

 LOGISCOPE

RuleChecker & QualityChecker
Getting Started

2

Before using this information, be sure to read the general information under the “Notices” section,

on page 81.

© Copyright Kalimetrix 2014

iii

About this manual

Audience

With Kalimetrix Logiscope™ RuleChecker & QualityChecker, you are about to discover

the world of most advanced software product evaluation techniques.

The RuleChecker & QualityChecker Getting Started manual will lead you through a use-

case situation and show you just how simple and yet complete the Logiscope toolset is. If

you can spare a little of your precious time, just relax and let us take you for a guided

tour of Logiscope RuleChecker & QualityChecker.

Overview

This manual introduces Logiscope RuleChecker & QualityChecker environment and will

get you started. In about two hours you will become familiar with the tool main features.

By the end of this phase, you will know how to use Logiscope RuleChecker &

QualityChecker main features and become familiar with the various commands. In the

process, you will see and learn:

• how to create a Logiscope project and activate Logiscope powerful source code

verification modules:

- RuleChecker: check that the source code complies with a set of defined coding

standards and best practices leading to a satisfactory level of Maintainability, Reli-

ability or Portability;

- QualityChecker: use source code metrics to locate complex, error prone modules,

analyse graphic results to assess architecture of the application and detailed design

of functions.

For more details, refer to Kalimetrix Logiscope - Basic Concepts;

• how to display some first results using Logiscope Studio:

- Rule violations in source code ,

- Rating of functions, classes, modules, etc. and values of complexity metrics,

• how to display graphic results using Logiscope Viewer:

- Control graphs,

- Call graphs,

- Use graphs.

- Inheritance graphs,

4

Related Documents

Reading first the following manual is highly recommended:

• Kalimetrix Logiscope - Basic Concepts.

Additional information can be found in:

• Kalimetrix Logiscope - QualityChecker & RuleChecker - Ada Reference Manual.

• Kalimetrix Logiscope - QualityChecker & RuleChecker - C Reference Manual.

• Kalimetrix Logiscope - QualityChecker & RuleChecker - C++ Reference Manual.

• Kalimetrix Logiscope - QualityChecker & RuleChecker - Java Reference Manual.

Before You Start

In this session, you will use examples of source code files provided in the samples folder

of the Logiscope installation directory.

As a precaution to keep original files safe, it is recommended to copy the samples

subdirectory into a working directory of your own.

In addition, you will create Logiscope projects and associated repositories: i.e. sets of

files containing internal data used by Logiscope. It is recommended to a create a

dedicated directory to store these data: e.g. a folder named LogiscopeProjects.

Conventions

The following writing conventions are used in this manual:

• bold: names of commands (e.g. vcs), files and folders (e.g. LogiscopeProjects), and

file extensions (.res)

• italic: names of user-defined textual elements (version_1, component_2), notes,

• typewriter: screen messages (Reference filename) requiring user action,

• keycaps (<Enter>).

<InstallationDir> will now refer as the Logiscope installation directory.

<Version> will now refer as the Logiscope current version: e.g. 6.6 or upper.

<Language> will now refer as Ada, C, C++ or Java.

5

Note: Screen displays in this manual can be slightly different from those you get when

running the Getting Started.

6

7

Table of Contents

Chapter 1 A Studio Guided Tour

1.1 Starting a Logiscope Studio Session ... 1

1.2 Creating a Logiscope Project .. 3

1.3 Introducing the Studio Main Window .. 13

1.4 Building the Logiscope Project. .. 15

1.5 Viewing RuleChecker Results ... 18

1.5.1 Rule Violations .. 18

1.5.2 Rule Violations by File ... 20

1.5.3 Rule Violations List .. 21

1.5.4 Rule Violations Report .. 22

1.5.5 Customizing Rules and Rule Sets .. 25

1.5.6 Relaxing Violations Using Special Comments .. 26

1.5.7 Importing External Violations ... 29

1.5.8 Managing Generated Source Code .. 31

1.6 Viewing QualityChecker Results .. 32

1.6.1 Quality Model ... 32

1.6.2 Metrics Dictionary ... 34

1.6.3 Criteria Level .. 35

1.6.4 Factor Level .. 36

1.6.5 Quality Report ... 38

1.6.6 Select from Properties ... 41

1.6.7 Kiviat Diagram (only available on Windows) ... 42

1.6.8 Quality Model Editor .. 43

1.7 Conclusion .. 44

Chapter 2 A Viewer Guided Tour

2.1 Starting a Logiscope Viewer Session .. 45

2.2 Selecting/Deselecting a function ... 48

8

2.3 Viewing the first results .. 49

2.3.1 Control Graph .. 49

2.3.2 The Source Code ... 50

2.3.3 Metric Kiviat Graph .. 51

2.3.4 Criteria Kiviat Graph ... 52

2.3.5 Preferences .. 53

2.3.6 Average Kiviat Graph ... 55

2.3.7 Quality Report ... 56

2.3.8 Application Results ... 57

2.4 Reviewing Classes .. 58

2.4.1 Opening an existing project ... 58

2.4.2 Opening a Class List Window ... 58

2.4.3 Viewing Class Results ... 59

2.4.4 The Inheritance Graph ... 60

2.4.5 The Use Graph .. 61

2.4.6 Getting More Detailed Class Results ... 62

Chapter 3 What a Logiscopian Quality Engineer Does

3.1 Loading an Existing Logiscope Project .. 65

3.2 Creating a Workspace of Functions to be Inspected ... 66

3.2.1 From the Quality Report .. 66

3.2.2 From the Call Graph .. 67

3.3 Inspecting Selected Function Control Graphs. .. 70

3.4 Printing a Control Graph ... 76

3.5 Saving a Workspace ... 76

Chapter 4 Generating a Quality Report Automatically

Chapter 5 Notices

A Studio Guided Tour 9

Chapter 1

A Studio Guided Tour

To get access to the Logiscope key features and results, it is first necessary to specify the

scope and type of the verification to be performed. This is done using a Logiscope

Project.

A Logiscope project mainly consists in:

• the list of source files to be analyzed,

• applicable source code parsing options according to the compilation environment,

• the verification modules to be activated on the source code files and the associated

controls and settings (e.g. metrics to be computed, rules to be checked).

A Logiscope project can be created using:

• Logiscope Studio: a graphical interface requiring a user interaction, as described in

the following sub-sections introducing the Logiscope project settings,

• Logiscope Command Line mode: a tool to be used from a standalone command line

or within makefiles, please refer to Chapter Command Line Mode in the appropriate

Kalimetrix Logiscope - QualityChecker & RuleChecker - <Language> Reference

Manual

1.1 Starting a Logiscope Studio Session

To begin a Logiscope Studio session:

• On UNIX (i.e. Solaris or Linux):

- launch the vcs binary

• On Windows:

- click the Start button and select the Kalimetrix Logiscope 2014 item in the Kali-

metrix Programs Group.

2

The Rational Logiscope splash screen is first displayed and then the Logiscope Studio

main window appears as follows.

The various components and areas of the Logiscope Studio main window are detailed in

section 1.3.

A Studio Guided Tour 3

1.2 Creating a Logiscope Project

First, you shall define the Logiscope project specifying the scope and type of verification

to be performed by Logiscope:

1. In the File menu, select the New... command or click on the icon, you get the

New Projects dialog box.

2. In the Project name: pane, enter the name for the new Logiscope project to be

created.

In the context of the guided tour, type Mastermind.

3. Then select its Location: i.e. the directory where the Logiscope project (i.e. a “.ttp”

file) and the associated Logiscope repository will be created; the Logiscope repository

is a folder in which Logiscope internal analysis result files are generated.

You can either enter a directory, keep the proposed default location or specify the path

to the LogiscopeProjects folder if previously created as recommended.

Note: By default, the project name is automatically added to the specified location. This

implies that a subdirectory named <ProjectName> is automatically created.

4. and click the OK button.

4

Defining the type of the Logiscope project

The Logiscope Project Definition dialog box appears.

5. Select the Project Language: i.e. the programming language in which are written

the source code files to be analyzed.

For the Mastermind project, select C.

Note: Only one language can be selected. If your application contains source code

files written in several languages, you should create several distinct Logiscope

projects: one for each language.

6. Select the Project Modules: i.e. the verification modules to be activated on the

source files of the project.

For this guided tour, select both QualityChecker and RuleChecker.

