Kalimetrix LociscopPE

RuleChecker & QualityChecker
Getting Started

Before using this information, be sure to read the general information under the “Notices” section,
on page 81.

© Copyright Kalimetrix 2014

About this manual

Audience

With Kalimetrix Logiscope™ RuleChecker & QualityChecker, you are about to discover
the world of most advanced software product evaluation techniques.

The RuleChecker & QualityChecker Getting Started manual will lead you through a use-
case situation and show you just how simple and yet complete the Logiscope toolset is. If
you can spare a little of your precious time, just relax and let us take you for a guided
tour of Logiscope RuleChecker & QualityChecker.

Overview

This manual introduces Logiscope RuleChecker & QualityChecker environment and will
get you started. In about two hours you will become familiar with the tool main features.
By the end of this phase, you will know how to use Logiscope RuleChecker &
QualityChecker main features and become familiar with the various commands. In the
process, you will see and learn:

» how to create a Logiscope project and activate Logiscope powerful source code
verification modules:

- RuleChecker: check that the source code complies with a set of defined coding
standards and best practices leading to a satisfactory level of Maintainability, Reli-
ability or Portability;

- QualityChecker: use source code metrics to locate complex, error prone modules,
analyse graphic results to assess architecture of the application and detailed design
of functions.

For more details, refer to Kalimetrix Logiscope - Basic Concepts;

 how to display some first results using Logiscope Studio:
- Rule violations in source code
- Rating of functions, classes, modules, etc. and values of complexity metrics,

» how to display graphic results using Logiscope Viewer:
- Control graphs,

Call graphs,

Use graphs.

Inheritance graphs,

Related Documents

Reading first the following manual is highly recommended:

+ Kalimetrix Logiscope - Basic Concepts.

Additional information can be found in:

+ Kalimetrix Logiscope - QualityChecker & RuleChecker - Ada Reference Manual.
« Kalimetrix Logiscope - QualityChecker & RuleChecker - C Reference Manual.

« Kalimetrix Logiscope - QualityChecker & RuleChecker - C++ Reference Manual.
+ Kalimetrix Logiscope - QualityChecker & RuleChecker - Java Reference Manual.

Before You Start

In this session, you will use examples of source code files provided in the samples folder
of the Logiscope installation directory.

As a precaution to keep original files safe, it is recommended to copy the samples
subdirectory into a working directory of your own.

In addition, you will create Logiscope projects and associated repositories: i.e. sets of
files containing internal data used by Logiscope. It is recommended to a create a
dedicated directory to store these data: e.g. a folder named LogiscopeProjects.

Conventions

The following writing conventions are used in this manual:

 bold: names of commands (e.g. vcs), files and folders (e.g. LogiscopeProjects), and
file extensions (.res)

« italic: names of user-defined textual elements (version_1, component_2), notes,
* typewriter:Screen messages (Reference filename)requiring user action,
 keycaps (<Enter>).

<InstallationDir> will now refer as the Logiscope installation directory.
<Version> will now refer as the Logiscope current version: e.g. 6.6 or upper.

<Language> will now refer as Ada, C, C++ or Java.

Note: Screen displays in this manual can be slightly different from those you get when
running the Getting Started.

Table of Contents

Chapter 1

Chapter 2

A Studio Guided Tour

11
1.2
13
1.4
15

1.6

1.7

Starting a Logiscope StUdio SESSIONccceviiiiriiirieiereeee e 1
Creating a LOgISCOPE PrOJECTcvoiviiiicie et e 3
Introducing the Studio Main WiNAOWccooeiiriiiieieeieesese e 13
Building the LOgiSCOPE PrOJECL.ccveiveieciecie e 15
Viewing RuleChecker RESUIESccooeiieiiiiiiiicee e 18
151 {0 TV A To] P 11T] SRR 18
15.2 Rule Violations DY Fileccoooviiiiiiieeee e 20
153 {0 TV A To] Fo U To] 3] S S PR 21
15.4 Rule Violations REPOITcveiiiiieie e 22
155 Customizing Rules and RUIE SELSccccviviieveieiie e 25
15.6 Relaxing Violations Using Special Commentsccccccevevveveeveseennenne. 26
157 Importing External VIiolationsccccccceviveieiiie e 29
158 Managing Generated SOUICE COUEccvveveieeiiiieie s 31
Viewing QualityChecker RESUILScccoveiiiiiicce e 32
16.1 Quality MOEl ..o 32
1.6.2 MELFICS DICLIONAIY ...oviiveeiicii et 34
1.6.3 Critera LeVED ..o e 35
164 T (o] g I PSR 36
1.6.5 QUAIILY REPOIT ...t et 38
1.6.6 SeleCt fFromM PrOPEITIESccvciiiecece st 41
1.6.7 Kiviat Diagram (only available on Windows)c.ccccveneneniieiennn, 42
1.6.8 Quality Model EdItOrc.cooeiieiiiiiii e 43
O] 0o 11551 o] SR TPRR 44

A Viewer Guided Tour

2.1
2.2

Starting a LogisCOPe VIEWET SESSIONc..civiiiiiiiiiciieitecie sttt 45
Selecting/Deselecting @ fUNCTIONcoveiiiiiiiieeee e 48

Chapter 3

2.3

2.4

ViIeWiNg the FIrSt rESUILScviiiiieii it 49

23.1 COoNLIOl Graph ..o s 49
232 THe SOUICE COUEoveiiiiiiicit e 50
2.3.3 Metric Kiviat Graphccoieiiiiiie e 51
234 Criteria Kiviat Graphcooiiiiiiiiieeecs s 52
2.3.5 PIEFEIEINCES ...t 53
2.3.6 Average Kiviat Graph ..o 55
2.3.7 QUANITY REPOIT .. 56
2.3.8 APPHICALION RESUILS ... 57
REVIEWING CIASSESvviiiiiiriiitesiet e 58
2.4.1 Opening an existing PrOJECEcoviveieie e 58
24.2 Opening a Class LiSt WINAOWcccerererieieiiisinee s 58
24.3 VieWing Class RESUILSooeieiiiiiiisiserieeee s 59
24.4 The INheritance Graph ... 60
2.4.5 The USE Graph ..o 61
2.4.6 Getting More Detailed Class RESUILSccevveiiiiiiiniicccceee 62

