOUT) must be indicated.

By default, the three modes "IN", "OUT" and "INOUT" are autho-

rized.

Parameters A list of character strings representing the authorized keywords

(their order does not matter).

Justification Enables to control parameter passing.

Example:

// write

int Multiply(IN Matrix *m, IN Vector *v, OUT Matrix *result);

sectord "public", "private" and "protected" Sections Order

Description In a class declaration, sections defined by the access specifiers

must follow a particular order, given in the parameters of the rule.

An empty string can be used (in the first position), representing the

first section without any specifier.

Note Class definitions have not to contain all the access specifiers

defined in the standard.

By default no particular order is given.

Parameters A list of character strings representing the access specifiers in the

wanted order.

Justification Makes the code easier to read.

Kalimetrix Logiscope

102 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Example:

// if the standard has the following strings in this order:

// "", "private", "protected" and "public",
// following declarations are allowed

class aClass {
int i ;

protected:

void p();
};

class aClass {

protected:
int i ;

public:

void p();
};

// and not the following ones:
class aClass {

protected:

...;

private:
... ;

};

class aClass {
protected:

...;

protected:
... ;

};

sgancstr Single Ancestor

Description All classes must have a same direct or indirect ancestor. The ances-

tor can be specified as a parameter.

Parameters A string representing the name of the ancestor. The parameter is

optional.

swdef default within switch

Description A default case is mandatory within a switch in order to cover

unexpected cases.

By default, the default case has to be the last one.

Parameters The character string "last", which, if used, specifies that the

default case has to be the last one.

Justification All cases must be provided for in a switch.

swend End of Cases in a "switch"

Description Each case in a switch shall end with break, continue, goto,

return or exit. Several consecutive case labels are allowed.

Kalimetrix Logiscope

Programming Rules 103

By default, such instructions are not mandatory for the last case.

Parameters The character string "nolast", which, if used, allows not to have

one of these instructions in the last case.

Justification Makes the code easier to understand and reduces the risk of errors.

varstruct Struct and Union Variables

Description Variables must not be directly declared using a struct or an

union structure.

An intermediate type must be automatically used.

Parameters The string "nostruct" which, if used, prevents from declaring a

struct or union variable except in a typedef structure.

This option has no meaning in C++ programs, where class decla-

rations are always allowed outside a typedef structure.

Justification Makes the code easier to understand.

Example:

// write

typedef struct {

...
} typeName;
typeName varName;

struct structName;
typedef struct structName {

...

struct structName *ptr;
} typeName;
typeName varName;

// do not write
struct {

...

} varName;
// do not write, if the "nostruct" option is used
struct structName {

...

};

struct structName varName;

typeres Reserved Types

Description Some types may be forbidden for variables or functions.

It is possible to define the list of types that are forbidden for vari-

ables (extern, static, and automatic variables) and the list of

types that are forbidden for functions.

The type specifiers and qualifiers are forbidden in any order and

even if they are merged with other specifiers or qualifiers.

Kalimetrix Logiscope

104 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

These types are allowed in typedef definition.

Parameters Two lists of strings beginning by the keywords "data" or "func-

tion". The other items of the list are strings containing the forbid-

den groups of type specifiers or type qualifiers separated by spaces

(’ ’).

Justification Not relying on predefined types improves code portability.

Kalimetrix Logiscope

Programming Rules 105

5.2.3 MISRA-C++ 2008 Programming Rules

The Motor Industry Software Reliability Association has published a list of rules for the

use of the C++ programming language for critical systems :

• MISRA-C++:2008 Guidelines for the use of the C++ language critial systems -

June 2008 [MISRA-C++:2008].

Logiscope RuleChecker C++ provides the MISRAC++2008 Rule Set including some of

the key MISRA C++ programming rules:

- Please refer to [MISRA-C++:2008] for a complete specification of the rules.

MISRA_0_1_1

A project shall not contain unreachable code.

MISRA_0_1_10

Every defined function shall be called at least once.

MISRA_0_1_3

A project shall not contain unused variables.

MISRA_0_1_4

A project shall not contain non-volatile POD variables having only one use.

MISRA_0_1_5

A project shall not contain unused type declarations.

MISRA_2_10_1

Different identifiers shall be typographically unambiguous.

MISRA_2_10_3

A typedef name (including qualification, if any) shall be a unique identifier.

MISRA_2_10_4

A class, union or enum name (including qualification, if any) shall be a unique identifier.

Kalimetrix Logiscope

106 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

MISRA_2_10_5

The identifier name of a non_member object or function with static storage duration

should not be reused.

MISRA_2_13_1

Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used.

MISRA_2_13_2

Octal constants (other than zero) and octal escape sequences (other than "\0") shall not

be used.

MISRA_2_13_4

Literal suffixes shall be upper case.

MISRA_2_3_1

Trigraphs shall not be used.

MISRA_2_7_1

The character sequence /* shall not be used within a C-style comment.

MISRA_2_7_2

Sections of code shall not be "commented out" using C-style comments.

MISRA_2_7_3

Sections of code should not be "commented out" using C++ comments.

MISRA_3_1_1

It shall be possible to include any header file in multiple translation units without

violating the One Definition Rule.

MISRA_3_1_3

When an array is declared, its size shall either be stated explicitly or defined implicitly

Kalimetrix Logiscope

Programming Rules 107

by initialization.

MISRA_3_9_2

typedefs that indicate size and signedness should be used in place of the basic numerical

types.

Note: Renaming of the standard typeres rule with the following parameters:

LIST "data" "char" "int" "short" "long" "float" "double" "long double" END LIST

LIST "function" "char" "int" "short" "long" "float" "double" "long double" END LIST

MISRA_5_0_2

Limited dependence should be placed on C++ operator precedence rules in expressions.

Note: Renaming of the standard exprparenth rule with the parameter “partpar”:

MISRA_5_14_1

The right hand operand of a logical && or || operator shall not contain side effects.

MISRA_5_18_1

The comma operator shall not be used.

MISRA_5_2_1

Each operand of a logical && or || shall be a postfix-expression.

MISRA_5_2_10

The increment (++) and decrement (--) operators should not be mixed with other

operators in an expression.

MISRA_5_2_11

The comma operator, && operator and the || operator shall not be overloaded.

MISRA_5_2_4

C_style casts (other than void casts) and functional notation casts (other than explicit

constructor calls) shall not be used.

Kalimetrix Logiscope

108 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

MISRA_5_2_5

A cast shall not remove any const or volatile qualification from the type of a pointer or

reference.

MISRA_5_3_3

The unary & operator shall not be overloaded.

MISRA_6_2_2

Floating_point expressions shall not be directly or indirectly tested for equality or

inequality.

MISRA_6_2_3

Before preprocessing, a null statement shall only occur on a line by itself; it may be

followed by a comment, provided that the first character following the null statement is a

white_space character.

MISRA_6_3_1

The statement forming the body of a switch, while, do ... while or for statement shall be a

compound statement.

Note: Renaming of the standard ctrlblock rule.

MISRA_6_4_1

An if (condition) construct shall be followed by a compound statement. The else

keyword shall be followed by either a compound statement, or another if statement.

MISRA_6_4_2

All if ? else if constructs shall be terminated with an else clause.

MISRA_6_4_4

A switch label shall only be used when the most closely-enclosing compound statement

is the body of a switch statement.

MISRA_6_4_5

An unconditional throw or break statement shall terminate every non-empty switch-

Kalimetrix Logiscope

Programming Rules 109

clause.

MISRA_6_4_6

The final clause of a switch statement shall be the default-clause.

MISRA_6_4_8

Every switch statement shall have at least one case- clause.

MISRA_6_5_1

A for loop shall contain a single loop-counter which shall not have floating type.

Limitation: Loop-counters modified within the for body are not accounted for when

evaluating this rule

MISRA_6_5_2

If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall

only be used as an operand to <=, <, > or >=.

MISRA_6_5_3

The loop-counter shall not be modified within condition or statement.

MISRA_6_5_4

The loop-counter shall be modified by one of: --, ++, -=n, or +=n; where n remains

constant for the duration of the loop.

MISRA_6_6_1

Any label referenced by a goto statement shall be declared in the same block, or in a

block enclosing the goto statement.

MISRA_6_6_2

The goto statement shall jump to a label declared later in the same function body.

MISRA_6_6_4

For any iteration statement there shall be no more than one break or goto statement used

Kalimetrix Logiscope

110 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

for loop termination.

MISRA_6_6_5

A function shall have a single point of exit at the end of the function.

MISRA_7_3_2

The identifier main shall not be used for a function other than the global function main.

Parameter: A list of non usable function names .

For instance, on a Windows platform,

LIST "main" "WinMain" "DllMain" END LIST

Default: Only “main” is considered.

MISRA_7_3_3

There shall be no unnamed namespaces in header files.

Parameter: A list of accepted header files extensions.

ex. LIST ".h" ".hpp" END LIST

Default: Only files with extensions “.h”, “.hxx” and “.hh” are considered as header

files.

MISRA_7_3_4

Using-directives shall not be used.

MISRA_7_3_6

Using-directives and using-declarations (excluding class scope or function scope using-

declarations) shall not be used in header files.

MISRA_7_4_3

Assembly language shall be encapsulated and isolated.

MISRA_7_5_1

A function shall not return a reference or a pointer to an automatic variable (including

parameters), defined within the function.

Kalimetrix Logiscope

Programming Rules 111

MISRA_7_5_2

The address of an object with automatic storage shall not be assigned to another object

that may persist after the first object has ceased to exist.

MISRA_8_0_1

An init-declarator-list or a member-declarator-list shall consist of a single init-declarator

or member-declarator respectively.

Note: Renaming of the standard sgdecl rule.

MISRA_8_3_1

Parameters in an overriding virtual function shall either use the same default arguments

as the function they override, or else shall not specify any default arguments.

MISRA_8_4_1

Functions shall not be defined using the ellipsis notation.

Note: Renaming of the standard vararg rule.

MISRA_8_4_3

All exit paths from a function with non-void return type shall have an explicit return

statement with an expression.

Limitations: The rule only checks that all non-void functions have at least one return

statement, and that all of its return statements return an expression

MISRA_8_5_1

All shall have a defined value before they are used.

MISRA_8_5_3

In an enumerator list, the = construct shall not be used to explicitly initialize members

other than the first, unless all items are explicitly initialized.

MISRA_9_5_1

Unions shall not be used.