Notes: At least one module should be selected. The TestChecker module cannot be

selected with another module.

For more details on the CodeReducer module, please refer to Kalimetrix Logiscope -

CodeReducer - Identifying Code Similarities.

For more details on the TestChecker module, please refer to Kalimetrix Logiscope -

TestChecker Getting Started.

7. Click the Next button to continue the creation.

A Studio Guided Tour 5

Specifying the source files to be analyzed

The Project Source Files dialog box allows to specify what source files are to be

analyzed and where they are located.

The Source files root directory contains the location of the directory of the source files

to be analyzed.

8. Browse to select the directory where the Mastermind sample source files are: i.e. in

the samples/C/Mastermind folder of the Logiscope installation directory.

The Directories choice allows to select the list of repertories covering the application

source files.

- Include all subdirectories means that selected files will be searched for in every sub-

directory of the source file root directory.

- Do not include subdirectories means that only files included in the application

directory will be selected.

- Customize subdirectories to include allows the user to select the list of directories

that include application files through a new page.

The Suffixes choice allows to specify applicable source, header and inline file extensions

needed in the above selected directories. Extensions shall be separated with a semi-

colon.

9. Click the Next button.

6

Setting Parsing Options

The next dialog box depends upon the selected language for the Logiscope project. This

dialog box allows to set up some source code parsing options.

Regarding a Logiscope C project, the options are the following:

C Dialect: A dialect is used to take into account some special features of the

development environment (e.g. compilers, IDE) to use for the project under analysis:

• access paths to standard inclusion directories,

• predefined macro definitions or special keywords.

• inclusion directories where rule violations shall not be reported.

Notes: There is no Language Settings dialog box for Logiscope Ada projects and

Logiscope Java projects.

For more details on available C and C++ dialects, please refer to the chapter Parsing

Options in the respective manuals:

• Kalimetrix Logiscope RuleChecker & QualityChecker - C Reference Manual.,

• Kalimetrix Logiscope RuleChecker & QualityChecker - C++ Reference Manual.

A Studio Guided Tour 7

10.For the Mastermind project: select the standard ANSI 89 / ISO 90.

Preprocessor: The source code files to be analyzed may contain some preprocessing

directives (e.g. #ifdef). In some cases, these directives can lead to parsing errors and

warnings by breaking up the code structure or missing information.

In addition to the predefined preprocessing information associated to the selected dialect,

the Preprocessor pane can be used to provide complementary preprocessing and

compilation options:

• access paths to project specific inclusion directories,

• project macro definitions.

The syntax is as for a compiler:

[-Idirectory]*

[-Dname_of_macro1_with_no_argument [=definition]]* [-

Uname_of_macro2_with_no_argument [=definition]]*

A “-I” option defines directory as an access path to inclusion directories (applicable to C

projects only).

A “-D” option defines name_of_macro1_with_no_argument as if it were in a #define

directive.

A “-U” option considers name_of_macro2_with_no_argument as undefined as if it were

part of an #undef directive.

The number of occurrences of options is unlimited.

8

For more details on parsing options, please refer to the corresponding chapter in the

respective Kalimetrix Logiscope - RuleChecker & QualityChecker - <Language>

Reference Manual.

11. Click the Next button.

Setting QualityChecker Parameters

The next dialog box allows to specify the applicable Project quality model: how the

QualityChecker module evaluates software quality characteristics (e.g. Maintainability)

based on a standard factors / criteria / metrics approach.

Note: Quality models are textual files (suffixed by “.ref”). Default quality models are

provided with the standard Logiscope installation. They should be customized to take

into account the verification objectives and contexts applicable to the project.

For more information, refer to the Kalimetrix Logiscope Basic Concepts manual.

12.For the purpose of this presentation, keep the default Logiscope quality model

provided with the standard Logiscope installation.

Note: For your project verification, you should define and select your own applicable

quality model.

13.Click the Next button.

A Studio Guided Tour 9

Setting RuleChecker Parameters

The RuleChecker Settings dialog box allows to specify the applicable Project rule

sets: i.e. the rules / coding standards the Logiscope RuleChecker module shall verify on

the project source files.

For more details on available rules and rule sets, please refer to the chapter Standard

Programming Rules in the respective Kalimetrix Logiscope RuleChecker &

QualityChecker <Language> Reference Manual.

14. Tick the box associated to the following Project rule sets:

• Complexity,

• ControlFlow, and

• Resource.

The files now appear in the bottom pane where all currently selected rule sets are listed.

15. Click the Next button.

10

The next RuleChecker Settings dialog box allows to fine tune the list of Project rules.

It is possible to select or unselect some of the rules available.

The rules that are selected are those listed in the Project rule sets selected in the previous

RuleChecker Settings dialog box.

16.For the purpose of the example, just uncheck the rules:

Complexity_14_InclusionLevel and ControlFlow_4_ThenElse.

The description of the selected rule and the rule severity are displayed in the bottom

pane.

17.And click the Next button.

A Studio Guided Tour 11

The last RuleChecker Settings dialog box allows to use some advanced features of the

Logiscope RuleChecker module.

Advanced Settings:

Allow violation relaxation mechanism: when the box is checked, rule violations

can be relaxed using special comments in the code. For more details, please refer to

section 1.5.6.

Activate external violation import mechanism: when the box is checked, the

files in the specified project folder can be used to import violations generated by an

external tool. For more details, please refer to section 1.5.7.

Generate flat rule set file (no include): when the box is checked, the project rule

set file (i.e. with a “.rst”) extension) that is generated for the project doesn’t contain

any includes of other rule set files. It will contain an expanded copy of the contents

of any rule sets that were used for the project.

Generated Source Code:

Source Code generated by: when the box is checked, allows to specify the tool

(e.g. Kalimetrix Rhapsody) used to generate all or part of the source code under

analysis. Thus, Logiscope RuleChecker will not considered the violations found in

the generated code. For more details, please refer to section 1.5.8.

Show violations in generated code as relaxations: when the box is checked, the

violations found in generated code are reported as “relaxations”.

For more details on all these options, please refer to the Kalimetrix Logiscope - Basic

Concepts document.

12

18. Check the box “Allow violation relaxation mechanism”.

19. And then, click the Next button.

The creation of the Logiscope project ends by a window summarizing all the project

settings.

20. Check if all files are correct by expanding the Source Files folder.

If the list is not the same as below, this may be because the Source files root directory

of the project has not been correctly set. You can use the “Previous” buttons to get

back to the corresponding dialog box and change the values.

21. Click the Finish button.

You can still change the project settings by using the Settings... command in the Project

menu.

You are now ready to “build” the project: i.e. parse the source files of the project to

extract all necessary information for code verification. This process is described in

section 1.4.

A Studio Guided Tour 13

1.3 Introducing the Studio Main Window

After creating the project, Logiscope Studio main window looks as follows:

According to the default configuration, the Logiscope Studio main window contains the

following components:

1. Tool Bar: provides shortcuts for most commonly used commands of File and Edit

menus.

14

2. Browse Bar: provides shortcuts for Browse menu commands.

3. TCL Script Bar: activates the script wizard: i.e. Logiscope internal data navigator.

4. Web Browser Bar: allows navigation in HTML documents and internal data.

5. Project Bar: builds the project and starts Logiscope Viewer or TestChecker.

6. Logiscope Module Bar: provides shortcuts for selected results associated, from left

to right to CodeReducer, QualityChecker, RuleChecker and TestChecker modules.

Note that until the project has been “built”, all the icons are greyed as no results are

yet available.

The QualityChecker and RuleChecker related icons allow to (from left to right):

• Display the QualityChecker Metrics Dictionary,

• Display the QualityChecker Criteria tree,

• Display the QualityChecker Factors tree,

• Generate the QualityChecker HTML Quality Report,

• Display the RuleChecker Rule violations,

• Display the RuleChecker Rule violations by severity,

• Display the RuleChecker Rule violations list in the output window,

• Generate the RuleChecker HTML rule violations report.

7. Workspace View: displays a specific view related to the project: header files, the

quality model file and source files.

Double-clicking on any file will display the file contents in the Result Pane.

8. Result Pane: is used to display information and result windows.

9. Output Window: displays project messages as the first tab is created; also shows

“build” messages, and results.

A Studio Guided Tour 15

10.Status Bar: contains indicators when building and idle . The status bar also

shows short definitions corresponding to the toolbars described above.