What a Logiscopian Quality Engineer Does

3.1
3.2

3.3
3.4
3.5

Loading an EXisting LOGIiSCOPE PrOJECTccovririerieiieieisisesesese e 65
Creating a Workspace of Functions to be Inspectedcccoocvvivvieviicvciein s 66
321 From the Quality REPOITcoooviiieece e 66
3.2.2 From the Call Graph ... 67
Inspecting Selected Function Control Graphs.cccccceviiiiieiiieiie e 70
Printing @ Control Graphcccv oo 76
SAVING @ WOTKSPACEvevieiiiiiiiite ettt 76

Chapter 4 Generating a Quality Report Automatically

Chapter 5 Notices

Chapter 1

A Studio Guided Tour

1.1

To get access to the Logiscope key features and results, it is first necessary to specify the
scope and type of the verification to be performed. This is done using a Logiscope
Project.

A Logiscope project mainly consists in:
« the list of source files to be analyzed,
« applicable source code parsing options according to the compilation environment,

 the verification modules to be activated on the source code files and the associated
controls and settings (e.g. metrics to be computed, rules to be checked).

A Logiscope project can be created using:

» Logiscope Studio: a graphical interface requiring a user interaction, as described in
the following sub-sections introducing the Logiscope project settings,

» Logiscope Command Line mode: a tool to be used from a standalone command line
or within makefiles, please refer to Chapter Command Line Mode in the appropriate
Kalimetrix Logiscope - QualityChecker & RuleChecker - <Language> Reference
Manual

Starting a Logiscope Studio Session

To begin a Logiscope Studio session:
* On UNIX (i.e. Solaris or Linux):
- launch the vcs binary

* On Windows:

- click the Start button and select the Kalimetrix Logiscope 2014 item in the Kali-
metrix Programs Group.

A Studio Guided Tour 9

The Rational Logiscope splash screen is first displayed and then the Logiscope Studio
main window appears as follows.

| Eile Edt Yiew Browse Project Link Tools Window Help
DEE@| s BBX o FE| 2N |55 |
I = 1[5 Logiscope 1 0 i | = |
e v = e8| oedms:ca| ad
-1
"~ I File View

x| .
| -

g
R4

AT ATE T T Messages £

For Help, press F1

The various components and areas of the Logiscope Studio main window are detailed in
section 1.3.

1.2 Creating a Logiscope Project

First, you shall define the Logiscope project specifying the scope and type of verification
to be performed by Logiscope:

1. In the File menu, select the New... command or click on the E icon, you get the
New Projects dialog box.

2. In the Project name: pane, enter the name for the new Logiscope project to be
created.
In the context of the guided tour, type Mastermind.

3. Then select its Location: i.e. the directory where the Logiscope project (i.e. a “.ttp”
file) and the associated Logiscope repository will be created; the Logiscope repository
is a folder in which Logiscope internal analysis result files are generated.

You can either enter a directory, keep the proposed default location or specify the path
to the LogiscopeProjects folder if previously created as recommended.

Filezs Frojects l Wwiorkspaces]

@ Logizcope Project Froject name:
|Mastermind

Location:

|E:HLDgischePrDiectsHMastermind |:|

{+ Create new workspace

~

Note: By default, the project name is automatically added to the specified location. This
implies that a subdirectory named <ProjectName> is automatically created.

4. and click the OK bhutton.

A Studio Guided Tour 3

Defining the type of the Logiscope project

The Logiscope Project Definition dialog box appears.

5. Select the Project Language: i.e. the programming language in which are written
the source code files to be analyzed.
For the Mastermind project, select C.

Note: Only one language can be selected. If your application contains source code
files written in several languages, you should create several distinct Logiscope
projects: one for each language.

6. Select the Project Modules: i.e. the verification modules to be activated on the
source files of the project.
For this guided tour, select both QualityChecker and RuleChecker.

Logizcope Project Defimtion

Project Language Project Modules
" Ada [v Audit

+ C [CodeReducer
[Ces Iv RuleChecker
" Java I

Notes: At least one module should be selected. The TestChecker module cannot be
selected with another module.

For more details on the CodeReducer module, please refer to Kalimetrix Logiscope -
CodeReducer - Identifying Code Similarities.

For more details on the TestChecker module, please refer to Kalimetrix Logiscope -
TestChecker Getting Started.

7. Click the Next button to continue the creation.

Specifying the source files to be analyzed

The Project Source Files dialog box allows to specify what source files are to be
analyzed and where they are located.

The Source files root directory contains the location of the directory of the source files
to be analyzed.

8. Browse to select the directory where the Mastermind sample source files are: i.e. in
the samples/C/Mastermind folder of the Logiscope installation directory.

Project Source Files

Source files root directory:

s4 T elelogictLogizcope B.5Ysamples\C\M astermin

Directones

& |nclude all subdirectories

" Do not include subdirectories

" Customize subdirectanies bo include

Suffixes

Source Files eC

The Directories choice allows to select the list of repertories covering the application

source files.

- Include all subdirectories means that selected files will be searched for in every sub-
directory of the source file root directory.

- Do not include subdirectories means that only files included in the application
directory will be selected.

- Customize subdirectories to include allows the user to select the list of directories
that include application files through a new page.

The Suffixes choice allows to specify applicable source, header and inline file extensions
needed in the above selected directories. Extensions shall be separated with a semi-
colon.

9. Click the Next button.

A Studio Guided Tour 5

Setting Parsing Options

The next dialog box depends upon the selected language for the Logiscope project. This
dialog box allows to set up some source code parsing options.