Note: Renaming of the standard nounion rule.

Kalimetrix Logiscope

112 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

MISRA_9_6_2

Bit-fields shall be either bool type or an explicitly unsigned or signed integral type.

Note: In addition of wchar_t, forbidden types (because potentially signed or unsigned)

are int, char, short, long.

MISRA_9_6_4

Named bit-fields with signed integer type shall have a length of more than one bit.

MISRA_10_1_1

Classes should not be derived from virtual bases.

MISRA_10_2_1

All accessible entity names within a multiple inheritance hierarchy should be unique.

MISRA_10_3_1

There shall be no more than one definition of each virtual function on each path through

the inheritance hierarchy.

MISRA_10_3_2

Each overriding virtual function shall be declared with the virtual keyword.

MISRA_10_3_3

A virtual function shall only be overridden by a pure virtual function if it is itself

declared as pure virtual.

MISRA_11_0_1

Member data in non-POD class types shall be private.

MISRA_12_1_2

All constructors of a class should explicitly call a constructor for all of its immediate

base classes and all virtual base classes.

Limitation: The rule checks that base class constructors are called in the initialization

list, separated by colons. It does not check that base class constructors are called within

the constructor body.

Kalimetrix Logiscope

Programming Rules 113

MISRA_12_1_3

All constructors that are callable with a single argument of fundamental type shall be

declared explicit.

The fundamental types are:

• bool

• char "unsigned char" "signed char"

• short "short int" "signed short" "unsigned short"

• int "signed int" "unsigned int"

• int8 int16 int32 int64

• long "signed long" "unsigned long" "long long" "signed long long" "unsigned long

long"

• float double "long double"

• wchar_t

Parameter: A list of additional types.

ex. LIST "_UI8" "_UI16" "_UI32" "_UI64" END LIST

MISRA_14_7_1

All class templates, function templates, class template member functions and class

template static members shall be instantiated at least once.

MISRA_15_0_2

An exception object should not have pointer type.

MISRA_15_0_3

Control shall not be transferred into a try or catch block using a goto or a switch

statement.

MISRA_15_1_1

The assignment-expression of a throw statement shall not itself cause an exception to be

thrown.

MISRA_15_1_2

NULL shall not be thrown explicitly.

Kalimetrix Logiscope

114 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

MISRA_15_1_3

An empty throw (throw;) shall only be used in the compound-statement of a catch

handler.

MISRA_15_3_1

Exceptions shall be raised only after start-up and before termination of the program.

MISRA_15_3_7

Where multiple handlers are provided in a single try-catch statement or function-try-

block, any ellipsis (catch-all) handler shall occur last.

MISRA_15_5_1

A class destructor shall not exit with an exception.

MISRA_15_5_3

The terminate() function shall not be called implicitly.

MISRA_16_0_1

#include directives in a file shall only be preceded by other preprocessor directives or

comments.

MISRA_16_0_2

Macros shall only be #define'd or #undef'd in the global namespace.

MISRA_16_0_3

#undef shall not be used.

MISRA_16_0_4

Function-like macros shall not be defined.

Note: Renaming of the standard mfunc rule.

MISRA_16_0_5

Kalimetrix Logiscope

Programming Rules 115

Arguments to a function-like macro shall not contain tokens that look like preprocessing

directives.

MISRA_16_0_6

In the definition of a function-like macro, each instance of a parameter shall be enclosed

in parentheses, unless it is used as the operand of # or ##.

MISRA_16_0_8

If the # token appears as the first token on a line, then it shall be immediately followed

by a preprocessing token.

MISRA_16_1_1

The defined preprocessor operator shall only be used in one of the two standard forms.

MISRA_16_1_2

All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if

or #ifdef directive to which they are related.

MISRA_16_2_1

The pre-processor shall only be used for file inclusion and include guards.

MISRA_16_2_2

C++ macros shall only be used for include guards, type qualifiers, or storage class

specifiers.

MISRA_16_2_3

Include guards shall be provided.

MISRA_16_2_4

The ', ", /* or // characters shall not occur in a header file name.

MISRA_16_2_5

The \ character should not occur in a header file name.

Kalimetrix Logiscope

116 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

MISRA_16_2_6

The #include directive shall be followed by either a <filename> or "filename" sequence.

MISRA_16_3_1

There shall be at most one occurrence of the # or ## operators in a single macro

definition.

MISRA_16_3_2

The # and ## operators should not be used.

MISRA_17_0_2

The names of standard library macros and objects shall not be reused.

Parameter: The list of non reusable names.

Default:

LIST

"NULL" "EXIT_SUCCESS" "EXIT_FAILURE" "RAND_MAX" " max" " min"

"_MAX_PATH" "_MAX_DRIVE" "_MAX_DIR" "_MAX_FNAME" "_MAX_EXT"

"_OUT_TO_DEFAULT" "_OUT_TO_STDERR" "_OUT_TO_MSGBOX"

"_REPORT_ERRMODE" "errno" "_doserrno" " argc" " argv" " wargv" "_environ"

"_wenviron" "_pgmptr" "_wpgmptr" "size_t" "wchar_t" "_onexit_t" "div_t" "ldiv_t"

END LIST

MISRA_17_0_3

The names of standard library functions shall not be overridden.

Parameter: The list of non overridden names.

MISRA_17_0_5

The setjmp macro and the longjmp function shall not be used.

Note: Renaming of the standard funres rule with the following parameter:

LIST “setjmp” “longjmp” END LIST

MISRA_18_0_1

The C library shall not be used.

Parameter: The list of non reusable names.

Kalimetrix Logiscope

Programming Rules 117

MISRA_18_0_2

The library functions atof, atoi and atol from library <cstdlib> shall not be used.

Note: Renaming of the standard funres rule with the following parameter:

LIST "atof" "atoi" "atol" END LIST

MISRA_18_0_3

The library functions abort, exit, getenv and system from library <cstdlib> shall not be

used.

Note: Renaming of the standard funres rule with the following parameter:

LIST “abort” “exit” “getenv” “system” END LIST

MISRA_18_0_4

The time handling functions of library <ctime> shall not be used.

MISRA_18_0_5

The unbounded functions of library <cstring> shall not be used.

Note: Renaming of the standard funres rule with the following parameter:

LIST "strcpy" "strcmp" "strcat" "strchr" "strspn" "strcspn" "strpbrk" "strrchr" "strstr"

"strtok" "strlen" END LIST

MISRA_18_2_1

The macro offsetof shall not be used.

Note: Renaming of the standard funres rule with the following parameter:

LIST “offsetof” END LIST

MISRA_18_4_1

Dynamic heap memory allocation shall not be used.

MISRA_18_7_1

The signal handling facilities of <csignal> shall not be used.

Kalimetrix Logiscope

118 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

MISRA_19_3_1

The error indicator errno shall not be used.

MISRA_27_0_1

The stream input/output library <cstdio> shall not be used.

Kalimetrix Logiscope

Programming Rules 119

5.3 Scott Meyers Rules

The following rules come from two books written by Scott Meyers: "Effective C++: 50

Specific Ways to Improve Your Programs and Designs" (Addison-Wesley, second

edition, 1997, ISBN: 0-201-92488-9) and "More Effective C++: 35 New Ways To

Improve Your Programs And Designs" (Addison-Wesley, first edition, 1996, ISBN: 0-

201-63371-X).

assignthis Check for Assignment to "self" in Operator "="

This rule relates to Item 17 in "Effective C++".

Description Inside the definition of an assignment operator:

- the equality between the parameter and this or *this shall be

checked;

- in case of equality, *this must be returned..

Justification Ensures that self-assignment will work.

cast Prefer C++-style Casts

This rule relates to Item 2 in "More Effective C++"

.

Description Use the C++-style casts (static_cast, const_cast,

dynamic_cast and reinterpret_cast) instead of the general-

purpose C-style cast.

Justification The C-style cast does not allow to make a distinction between the

different types of casts and it is not easy to detect.

catchref Catch Exceptions by Reference

This rule relates to Item 13 in "More Effective C++"

.

Description In catch clauses references to exceptions must be indicated.

Justification Improves code efficiency.

constrinit Prefer Initialization to Assignment in Constructors

This rule relates to Item 12 in "Effective C++".

Description Non static data members must be initialized inside the member ini-

tialization list of the constructor(s) of the class.

Justification Improves code efficiency.

Kalimetrix Logiscope

120 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

convnewdel Adhere to Convention when Writing "new" and

"delete" Operators

This rule relates to Item 8 in "Effective C++".

Description Convention for writing operator new:

- the type of the return value shall be void *;

- the type of the first parameter shall be size_t.

Convention for writing operator delete:

- the type of the return value shall be void;

- the type of the first parameter shall be void *;

- in case of a second parameter, its type shall be size_t.

Parameters The string "static" which, if used, indicates that operator new and

operator delete shall be declared static.

Justification Keeps the consistency with the default new and delete opera-

tors.

dataptr Data of Pointer Type

This rule relates to Item 10 in "More Effective C++".
‘

Description Class members which are pointers to objects are not allowed.

Justification Prevents resource leaks in constructors and simplifies destructors

definitions.

delifnew Write Operator "delete" if you Write Operator "new"

This rule relates to Item 10 in "Effective C++".

Description If operator new is declared inside a class, then operator delete

shall be also declared inside the same class.

Justification new and delete operators work together.

excepspec Exception Specifications

This rule relates to Item 14 in "More Effective C++"
.

Description Do not use exception specifications.

Justification Prevents violations of exception specifications, which are dangerous.

inlinevirt Inline Virtual Functions

This rule relates to Item 24 in "More Effective C++"

Kalimetrix Logiscope

Programming Rules 121

.

Description Virtual functions shall not be declared inline.

Justification Improves code efficiency.

multinher Multiple Inheritance Only Allowed for Inheriting

Abstract Classes

This rule relates to Item 43 in "More Effective C++".

Description If multiple inheritance is used, the classes inherited must be

abstract, that is to say that they must contain at least one pure vir-

tual method.

Justification Makes the overall design less complicated and the code easier to

understand.

Example:

1st case:

A and B are not abstract classes (they contain no pure

virtual methods). C inherits A and B: the rule is vio-
lated.

2nd case:

A and B are abstract classes (they contain at least one

pure virtual method each). C inherits A and B: the rule

is not violated.