To add or remove one of these items, just right-click in the corresponding area and check

or uncheck the relevant bar.

You can customize the toolbars using the Tools-Customize... command.

1.4 Building the Logiscope Project

As stated in the Messages tab in the Output Window, once the Logiscope project is

created, no data is available. Indeed, the source files have not yet been parsed / analyzed

by the selected Logiscope verification modules.

1. To get the verification results, select the Project-Build command or click on the
icon.

A new Build tab is added in the Output Window next to Messages. Several messages

are displayed while parsing the source files and then loading the data showing that the

build process is in progress.

As soon as the Project [...] loaded. message is displayed in the Messages tab,

the project is built i.e. all the source files have been analyzed and associated results
generated and loaded.

The build process creates or updates some Logiscope internal files in the Logiscope

project repository.

If warning or error messages appear in the Build tab, double-click on the corresponding

line and see the syntax that led to the error or warning. Usually, many errors or warnings

are due to missing, incorrect or inconsistent parsing options: i.e. the selected dialect and/

or preprocessor directives.

16

You can easily change them using the Project Settings window (see hereafter).

Project Settings Window

2. Activate the Project > Settings... command.

The Project Settings window enables to modify all Logiscope project settings including

the verification modules to be activated using the various corresponding tabs.

Only the Project source file language cannot be changed.

You can also open the window using the Alt+F7 key or a shortcut: right click on the

Project filename as follows:

3. Click on the Analysis tab.

A Studio Guided Tour 17

.

You can change the Language Settings (i.e. the source code parsing options). If you do

so, you should click on the OK button to take into account the new project settings and

then build the Logiscope project again considering the new settings.

4. Click on the Cancel button.

Properties Box

5. Select a source file and activate the View-Properties... command or the icon, it

displays general properties of the selected file, the name and location:

You can also use a shortcut: as for Settings... with a right click on the file.

18

1.5 Viewing RuleChecker Results

1.5.1 Rule Violations

1 Select Browse-Rule-Rule Violations or click on the icon.

A new tab Violations is created in the Workspace View with the following folders:

• Violated Rules: this folder lists all the rules where at least one violation has been

found in the source code files analyzed,

• Clean Rules: this folder lists the rules with no violation found,

• Relaxed Violations: this folder lists the rules where some violations have been

relaxed using special comments in the source code (see section Relaxing Violations),

• Ignored Rules: the rules listed in this folder have not been checked by Logiscope

RuleChecker (i.e. the unchecked ones when you chose to customize).

In each folder, the rules are ordered according to the associated severity of the rules: one

sub folder per severity level: e.g. “Required”, “Advisory”.

In front of each folder name is specified the number of related items: rules or violations

according to the context. For instance, there are 28 violated rules, 3 “Required” rules and

25 “Advisory”. There are 34 violations of the ControlFlow_3_NoGoto rule.

Note: The default Logiscope rule sets come with predefined severities for each standard

rule. You can change the severity by editing the rule set file. For more details, please

refer to the document Kalimetrix Logiscope - RuleChecker & QualityChecker -

<Language> Reference Manual.

A Studio Guided Tour 19

2 Double click on the ControlFlow_1_NoDeadCode folder: the description of the

rule is now displayed in a window in the Result Pane.

3 Expand the ControlFlow_1_NoDeadCode folder and then the folder corre-

sponding to the file where the violation has been found.

You get the exact location of where the rule has been violated: i.e. line 25 of the

score.c file in the example.

4 Double click on the line number.

The source code will be displayed with the cursor highlighting the violation.

The screen looks like this:

Indeed this is dead code: i.e. some executable statements that can not be executed. The

Rational Logiscope RuleChecker module definitively improves efficiency of the code

reviewing process.

20

1.5.2 Rule Violations by File

5 Select Browse-Rule-Rule Violations by File menu:

A new tab “File Violations” is added to the Workspace View displaying all the files

where rule violations have been found.

6 Expand the folder corresponding to one source file: e.g. player.c.

The list of violated rules is now displayed: 1 sub folder per violated rule.

7 Expand the ControlFlow_8_BreakPathInSwitch folder/rule. The precise local-

ization: i.e. line number of the violation found in the file is displayed.

8 As before, just click on the line number to display the corresponding source

code. This may be a bug!

A Studio Guided Tour 21

1.5.3 Rule Violations List

9 Select the Browse-Rule-Rule Violations List menu or click on the icon.

The list of all Violated Rule lines is displayed in the Output window in a dedicated tab.

10 Double-click on a line, its corresponding source file appears with the violation

highlighted.

You can go through this list using the <F4> and <Shift + F4> commands.

22

1.5.4 Rule Violations Report

11 Select Browse-Rule-Rule Violations Report or click on the icon.

Kalimetrix Logiscope Rule Violations Report gives you an HTML synthesis of the

coding rule checking performed by Logiscope RuleChecker.

6. Select the Violated Rules for the Application Mastermind link.

7. Click Violations ordered by File and then on the machine.c file, you get the following

view:

A Studio Guided Tour 23

8. Now click the Back arrow twice in the HTML Browser Toolbar.

9. Click the Violations ordered by Rule/Severity link.

24

10. Now, get back to the beginning of the HTML Report and select the A synthesis

table for Required rule for the application Mastermind.

This synthesis table gives you a general view of violations of the Required rule. Above,

the rule ControlFlow_3_NoGoto has been violated 34 times in the score.c file.

Each time you click on a rule, you get its definition and each time you click on a file you

get the corresponding table (Violated Rules ordered by file).

The color code is defined as:

red: number of Rule Violations.

green: Rule Not Violated

yellow: Ignored Rules.

Next click on the ControlFlow_3_NoGoto column, the definition appears.

A Studio Guided Tour 25

1.5.5 Customizing Rules and Rule Sets

Logiscope RuleChecker is highly customizable. It allows you to adapt the rule checking

to your specific context taking into account the applicable coding standard.

• The project settings help you to choose what rules shall be checked on the code. This

may depend on the type of code under verification. One given rule set can be defined

to check newly developed sub-contracted applications when an other can be defined

for old legacy internal source code. Definitely, the applicable standards are not the

same.

• In Ada, C++ or Java, some rules have parameters that allow to customize the

verification. For instance, you can easily define your own list of forbidden functions

checked by the rule funcres or specify the description of the expected function header

comments checked by the rule headercom.

• The default name of a standard rule can be changed to fit to the name and/or identifier

specified in the company coding standard.

You can even have the same standard rule used twice with different names and

different parameters.

• You can change the severity level of a rule.

• You can define your own severity levels with a specific ordering: e.g. “Mandatory”,

“Highly recommended”, “Recommended”.

• You can change the standard description of a rule and put the one written in your

coding standard.

To modify the parameters of a rule, double click on the .rst file and edit the

corresponding part of the rule specification you want to customize then save the file.

If you did not choose to generate a flat rule set when you created the project you may

have to edit the rule set file that is included in your project’s “.rst” file.

For more details, please refer to the Kalimetrix Logiscope - RuleChecker &

QualityChecker - <Language> Reference Manual.

26

1.5.6 Relaxing Violations Using Special Comments

When this feature is activated, rule violations that have been checked and that you have

decided are acceptable exceptions to the rule, can be relaxed for future builds: they will

no longer appear in the list of rule violations. This can be very useful when checking

violations in a context where multiple reviews are performed.

The violations that have been relaxed will remain accessible for future reference.

The relaxation mechanism is based on comments inserted into the code where the

tolerated violations are. There are two ways to do this, depending on whether there is a

single rule violation to relax on the line, or multiple ones to relax on the given line.

Relaxing a single rule violation

If there is a single violation to relax, it can be done as a comment on the same line as the

code, using the following syntax (for C code):

some code /* %RELAX<rule_mnemonic> justification */

where:

- rule_mnemonic: is the mnemonic of the rule that you want to ignore violations of on

the current line.

- justification: is free text, allowing to justify the relaxation of the rule violation.

Note that the combination of characters introducing / closing a comment shall be adapted

according to the syntax applicable to the language of the project, e.g.:

- --: for Ada.

- // ... : for C++ and Java.

The Logiscope project in use already contains 2 Relaxed Violations as shown in the tree

displayed in the Violations tab.

11. Fully expand the Relaxed Violations folder in the

Violations tab.