Regarding a Logiscope C project, the options are the following:

C Language Settings

Drefimitian file: |E:"xF'r|:|gram Files\T elelogichLogizcope_G6. |

lgnore file: |l::"'.F'rl:|gram FileshT elelogichLogizcope_6. J

Preprocessor
tacro definitions and [nclude paths (-0 & -[]

| El

v expand macro, except for the ones listed in;

| -

C Dialect: A dialect is used to take into account some special features of the
development environment (e.g. compilers, IDE) to use for the project under analysis:

* access paths to standard inclusion directories,
 predefined macro definitions or special keywords.

« inclusion directories where rule violations shall not be reported.

Notes: There is no Language Settings dialog box for Logiscope Ada projects and
Logiscope Java projects.

For more details on available C and C++ dialects, please refer to the chapter Parsing
Options in the respective manuals:

» Kalimetrix Logiscope RuleChecker & QualityChecker - C Reference Manual.,

+ Kalimetrix Logiscope RuleChecker & QualityChecker - C++ Reference Manual.

10.For the Mastermind project: select the standard ANSI 89 / 1SO 90.

C Language Settings

C Dialect
ANSI 83 /150 30 |

ARSI 29 /150 90

C99

DIAB C

GHUC

GHU C D950

GHU C Red Hat Linus 3

GHU C Red Hat Linus 4

GMHU C Red Hat Linus 5

HFC

&R C

K.ermighan and Ritchie 78

kicrozaft C 1.5

Mizrozoft Developer Studio 4

Microzoft Developer Studio &

kicrozaft Visual Studio MET 2003 A/C7-
Microsoft Wisual Studio & AC58-
Micrates Besearch C hl

Preprocessor: The source code files to be analyzed may contain some preprocessing
directives (e.g. #ifdef). In some cases, these directives can lead to parsing errors and
warnings by breaking up the code structure or missing information.

In addition to the predefined preprocessing information associated to the selected dialect,
the Preprocessor pane can be used to provide complementary preprocessing and
compilation options:

* access paths to project specific inclusion directories,

* project macro definitions.

The syntax is as for a compiler:

[-1directory]*

[-Dname_of macrol with_no_argument[=definition]]* [-

Uname_of macro2_with_no_argument[=definition]]*

A “-1” option defines directory as an access path to inclusion directories (applicable to C
projects only).

A “-D” option defines name_of macrol with_no_argument as if it were in a #define
directive.

A “-U” option considers name_of _macro2_with_no_argument as undefined as if it were
part of an #undef directive.

The number of occurrences of options is unlimited.

A Studio Guided Tour 7

For more details on parsing options, please refer to the corresponding chapter in the
respective Kalimetrix Logiscope - RuleChecker & QualityChecker - <Language>
Reference Manual.

11. Click the Next button.

Setting QualityChecker Parameters

The next dialog box allows to specify the applicable Project quality model: how the
QualityChecker module evaluates software quality characteristics (e.g. Maintainability)
based on a standard factors / criteria / metrics approach.

Note: Quality models are textual files (suffixed by “.ref”). Default quality models are
provided with the standard Logiscope installation. They should be customized to take
into account the verification objectives and contexts applicable to the project.

For more information, refer to the Kalimetrix Logiscope Basic Concepts manual.

| QualityChecker Settings

| Project quality model:

ram FilezhT elelogichLogizcope 6.55F eflogizcope. re ik

12.For the purpose of this presentation, keep the default Logiscope quality model
provided with the standard Logiscope installation.

Note: For your project verification, you should define and select your own applicable
quality model.

13.Click the Next button.

Setting RuleChecker Parameters

The RuleChecker Settings dialog box allows to specify the applicable Project rule
sets: i.e. the rules / coding standards the Logiscope RuleChecker module shall verify on
the project source files.

For more details on available rules and rule sets, please refer to the chapter Standard
Programming Rules in the respective Kalimetrix Logiscope RuleChecker &
QualityChecker <Language> Reference Manual.

14. Tick the box associated to the following Project rule sets:
« Complexity,

+ ControlFlow, and

+ Resource.

The files now appear in the bottom pane where all currently selected rule sets are listed.

RuleChecker Settings

Project rules sets:

Complesity [from C:5Program FileshT elelogichLogisc
ContralFlow [from C:\Program FilessT elelogichLogis
[1 Eclipse [from C:%Program FileshT elelogichLogiscope
[1 Marming [fram C:4Program Filesh T elelogichLogiscop J
[1 Partability [from C:5Progrann Filesh T elelogichLogiscc
Resource (fror C:\Program FileshT elelogichLogisce

LIS Y PO o RPN (RPN (SR N) o FOOUUPRRI oo PR e (SO Y [Y B

4 *

Complesity [from C:Program FileshT elelogichLogizcope_B. 44%Feft
ContralFlove [fram C:MProgram Filez\T elelogic\Logiscope_GB.44Fe
Rezource [from C:%\Program FileshT elelogichLogizcope_EB.44\Reftl

15. Click the Next button.

A Studio Guided Tour 9

The next RuleChecker Settings dialog box allows to fine tune the list of Project rules.
It is possible to select or unselect some of the rules available.

The rules that are selected are those listed in the Project rule sets selected in the previous
RuleChecker Settings dialog box.

RuleChecker Settings

Project rules:

WY CodePrez_1_DeclarationPerLine
[] CodePres_2 WumberStatements
[] CodePres_3 FileLength

[] CodePres_4 StatementSwitch J
[CodePres_5_StatementSwitch

[] CodePres_B_CommentStatementLine
[] CodePres_7_ExtensionHeader

I S P Lo N Ve SN,

Rule severity: Mone

D escription
There must nat be mare than one declaration on a line.

Fole
Makes code eazier to read.

16.For the purpose of the example, just uncheck the rules:
Complexity 14 InclusionLeveland ControlFlow 4 ThenElse.