Current limitation of this case:

If class C remains abstract (A and/or B’s pure virtual
methods are not redefined in C) and if a class D inherits
C and another abstract class, the rule will be violated

for D, although it inherits only abstract classes.

3rd case:

A is abstract, B is not, C is (has a pure virtual func-
tion), and inherits A and B. C violates the rule, but is
abstract for inheriting classes.

nonleafabs Make non-leaf classes abstract

This rule relates to Item 33 in "More Effective C++".

Description Non-leaf classes shall be abstract.

Justification Helps assignment do what most programmers expect and

improves the design of classes.

normalnew Avoid Hiding the "Normal" Form of "new"

This rule relates to Item 9 in "Effective C++".

Kalimetrix Logiscope

122 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Description If operator new is declared one or several times inside a class, at

least one of these declarations shall follow the "normal" form:

- the type of the first parameter shall be size_t;
- all other parameters, if any, shall have a default value.

Justification Lets the usual invocation form of new available.

overload Never overload "&&", "||" and "," operators

This rule relates to Item 7 in "More Effective C++".

Description "&&", "||" and "," operators must not be overloaded.

Justification Makes the code do what most programmers expect.

prepost Distinguish between Prefix and Postfix Forms of

Increment and Decrement Operators

This rule relates to Item 6 in "More Effective C++"
.

Description Increment and decrement operators must be declared in the same

manner as in the following example:

class Example {

public:

Example& operator++(); // prefix ++

const Example operator++(int); // postfix ++

Example& operator--(); // prefix --

const Example operator--(int); // postfix --

}

Justification Keeps the consistency with built-in types.

refclass References of Classes

This rule relates to Item 22 in "Effective C++".

Description Every parameters of class type shall be passed by reference.

Justification Improves the efficency of the code.

returnthis Return "*this" in Assignment Operators

This rule relates to Item 15 in "Effective C++"
.

Description Inside the definition of an assignment operator, the return value

shall be *this.

Kalimetrix Logiscope

Programming Rules 123

Justification Allows chains of assignments and type conversions.

tryblock Try Blocks

This rule relates to Item 15 in "More Effective C++".

Description Do not use try blocks.

Justification Efficiency.

trydestr Try Blocks in Destructors

This rule relates to Item 11 in "More Effective C++".

Description If it is explicit, the definition of a destructor must contain a try

and catch block.

Justification Prevents the call of terminate in case of exception propagation,

and helps ensure that destructors do everything they are supposed
to do.

virtdestr Virtual destructors

This rule relates to Item 14 in "Effective C++".

Description Destructors of base classes must be declared virtual.

Justification Ensures that base and derived destructors are called before memory

deallocation.

Kalimetrix Logiscope

124 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Kalimetrix Logiscope

Customizing Standard Rules and Rule Sets 125

Chapter 6

Customizing Standard Rules and

Rule Sets

Logiscope RuleChecker is an open-ended tool for which it is possible to customize

standard rule checking or even write new personal rule checking scripts to better fit to

your verification process.

This chapter presents how to customise Rule Sets and modify standard rules scripts to

adapt them to specifics of user coding standards / verification requirements.

To develop a new rule script, please refer to Kalimetrix Logiscope - Adding Ada, Java

and C++ scriptable rules, metrics and contexts advanced guide.

6.1 Modifying the Rule Set

A Rule Set is user-accessible textual file containing the specification of the programming

rules to be checked by Logiscope RuleChecker. A Rule Set file extension is “.rst”.

Specifying one or more Rule Set files is mandatory when setting up a Logiscope

RuleChecker project.

The Rule Sets allow to adapt Logiscope RuleChecker verification to a specific context

taking into the applicable coding standard.

• Rule checking can be activated or de-activated.

• Some rules have parameters that allow to customize the verification. Changing the

parameters changes the behaviour of the rule checking. See next section.

• The default name of a standard rule can be changed to match the name and/or

identifier specified in the applicable coding standard.

The same standard rule can even be used twice with different names and different

parameters.

• The default severity level of a rule can be modified.

• A new set of severity levels with a specific ordering: e.g. “Mandatory”, “Highly

Recommended”, “Recommended” can be specified.

All these actions can be done by editing the Logiscope Rule Set(s) and changing the

corresponding specifications. For more information on how to use and modify rule sets

Kalimetrix Logiscope

126 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

in Logiscope projects, please refer to:

• Kalimetrix Logiscope RuleChecker & QualityChecker Getting Started.

• Kalimetrix Logiscope RuleChecker & QualityChecker Basic Concepts.

The standard Rule Set files should be in the RuleSets\C++ folder:

1. in the standard Logiscope Reference: i.e. the Ref folder of the Kalimetrix Logiscope

installation directory ,

2. in one of the directories specified in the environment variable LOG_REF_ENV.

The syntax of LOG_REF_ENV is dir1;dir2;…;dirn (directory names separated by

semi-colons) on Windows and dir1:dir2:…:dirn (directory names separated by

colons) on Unix and Linux.

To change the default behavior of a rule set, it is highly recommended to first make your

own rule set, for example from a copy of default Rule Set files provided with Logiscope.

6.2 Customizing Standard Rule Scripts

The precise definition of these rules has been given in previous chapter.

ansi Function Declarations in ANSI Syntax

By default, the parameters name and void are both put:
STANDARD ansi ON LIST "name" "void" END LIST END STANDARD

To check that the parameters are named and their type indicated, just put the name

parameter:
STANDARD ansi ON LIST "name" END LIST END STANDARD

To forbid the empty parameter lists, just put the void parameter:
STANDARD ansi ON LIST "void" END LIST END STANDARD

cmclass A Single Class per Code File

By default, the type of modules considered as code files is CODE, which corresponds to

the suffixes *.cc, *.cxx, *.cpp, *.C or *.c, as defined by the metric type:
METRIC module type OFF FORMAT "30"
LIST "HEADER" "*.{h,hh,H,hxx}" END LIST

LIST "CODE" "*.cc" "*.cxx" "*.cpp" "*.C" "*.c" END LIST
LIST "INTERFACE" "*.i" END LIST

LIST "YACC" "*_y.c" END LIST

END METRIC

STANDARD cmclass ON LIST "CODE" END LIST END STANDARD

Change the definition of the CODE module type if it does not suit the application:
METRIC module type OFF FORMAT "30"

LIST "HEADER" "*.{h,hh,H,hxx}" END LIST

LIST "CODE" "*.CC" END LIST

LIST "INTERFACE" "*.i" END LIST
LIST "YACC" "*_y.c" END LIST

Kalimetrix Logiscope

Customizing Standard Rules and Rule Sets 127

END METRIC

STANDARD cmclass ON LIST "CODE" END LIST END STANDARD

Or choose to add a new module type (MY_CODE, for example):
METRIC module type OFF FORMAT "30"

LIST "HEADER" "*.{h,hh,H,hxx}" END LIST

LIST "CODE" "*.cc" "*.cxx" "*.cpp" "*.C" "*.c" END LIST
LIST "MY_CODE" "*.CC" END LIST

LIST "INTERFACE" "*.i" END LIST

LIST "YACC" "*_y.c" END LIST
END METRIC

STANDARD cmclass ON LIST "MY_CODE" END LIST END STANDARD

cmdef Classes in Code File

By default, the type of modules considered as code files is CODE, which corresponds to

the suffixes *.cc, *.cxx, *.cpp, *.C or *.c, as defined by the metric type:
METRIC module type OFF FORMAT "30"

LIST "HEADER" "*.{h,hh,H,hxx}" END LIST
LIST "CODE" "*.cc" "*.cxx" "*.cpp" "*.C" "*.c" END LIST
LIST "INTERFACE" "*.i" END LIST

LIST "YACC" "*_y.c" END LIST
END METRIC

STANDARD cmdef ON LIST "CODE" END LIST END STANDARD

Change the definition of the CODE module type if it does not suit the application:
METRIC module type OFF FORMAT "30"
LIST "HEADER" "*.{h,hh,H,hxx}" END LIST
LIST "CODE" "*.CC" END LIST

LIST "INTERFACE" "*.i" END LIST
LIST "YACC" "*_y.c" END LIST
END METRIC

STANDARD cmdef ON LIST "CODE" END LIST END STANDARD

Choose to add a new module type (MY_CODE, for example):
METRIC module type OFF FORMAT "30"

LIST "HEADER" "*.{h,hh,H,hxx}" END LIST
LIST "CODE" "*.cc" "*.cxx" "*.cpp" "*.C" "*.c" END LIST
LIST "MY_CODE" "*.CC" END LIST

LIST "INTERFACE" "*.i" END LIST
LIST "YACC" "*_y.c" END LIST

END METRIC

STANDARD cmdef ON LIST "MY_CODE" END LIST END STANDARD

const Literal Constants

By default, the allowed literal constants are "", " ", "0" and "1":
STANDARD const ON LIST """""" """ """ "0" "1" END LIST END STANDARD

To allow the literal constant MY_CST, but forbid the constant 1:
STANDARD const ON LIST """""" """ """ "0" "MY_CST" END LIST END STANDARD

constrcpy Copy Constructor

By default the "dynalloc" parameter is not put:
STANDARD constrcpy ON END STANDARD

To look for the copy constructor only if there is a class member which is a pointer:
STANDARD constrcpy ON "dynalloc" END STANDARD

Kalimetrix Logiscope

128 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

convnewdel Adhere to Convention when Writing "new" and

"delete" Operators

By default the "static" parameter is not put:
STANDARD convnewdel ON END STANDARD

To declare static new and delete operators :
STANDARD convnewdel ON "static" END STANDARD

dmaccess Access to Data Members

By default, only the data members in the public part of a class are forbidden:
STANDARD dmaccess ON LIST "public" END LIST END STANDARD

To forbid the data members in the public and protected part of a class:
STANDARD dmaccess ON LIST "public" "protected" END LIST END STANDARD

exprcplx Expressions Complexity

By default, the maximum authorized complexity level is 13:
STANDARD exprcplx ON MINMAX 0 13 END STANDARD

To change this value to 16, for example:
STANDARD exprcplx ON MINMAX 0 16 END STANDARD

exprparenth Parenthesis in Expressions

By default, the partpar parameter is put:
STANDARD exprparenth ON "partpar" END STANDARD

For a stricter rule, remove this parameter:
STANDARD exprparenth ON END STANDARD

funcres Reserved Functions

By default, no function names are forbidden:
STANDARD funcres ON LIST END LIST END STANDARD

To forbid the functions system and malloc, for example:
STANDARD funcres ON LIST "system" "malloc" END LIST END STANDARD

goto Goto Statement

By default, all goto statements are forbidden:
STANDARD goto ON LIST END LIST END STANDARD

To authorize the statements goto ok; and goto error;:
STANDARD goto ON LIST "ok" "error" END LIST END STANDARD

Headercom Module Header Comments

It is possible to define a format for the header comment depending on the type of the

module as it is defined in metric type.