12. Double-click on the node “Line 56” to display the corresponding source code.

A Studio Guided Tour 27

Indeed, the rule is violated because of the use of the ternary operator in the definition of

the MIN macro. This may justify someone relaxing the violation.

Note that in such a case, the correct parsing approach would have been to declare the

MIN macro as NOT to be expanded when setting the project parsing options. Please refer

to the Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual for

more details on this feature.

Relaxing several violations and/or adding a longer justification

If there are several violations to relax for a same line (several violations occurring in

different places in the code at the same time cannot be relaxed), or if the justification of

the violation should be written over several lines, the following syntax should be used.

/* >RELAX<rule_mnemonic> justification */

followed by any number of empty lines, comment lines, or relaxations of other rules

relating to the same code line, then by the code line of the violation.

13. In the Violations tab, double-click on the node “Line 250” to display the relaxed

violation found in the file player.c:

In this context, the violation has been relaxed during a formal Code Review as

mentioned in the justification that could have been written on several lines.

Relaxing all violations in pieces of code

If all the violations of one or more rules are to be relaxed in a given piece of code (e.g.

reused code included in a newly developed file), the piece of code should be surrounded

by:

where:

// {{RELAX<list_of_rule_mnemonics> justification

the piece of code

// }}RELAX<list of rule mnemonics>

• list_of_rule_mnemonics: is the list of all mnemonics of the rules that you want

to ignore violations of on the piece of code.

The rule mnemonics shall be separated by a comma.

28

Relaxing a violation in the Logiscope project.

In the Logiscope project created in the previous section, you want to relax the violation

of the Resource_9_ParameterUse rule using one of the various syntaxes of comments

introduced in the previous sections.

Indeed, the violation relates to the main function and the program specification states

that the behavior must changed if there is one or more arguments whatever the

arguments, so the argv parameter is not used intentionally.

To relax the violation which is highlighted in the code:

1. Add the following comment before the line 78 in the file master.c:

/*>RELAX<Resource_9_ParameterUse> CP: Requirement Id. FUN_625: */

/* Argument list not used but declared for ANSI compliance */

2. Save the file using <CTRL S>

3. Rebuild the projet using the command Projet-Build.

4. Select again the Browse-Rule-Rule Violations by File menu to refresh the results.

The violation is removed from the list of violations and now appears in the Relaxed

Violations:

A Studio Guided Tour 29

Note that the relaxations found in the code are notified in the Build Output tab:

1.5.7 Importing External Violations

By checking the Activate external violations import box, you can specify a Logiscope

Project folder in which you will put files that contain violation information from external

tools, for example compilation results, or the results of a program that you have written.

These files will then be taken into account and their violations added to the violation

information available in the project.

These data files containing the external violation information shall comply with the

following format.

Import data file format

The data file to import should contain lines respecting one of the following formats:

"pathname" line_number "rule_mnemonic" ["message"]

or

"pathname" start_char end_char line_number "rule_mnemonic" ["message"]

where:

• pathname: is the pathname (either relative to the project, or the full path) of the

source file where a violation has been found,

• line_number: is the line number of the violation,

• rule_mnemonic: is the mnemonic of the violated rule,

• start_char: is the position of the first character of the text to select for the violation

(counting from the beginning of the file),

• end_char: is the position of the last character of text to select for the violation

(counting from the beginning of the file),

• message: is an optional free text comment associated to either the violation or the

rule.

When start_char and end_char are omitted, the whole line is selected when locating the

violation in the file.

Each line in the file will be transformed into a violation.

30

Example:

"C:\Mastermind\machine.c" 14 "indentation"

"C:\Mastermind\machine.c" 21 "indentation"

"C:\Mastermind\machine.c" 153 160 7 "reserved_classes"

Files to import can have any suffix as long as the data they contain respect the specified

format.

Adding a violation data file into a Logiscope Project

The files to be imported have to be added to the Logiscope Project as described below:

• Create a new folder in the Project named "Imported Files".

• Add all files to be imported in the newly created folder.

Add rule files to your project that correspond to the rules that are going to be found in the

violation file. The rule files should be in the following format:

• the file for the rule rule_mnemonic should be called rule_mnemonic.std

• the contents of the file should follow this syntax:

.NAME long_name

.DESCRIPTION user_description

.COMMAND external

where:

• long_name is free text, that can include spaces. It’s a more detailed title of the rule. It

will appear as an explanation of the rule name in Logiscope.

• user_description is the description of the rule, that will be available in Logiscope.

• external is the type of command used for this rule, and should not be changed.

A Studio Guided Tour 31

Example: The rule file is called indentation.std.

It contains these lines:

.NAME Use indentation

.DESCRIPTION

Use correct indentation to clarify code.

.COMMAND external

The external rules should be added to the project. You can use the project settings.

You will need to rebuild the project to see the imported violations in the Logiscope

project.

For more details, please refer to the Kalimetrix Logiscope Basic Concepts manual.

1.5.8 Managing Generated Source Code

It is possible to specify to Logiscope RuleChecker that all or part of the source code has

been generated by a user-specified tool (e.g. Rational Rhapsody). Therefore, rule

violations found in the generated code are hidden. The violations found in the generated

source code can also be seen as relaxed violations by setting the “Show violations in

generated code as relaxations» option.

A source code file is is considered as tool-generated if it contains one of the following:

• a comment starting by #[,

• a comment starting by ##,

• a comment containing //! Generated Date:

Otherwise, the source code file is considered as “hand written”.

In generated file, user-written code is detected using the following rules:

• a line following a line starting by a comment starting with ## is a user code line,

• a line ending with comment starting with ## is a user code line,

• a line starting with a comment starting with #[open a block of user code ending on

a line starting with a comment starting with #].

Exception: if a comment ## is followed by “auto_generated” it does not introduce

user code.

32

1.6 Viewing QualityChecker Results

Viewing results through the Browse menu and the Logiscope toolbar gives a full

description of the analysis performed and of the language used.

The analysis of the project performed with Logiscope QualityChecker gives out

information on: Application , Modules, Classes , Methods & Functions

scopes.

For each of these scopes, information is available at the:

• Factors level ,

• Criteria level and,

• Metrics level

1.6.1 Quality Model

1. Select the Quality tab in the Workspace View and expand the folder corresponding

to the Logiscope project programming language: e.g.: C.

The Quality tab allows to see the specification of the Quality Model: the breakdown

in Factors- Criteria - Metrics levels at each scope (e.g. Application, Packages, Mod-

ules, Classes or Functions) depending on the programming language.

2. Expand the Criteria folder and then the Function sub-folder

The Criteria included in the chosen Quality Model file at Function scope are now

listed. In this context, the four criteria are the sub-characteristics associated to the

Maintainability characteristic as specified in the ISO 9126-1: 2001 international

standard. The default Logiscope Quality Model complies with the recommendations

of the ISO standard.

3. Double-click on the different items: e.g. TESTABILITY, an Information window is

displayed with their definitions.

For instance, at function scope, the level of TESTABILITY is evaluated by

combining 4 metrics.

4. Click on one of the metric identifiers to get its description: e.g. mc_vg.

A Studio Guided Tour 33

In this case, the metric mc_vg is not a basic metric but the sum of some other basic

metrics provided by Logiscope QualityChecker. This definition is written in the Quality

Model file. Of course, such a definition can be changed to be tuned to match the quality

requirements of the project under review.

The Metrics Dictionary provides an exhaustive list of the metrics.

34

1.6.2 Metrics Dictionary

5. Select the Browse-Metrics Dictionary menu or click on the icon.

6. Expand the folder corresponding to the Logiscope project programming language:

e.g.: C.

The various scopes of metrics available for this programming language are displayed

as folders: e.g.: Application, Modules, Functions

7. Expand the Application folder.

All the basic metrics available in Logiscope QualityChecker for assessing the level of

quality of the Application appear.

With a double-click on a metric its full description is displayed.

All the metrics can be used to determine calculated metrics or evaluate criteria in the

Quality Model. For more details, please refer to the Chapter Standard Metrics in the

corresponding Kalimetrix Logiscope RuleChecker & QualityChecker - <Language>

Reference Manual.

A Studio Guided Tour 35

1.6.3 Criteria Level

8. Select the Browse-Quality-Criteria Level menu or click on the icon:

A new tab Criteria appears in the Workspace View. It lists all the types of software

components analyzed (e.g.: Function, Application according to the programming

language) and for each, the list of Quality criteria defined in the Quality Model: e.g.