RuleChecker Settings

Project rules:

Complexity_13_ SimpleT est -~
[] Complexity_14_InclusionLeyvel

[[] Complexity_15_Sizeof

ContralFlow_1_MoDeadCode J
ControlFlow_2_FunctionP eturm

ControlFlow_3 MoGaoto
[] ContrelFlave_ 4 ThenElse

Ll Cmrbem ey B BleDiem e e by

Rule seventy: Reguired

Drezcription ”
[t iz llegal to Lge the gata statement, especially a lacal goto 2l

Raole
Structured programming rules are respected W

The description of the selected rule and the rule severity are displayed in the bottom
pane.

17.And click the Next button.

The last RuleChecker Settings dialog box allows to use some advanced features of the
Logiscope RuleChecker module.

Advanced Settings:

Advanced zettings
[Allaw vidlation relasation mecharizm
[Aclivate external violation import rmechanism
Impart filez located in the following project folder:

[Generate flat rile set file [no include)

Allow violation relaxation mechanism: when the box is checked, rule violations
can be relaxed using special comments in the code. For more details, please refer to
section 1.5.6.

Activate external violation import mechanism: when the box is checked, the
files in the specified project folder can be used to import violations generated by an
external tool. For more details, please refer to section 1.5.7.

Generate flat rule set file (no include): when the box is checked, the project rule
set file (i.e. with a “.rst”) extension) that is generated for the project doesn’t contain
any includes of other rule set files. It will contain an expanded copy of the contents
of any rule sets that were used for the project.

Generated Source Code:

Generated Source Code

[Source Code generated by J
=

Source Code generated by: when the box is checked, allows to specify the tool
(e.g. Kalimetrix Rhapsody) used to generate all or part of the source code under
analysis. Thus, Logiscope RuleChecker will not considered the violations found in
the generated code. For more details, please refer to section 1.5.8.

Show violations in generated code as relaxations: when the box is checked, the
violations found in generated code are reported as “relaxations”.

For more details on all these options, please refer to the Kalimetrix Logiscope - Basic
Concepts document.

A Studio Guided Tour 11

12

18. Check the box “Allow violation relaxation mechanism”.

Relaxation mechamsm

[Al wiolation relaxation

19. And then, click the Next button.

The creation of the Logiscope project ends by a window summarizing all the project
settings.

20. Check if all files are correct by expanding the Source Files folder.
If the list is not the same as below, this may be because the Source files root directory
of the project has not been correctly set. You can use the “Previous” buttons to get
back to the corresponding dialog box and change the values.

Logizcope Project Summary

Project Language:

Project kModules:
QualityChecker - RuleChecker

SRR] Cuality Model
+-[_7 Rule Set
—-[_] Source Files
=] bawe.c
maching. ¢

master.c

E| plaver.c

FCOME.C

Lkl

ke, ¢ il

R R KT R T

21. Click the Finish button.

You can still change the project settings by using the Settings... command in the Project
menu.

You are now ready to “build” the project: i.e. parse the source files of the project to
extract all necessary information for code verification. This process is described in
section 1.4.

1.3 Introducing the Studio Main Window

After creating the project, Logiscope Studio main window looks as follows:

| File Edit Wiew Browse Project Link Tools Window Help .
[ceaa|seax@e-s (2w 374 [\ a||esro0nis
J_IHangman.ttp (5) ;”Default L" Logiscope ;I Iﬁl = | [[% ‘
|| v = Ege 00 @ E:aa|~m

x|

=B8] Hangrnan e -
EI"' Hangman.ttp

=13 Header Files

----- =] GerercDlg.h

=] Hangman.h

Hanhgrman32 h

Hangrman320g.h

HintDg. h

FictureButton.h

resource. h

Stddsfu. b

----- L Inline Files

=23 Quality Model

. H] Laogizcope.ref

=3 Fule Set

3 Hangmanrst

=3 Source Files

- [F] GenericDlg.cpp

=] Hangman.cpp

=] Hangman32 cpp ﬂ

B File View [B Qualiy

X||[Loading project "C . ~LogiscopeFProjects~Hangmnan-Hangman. ttp":
lInfao [103]: Hangman.ttp: Ho data awailable for Audit. Project neseds to be built.
Info [103]: Hangman.ttp: Ho data awailable for RuleChecler. Project need= to be b
Ho Data loaded for project "C:~LogiscopeProjects=~Hangman“Hangman. ttp". (ﬁi)

9

AT T T Messages £ ||_4
For Help, press F1 {\1]_]/) |] [

According to the default configuration, the Logiscope Studio main window contains the
following components:

1. Tool Bar: provides shortcuts for most commonly used commands of File and Edit
menus.

DEdd|iBRXo S| 28

A Studio Guided Tour 13

14

. Browse Bar: provides shortcuts for Browse menu commands.

¥ i

. TCL Script Bar: activates the script wizard: i.e. Logiscope internal data navigator.

A

. Web Browser Bar: allows navigation in HTML documents and internal data.

F=20 84

. Project Bar: builds the project and starts Logiscope Viewer or TestChecker.

|Mastermind.ttp ﬂ|DefauIt ﬂ|E—; Logizcope ﬂ B & [

. Logiscope Module Bar: provides shortcuts for selected results associated, from left

to right to CodeReducer, QualityChecker, RuleChecker and TestChecker modules.
Fe BB (W R (BE | EE ||D) | (e a8 i x|

Note that until the project has been “built™, all the icons are greyed as no results are
yet available.

The QualityChecker and RuleChecker related icons allow to (from left to right):

+ Display the QualityChecker Metrics Dictionary,

« Display the QualityChecker Criteria tree,

+ Display the QualityChecker Factors tree,

» Generate the QualityChecker HTML Quality Report,

+ Display the RuleChecker Rule violations,

 Display the RuleChecker Rule violations by severity,

+ Display the RuleChecker Rule violations list in the output window,

+ Generate the RuleChecker HTML rule violations report.

7. Workspace View: displays a specific view related to the project: header files, the
quality model file and source files.
Double-clicking on any file will display the file contents in the Result Pane.

. Result Pane: is used to display information and result windows.

. Output Window: displays project messages as the first tab is created; also shows

“build” messages, and results.