The format of the comment is defined as a list of regular expressions that shall be found

Kalimetrix Logiscope

Customizing Standard Rules and Rule Sets 129

in the header comment in the order of declaration.

Formats are defined by regular expressions. The regular expression language is a subset

of the one defined by the Posix 1003.2 standard (Copyright 1994, the Regents of the

University of California).

A regular expression is comprised of one or more non-empty branches, separated by the

"|" character.

A branch is one or more atomic expressions, concatenated.

Each atom can be followed by the following characters:

• * - the expression matches a sequence of 0 or more matches of the atom,

• + - the expression matches a sequence of 1 or more matches of the atom,

• ? - the expression matches a sequence of 0 or 1 match of the atom,

• {i} - the expression matches a sequence of i or more matches of the atom,

• {i,j} - the expression matches a sequence of i through j (inclusive) matches of the

atom.

An atomic expression can be either a regular expression enclosed in "()", or:

• [...] - a brace expression, that matches any single character from the list enclosed in

"[]",

• [^...] - a brace expression that matches any single character not from the rest of the list

enclosed in "[]",

• . - it matches any single character,

• ^ - it indicates the beginning of a string (alone it matches the null string at the

beginning of a line),

• $ - it indicates the end of a string (alone it matches the null string at the end of a line).

For more details, please refer to the related documentation.

Example:

".+_Ptr" matches strings like "abc_Ptr", "hh_Ptr", but not "_Ptr",
"T[a-z]*" matches strings like "Ta", "Tb", "Tz",

"[A-Z][a-z0-9_]*" matches strings like "B1", "Z0", "Pp", “P_1_a”.

By default, a header comment with the name of the file, its author, its date and possible

remarks is required for files of the HEADER and CODE type (for the signification of

these types, see in Paragraph , cmclass A Single Class per Code File):
STANDARD Headercom ON

LIST "HEADER" "Name: [a-z]*" "Author: [A-Z][a-z]*"
"Date: [0-9][0-9]/[0-9][0-9]/[0-9][0-9]"
"Remarks:" END LIST

LIST "CODE" "Name: [a-z]*" "Author: [A-Z][a-z]*"
"Date: [0-9][0-9]/[0-9][0-9]/[0-9][0-9]"
"Remarks:" END LIST

END STANDARD

Kalimetrix Logiscope

130 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Example of required header:

//

// Name: program
// Author: Andrieu

// Date: 08/07/96
// Remarks: example of comments
//

headercom Function and Class Header Comments

It is possible to define a format for the comment preceding a function or a class,

depending on the type of the function definition or declaration, or class definition

(func_glob_def, func_glob_decl, func_stat_def, func_stat_decl, class).

The format of the comment is defined as a list of regular expressions (see in Paragraph ,

Headercom Module Header Comments) that shall be found in the comment in the order

of declaration.

By default, only a comment beginning with "/*" is required for functions or classes:

STANDARD headercom ON

LIST "class" "///*" END LIST
LIST "func_glob_def" "///*" END LIST
LIST "func_glob_decl" "///*" END LIST

LIST "func_stat_def" "///*" END LIST
LIST "func_stat_decl" "///*" END LIST
END STANDARD

Here is another example, with different required comments depending on the item type:
STANDARD headercom ON

LIST "class" "Name of the class:"
"Filename:"

END LIST

LIST "func_glob_def" "Definition of the extern function:"
"Author: [A-Z][a-z]*"

END LIST

LIST "func_glob_decl" "Declaration of the extern funciton:"
"Date: [0-9][0-9]/[0-9][0-9]/[0-9][0-9]"

END LIST

LIST "func_stat_def" "Definition of the static function:"
"Remarks:"

END LIST

LIST "func_stat_decl" "Declaration of the static function:"
"Purpose:"

END LIST

END STANDARD

hmclass A Single Class Definition per Header File

By default, the type of modules considered as header files is HEADER, which

corresponds to the filter *.{h,hh,H,hxx,hpp}, as defined by the metric type:
METRIC module type OFF FORMAT "30"

LIST "HEADER" "*.{h,hh,H,hxx}" END LIST
LIST "CODE" "*.cc" "*.cxx" "*.cpp" "*.C" "*.c" END LIST
LIST "INTERFACE" "*.i" END LIST

LIST "YACC" "*_y.c" END LIST
END METRIC

STANDARD hmclass ON LIST "HEADER" END LIST END STANDARD

Change the definition of the HEADER module type if it does not suit the application:

Kalimetrix Logiscope

Customizing Standard Rules and Rule Sets 131

METRIC module type OFF FORMAT "30"
LIST "HEADER" "*.HH" END LIST

LIST "CODE" "*.cc" "*.cxx" "*.cpp" "*.C" "*.c" END LIST
LIST "INTERFACE" "*.i" END LIST
LIST "YACC" "*_y.c" END LIST

END METRIC

STANDARD hmclass ON LIST "HEADER" END LIST END STANDARD

Or choose to add a new module type (MY_HEADER, for example):
METRIC module type OFF FORMAT "30"
LIST "HEADER" "*.{h,hh,H,hxx}" END LIST
LIST "MY_HEADER" "*.HH" END LIST

LIST "CODE" "*.cc" "*.cxx" "*.cpp" "*.C" "*.c" END LIST

LIST "INTERFACE" "*.i" END LIST

LIST "YACC" "*_y.c" END LIST

END METRIC
STANDARD hmclass ON LIST "MY_HEADER" END LIST END STANDARD

hmdef Header File Contents

By default, the type of modules considered as header files is HEADER, which

corresponds to the filter *.{h,hh,H,hxx,hpp}, as defined by the metric type:
METRIC module type OFF FORMAT "30"
LIST "HEADER" "*.{h,hh,H,hxx}" END LIST

LIST "CODE" "*.cc" "*.cxx" "*.cpp" "*.C" "*.c" END LIST
LIST "INTERFACE" "*.i" END LIST

LIST "YACC" "*_y.c" END LIST

END METRIC

STANDARD hmdef ON LIST "HEADER" END LIST END STANDARD

Change the definition of the HEADER module type if it does not suit the application:
METRIC module type OFF FORMAT "30"
LIST "HEADER" "*.HH" END LIST
LIST "CODE" "*.cc" "*.cxx" "*.cpp" "*.C" "*.c" END LIST

LIST "INTERFACE" "*.i" END LIST
LIST "YACC" "*_y.c" END LIST
END METRIC

STANDARD hmdef ON LIST "HEADER" END LIST END STANDARD

Or choose to add a new module type (MY_HEADER, for example):
METRIC module type OFF FORMAT "30"
LIST "HEADER" "*.{h,hh,H,hxx}" END LIST
LIST "MY_HEADER" "*.HH" END LIST

LIST "CODE" "*.cc" "*.cxx" "*.cpp" "*.C" "*.c" END LIST
LIST "INTERFACE" "*.i" END LIST

LIST "YACC" "*_y.c" END LIST
END METRIC

STANDARD hmdef ON LIST "MY_HEADER" END LIST END STANDARD

hmstruct Header File Structure

By default, the MIN value is 1 and the MAX value is 999 and the type of modules

considered as header files is HEADER, which corresponds to the filter

*.{h,hh,H,hxx,hpp}, as defined by the metric type:
METRIC module type OFF FORMAT "30"

LIST "HEADER" "*.{h,hh,H,hxx}" END LIST
LIST "CODE" "*.cc" "*.cxx" "*.cpp" "*.C" "*.c" END LIST
LIST "INTERFACE" "*.i" END LIST

LIST "YACC" "*_y.c" END LIST

END METRIC

STANDARD hmstruct ON MINMAX 1 999 LIST "HEADER" END LIST END STANDARD

Kalimetrix Logiscope

132 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Change the definition of the HEADER module type if it does not suit the application:
METRIC module type OFF FORMAT "30"

LIST "HEADER" "*.HH" END LIST
LIST "CODE" "*.cc" "*.cxx" "*.cpp" "*.C" "*.c" END LIST

LIST "INTERFACE" "*.i" END LIST

LIST "YACC" "*_y.c" END LIST
END METRIC

STANDARD hmstruct ON MINMAX 1 999 LIST "HEADER" END LIST END STANDARD

Or choose to add a new module type (MY_HEADER, for example):
METRIC module type OFF FORMAT "30"

LIST "HEADER" "*.{h,hh,H,hxx}" END LIST
LIST "MY_HEADER" "*.HH" END LIST

LIST "CODE" "*.cc" "*.cxx" "*.cpp" "*.C" "*.c" END LIST

LIST "INTERFACE" "*.i" END LIST
LIST "YACC" "*_y.c" END LIST
END METRIC

STANDARD hmstruct ON MINMAX 1 999 LIST "MY_HEADER" END LIST END STANDARD

Change the MINMAX values:
STANDARD hmstruct ON MINMAX 4 9 LIST "HEADER" END LIST END STANDARD

identfmt Identifier Format

It is possible to define a format for each of the categories listed below:

NAME DESCRIPTION DEFAULT

type type name any

type_obj object type name type, any

type_array array type name type, any

type_array_obj

object array type name
type_array, type_obj, type,

any

type_ptr pointer type name type, any

type_ptr_obj

object pointer type name
type_obj, type_ptr, type,

any

type_ref reference type type_ptr, type, any

type_ref_obj

object reference type
type_obj, type_ref,

type_ptr, type, any

variable variable name any

variable_obj object variable name variable, any

variable_array array variable name variable, any

variable_array_obj

object array variable name

variable_obj,

variable_array, variable,

any

variable_ptr pointer variable name variable, any

variable_ptr_obj
object pointer variable

name

variable_obj, variable_ptr,

variable, any

variable_ref reference variable name variable_ptr, variable, any

variable_ref_obj
object reference variable

name

variable_obj, variable_ref,

variable_ptr, variable, any

type_func function type name function, type, any

Kalimetrix Logiscope

Customizing Standard Rules and Rule Sets 133

type_struct structured type name type, any

type_struct_item structure item name variable, any

type_struct_item_obj

object structure item name
type_struct_item,

variable_obj, variable, any

type_struct_item_array

array structure item name

type_struct_item,

variable_array, variable,

any

type_struct_item_array_obj

object array structure item

name

type_struct_item_obj,

type_struct_item_array,

type_struct_item,

variable_array,

variable_obj, variable, any

type_struct_item_ptr
pointer structure item

name

type_struct_item,

variable_ptr, variable, any

type_struct_item_ptr_obj

object pointer structure

item name

type_struct_item_obj,

type_struct_item,

variable_ptr, variable_obj,

variable, any

type_struct_item_ref

reference structure item

name

type_struct_item_ptr,

type_struct_item,

variable_ptr, variable_ref,

variable, any

type_struct_item_ref_obj

object reference structure

item name

type_struct_item_ptr_obj,

type_struct_item_obj,

type_struct_item_ref,

type_struct_item_ptr,

type_struct_item,

variable_obj, variable_ptr,

variable_ref, variable, any

type_union union type name type, any

type_union_item union item name variable, any

type_union_item_obj

object union item name
type_union_item,

variable_obj, variable, any

type_union_item_array

array union item name

type_union_item,

variable_array, variable,

any

type_union_item_array_obj

object array union item

name

type_union_item_obj,

type_union_item_array,

type_union_item,

variable_obj,

variable_array, variable,

any

type_union_item_ptr

pointer union item name
type_union_item,

variable_ptr, variable, any

Kalimetrix Logiscope

134 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

type_union_item_ptr_obj

object pointer union item

name

type_union_item_obj,

type_union_item,

variable_obj, variable_ptr,

variable, any

type_union_item_ref

reference union item name

type_union_item_ptr,

type_union_item,

variable_ref, variable_ptr,

variable, any

type_union_item_ref_obj

object reference pointer

union item name

type_union_item_ptr_obj,

type_union_item_obj,

type_union_item_ref,

type_union_item_ptr,

type_union_item,

variable_obj,

variable_ref,variable_ptr,

variable, any

enum enumerated type name type, any

const_enum_item
enumerated type item

name

const, any

class class name type, any

class_attr class attribute name variable, any

class_attr_obj

class object attribute name
class_attr, variable_obj,

variable, any

class_attr_array

class array attribute name
class_attr, variable_array,

variable, any

class_attr_array_obj

class object array attribute

name

class_attr_obj, class_attr,

variable_obj,

variable_array, variable,

any

class_attr_ptr
class pointer attribute

name

variable_ptr, class_attr,

variable, any

class_attr_ptr_obj

class object pointer

attribute name

class_attr_obj,

class_attr_ptr, class_attr,

variable_obj, variable_ptr,

variable, any

class_attr_ref

class reference attribute

name

class_attr_ptr, class_attr,

variable_ref, variable_ptr,

variable, any

class_attr_ref_obj

class object reference

attribute name

class_attr_ptr_obj,

class_attr_obj,

class_attr_ref,

class_attr_ptr, class_attr,

variable_obj, variable_ref,

variable_ptr, variable, any

method class method name function, class_attr, any

namespace name space name any

Kalimetrix Logiscope

Customizing Standard Rules and Rule Sets 135

function function name any

const constant name any

const_obj constant object name const, any

const_array constant array name const, any

const_array_obj constant object array name const_obj, const, any

const_ptr constant pointer name const, any

const_ptr_obj
constant object pointer

name

const_obj, const, any

const_ref constant reference name const_ptr, const, any

const_ref_obj

constant object reference

name

const_ptr_obj, const_obj,

const_ref, const_ptr, const,

any

var_stat static variable name variable, any

var_stat_obj

static object variable name
variable_obj, var_stat, vari-

able, any

var_stat_array

static array variable name
variable_array, var_stat,

variable, any

var_stat_array_obj

static object array variable

name

variable_obj,

variable_array, var_stat,

variable, any

var_stat_ptr
static pointer variable

name

var_stat, variable_ptr, vari-

able, any

var_stat_ptr_obj

static object pointer vari-

able name

var_stat_obj, var_stat_ptr,

var_stat, variable_obj,

variable_ptr, variable, any

var_stat_ref

static reference variable

name

var_stat_ptr, var_stat,

variable_ref, variable_ptr,

variable, any

var_stat_ref_obj

static object reference vari-

able name

var_stat_ptr_obj,

var_stat_obj, var_stat_ref,

var_stat_ptr, var_stat,

variable_obj, variable_ref,

variable_ptr, variable, any

var_glob global variable name variable, any

var_glob_obj
global object variable

name

variable_obj, var_glob,

variable, any

var_glob_array

global array variable name
variable_array, var_glob,

variable, any

var_glob_array_obj

global object array vari-

able name

variable_obj,

variable_array, var_glob,

variable, any

var_glob_ptr
global pointer variable

name

var_glob, variable_ptr,

variable, an

Kalimetrix Logiscope

136 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

var_glob_ptr_obj

global object pointer vari-

able name

var_glob_obj,

var_glob_ptr, var_glob,

variable_obj, variable_ptr,

variable, any

var_glob_ref

global reference variable

name

var_glob_ptr, var_glob,

variable_ref, variable_ptr,

variable, any

var_glob_ref_obj

global object reference

variable name

var_glob_ptr_obj,

var_glob_obj,

var_glob_ref, var_glob_ptr,

var_glob, variable_obj,

variable_ref, variable_ptr,

variable, any

var_auto automatic variable name variable, any

var_auto_obj
automatic object variable

name

var_auto, variable_obj,

variable, any

var_auto_array
automatic array variable

name

var_auto, variable_array,

variable, any

var_auto_array_obj

automatic object array

variable name

var_auto, variable_obj,

variable_array, variable,

any

var_auto_ptr
automatic pointer variable

name

var_auto, variable_ptr,

variable, any

var_auto_ptr_obj

automatic object pointer

variable name

var_auto_obj,

var_auto_ptr, var_auto,

variable_obj, variable_ptr,

variable, any

var_auto_ref

automatic reference vari-

able name

var_auto_ptr, var_auto,

variable_ref, variable_ptr,

variable, any

var_auto_ref_obj

automatic object reference

variable name

var_auto_ptr_obj,

var_auto_obj,

var_auto_ref, var_auto_ptr,

var_auto, variable_obj,

variable_ref, variable_ptr,

variable, any

macro macro name any

macro_func function macro name macro, function, any

macro_const macro constant name macro, const, any

macro_flag macro flag name macro, any

parameter parameter name variable, any

parameter_obj

object parameter name
parameter, variable_obj,

variable, any

Kalimetrix Logiscope

Customizing Standard Rules and Rule Sets 137

parameter_array

array parameter name

parameter, variable_obj,

variable_array, variable,

any

parameter_array_obj

object array parameter

name

parameter_obj,

parameter_array, parame-

ter, variable_array_obj,

variable_obj,

variable_array, variable,

any

parameter_ptr

pointer parameter name
parameter, variable_ptr,

variable, any

parameter_ptr_obj

object pointer parameter

name

parameter_obj,

parameter_ptr, parameter,

variable_ptr_obj,

variable_obj, variable_ptr,

variable, any

parameter_ref

reference parameter name

parameter_ptr, parameter,

variable_ref, variable_ptr,

variable, any

parameter_ref_obj

object reference parameter

name

parameter_ptr_obj,

parameter_obj,

parameter_ref,

parameter_ptr, parameter,

variable_obj, variable_ref,

variable_ptr, variable, any

The third column represents inherited categories: for instance, for no distinction between

the macro-func, the macro-const and the macro-flag categories, just define a particular

format for the macro categories, which is inherited by the previous ones.

A special keyword any is used to define the default value for all identifier categories not

explicitly defined.

The format of the identifier is defined by a regular expression (see in Paragraph ,

Headercom Module Header Comments).

By default, the only restrictions concern the constants and the macros, which must have

no lower case letter:

STANDARD identfmt ON

LIST "any" ".*"
"type" ".*"

"type_obj" ".*"
"type_array" ".*"
"type_array_obj" ".*"

"type_ptr" ".*"
"type_ptr_obj" ".*"
"type_ref" ".*"

"type_ref_obj" ".*"
"variable" ".*"
"variable_obj" ".*"

"variable_array" ".*"

"variable_array_obj" ".*"
"variable_ptr" ".*"

"variable_ptr_obj" ".*"

Kalimetrix Logiscope

138 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

"variable_ref" ".*"

"variable_ref_obj" ".*"
"type_func" ".*"
"type_struct" ".*"

"type_struct_item" ".*"
"type_struct_item_obj" ".*"
"type_struct_item_array" ".*"

"type_struct_item_array_obj" ".*"
"type_struct_item_ptr" ".*"
"type_struct_item_ptr_obj" ".*"

"type_struct_item_ref" ".*"
"type_struct_item_ref_obj" ".*"
"type_union" ".*"

"type_union_item" ".*"

"type_union_item_obj" ".*"
"type_union_item_array" ".*"

"type_union_item_array_obj" ".*"
"type_union_item_ptr" ".*"
"type_union_item_ptr_obj" ".*"

"type_union_item_ref" ".*"
"type_union_item_ref_obj" ".*"
"enum" ".*"

"const_enum_item" ".*"
"class" ".*"
"class_attr" ".*"

"class_attr_obj" ".*"
"class_attr_array" ".*"
"class_attr_array_obj" ".*"

"class_attr_ptr" ".*"
"class_attr_ptr_obj" ".*"
"class_attr_ref" ".*"

"class_attr_ref_obj" ".*"
"method" ".*"
"namespace" ".*"

"function" ".*"
"const" "[A-Z0-9_]*"
"const_obj" "[A-Z0-9_]*"

"const_array" "[A-Z0-9_]*"
"const_array_obj" "[A-Z0-9_]*"
"const_ptr" "[A-Z0-9_]*"

"const_ptr_obj" "[A-Z0-9_]*"
"const_ref" "[A-Z0-9_]*"
"const_ref_obj" "[A-Z0-9_]*"

"var_stat" ".*"
"var_stat_obj" ".*"
"var_stat_array" ".*"

"var_stat_array_obj" ".*"

"var_stat_ptr" ".*"
"var_stat_ptr_obj" ".*"