ANALYZABILITY, CHANGEABILITY, STABILITY, TESTABILITY as specified in

the ISO/IEC 9126-1 Quality Model internal standard.

Note: you can define your own Quality criteria by editing the Quality Model.

Different actions are now possible from this tab:

9. Expand any criterion to see associated rating levels or categories specified in the

Quality Model in use: for instance, TESTABILITY

: EXCELLENT, GOOD, FAIR, POOR.

10. Expand each rating level to discover the components which have been rated

according to the Quality Model.

For the TESTABILITY criterion, 2 functions are rated “POOR”

11. ouble-click on one of the listed items: function, class or file to make the

corresponding source code appear. In the output window, the list of metrics used for

the analysis with each corresponding value per metric; minimum and maximum

thresholds is also displayed. A status column indicates if the metric value is correct or

out of range (-1).

A click on the column title allows to sort the metric list according to name, value or

status.

Double-click on a metric in the Output window and its corresponding definition is

displayed in the result pane.

36

12. Close the Source file window in the Result window.

1.6.4 Factor Level

13. Select Browse-Quality-Factor Level or click on the Factor icon of the

Logiscope Toolbar.

A new tab titled Factors in the Workspace view appears.

14. Then browse through as for the Criteria level to discover the list of functions that

have been rated “Poor” for MAINTAINABILITY.

A Studio Guided Tour 37

The 2 “POOR” rated functions for MAINTAINABILITY should be subject to a detailed

code review to understand the reasons of this status and decide of the appropriate actions

to help the code to reach a higher level of Maintainability.

The results provided by Logiscope Viewer can help in such a code review (see the next

chapter).

38

1.6.5 Quality Report

15. Select the Browse-Quality-Quality Report or click on the icon.

The Logiscope Quality Report gives you an HTML synthesis at each level of the

Application analysis performed with Logiscope QualityChecker.

Use the HTML Browser Toolbar to navigate back and forth in the report. It is possible

to save the Quality Report by using File-Save As... Therefore it can be edited on an

intranet in order to be accessible by everyone in the company.

16. Click on the Functions link: the Quality Report is updated.

17.Click on the Factor level link, you get the following graph:

A Studio Guided Tour 39

Note: The pies presented in the following chapters are not available on UNIX. They are

replaced by tables. To generate a report with pies, change HTML reports option in

Tools-Options... command (you will see the pies in your favorite Internet naviga-

tor).

18. Click on the “POOR” part (i.e.: the red slice) in the MAINTAINABILITY pie and the

Quality Report looks will list the “POOR” rated functions:

40

19. Click on the Application Level in the left frame of the Quality Report and select the

Application Metric Level.

The values of the metrics selected at Application scope in the Quality Model are

available in the Quality Report:

- Call graph depth,

- Effective lines of code

- Number of statements

- Cyclomatic number: total and average,

- etc.

Clicking on a Metric Name would provide the definition of the metric.

20.Close the Quality Report.

A Studio Guided Tour 41

1.6.6 Select from Properties

Browse-Select from properties

The Select window appears and is used to build a request according to:

• a Scope: Method/Function or Class

• a Property kind: Criteria or Factor

• a Property name of criterion or factor

• a Property value: EXCELLENT, GOOD, FAIR or POOR

• a Request: rename the request User Request1 to “MyRequest”, press OK and

21. Change the Property value: to “POOR” and click on OK. A new tab appears in the

Workspace view with the list of functions satisfying the request.

42

A double-click on any function will display the source file window and shows a metric

list in the Output Window.

You can make as many requests as you like either by adding them in the User Request

tab or by creating a new tab.

1.6.7 Kiviat Diagram (only available on Windows)
22. Click on the Factor tab of the Workspace view. Expand successively the Functions,

MAINTAINABILITY, POOR tree nodes and select the function consistent.

23. Select the View-Kiviat graph menu:

This graph represents all metric values. The outer circle symbolizes upper bounds and

the inner circle symbolizes lower bounds.

The Kiviat view is also available for the application and the functions as well as from the

Factors tab of the Workspace View.

A Studio Guided Tour 43

1.6.8 Quality Model Editor
24. Click on the File View tab in the Workspace View and then double-click on the

quality model file: i.e. the Logiscope.ref file associated to the icon .

The Quality Model editor is displayed together with the metrics, criteria and factors used

in the Quality Model for the selected language.

This editor is used to modify or create new metrics, criteria and factors which are then

taken into account during the analysis of a QualityChecker project.

Before starting to modify a Quality Model, it is highly recommended to make a copy of

the corresponding file. Some default Quality Models can be found in the directory Ref in

the Logiscope installation directory.

In this view, it is possible to add a new factor, criteria or metric. Select the chosen

language, right-click and select the new functionality required among:

New Application Factor

New Module Factor

New Class Factor

New Function Factor

New Application Criteria

New Module Criteria

New Class Criteria

New Function Criteria

44

New Application Metric

New Module Metric

New Class Metric

New Function Metric

A dialog box is then opened allowing to supply name, description, expression, categories

and other items depending on the context.

The result pane may have to be enlarged to display all information because there is no

scroll bar.

To add a new category in a factor or a criterion, select the top category in the Categories

field and press the Insert key on the keyboard: a new category is inserted at the top, its

name and limits can then be changed. Watch the information that may be displayed in the

Messages View.

To suppress a category, select it and press the Delete/Suppr key on the keyboard.

1.7 Conclusion

You are now able to build a Logiscope project, you can check programming rules and

source code metric analysis results of the project using the Logiscope Studio.

You can either quit Logiscope Studio:

25.Select File-Exit;

or learn how to view some more QualityChecker results using Logiscope Viewer in the

next chapter.

A Viewer Guided Tour 45

Chapter 2

A Viewer Guided Tour

Now that you know how to create and build Logiscope QualityChecker projects, you can

start the second phase: result exploration with Logiscope Viewer. You will see and learn

how to display results with Logiscope Viewer such as:

• the Control Graph of a selected function,

• the Metrics Kiviat Graph of a selected function,

• the Criteria Kiviat Graph of a selected function,

• the Quality Report.

2.1 Starting a Logiscope Viewer Session

To begin a Logiscope Viewer session:

• from the Studio with an active project: Project-Start Viewer command.

• On UNIX (i.e. Solaris or Linux):

- launch the lgviewer binary

• On Windows:

- click the Start button, select the Kalimetrix Programs Group, then Kalimetrix

Tools, then Kalimetrix Logiscope 2014 and at last, Logiscope Viewer.

The Logiscope splash screen is first displayed and then the Logiscope Viewer main

window appears.

If you do not launch Logiscope Viewer from Studio, open the Logiscope project you

built in Chapter 2 (the “.ttp” file) with the File-Open command.

The Logiscope Viewer main window looks as follows:

46

This window contains the following elements:

1. Toolbar:

Provides shortcuts for the most commonly used commands of the File and Edit

menus.

2. Status Bar

Mostly indicates the status (RECEPTION, NON RECEPTION) of the active window

displayed in the Result Pane.

3. Control Palette: Workspace1-Component list Window

Displays a view of the components after loading a Logiscope project. Select or

deselect the one you want to explore.

4. Navigation bar

Provides shortcuts for the commands of the Navigate menu.

A Viewer Guided Tour 47

5. Selection Bar

Provides shortcuts for the most commonly used commands of the Select menu.

6. Component windows bar

Allows to display graphical results: control graph, source code, Metric and Criteria

Kiviat graph, and to go to the Application window.

7. Selector Bar

Use the selectors to choose and display additional information in the active Domain

window. The content of the Selector bar depends on the view being displayed in the

active Domain window.

8. Messages window

Displays error messages or indications on loading the project.

9. Result Pane

Used to display Window command results.

Use the View menu to show or hide some items described above and to customize the

Viewer main window as you wish.

48

2.2 Selecting/Deselecting a function

You can indifferently use either the Control Palette or the Workspace1-Component

list Domain window in the Result Pane to select or deselect functions.

1. In the Control Palette, click the function master/main.

The master/main function is now also selected in the Workspace1-Component list

Domain window.

2. Click now on the help component in the Workspace1-Component list Domain

window.

The master/main function is now also deselected. Only the help function remains

selected: i.e. ticked.

If you want to select several components, you can:

• either use the Control Palette,

• or use <Ctrl> + click mode in the Domain window.