1

10.Status Bar: contains indicators when building =] and idle & . The status bar also
shows short definitions corresponding to the toolbars described above.

To add or remove one of these items, just right-click in the corresponding area and check
or uncheck the relevant bar.

You can customize the toolbars using the Tools-Customize... command.

4 Building the Logiscope Project

As stated in the Messages tab in the Output Window, once the Logiscope project is
created, no data is available. Indeed, the source files have not yet been parsed / analyzed
by the selected Logiscope verification modules.

Tpdating loaded modules for project "C:~LogismcopeProjects ~Mastermind~Mastermind. tt
Info [103]: Ma=stermind.ttp: Ho data awvailable for QualityCheclker. Project needs tc
Info [103]: Ma=stermind.ttp: Ho data awvailable for FuleChecker. Project needs to be

Project "C:~LogiscopeProjects~Mastermnind-Hastermind. ttp" loaded modules updated.

| h Messagesf

1. To get the verification results, select the Project-Build command or click on the
icon.

A new Build tab is added in the Output Window next to Messages. Several messages
are displayed while parsing the source files and then loading the data showing that the
build process is in progress.

As soon as the Project [...] loaded. message is displayed in the Messages tab,
the project is built i.e. all the source files have been analyzed and associated results
generated and loaded.

L

Loading QualityCheclker data. ..

Loading FuleChecker data. . .
La=t build log awvailable in:
C:~LogizcopeProjects~Masternind~Logiscope~build_log. htm: Double click to open.
FProject "C:~LogizcopeProjects~Mastermind~Maztermind. ttp" loaded.

|‘. Messages;{. Builu:l('

The build process creates or updates some Logiscope internal files in the Logiscope
project repository.

If warning or error messages appear in the Build tab, double-click on the corresponding
line and see the syntax that led to the error or warning. Usually, many errors or warnings
are due to missing, incorrect or inconsistent parsing options: i.e. the selected dialect and/
or preprocessor directives.

A Studio Guided Tour 15

You can easily change them using the Project Settings window (see hereafter).

Project Settings Window
2. Activate the Project > Settings... command.

E Logiscope CodeReducer] Cutput] GualityChecker] Analyziz]
- Mastermind_ttp General l todule:] Rule Set] Rules] ddvanced]

-5 Quality Model
B Logiscope.ref
-3 Rule Set _ _
T Mastermind.rst Logizcope repozsiton:
-5 Sn:-urn::e Filez |E:'xLu:ugiscu:upeF'ru:uieu:ts'xMastermind"-.L-:ugiscnpe J

baze.c
maching. o Source files suffises [all categones];

General zettings

mazter. o
player.c
FoOME.C

Ll

write. ¢

The Project Settings window enables to modify all Logiscope project settings including
the verification modules to be activated using the various corresponding tabs.
Only the Project source file language cannot be changed.

You can also open the window using the Alt+F7 key or a shortcut: right click on the
Project filename as follows:

=l
=17l Mastermind. tw

£5 Inserk FI|ES
@ Mew Folder, .,

-5 Ru
! :

- Se
bk pebuild Al
Sek as Active Project
Link. k
P@ Drrrmarkiac Ak LFrkar

3. Click on the Analysis tab.

16

=] Logiscope

General] Modules] Fiule Set] Fulez Advanced]
- Mastermind.ttp CodeReducer] Clutput] QualityChecker Analysiz
=125 Quality Model _
@] Laogizcope. ref C Language Settings
-3 Rule Set)
B Mastermind.rst C Dialect
=3 Source Files AMSI B89 /15080 j
| baze.c
raching. o D efinitiar file: |E:HF‘ngram FileshT elelogichlogizcope_6.5hutilhansi def
master.c -
player.c Ignare file: |
Elen) W
Preprocessor

Lkl
write,

Macra definitions and [nchide paths [-D & -]

| =l

[v expand macro, except for the ones listed in;

| |

You can change the Language Settings (i.e. the source code parsing options). If you do
so, you should click on the OK button to take into account the new project settings and
then build the Logiscope project again considering the new settings.

4. Click on the Cancel button.
Properties Box

5. Select a source file and activate the View-Properties... command or the icon, it
displays general properties of the selected file, the name and location:

—|- I8 M astermind.thw
= Mastermind_ttp

Properties

~ 23 Gualty Madel General |
@ Logizcope. ref)
-3 Rule Set Perzsizt &g
asbermind.rs elelogictLogizcope_B.Bhsamples aztermindsmachine. c
F Mast d.rst TelelogichL B.5Y lezhChbd dsmach
=3 Source Files
& baze.c File:
Settings .ﬂ.lt:i-F? am FileshT elelogichLogizcope_B.ShsampleshChid ast
Link, L
Properties. .. Alk+Enter

You can also use a shortcut: as for Settings... with a right click on the file.

A Studio Guided Tour 17

1.5 Viewing RuleChecker Results

1.5.1 Rule Violations

1 Select Browse-Rule-Rule Violations or click on the ;ﬁj icon.

S

-5 26 Violated Fules
--%1 3 Reguired
+ f ContralFlow_1_MoDeadCode [1]
+ ; ControlFlowe_3 MoGaota [34]
+ g ControlFlowe_8_BreakPathlnSwitch [1]
+- 24 23 Advisomy
+-[_7] 23 Clean Rules
+-[_7] 2 Relazed Violations
+-[_7] 91 lgnored Rules

1| | »

File View | B Quality | JF vidlations

A new tab Violations is created in the Workspace View with the following folders:

« Violated Rules: this folder lists all the rules where at least one violation has been
found in the source code files analyzed,

« Clean Rules: this folder lists the rules with no violation found,

» Relaxed Violations: this folder lists the rules where some violations have been
relaxed using special comments in the source code (see section Relaxing Violations),

» Ignored Rules: the rules listed in this folder have not been checked by Logiscope
RuleChecker (i.e. the unchecked ones when you chose to customize).

In each folder, the rules are ordered according to the associated severity of the rules: one
sub folder per severity level: e.g. “Required”, “Advisory”.