"var_stat_ref" ".*"
"var_stat_ref_obj" ".*"
"var_glob" ".*"

"var_glob_obj" ".*"
"var_glob_array" ".*"
"var_glob_array_obj" ".*"

"var_glob_ptr" ".*"
"var_glob_ptr_obj" ".*"
"var_glob_ref" ".*"

"var_glob_ref_obj" ".*"
"var_auto" ".*"
"var_auto_obj" ".*"

"var_auto_array" ".*"
"var_auto_array_obj" ".*"

"var_auto_ptr" ".*"

"var_auto_ptr_obj" ".*"
"var_auto_ref" ".*"

Kalimetrix Logiscope

Customizing Standard Rules and Rule Sets 139

"var_auto_ref_obj" ".*"

"macro" "[^a-z]*"
"macro_const" "[^a-z]*"
"macro_flag" "[^a-z]*"

"macro_func" "[^a-z]*"
"parameter" ".*"
"parameter_obj" ".*"

"parameter_array" ".*"
"parameter_array_obj" ".*"
"parameter_ptr" ".*"

"parameter_ptr_obj" ".*"
"parameter_ref" ".*"
"parameter_ref_obj" ".*"

END LIST END STANDARD

For the class attributes to begin with "m_", the class pointer attributes to begin with

"m_p", the constants and the macros to have no lower case letter and no underscore at the

beginning and the end, the global variables to begin with "g_", the global pointer

variables to begin with "g_p" and all other identifiers not to begin or end with an

underscore:
STANDARD identfmt ON

LIST "any" "[^_](.*[^_])?$"

"class_attr" "m_.*[^_]$"
"class_attr_ptr" "m_p.*[^_]$"
"const" "[A-Z0-9]([A-Z0-9_]*[A-Z0-9])?$"

"var_glob" "g_.*[^_]$"
"var_glob_ptr" "g_p.*[^_]$"
"macro" "[A-Z0-9]([A-Z0-9_]*[A-Z0-9])?$"

END LIST END STANDARD

identl Identifier Length

The possible categories of identifiers are the same as for the identfmt rule (see in

Paragraph , identfmt Identifier Format).

By default, the methods and functions must have between 4 and 25 characters, the types,

variables, constants, macros and classes between 5 and 25, and the other identifiers

between 1 and 25:
STANDARD identl ON

LIST "any" MINMAX 1 25

"type" MINMAX 5 25
"type_ptr" MINMAX 5 25

"variable" MINMAX 5 25

"variable_ptr" MINMAX 5 25
"type_func" MINMAX 5 25
"type_struct" MINMAX 5 25

"type_struct_item" MINMAX 5 25
"type_union" MINMAX 5 25
"type_union_item" MINMAX 5 25

"enum" MINMAX 5 25
"const_enum_item" MINMAX 5 25
"class" MINMAX 5 25

"class_attr" MINMAX 5 25
"class_attr_ptr" MINMAX 5 25
"method" MINMAX 4 25

"namespace" MINMAX 5 25
"function" MINMAX 4 25
"const" MINMAX 5 25

"const_ptr" MINMAX 5 25

"var_stat" MINMAX 1 25
"var_stat_ptr" MINMAX 1 25

"var_glob" MINMAX 5 25

Kalimetrix Logiscope

140 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

"var_glob_ptr" MINMAX 5 25

"var_auto" MINMAX 1 25
"var_auto_ptr" MINMAX 1 25
"macro" MINMAX 5 25

END LIST END STANDARD

identres Reserved Identifiers

By default, there are no reserved identifiers:
STANDARD identres ON LIST END LIST END STANDARD

To forbid the identifiers "true" and "false":
STANDARD identres ON LIST "true" "false" END LIST END STANDARD

incltype Included Modules Type

By default, HEADER modules can be included in HEADER and CODE modules:
STANDARD incltype ON

LIST "HEADER" "HEADER" END LIST
LIST "CODE" "HEADER" END LIST

END STANDARD

To also allow CODE modules to be included in CODE modules:

STANDARD incltype ON

LIST "HEADER" "HEADER" END LIST
LIST "CODE" "HEADER" "CODE" END LIST

END STANDARD

For the signification of the CODE, HEADER, ... types, see in Paragraph , cmclass A

Single Class per Code File).

inldef Inline Functions Declaration and Definition

By default, the "private " parameter is not active:
STANDARD inldef ON END STANDARD

To indicate that private inline functions must be defined in the class definition file (.cpp

file) and other inline functions in the class declaration file (.h file):
STANDARD inldef ON "private" END STANDARD

macrocharset Characters Used in Macros

By default, no characters are forbidden in macros:
STANDARD macrocharset ON LIST "constant" "" "function" "" END LIST END

STANDARD

To forbid the characters @#!&/[]{}~‘’ in macro-constants and #@%.\ in macro-

functions:
STANDARD macrocharset ON LIST "constant" "@#!&/[]{}~‘’" "function"

"#@%.\" END LIST END STANDARD

mconst Macro Constant Usage

By default, the var option is selected:
STANDARD mconst ON "var" END STANDARD

To have the const option instead:

Kalimetrix Logiscope

Customizing Standard Rules and Rule Sets 141

STANDARD mconst ON "const" END STANDARD

To have the nodefine option instead:
STANDARD mconst ON "nodefine" END STANDARD

mname File Names

By default, the part of the class name taken into account is between the characters 1 and

5:
STANDARD mname ON MINMAX 1 5 END STANDARD

To have instead the characters 4 and 10:
STANDARD mname ON MINMAX 4 10 END STANDARD

nopreproc No Pre-processing Instructions

By default, only #line and # alone may not be used:
STANDARD nopreproc ON LIST "define" "include" "if" "pragma" "undef"

"error" END LIST END STANDARD

To allow only #define, #line and # alone:
STANDARD nopreproc ON LIST "define" "line" "none" END LIST END STANDARD

nostruct Keyword Struct Not Allowed

By default, C-style structs are forbidden:
STANDARD nostruct ON END STANDARD

To allow C-style structs and then forbid C++-style structs (such as access specifiers:

private for example, or methods):
STANDARD nostruct ON "cstruct" END STANDARD

operass Assignment Operator

By default the "dynalloc" parameter is not put:
STANDARD operass ON END STANDARD

To look for the assignment operator only if there is a class member which is a pointer:
STANDARD operass ON "dynalloc" END STANDARD

parammode Parameters Mode

By default, the three modes "IN", "OUT" and "INOUT" are authorized:
STANDARD parammode ON LIST "OUT" "INOUT" "IN" END LIST END STANDARD

To authorize only the mode "IN":
STANDARD parammode ON LIST "IN" END LIST END STANDARD

sectord "public", "private" and "protected" Sections Order

By default no particular order is given:
STANDARD sectord ON LIST END LIST END STANDARD

To authorize the first section to be without any specifier, and then the specifiers to be in

the order private, protected and public:

Kalimetrix Logiscope

142 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

STANDARD sectord ON LIST "" "private" "protected" "public" END LIST END
STANDARD

sgancstr Single Ancestor

By default no ancestor is specified:
STANDARD sgancstr ON END STANDARD

To indicate a particular ancestor, name it:
STANDARD sgancstr ON "father" END STANDARD

swdef "default" within "switch"

By default, the default case has to be the last one:
STANDARD swdef ON "last" END STANDARD

To have only a default case, whatever its position:
STANDARD swdef ON END STANDARD

swend End of Cases in a "switch"

By default, an instruction break, continue, goto, return or exit is not mandatory

for the last switch of a case:
STANDARD swend ON "nolast" END STANDARD

To impose such an instruction at the end of all the cases of a switch:
STANDARD swend ON END STANDARD

typeres Reserved Types

By default, there are no reserved types:
STANDARD typeres ON
LIST END LIST

LIST END LIST END STANDARD

To forbid the types int, char and register double for variables and the types

unsigned int and double for functions:
STANDARD typeres ON

LIST "data" "int" "char" "register double" END LIST

LIST "function" "unsigned int" "double" END LIST
END STANDARD

varstruct Struct and Union Variables

By default, the nostruct option is not selected:
STANDARD varstruct ON END STANDARD

To have the nostruct option:
STANDARD varstruct ON "nostruct" END STANDARD

Kalimetrix Logiscope

Customizing Standard Rules and Rule Sets 143

6.3 Renaming Rules

It is possible to rename standard rules to have as many versions of them as needed. The

renamed rules have their own set of parameters, and their own definition. Creating rules

in this way allows to have multiple versions of the same rule using different parameters.

It also enables adapting the names of the rules that are provided to your naming standard

and their definitions to the description you are used to seeing.

The rule used to create a new one can be a built-in rule, a user rule or even an already

renamed rule.

Rule Script Format

A rule verification script containing a renamed rule description should be created. It

should be named rule_name.std, where rule_name is the name of the rule being created.

The contents of the file should follow the following format:

.NAME <long_name>

.DESCRIPTION <user_description>

.COMMAND rename <mnemonic_of_the_renamed_rule>

where:

<long_name> is free text, that can include spaces. It is a more detailed title of the rule. It

will appear as an explanation of the rule name in Logiscope.

<user_description> is the description of the rule, that will be available in Logiscope.

<mnemonic_of_the_renamed_rule> is the name of the standard rule that the new rule

is based upon.

Example of a renamed rule (rename of the goto rule):

.NAME No goto at all

.DESCRIPTION

In our standard the goto statement is absolutely forbidden.

.COMMAND rename goto

Rule Script Location

The rule script should be placed in one of the following places in the Rules\Ada folder :

1. in the standard Logiscope Reference: i.e. the Ref folder of the Kalimetrix Logis-

cope installation directory;

2. in one of the directories in the environment variable LOG_REF_ENV.

The syntax of LOG_REF_ENV is dir1;dir2;…;dirn (directory names separated by

semi-colons) on Windows and dir1:dir2:…:dirn (directory names separated by

Kalimetrix Logiscope

144 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

colons) on Unix and Linux.

Rule Verification Activation

The new rule must be added into the Rule Set file (.rst) using the following syntax:

STANDARD new_std RENAMING old_std ON parameters END STANDARD

where

new_std is the name of the rule being created.

old_std is the name of the existing rule.

parameters (optional) is the list of parameters, as for any other Logiscope rule.

Example:

STANDARD mygoto RENAMING goto ON LIST "test" END LIST END STANDARD

6.4 Creating New Rule Scripts

New rule verification scripts can also be created entirely using Tcl scripts.