A Viewer Guided Tour 49

2.3 Viewing the first results

2.3.1 Control Graph

You want to explore further into the function and get an inside view of it? Well, the

control graph is the map you need now. It is the graphical representation of a particular

function in a program.

1. Click on the Control Graph icon or select the Window-Control command. A

new window called help-Control Graph is displayed in the Result Pane.

You can see the representation featuring geometric symbols (nodes) linked by arrows

(edges). From experience you may have already guessed that the control graph

represents the selected function’s logical structure. If you are a newcomer to Logiscope

QualityChecker, this kind of representation may mean nothing to you yet. Do not worry,

you will quickly become familiar with it.

2. Place the cursor over the first diamond-shaped node in the lower left side of the graph.

Some information now appears on the Control Graph, as illustrated below:

It represents the pseudocode linked with this node.

50

3. Now, select the Window-Split command and move the cursor from left to right to

display the pseudocode associated with the control graph.

Now it becomes crystal clear: each geometric symbol (node) represents one or more

control statements. The diamond you have selected indicated a for statement.

Selection propagation works the other way too, from pseudocode to control graph.

For more details on the control graph representation, please refer to the Kalimetrix

Logiscope Basic Concepts manual.

2.3.2 The Source Code

Logiscope Viewer can also display the function source code.

4. Click on the Source Code icon, or select the Window - Source command.

The Source window pops up and displays the content of the player.c source file in which

the function help is defined. The first line of the function definition is shown in reverse

video.

Clicking on a node in the control graph moves the selection to the corresponding

statement(s) in the Source window.

A Viewer Guided Tour 51

2.3.3 Metric Kiviat Graph

Now, request the Metric Kiviat graph to check whether the help function meets C quality

requirements.

5. Click on the icon or select the Window - Metric Kiviat command.

A new window named help -Metric Kiviat Graph is displayed in the Result Pane.

If the information displayed in the Metric Kiviat Graph is difficult to read you can

maximize the window by clicking on the button located in the upper right corner.

You can see two concentric circles and coordinate axes radiating from the graph center.

Each axis represents one of the complexity metrics selected for assessing the function
quality. For instance, the lc_stat axis corresponds to the number of executable statements

contained in the function.

Circles represent lower and upper limit values for metrics represented in the graph.

Boxes on the axes indicate the metric value for the selected function. If a box is out of

the inner circle and inside the outer circle, then the metric value for the function being

inspected is within acceptable limits (displayed in green).

52

From this graph, you can see that the function help has all metric figures within limits.

The table below the graph provides a list of metric values. For the metric lc_stat:

Number of statements, the lower limit (LOW) is set to 1, the upper limit (HIGH) is 50

and the value measured is 24.

6. Select View - Kiviat Table command to view the selected metric’s full name.

These measurements are of significant interest to developers, who use the Reference File

(the first file you selected when creating your Logiscope project) to choose metrics they

want to appear on the metric Kiviat graph. Lower and upper limits are also defined in

this file and depend on programming standards used for the project.

2.3.4 Criteria Kiviat Graph

The Criteria Kiviat Graph is a graphical representation with a terminology closer to

what is generally used to describe software quality.

7. Click on the icon or select the Window-Criteria Kiviat command.

A new window named help-Criteria Kiviat Graph is displayed in the Result Pane.

A Viewer Guided Tour 53

The Criteria Kiviat Graph is based on the same principle as the Metric Kiviat Diagram.

Experience has shown that more than one metric should be used for evaluating quality

criteria. For instance, to assess the extent to which the ANALYZABILITY criterion has

been met, a combination of four different metrics is used:

• ct_vg: Cyclomatic number,

• avg_size: Average size of statements,

• lc_stat: Number of statements,

• com_freq: Comment frequency.

Below the graph, the table indicates the level achieved for the four evaluated criteria.

This level depends on how many metrics are in the limits specified. The function help

falls into the EXCELLENT category for all criteria: all of its metric results are within the

limits specified. The bottom table row, labeled SYNTHESIS, gives a global result, a

comprehensive idea of the degree to which the different quality criteria have been met

for the help function.

For more details on the Quality Model, please refer to the Kalimetrix Logiscope Basic

Concepts manual.

8. Close all windows related to the help function to clear the Result Pane. Be careful

not to close the Workspace1-Component list window.

9. Click on the icon in the Selection Bar or choose the Select-Deselect command to

deselect all functions on the Component List.

2.3.5 Preferences

You can customize the look of the Viewer graphs. Follow the next instructions:

1. Select the File-Preferences menu.

2. Click the Colors tab.

3. Open the Kiviats colors option.

54

4. Change the color of the outer ellipse (into Blue in this example) by clicking on the

Brush button:

5. Change the color of the inner ellipse (Pink) by clicking on the Brush and Define

Custom Colors. Use the arrow on the right to define a new color, click OK when

satisfied.

6. Click OK in the Preferences window to confirm and if you want to keep the new

defined Kiviat Colors for good, click Save first.

A Viewer Guided Tour 55

2.3.6 Average Kiviat Graph

This Kiviat graph displays average and standard deviation values for all analyzed

component metrics

1. Select the View-Average Kiviat, you get the following graph:

2. Move the mouse close to the metric boxes to get the corresponding values:

56

3. Select the View-Average Table to see computed values for each metric:

2.3.7 Quality Report

To get a global view of the whole program quality level: use the Quality Report.

1. Select the View-Report command from the menu bar. Note that a significant percent-

age (6.3%) of the Mastermind program functions belong to the "POOR" category.

2. Click on the “POOR” slice, all the components classified in this category are

automatically selected in the Control Palette.

A Viewer Guided Tour 57

2.3.8 Application Results

You can view the Application general results. Select Window-Application or click on

the icon to get the following graph:

From this graph, you can see the Application scope metric values.

Congratulations, you have just completed the first part of your Logiscope Viewer tour.

3. Close all windows in the Result Pane.

The Viewer looks empty as no project workspace is activated.

Now you will learn how to get results about Classes.

58

2.4 Reviewing Classes

2.4.1 Opening an existing project

1. Select the File-Open... command.

2. In the Open window, browse to select the ATMAudit.ttp Logiscope project file in

the samples/C++/LogiscopeProjects folder in the Logiscope installation directory.

2.4.2 Opening a Class List Window

1. First of all, click on the button to iconify the Workspace-Component list win-

dow, you will not need it.

2. Select the File-New... command.

3. In the New dialog box, select Class Workspace and click OK.

A window called Workspace-Class list is displayed. This window shows all classes of

the ATM program:

From this point on, and as long as you work on a class workspace, function-related

features such as the control graph and coverage charts will remain unavailable.

A Viewer Guided Tour 59

2.4.3 Viewing Class Results

To find out about analysis results of a given class, proceed as follows:

1. From the Control Palette, click on the class named Bank. This class becomes also

active in the Workspace-Class list window.

2. Click on the icon and the Bank Metric Kiviat graph is displayed.

This graph shows analysis results for object-oriented metrics defined in the Quality

Model in use. These are different from component and application metrics explored

before.

For more on object-oriented metrics, please refer to the Kalimetrix Logiscope Basic

Concepts manual.

3. To get a source free space, close the Metric Kiviat graph window by clicking on the

icon.

60

2.4.4 The Inheritance Graph

The inheritance graph is a powerful feature for analyzing inheritance relationships

between classes of an application.

4. Make sure the Workspace - Class List window is currently selected.

5. Select View - Inheritance Graph.

The inheritance graph appears in the left-hand pane, as shown below.

A simple inheritance graph just as an example ...

A Viewer Guided Tour 61

2.4.5 The Use Graph

The Use Graph gives the use classes relationship.

6. Select View - Use Graph.

The use graph of the classes defined in the program appears in the left-hand pane, as

shown below. A bit more complex than the inheritance graph ...

62

2.4.6 Getting More Detailed Class Results

More analysis results about internal classes can be obtained, provided you specify the

exact information you want the Viewer to display.

7. Select View - Class list to get back to the list of the classes.

8. Click Options-Display Fields command.

9. The Display options dialog box appears. This dialog box has two list boxes and a

certain number of buttons. The list box on the left contains information fields

available in the current project and the list box on the right shows information

currently displayed.

10. From the left list box, click on Metric to see items it contains.

11.Double-click ENCAP

12.Select cl_wmc and press the >>Show>> button

These metrics names are copied to the list box on the right.