In front of each folder name is specified the number of related items: rules or violations
according to the context. For instance, there are 28 violated rules, 3 “Required” rules and
25 “Advisory”. There are 34 violations of the ControlFlow_3_NoGoto rule.

Note: The default Logiscope rule sets come with predefined severities for each standard
rule. You can change the severity by editing the rule set file. For more details, please
refer to the document Kalimetrix Logiscope - RuleChecker & QualityChecker -
<Language> Reference Manual.

18

2 Double click on the ControlFlow_1_NoDeadCode folder: the description of the
rule is now displayed in a window in the Result Pane.

3 Expand the ControlFlow_1 NoDeadCode folder and then the folder corre-
sponding to the file where the violation has been found.
You get the exact location of where the rule has been violated: i.e. line 25 of the
score.c file in the example.

4 Double click on the line number.
The source code will be displayed with the cursor highlighting the violation.
The screen looks like this:

ermind.ttp

2 Yiolated Rules

+ 3 Required

]; ControlFlow_1_MoDear
B zcore.c [in C:AProg

]f ControlFlove_3 MoGoto
]ﬁ ControlFlove_3 BreakP.
+ 25 Advizony

1 Clean Rules

1 lgnared Rules

| 2

=l

B Qualiy

B [

3 Inaccessible code not authorized

£ ControlFlow_1_NoDeadCode
(Inaccessible code not authorized)

This rule is availablei=s
B score.c

Description if (i ¢ last_hi_score)

goto recur:

Description
Ho inaccessibl

L

return;

<¥2Elt of recursivityEs

format outputi’

recur .
1 .

S% print a score¥s

printf ("

printf ("! 10 . 10=

| %10.10= ", hi_=cc
". hi_scores_tab [

Indeed this is dead code: i.e. some executable statements that can not be executed. The
Rational Logiscope RuleChecker module definitively improves efficiency of the code
reviewing process.

A Studio Guided Tour 19

1.5.2 Rule Violations by File

5 Select Browse-Rule-Rule Violations by File menu:

Browse Project Link Tools ‘Window

i '13 Metrics Dickionary

1 [Basic Metrics Yalues
Select From properties. ..

Cuality

Reducer

Help

TR ¥R AR
||l Logiscope Ral
LCTRE - R TR R
.

1

I Tesk

9 Advizory

F blockdecl [19)
; boolean [30]

; brkcont [1]
[U cn o

¥ | £E Rule Yiolations List

furbit '@ Rule Yiolations by File

:¢ Rule Violations by Severities

This rule @ Rule Yialations Report

A new tab “File Violations” is added to the Workspace View displaying all the files

where rule violations have been found.

6 Expand the folder corresponding to one source file: e.g. player.c.
The list of violated rules is now displayed: 1 sub folder per violated rule.

7 Expand the ControlFlow_8_BreakPathInSwitch folder/rule. The precise local-
ization: i.e. line number of the violation found in the file is displayed.

8 As before, just click on the line number to display the corresponding source

code. This may be a bug!

=

Yinlations -

baze.c [in C:hProgram FiIes'\TeIeIDgic'\Lng_
machine. o [in C:\Program FileshTelelogich,
¥ master.c [in C:%\Frogram FileshT elelogichLe
magzter.h (in C:%Program Files\Telelogichle
player.c [in C:\Program Files\T elelogichLo
+ Complexity_1_kultipledssignment
Complexity_5_CallR esult
Complexity_&_++-Operators
Complexity_12_OperatarlnCondition
ContralFlow_7_BreaklnSwitch
ControlFlow_3_BreakPathlnSwitch
@ Line 221
ControlFlow_10_SwitchBetterT hanlf
FResource_1_Accesshmray
Resource_2 FarCounter
Fesource_4_Declaration nitCambine

Resource_10_MoGlobalParameter
‘r b I PSR o P,

[
3 H-F -

REHGHHGRE NN

1-F-F-E-E-E

-
1| v

20

File iew [Qualty 3F violat.. 3 Filevial..]_

action = 'g';

switch {action)

case :
caze 'R':

I ﬁDu want to === vour gw

refresh();
breal::
} 1 1

caze 'q':
case Q'
<% uol want to guites
end_gans(bour, fquit]
breal::

caze 'h':

1.5.3 Rule Violations List

9 Select the Browse-Rule-Rule Violations List menu or click on the f‘=_J icon.

i Line | File | Rule |
) Line 184 C:AProgram FilessT elelogiciLogiscope_B BheamplesCiM astermindharite. o Complexity_8_Waokdultiplelnit '
@ Line 184 C:AProgram FileshT elelogich Logizcope_B. BhzamplesChi aztermind'awrite. o ControlFlove_2_FunctionR eturn '
i@ Line 205 C:AProgram FileshT elelogich Logizcope_B.Bhzamples'Chid aztermindiawrite. o ControlFlove_7_BreaklnSwitch '
& Line 217 C:AProgram FileshT elelogich Logizcope_6. Bhzamples Chi aztermindwrite. o ControlFlove_7_BreaklnSwitch '
& Line 229 C:AProgram FilessT elelogichLogizcope_6 Bhsamples T astermindwrite. o ContraolFlow_7_BreaklnSwitch '
& Line 241 C:AProgram FilesT elelogichLogizcope_6 Bheamples Chi aztermindiarite. o ControlFlow_7_BreaklnSwitch '
) Line 188 C:AProgram FilesT elelogichLogizcope_6 BhsamplestCiM aztermindiarite. o Resource_3_DeclarationlnitSe...
) Line 10 C:AProgram FilessT elelogichLogiscope_B. BheamplessCiM aztermindiarite. o Resource_4_DeclarationlnitCao...
) Line 186 C:AProgram FilessT elelogiciLogiscope_B BheamplesCiM astermindharite. o Resource_4_DeclarationlnitCa...
@ Line 187 C:AProgram FileshT elelogich Logizcope_B. BhzamplesChi aztermind'awrite. o Rezource_4_DeclarationlnitCo...

| | | [\ Messages}s\ Build}".\ "»-’iu:ulatiu:uns,f

The list of all Violated Rule lines is displayed in the Output window in a dedicated tab.