More about this can be found in the dedicated Kalimetrix Logiscope - Adding Ada, Java

and C++ scriptable rules, metrics and contexts advanced guide.

Kalimetrix Logiscope

Notices 145

Notices

© Copyright 2014

The licensed program described in this document and all licensed material

available for it are provided by Kalimetrix under terms of the Kalimetrix

Customer Agreement, Kalimetrix International Program License Agreement or

any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-Kalimetrix products was obtained from the suppliers

of those products, their published announcements or other publicly available

sources. Kalimetrix has not tested those products and cannot confirm the accuracy

of performance, compatibility or any other claims related to non-Kalimetrix

products. Questions on the capabilities of non-Kalimetrix products should be

addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Copyright license

This information contains sample application programs in source language,

which illustrate programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to Kalimetrix, for the purposes of developing, using, marketing or

distributing application programs conforming to the application programming

interface for the operating platform for which the sample programs are written.

These examples have not been thoroughly tested under all conditions.

Kalimetrix, therefore, cannot guarantee or imply reliability, serviceability, or

function of these programs.

Kalimetrix Logiscope

146 Kalimetrix Logiscope RuleChecker & QualityChecker C++ Reference Manual

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from Kalimetrix

Corp. Sample Programs. © Copyright Kalimetrix Corp. _enter the year or years_.

Trademarks

Kalimetrix, the Kalimetrix logo, Kalimetrix.com are trademarks or registered

trademarks of Kalimetrix, registered in many jurisdictions worldwide. Other

product and services names might be trademarks of Kalimetrix or other companies.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript

are trademarks of Adobe Systems Incorporated or its subsidiaries and may be

registered in certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International

Business Machines Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Macrovision and FLEXnet are registered trademarks or trademarks of Macrovision

Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other

Microsoft products referenced herein are either trademarks or registered

trademarks of Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of Netscape

Communications Corporation in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks

of Sun Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

ITIL is a registered trademark, and a registered community trademark of the Office

of Government Commerce, and is registered in the U.S Patent and Trademark

Office.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product or service names may be trademarks or service marks of

others.

	C++ Project Settings
	1.1 Starting a Logiscope Studio Session
	1.2 Creating a Logiscope Project
	Defining the type of the Logiscope project
	Specifying the source files to be analysed
	Setting Parsing Options
	Setting QualityChecker Parameters
	Setting RuleChecker Parameters

	1.3 Logiscope Repository
	1.4 Relaxation Mechanism
	Relaxing a single rule violation
	Relaxing several violations and/or adding a longer justification
	Relaxing all violations in pieces of code

	C++ Parsing Options
	2.1 Reserved Keywords
	2.2 Choosing the Appropriate Dialect
	2.2.1 Available C++ Dialects
	2.2.2 Reference Documentation
	AIX
	Alpha
	Borland C++ 3.0
	Borland C++ 5.0
	GNU 2.7
	HP C++
	Microsoft C++ 1.5
	Microsoft C++ 2.0, 5.0, and 6.0
	SUN C++

	2.2.3 Dialect Specifics
	Aix
	Borland C++ 5.0
	Microsoft C++ 1.5
	Microsoft C++ 2.0

	2.3 Configuring the Logiscope C++ Parser
	2.3.1 Type - Syntax Item Association
	2.3.2 Syntax of the Parser Configuration File

	2.4 Managing pre-processing directives
	2.4.1 Impact on Analysis Results
	2.4.2 Restrictions

	Command Line Mode
	3.1 Logiscope create
	3.1.1 Command Line Mode
	Automatic search
	File list

	3.1.2 Makefile mode
	3.1.3 Options

	3.2 Logiscope batch
	3.2.1 Options

	Standard Metrics
	4.1 Function Scope
	4.1.1 Line Counting
	lc_cline Total number of lines
	lc_cloc Number of lines of code
	lc_cblank Number of empty lines
	lc_ccomm Number of lines of comments
	lc_ccpp Number of preprocessor statements
	lc_csbra Number of lines with lone braces
	lc_pro_c Number of lines in Pro*C
	lc_bcom Number of comment blocks.
	lc_bcob Number of comment blocks before
	lc_parse Number of lines not parsed

	4.1.2 Lexical and syntactic items
	lc_algo Number of syntactic entities in algorithms
	lc_decl Number of syntactic entities in declarations
	lc_stat Number of Statements
	lc_synt Number of syntactic entities

	4.1.3 Data Flow
	dc_consts Numbers of declared constants
	dc_types Number of declared types
	dc_vars Number of declared variables
	dc_lvars Number of local variables
	dc_clas_var Number of class-type local variables
	dc_other_clas_var Number of other class-type local variables
	ic_param Number of parameters
	ic_parvar Variable number of parameters
	ic_paradd Number of parameters passed by reference
	ic_parcl Number of class-type parameters
	ic_par_othercl Number of other class-type parameters
	ic_parval Number of parameters passed by value
	ic_usedp Number of parameters used
	ic_vare Number of uses of external attributes
	ic_vari Number of uses of internal attributes
	ic_varpe Number of distinct uses of external Aattributes
	ic_varpi Number of distinct uses of local attributes

	4.1.4 Halstead Metrics
	n1 Number of distinct operators
	N1 Total number of operators
	n2 Number of distinct operands
	N2 Total number of operands
	n Halstead vocabulary
	N Halstead length
	CN Halstead estimated length
	V Halstead volume
	L Halstead level
	D Halstead difficulty
	I Halstead intelligent content
	E Halstead mental effort

	4.1.5 Structured Programming
	ct_bran Number of destructuring statements
	ct_break Number of break and continue branchings
	ct_exit Number of out statements
	ct_goto Number of gotos
	ESS_CPX Essentiel complexity

	4.1.6 Control Flow
	ct_decis Number of decisions
	ct_degree Maximum degree
	ct_edge Number of edges
	ct_nest Maximum nesting level
	ct_node Number of nodes
	ct_loop Number of loops
	ct_path Number of non-cyclic paths
	ct_raise Number of exceptions raised
	ct_try Number of exceptions handlers
	ct_vg Cyclomatic number (VG)
	DES_CPX Design complexity

	4.1.7 Relative Call Graph
	cg_entropy Relative call graph entropy
	cg_ hiercpx Relative call graph hierarchical complexity
	cg_levels Relative call graph levels
	cg_strucpx Relative call graph structural complexity
	cg_testab Relative call graph testability
	dc_calls Number of direct calls
	dc_calle Number of external calls
	dc_calli Number of internal calls
	dc_calling Number of callers
	dc_callpe Number of external direct calls
	dc_callpi Number of internal direct calls
	dc_stat_call Number of calls to static members
	IND_CALLS Relative call graph call-paths

	4.2 Class Scope
	4.2.1 Comments
	cl_bcob Number of comment blocks before
	cl_bcom Number of comment blocks

	4.2.2 Data Flow
	cl_base_priv Number of private base classes
	cl_base_prot Number of protected base classes
	cl_base_publ Number of public base classes
	cl_base_virt Number of virtual base classes
	cl_clas_frnd Number of friend classes
	cl_cobc Coupling between classes
	cl_data_class Sum of class-type attributes
	cl_data_priv Number of private attributes
	cl_data_prot Number of protected attributes
	cl_data_publ Number of public attributes
	cl_data_stat Number of static data members
	cl_data_inh Number of inherited attributes
	cl_dep_meth Number of dependent methods
	cl_rfc Response for a class
	cl_type Number of local types
	cl_const Number of local constants
	cl_genp Number of of parameters for templates
	cl_oper_conv Number of conversion operators
	cl_oper_std Number of standard operators
	cl_oper_affc Number of assignment operators
	cl_oper_spec Number of special operators

	4.2.3 Statistical Aggregates of Function Metrics
	cl_func_priv Number of private methods
	cl_func_prot Number of protected methods
	cl_func_publ Number of public methods
	cl_func_virt Number of virtual methods
	cl_func_pure Number of abstract methods
	cl_func_cons Number of constant methods
	cl_func_inln Number of inline methods
	cl_func_excp Number of methods handling or raising exceptions
	cl_func_frnd Number of friend functions
	cl_func_inh Number of inherited methods
	cl_func_over Number of overridden methods
	cl_data_vare Sum of uses of external attributes
	cl_data_vari Sum of uses of internal attributes
	cl_fpriv_path Sum of paths of private methods
	cl_fprot_path Sum of paths of protected methodss
	cl_fpubl_path Sum of paths of public methods
	cl_func_calle Sum of external calls
	cl_func_calli Sum of internal calls
	cl_usedp Sum of parameters
	cl_wmc Weighted Methods per Class
	cl_locm Lack of cohesion of methods

	4.2.4 Inheritance Tree
	in_bases Number of base classes
	in_dbases Number of direct base classes
	in_depth Depth of the inheritance tree
	in_derived Number of derived classes
	in_noc Number of children
	in_reinh Number of classes inherited several times

	4.2.5 Use Graph
	cu_level Depth of use
	cu_cdused Number of direct used classes
	cu_cused Number of used classes
	cu_cdusers Number of direct user classes
	cu_cusers Number of user classes

	4.3 Module Scope
	4.3.1 Line Counting
	md_blank Number of empty lines
	md_comm Number of lines of comments
	md_cpp Number of preprocessor statements
	md_line Total number of lines
	md_loc Number of lines of code
	md_sbra Number of lines with lone braces
	md_pro_c Number of lines in Pro*C

	4.3.2 Lexical and syntactic items
	md_algo Number of syntactic entities in algorithms
	md_decl Number of syntactic entities in declarations
	md_synt Number of syntactic entities
	md_stat Number of statements

	4.3.3 Data Flow
	md_consts Number of declared constants
	md_expfn Number of exported functions
	md_expva Number of exported variables
	md_impmo Number of imported modules
	md_types Number of declared types
	md_vars Number of declared variables

	4.3.4 Halstead Metrics
	md_n1 Number of distinct operators
	md_n2 Number of distinct operands
	md_N1 Total number of operators
	md_N2 Total number of operands
	md_n Halstead vocabulary
	md_N Halstead length
	md_CN Halstead estimated length
	md_V Halstead volume
	md_L Halstead level
	md_D Halstead difficulty
	md_I Halstead intelligent content
	md_E Halstead mental effort