13.Scroll down to Report and click on it to see items it contains.

14.Double-click class_REUSABILITY.

The criterion is copied to the list box on the right.

15. Click on this item, now displayed in the list box on the right, drag it up, move it until

ENCAP is highlighted and drop it.

A Viewer Guided Tour 63

16. Click on OK to take into account these changes.

As you can see, the Workspace-Class list window now shows values about metrics

cl_wmc and ENCAP and class factor REUSABILITY for all classes of the

application.

Results windows can be customized freely in order to see the results you are interested

in. Now you can decide to print the contents of this window for the next code review or

move on to another result window.

64

What a Logiscopian Quality Engineer Does 65

Chapter 3

What a Logiscopian Quality

Engineer Does

You heard through the grapevine that a Logiscopian quality manager will shortly be

organizing a source code review of the Mastermind application. Rumor has it that the

agreement reached between Logiscopians and their clients specifies that Logiscopians

should meet the MAINTAINABILITY requirement as defined in ISO/IEC 9126.

In order to list the functions to be checked according to quality standards, you will:

• select the functions to be checked,

• create a workspace step by step,

• use the control graph to make a quality diagnosis,

• print quality results.

3.1 Loading an Existing Logiscope

Project

1. First, start a new Logiscope Viewer session in the manner described in the previous

chapter.

2. Select the File-Open... command.

In the Open window, browse to select the MastermindAudit.ttp Logiscope project file

in the samples/C/LogiscopeProjects folder in the Logiscope installation directory.

The Workspace1 -Component list window is displayed in the Result Pane.

66

3.2 Creating a Workspace of Functions

to be Inspected

You are going to fill an empty workspace with an initial set of critical functions and then

refine this workspace on the basis of quality and complexity measurements.

1. Select the File-New... command.

2. In the New dialog box, select Function Workspace and click the OK button.

A new Workspace2-Component list window is displayed in the Result Pane.

3. From the title bar, activate the Edit-Component Workspace command.

4. In the Component workspace window, click on the Remove all button.

5. Click on the OK button to confirm and close the Component workspace window.

The Workspace2-Component list window is now empty.

6. Activate the Window-Vertical Tile command to arrange the Workspace1 and

Workspace2 windows side by side.

This way, you will see better step by step how the initial list of functions to be inspected

is created.

3.2.1 From the Quality Report

You are about to explore the quality report for the Mastermind program as the first

viewpoint for selecting critical functions.

1. Click Workspace1-Component list to make this window active.

2. Select the View-Report command from the menu bar.

3. The quality report is displayed in the Workspace1 window.

4. Click on the POOR and FAIR slices of the quality report pie chart.

Functions which belong to the POOR and FAIR categories are selected, as shown in the

Control Palette. These functions may not satisfy the client and a code review could be

needed here.

5. Click on the icon or select the Edit-Copy command.

6. Click in the Workspace2-Component list window to make it the active one.

7. Click on the icon or select the Edit-Paste command.

The list of functions which rank POOR and FAIR in the quality report are now listed in

the Workspace2-Component list window. You will soon see how in the Logiscopian

quality control department these functions are being used.

What a Logiscopian Quality Engineer Does 67

3.2.2 From the Call Graph

Logiscopian quality managers are extremely professional and want to examine most

strategically significant call graph functions. Get ready to inspect the following three

types of functions:

• functions which are part of a recursive path,

• functions calling a significant number of functions,

• the main function.

First, let's start with recursive functions.

1. Click on the Workspace1-Quality report window. It becomes the active window.

2. From the menu bar, select the View-Call Graph command.

The call graph appears in the Workspace1 window. It is so complex that even with your

well-trained eyes you cannot tell which functions follow a recursive path. Logiscopians

68

know how to select it directly.

3. Click on the icon or choose the Select - Recursive command.

Function hi_score_disp is now selected and it is the only recursive-path function.

You are going to copy this function into the Workspace2 window as described below:

4. Click on the icon or select the Edit - Copy command.

5. Click in the Workspace2 - Component list window.

6. Click on the icon or select the Edit - Paste command.

hi_score_disp is now displayed in the list of functions in the Workspace2 window.

Functions calling a significant number of functions are just as difficult to spot. Use the

Logiscopian selection box to sort this out:

7. Click in the Workspace1-Call graph window.

8. From the menu bar, select the Select - From Properties... command.

What a Logiscopian Quality Engineer Does 69

Logiscopians use the Query on components window to select functions with specific

characteristics. The dc_calls metric measures the number of distinct calls stemming from

a function. Logiscopians use this metric to spot the functions which have a large number

of call relations.

9. In the Properties: pane, enter the following expression: dc_calls > 7

10. Click on the OK button.

The five functions which call more than eight other functions are now selected on the

call graph.

11. Add the function main to the selection by clicking on the appropriate node (top right

root) on the call graph.

You have selected two other types of strategic functions in the call graph. Add them to

the initial list of functions to be inspected in the Workspace2 window.

12. Click on the icon or select the Edit - Copy command.

13. Click on the Workspace2 - Component list window to make it become the active

window.

14. Click on the icon or select the Edit - Paste command.

70

3.3 Inspecting Selected Function Control

Graphs

A quick glance at functions selected in the Workspace2 window sends shivers down your

spine! If you spend time exploring all functions, Logiscopians will spot you, and they

might not like their source code being viewed by foreign explorers. Besides, your team is

expecting you back with excellent information within a couple of hours. Since you are a

sensible, cool-headed explorer, you will disregard functions which have a simple control

structure. You will however need to view the control graph for each selected function.

1. Deselect all functions in the Workspace2-Component list window and click on the

first function (i.e. consistent) of the list.

2. Click on the icon or select the Window - Control command

The control graph of the consistent function is displayed.

The control flow is clear but the function looks like it is overloaded with processes.

Actually, it looks as if there was a sequence of two functionalities. If this is the case, why

not make them two different C functions? A more clear-cut function would certainly

improve maintenance performance, or possible reuse of this portion of code.

Logiscopians will certainly explore further in their code review.

3. Click on the icon to examine the next function.

The control graph of hi_score_disp function is displayed.

What a Logiscopian Quality Engineer Does 71

What a wonderful goto instruction! What else, a portion of the code seems out of reach.

You may wonder whether or not this is normal. It should be easy enough to make this

function easier to maintain than that! You will definitely discuss the matter in the code

review.

4. Click on the icon to examine the next function.

The control graph of the instruction function is displayed.

What a mess! (your telescopic eye just spotted dead code). Could a bug be crawling

about? Has a Logiscopian developer missed this one?

Looking further into it, you can see that switch structures are odd. The first five cases

leave the function with a return instruction whereas the last two cases are processed

72

differently. This lack of homogeneity will make readability difficult and maintenance

will be risky, but let's carry on.

5. Click on the icon to examine the next function.

The control graph of the machine_plays function is displayed.

Control Graph (machine_plays)

Now you thought you had seen a mess before! Your quality manager will not mince his

words about the Logiscopian developer when he sees this! Why are there repeated

groups of structures? Let's take a closer look at all this.

Everything is packed so tight on the screen that you can't see the wood for the trees. To

get a clearer view of the control graph:

6. Press and hold the <ALT+SHIFT> keys.

7. Click the mouse and pull the selection box around the area you want to enlarge.

8. Release the mouse button.

9. Now it all looks a little clearer. There seems to be no code factorization at all.

Remember, when you explored the component control graph in phase 2, your guides

advised you to keep it in mind for the report. Logiscopians will soon be told to re-read

this, and correct it fast.

10. Click on the icon to examine the next function.

The control graph for function machine_read_file is displayed.

What a Logiscopian Quality Engineer Does 73

Here you see an apparently clear sequence of nested control structures. However, there

seems to be a duplication of a portion of the code including a break statement. You will

keep this in mind for the review.

11. Click on the icon and proceed to the next function.

The control graph of function machine_update_scores is displayed

The same portion of code with the break statement as in the previous function seems to

be repeated twice. Lack of code factorization between these two functions? You will

discuss the matter, no doubt.

12. Click on the icon to examine the next function.

74

The control graph of the master/main function is displayed.

Its structure looks so simple that you need not inspect it, better take it off the list of

functions to be inspected now.