10 Double-click on a line, its corresponding source file appears with the violation

highlighted.

You can go through this list using the <F4> and <Shift + F4> commands.

A Studio Guided Tour 21

1.5.4 Rule Violations Report

11 Select Browse-Rule-Rule Violations Report or click on the 21 icon.

Kalimetrix Logiscope Rule Violations Report gives you an HTML synthesis of the
coding rule checking performed by Logiscope RuleChecker.

Kalimetrix

Rational Logiscope Rule Violations Report

Date: 11 Mar 2009

This document contains infanmation concerning the coding rule analysis of the project MastermindEeviewer made w
Logiscope RuleChecker

The following information is available:

Violated Rules for the Application MastermindReviewer
« Relaxed Violations Tabkle for the Application MastermindReviewer
A synthesis takle for Required rules for the Application MastermindReviewer

A synthesis takle for Advisory rules for the Application MastermindRevigwer

Rules Violated by the Application

The following orders are available for application analysis:

o PFviolations ordered by File

« PFviolations ordered by Rule/Severity

6. Select the Violated Rules for the Application Mastermind link.

7. Click Violations ordered by File and then on the machine.c file, you get the following
view:

22

Severiy

Rule Mnemaonic

Complexity 1 MukipleAssigniment

Complexity 4 NoAssignmentOp

Complexity 5 CallResult

Complexity 6 ++_Operators

Complexity 7 HoCast

Complexity 8 Nollultiplelnit

Complexity 12 OperatorinCondition

machine.c

Rule Hame State Lines
Mukiple
assignments not | Viclated | 252, 258, 269, 291, 292, 500
recommended
Assigniment
operators not Violated 55, 76, 98, 1638, 191
recommended
use of the result 116, 204, 206, 216, 299, 345,
of the call of a Violated 379, 382, 426, 460, 463, 511,
function 544, 547, 576
Use of ++ anil -- WViolated 210, 259, 270, 400
explicit cast _ 46, 47, 48, 56, 7T, 99, 162,
forbidden Violated | 40, 185, 192, 203, 205
Initializations in
multiple i ated | 225, 324, 325
declarations are
Tforbidden.

Operator_Unicity | Vicolated | 267, 267

randral etroctnra

8. Now click the Back arrow _"E] twice in the HT ML Browser Toolbar.
9. Click the Violations ordered by Rule/Severity link.

Violations

ordered by Rule

For each of the following rules, you will find the result of rule checking analysis for the files of the application:

Severiy

Required

Rule Mnemaonic

Complexity 13 SimpleTest

ControlFlow 1 _NoDeadCode

ControlFlow 3 NoGoto

ControlFlow 6 DefaultinSwitch

ControlFlow & BreakPathinSwitch

Resource 15 NoFuncticnHeader

Resowrce 21 Arrayinm

Complexity 1 Multiple Assigniment

Complexity 2 MNoTernaryop

Fule Name Violations
Simple test statement not authorized 0

Inaccessible code not authorized

Goto statement not authorized

|<.l."
(=] =

Default statement mandatory ina switch

Break or return mandatory in each path of the
case clauses of a switch

no function definition in header file

Inttialization of arrays

R e =

Multiple assignmems not recommended

Ternary operator not recommended {73}

A Studio Guided Tour 23

10. Now, get back to the beginning of the HTML Report and select the A synthesis
table for Required rule for the application Mastermind.

Required Synthesis Table

In the following table yau will find for each file of the application and for each rule having severity Required the number
ofwiolations for the file {red or green number if there were violations or nof).

Complexity 13 SimpleTest ControlFlow 1 NoDeadCode ControlFlows 3 NoGoto ControlFlow 6 [

base.c 0 0 0 0
base.h 0 0 0 0
machine.c 0 0 0 0
machine.h 1] 1] 1] 1]
master.c 1] 1] 1] 1]
master.h 1] 1] 1] 1]
player.c 0 0 0 0
player.h 0 0 0 0
SCOIe.C 0 1 34 0
score.h 0 0 0 0
util.c 0 0 0 0
util.h 0 0 0 0

This synthesis table gives you a general view of violations of the Required rule. Above,
the rule ControlFlow_3_NoGoto has been violated 34 times in the score.c file.

Each time you click on a rule, you get its definition and each time you click on a file you
get the corresponding table (Violated Rules ordered by file).
The color code is defined as:

red: number of Rule Violations.

green: Rule Not Violated

yellow: Ignored Rules.

Next click on the ControlFlow_3 NoGoto column, the definition appears.

24

1.5.5 Customizing Rules and Rule Sets

Logiscope RuleChecker is highly customizable. It allows you to adapt the rule checking
to your specific context taking into account the applicable coding standard.

The project settings help you to choose what rules shall be checked on the code. This
may depend on the type of code under verification. One given rule set can be defined
to check newly developed sub-contracted applications when an other can be defined
for old legacy internal source code. Definitely, the applicable standards are not the
same.

In Ada, C++ or Java, some rules have parameters that allow to customize the
verification. For instance, you can easily define your own list of forbidden functions
checked by the rule funcres or specify the description of the expected function header
comments checked by the rule headercom.

The default name of a standard rule can be changed to fit to the name and/or identifier
specified in the company coding standard.

You can even have the same standard rule used twice with different names and
different parameters.

You can change the severity level of a rule.

You can define your own severity levels with a specific ordering: e.g. “Mandatory”,
“Highly recommended”, “Recommended”.

You can change the standard description of a rule and put the one written in your
coding standard.

To modify the parameters of a rule, double click on the .rst file and edit the
corresponding part of the rule specification you want to customize then save the file.

If you did not choose to generate a flat rule set when you created the project you may
have to edit the rule set file that is included in your project’s “.rst” file.