	4.4 Application Scope
	4.4.1 Line Counting
	ap_sline Total number of lines
	ap_sloc Number of lines of code
	ap_sblank Number of empty lines
	ap_scomm Number of lines of comments
	ap_scpp Number of preprocessor statements
	ap_ssbra Number of “brace” lines

	4.4.2 Application Aggregates
	ap_clas Number of application classes
	ap_func Number of application functions
	ap_stat Number of statements
	ap_cbo Coupling between objects
	ap_mdf Number of defined methods
	ap_nmm Number of member functions
	ap_npm Number of public methods
	ap_vg Sum of cyclomatic numbers

	4.4.3 Application Call Graph
	ap_cg_cycle Call graph recursions
	ap_cg_edge Call graph edges
	ap_cg_leaf Call graph leaves
	ap_cg_levl Call graph depth
	ap_cg_maxdeg Maximum callers/called
	ap_cg_maxin Maximum callers
	ap_cg_maxout Maximum called
	ap_cg_node Call graph nodes
	ap_cg_root Call graph roots

	4.4.4 Inheritance Tree
	ap_inhg_cpx Inheritance tree complexity
	ap_inhg_edge Inheritance graph edges
	ap_inhg_leaf Number of final class
	ap_inhg_levl Depth of inheritance tree
	ap_inhg_maxdeg Maximum Number of derived/inherited classes
	ap_inhg_maxin Maximum Number of derived classes.
	ap_inhg_maxout Maximum Number of inherited classes.
	ap_inhg_node Inheritance tree classes
	ap_inhg_pc Protocol complexity
	ap_inhg_root Number of basic classes
	ap_inhg_uri Number of repeated inheritances

	4.4.5 MOOD Metrics
	ap_mhf Method Hiding Factor (MHF)
	ap_ahf Attribute Hiding Factor (AHF)
	ap_mif Method Inheritance Factor (MIF)
	ap_aif Attribute Inheritance Factor (AIF)
	ap_pof Polymorphism Factor (POF)
	ap_cof Coupling Factor (COF)

	Programming Rules
	5.1 Rule Sets
	5.2 Rule Scripts
	5.2.1 Basic Rules
	asscal Assignment inside function calls
	asscon Assignment inside conditions
	assexp Assignment inside expressions
	blockdecl Declarations in Blocks
	boolean Use Proper Boolean Expressions
	brkcont Break and Continue Forbidden
	classuse Hidden class uses
	condop No ternary operator
	constrdef Default constructor
	ctrlblock Blocks in Control Statements
	delarray Use Delete [] For Array
	destr Destructor
	fntype Function Types
	forinit Initialize For Loop Counter In For Head
	frndclass Friend Classes
	funcptr No Function Pointers
	globinit Global Variable Initialization
	imptype Do Not Use Implicit Typing
	macroparenth Parenthesis in Macro Definitions
	mfunc Inline Functions instead of Macro-functions
	multiass No Multiple Assignment
	nostruct Keyword Struct Not Allowed
	notemplate Avoid Using Templates
	nothrow No Throw Instructions
	nounion No Union
	parse Parse Error
	pmfrtn Do Not Return Pointer To Member Data
	ptraccess Pointer Access
	ptrinit Pointers Initialization
	rtnlocptr Do Not Return Pointer To Local Variable
	sgdecl A Single Variable per Declaration
	sglreturn A Single Return per Function
	slcom Use // Comments
	slstat One Statement per Line
	typeinher Inheritance Type
	vararg Variable Number of Arguments
	voidptr No Void Pointer
	varinit All Variables Must Be Initialized Before Being Used

	5.2.2 Customizable Rules
	ansi Function Declarations in ANSI Syntax
	cmclass A Single Class per Code File
	cmdef Classes in Code File
	const Literal Constants
	constrcpy Copy Constructor
	dmaccess Access to Data Members
	exprcplx Expressions Complexity
	exprparenth Parentheses in Expressions
	funcres Reserved Functions
	goto Goto Statement
	Headercom Module Header Comment
	headercom Function and Class Header Comments
	hmclass A Single Class Definition per Header File
	hmdef Header File Contents
	hmstruct Header File Structure
	identfmt Identifier Format
	identl Identifier Length
	identres Reserved Identifiers
	incltype Included Modules Type
	inldef Inline Functions Declaration and Definition
	macrocharset Characters Used in Macros
	mconst Macro Constant Usage
	mname File Names
	nopreproc No Pre-processing Instructions
	operass Assignment Operator
	parammode Parameters Mode
	sectord "public", "private" and "protected" Sections Order
	sgancstr Single Ancestor
	swdef default within switch
	swend End of Cases in a "switch"
	varstruct Struct and Union Variables
	typeres Reserved Types

	5.2.3 MISRA-C++ 2008 Programming Rules
	MISRA_0_1_1
	MISRA_0_1_10
	MISRA_0_1_3
	MISRA_0_1_4
	MISRA_0_1_5
	MISRA_2_10_1
	MISRA_2_10_3
	MISRA_2_10_4
	MISRA_2_10_5
	MISRA_2_13_1
	MISRA_2_13_2
	MISRA_2_13_4
	MISRA_2_3_1
	MISRA_2_7_1
	MISRA_2_7_2
	MISRA_2_7_3
	MISRA_3_1_1
	MISRA_3_1_3
	MISRA_3_9_2
	MISRA_5_0_2
	MISRA_5_14_1
	MISRA_5_18_1
	MISRA_5_2_1
	MISRA_5_2_10
	MISRA_5_2_11
	MISRA_5_2_4
	MISRA_5_2_5
	MISRA_5_3_3
	MISRA_6_2_2
	MISRA_6_2_3
	MISRA_6_3_1
	MISRA_6_4_1
	MISRA_6_4_2
	MISRA_6_4_4
	MISRA_6_4_5
	MISRA_6_4_6
	MISRA_6_4_8
	MISRA_6_5_1
	MISRA_6_5_2
	MISRA_6_5_3
	MISRA_6_5_4
	MISRA_6_6_1
	MISRA_6_6_2
	MISRA_6_6_4
	MISRA_6_6_5
	MISRA_7_3_2
	MISRA_7_3_3
	MISRA_7_3_4
	MISRA_7_3_6
	MISRA_7_4_3
	MISRA_7_5_1
	MISRA_7_5_2
	MISRA_8_0_1
	MISRA_8_3_1
	MISRA_8_4_1
	MISRA_8_4_3
	MISRA_8_5_1
	MISRA_8_5_3
	MISRA_9_5_1
	MISRA_9_6_2
	MISRA_9_6_4
	MISRA_10_1_1
	MISRA_10_2_1
	MISRA_10_3_1
	MISRA_10_3_2
	MISRA_10_3_3
	MISRA_11_0_1
	MISRA_12_1_2
	MISRA_12_1_3
	MISRA_14_7_1
	MISRA_15_0_2
	MISRA_15_0_3
	MISRA_15_1_1
	MISRA_15_1_2
	MISRA_15_1_3
	MISRA_15_3_1
	MISRA_15_3_7
	MISRA_15_5_1
	MISRA_15_5_3
	MISRA_16_0_1
	MISRA_16_0_2
	MISRA_16_0_3
	MISRA_16_0_4
	MISRA_16_0_5
	MISRA_16_0_6
	MISRA_16_0_8
	MISRA_16_1_1
	MISRA_16_1_2
	MISRA_16_2_1
	MISRA_16_2_2
	MISRA_16_2_3
	MISRA_16_2_4
	MISRA_16_2_5
	MISRA_16_2_6
	MISRA_16_3_1
	MISRA_16_3_2
	MISRA_17_0_2
	MISRA_17_0_3
	MISRA_17_0_5
	MISRA_18_0_1
	MISRA_18_0_2
	MISRA_18_0_3
	MISRA_18_0_4
	MISRA_18_0_5
	MISRA_18_2_1
	MISRA_18_4_1
	MISRA_18_7_1
	MISRA_19_3_1
	MISRA_27_0_1

	5.3 Scott Meyers Rules
	assignthis Check for Assignment to "self" in Operator "="
	cast Prefer C++-style Casts
	catchref Catch Exceptions by Reference
	constrinit Prefer Initialization to Assignment in Constructors
	convnewdel Adhere to Convention when Writing "new" and "delete" Operators
	dataptr Data of Pointer Type
	delifnew Write Operator "delete" if you Write Operator "new"
	excepspec Exception Specifications
	inlinevirt Inline Virtual Functions
	multinher Multiple Inheritance Only Allowed for Inheriting Abstract Classes
	nonleafabs Make non-leaf classes abstract
	normalnew Avoid Hiding the "Normal" Form of "new"
	overload Never overload "&&", "||" and "," operators
	prepost Distinguish between Prefix and Postfix Forms of Increment and Decrement Operators
	refclass References of Classes
	returnthis Return "*this" in Assignment Operators
	tryblock Try Blocks
	trydestr Try Blocks in Destructors
	virtdestr Virtual destructors

	Customizing Standard Rules and Rule Sets
	6.1 Modifying the Rule Set
	6.2 Customizing Standard Rule Scripts
	ansi Function Declarations in ANSI Syntax
	cmclass A Single Class per Code File
	cmdef Classes in Code File
	const Literal Constants
	constrcpy Copy Constructor
	convnewdel Adhere to Convention when Writing "new" and "delete" Operators
	dmaccess Access to Data Members
	exprcplx Expressions Complexity
	exprparenth Parenthesis in Expressions
	funcres Reserved Functions
	goto Goto Statement
	Headercom Module Header Comments
	headercom Function and Class Header Comments
	hmclass A Single Class Definition per Header File
	hmdef Header File Contents
	hmstruct Header File Structure
	identfmt Identifier Format
	identl Identifier Length
	identres Reserved Identifiers
	incltype Included Modules Type
	inldef Inline Functions Declaration and Definition
	macrocharset Characters Used in Macros
	mconst Macro Constant Usage
	mname File Names
	nopreproc No Pre-processing Instructions
	nostruct Keyword Struct Not Allowed
	operass Assignment Operator
	parammode Parameters Mode
	sectord "public", "private" and "protected" Sections Order
	sgancstr Single Ancestor
	swdef "default" within "switch"
	swend End of Cases in a "switch"
	typeres Reserved Types
	varstruct Struct and Union Variables

	6.3 Renaming Rules
	Rule Script Format
	Rule Script Location
	Rule Verification Activation

	6.4 Creating New Rule Scripts

	Notices