13. Click in the Workspace2 - Component list window.

14. Deselect all items in the graph to avoid taking them off the list.

15. Click on the master/main function to select it.

16. Click on the icon or select the Edit - Cut command.

The master/main function has been removed from the list of functions to be inspected.

Logiscope Viewer automatically updates the Control window with the next function in

the list.

17. Click in the Control window.

The control graph of player_plays function is displayed.

What a Logiscopian Quality Engineer Does 75

At a first glance, the graph seems to be clear but your natural insight tells you to explore

further into the switch structure. You were right, a switch path jumps from the first to the

second case. You have no idea whether this is correct or whether the Logiscopian

developer omitted a break statement.

18. Click on the icon to examine the next function.

The control graph of the player_score function is displayed.

Your expert saw that: this function has many goto instructions. A little bit dangerous isn’t

it?

76

To show all this to your team back home and illustrate your report, you will print the

control graph as explained below.

3.4 Printing a Control Graph

1. In order to get a preview of the Control Graph, you can select File-Print Preview...

option.

2. Click on the icon and then click on the OK button

The current control graph is to be printed out.

3.5 Saving a Workspace

Okay, finished with control graph exploration. The workspace has been narrowed down

to the eight functions which remain listed in the Control Palette. You've got your

function list ready for the code review.

Save this list as a Logiscope workspace for a further round of inspection, which will be

carried out in the next phase.

1. Click in the Workspace2-Component list window.

2. Select the File - Save command.

3. A Save As window is now displayed.

4. Use the Look In box to select the C:\Mastermind directory.

5. In the Name pane, enter the name of the Logiscope workspace to be saved: Review.

A. ws extension (Logiscope WorkSpace) is automatically added to the file name.

You can now end the Viewer session (not necessarily for another coffee break but mainly

for the needs of this story).

Select the File - Exit command.

Generating a Quality Report Automatically 77

Chapter 4

Generating a Quality Report

Automatically

Note: This section is applicable on Windows platforms only.

Automation is one of the computer industry hottest buzzwords of the day when it comes

to improving productivity, especially when talking of documentation production. With

this in mind, you will certainly appreciate how Logiscope users generate automatically

advanced reports using Logiscope WinDoc.

1. Click the Start button, and then select Logiscope WinDoc in the Kalimetrix > Kali-

metrix Tools > Kalimetrix Logiscope 2014 program group.

The Logiscope WinDoc main window appears :

The No Name: 1 window contains several fields for specifying different parameters of

the documentation to be generated.

Fill in all of these fields as described hereafter.

78

2. In the Logiscope project file pane, enter the name of the Logiscope project:

e.g. C:\LogiscopeProjects\Mastermind.ttp, or use the Browse... button and

navigate to this file.

The Model for report pane allows you to select the type of report to be generated.

Logiscope RuleChecker and QualityChecker offers various types of reports:

•Software Quality Evaluation Report,

•Software Maintenance Report, ...

3. Click on the Browse... button located next to the Model for report pane and select

the models folder in the Logiscope installation directory.

4. Select Rqual.dot file in the Open dialog box.

5. In the Word report file pane, directly type the name of the Word document to be

generated: e.g. C:\LogiscopeProjects\Mastermind_QualityReport.doc, or use the

Browse... button.

6. Fill the 5 other panes with the appropriate information:

Reference of report: gives the identification information you want to the gener-

ated document,

Author: enter your name,

Application: type the name of the project: e.g. Mastermind,

Version: type the version number of the report : e.g. V1.0,

Date: leave the Today default value for this field.

B&W: uncheck if you want the colored report.

Generating a Quality Report Automatically 79

7. When you have entered the requested information, select the File-Build report

command.

A message window is displayed.

8. When report generation is complete, simply open the generated Word report: e.g. :

C:\LogiscopeProject\Mastermind_QualityReport.doc and appreciate how efficient

Logiscope WinDoc automatic documentation generation is.

9. Save the current Quality Report description, so you can apply it to another document

later.

10.Select the File - Exit command to end the Logiscope WinDoc session.

80

Notices 81

Notices

© Copyright 2014

The licensed program described in this document and all licensed material

available for it are provided by Kalimetrix under terms of the Kalimetrix

Customer Agreement, Kalimetrix International Program License Agreement or

any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-Kalimetrix products was obtained from the suppliers

of those products, their published announcements or other publicly available

sources. Kalimetrix has not tested those products and cannot confirm the accuracy

of performance, compatibility or any other claims related to non-Kalimetrix

products. Questions on the capabilities of non-Kalimetrix products should be

addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Copyright license

This information contains sample application programs in source language,

which illustrate programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to Kalimetrix, for the purposes of developing, using, marketing or

distributing application programs conforming to the application programming

interface for the operating platform for which the sample programs are written.

These examples have not been thoroughly tested under all conditions.

Kalimetrix, therefore, cannot guarantee or imply reliability, serviceability, or

function of these programs.

82

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from Kalimetrix

Corp. Sample Programs. © Copyright Kalimetrix Corp. _enter the year or years_.

Trademarks

Kalimetrix, the Kalimetrix logo, Kalimetrix.com are trademarks or registered

trademarks of Kalimetrix, registered in many jurisdictions worldwide. Other

product and services names might be trademarks of Kalimetrix or other companies.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript

are trademarks of Adobe Systems Incorporated or its subsidiaries and may be

registered in certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International

Business Machines Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Macrovision and FLEXnet are registered trademarks or trademarks of Macrovision

Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other

Microsoft products referenced herein are either trademarks or registered

trademarks of Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of Netscape

Communications Corporation in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks

of Sun Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

ITIL is a registered trademark, and a registered community trademark of the Office

of Government Commerce, and is registered in the U.S Patent and Trademark

Office.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product or service names may be trademarks or service marks of

others.

	A Studio Guided Tour
	1.1 Starting a Logiscope Studio Session
	1.2 Creating a Logiscope Project
	Defining the type of the Logiscope project
	Specifying the source files to be analyzed
	Setting Parsing Options
	Setting QualityChecker Parameters
	Setting RuleChecker Parameters

	1.3 Introducing the Studio Main Window
	1.4 Building the Logiscope Project
	1.5 Viewing RuleChecker Results
	1.5.1 Rule Violations
	1.5.2 Rule Violations by File
	1.5.3 Rule Violations List
	1.5.4 Rule Violations Report
	1.5.5 Customizing Rules and Rule Sets
	1.5.6 Relaxing Violations Using Special Comments
	Relaxing a single rule violation
	Relaxing several violations and/or adding a longer justification
	Relaxing all violations in pieces of code
	Relaxing a violation in the Logiscope project.

	1.5.7 Importing External Violations
	1.5.8 Managing Generated Source Code

	1.6 Viewing QualityChecker Results
	1.6.1 Quality Model
	1.6.2 Metrics Dictionary
	1.6.3 Criteria Level
	1.6.4 Factor Level
	1.6.5 Quality Report
	1.6.6 Select from Properties
	1.6.7 Kiviat Diagram (only available on Windows)
	1.6.8 Quality Model Editor

	1.7 Conclusion

	A Viewer Guided Tour
	2.1 Starting a Logiscope Viewer Session
	1. Toolbar:
	2. Status Bar
	3. Control Palette: Workspace1-Component list Window
	4. Navigation bar
	5. Selection Bar
	6. Component windows bar
	7. Selector Bar
	8. Messages window
	9. Result Pane

	2.2 Selecting/Deselecting a function
	2.3 Viewing the first results
	2.3.1 Control Graph
	2.3.2 The Source Code
	2.3.3 Metric Kiviat Graph
	2.3.4 Criteria Kiviat Graph
	2.3.5 Preferences
	2.3.6 Average Kiviat Graph
	2.3.7 Quality Report
	2.3.8 Application Results

	2.4 Reviewing Classes
	2.4.1 Opening an existing project
	2.4.2 Opening a Class List Window
	2.4.3 Viewing Class Results
	2.4.4 The Inheritance Graph
	2.4.5 The Use Graph
	2.4.6 Getting More Detailed Class Results

	What a Logiscopian Quality Engineer Does
	3.1 Loading an Existing Logiscope Project
	3.2 Creating a Workspace of Functions to be Inspected
	3.2.1 From the Quality Report
	3.2.2 From the Call Graph

	3.3 Inspecting Selected Function Control Graphs
	3.4 Printing a Control Graph
	3.5 Saving a Workspace

	Generating a Quality Report Automatically
	Notices