For more details, please refer to the Kalimetrix Logiscope - RuleChecker &
QualityChecker - <Language> Reference Manual.

A Studio Guided Tour 25

Mastermind. ttp

1.5.6 Relaxing Violations Using Special Comments

When this feature is activated, rule violations that have been checked and that you have
decided are acceptable exceptions to the rule, can be relaxed for future builds: they will
no longer appear in the list of rule violations. This can be very useful when checking
violations in a context where multiple reviews are performed.

The violations that have been relaxed will remain accessible for future reference.

The relaxation mechanism is based on comments inserted into the code where the
tolerated violations are. There are two ways to do this, depending on whether there is a
single rule violation to relax on the line, or multiple ones to relax on the given line.

Relaxing a single rule violation

If there is a single violation to relax, it can be done as a comment on the same line as the
code, using the following syntax (for C code):

some code /* $RELAX<rule mnemonic> justification */
where:

- rule mnemonic: is the mnemonic of the rule that you want to ignore violations of on
the current line.

- justification: is free text, allowing to justify the relaxation of the rule violation.

Note that the combination of characters introducing / closing a comment shall be adapted
according to the syntax applicable to the language of the project, e.g.:

- ——: for Ada.

-// ... forC++and Java.

The Logiscope project in use already contains 2 Relaxed Violations as shown in the tree
displayed in the Violations tab.

11. Fully expand the Relaxed Violations folder in the
Violations tab.

12.Double-click on the node “Line 56 to display the corresponding source code.

IS

7 D 25 l"."lil:llated HulES /**************************************ﬂ
4] 23 Clean Fules ;: function: skips lines
-2 2 Relaxed Violations <% Paramnseters:
-2 1 2 Advigony £ nb: IH number of lines to =skip
= g |:I:II'I'||:I|EHi|:_'r'_11_NI:I|:I:II'I'|I'I'I-3."1".HI:|TE PEEEETEEEEEEEEEEEEEEEEEEEEE X EEEEEEE Y]
- baze.c [in C:\Proagram Filesh 1 int i =0
@ Lin= 56 while (MIN(i.i) ¢ nb) . *%RELAN<Complexity
-3 ControlFlow_10_SwitchBetterTh i
- plaver.c [in C:\Program Files printf("~n"};
& Line 250 1+

26

1

Indeed, the rule is violated because of the use of the ternary operator in the definition of
the MIN macro. This may justify someone relaxing the violation.

Note that in such a case, the correct parsing approach would have been to declare the
MIN macro as NOT to be expanded when setting the project parsing options. Please refer
to the Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual for
more details on this feature.

Relaxing several violations and/or adding a longer justification

If there are several violations to relax for a same line (several violations occurring in
different places in the code at the same time cannot be relaxed), or if the justification of

the violation should be written over several lines, the following syntax should be used.

/* >RELAX<rule mnemonic> justification */

followed by any number of empty lines, comment lines, or relaxations of other rules
relating to the same code line, then by the code line of the violation.

13.In the Violations tab, double-click on the node “Line 250 to display the relaxed
violation found in the file player.c:

Lomplexty_11_MNolommasnd| e

baze.c [in C:\Program Files',
i@ Line 56

ContralFlove_10_SwitchBetterTh

plaver.c [in C:%Program Files
i@ Line 250

1n=-r| nl IIF‘I'{"

L o L Recheb ek w2 MY VI A B . | Y
breal;

i

h
<:EELAX<ControlFlov_10_ SwitchBetterThanIf: 2007-0

1f {game won)

In this context, the violation has been relaxed during a formal Code Review as
mentioned in the justification that could have been written on several lines.

Relaxing all violations in pieces of code

If all the violations of one or more rules are to be relaxed in a given piece of code (e.g.
reused code included in a newly developed file), the piece of code should be surrounded

by:
// {{RELAX<list of rule mnemonics> justification
the piece of code
// }Y}RELAX<list of rule mnemonics>

where:

* list of rule mnemonics: is the list of all mnemonics of the rules that you want
to ignore violations of on the piece of code.
The rule mnemonics shall be separated by a comma.

A Studio Guided Tour 27

o o O A e R

-
I R

Relaxing a violation in the Logiscope project.

In the Logiscope project created in the previous section, you want to relax the violation
of the Resource_9 ParameterUse rule using one of the various syntaxes of comments

introduced in the previous sections.

Indeed, the violation relates to the main function and the program specification states

that the behavior must changed if there is one or more arguments whatever the

arguments, so the argv parameter is not used intentionally.

Resource_4_Declarationl nitCombine [26]
Resource_7_WarableUze [1]
Resource_9_Parameterlze [1]
mazter.c [in C:WProgram Files\Telelogic\Logizcope_B.5
@ Line 78
Reszource_10_MoGlobalParameter [23]
Rezource_11_InputParameter [10]
Resource_12_MoE=termBody [1]
Reszource_14_ExternHeader [3]
Rezource_24_Conzfalatilelnit [1]
Rezource_26_TwpedefUnionS touct [3)

G N G NG

23 Clean Rules
2 Relared Yiolationz

M aztermind. ttp
—1-23 25 Vidlated Rules

+

-3 3 FRelaxed Violations

28

L e E ™ A L I WO LT Ry |

char#*® argwv

roid main(int
{
char inst:
int result:
<% 1f a parameter is present,
if {argc » 1)

Argc,

To relax the violation which is highlighted in the code:
1. Add the following comment before the line 78 in the file master.c:

/*>RELAX<Resource 9 ParameterUse> CP: Requirement Id. FUN 625:
/* Argument list not used but declared for ANSI compliance

2. Save the file using <cTrL s>

JACKPOT = 1:
while (linstructioni)): <% to
playver = TRUE:
gane_won = FALSE:
format outout("Do vou want to
*/
*/

3. Rebuild the projet using the command Projet-Build.
4. Select again the Browse-Rule-Rule Violations by File menu to refresh the results.

The violation is removed from the list of violations and now appears in the Relaxed

Violations:

+-21 3 Fequired
+- 24 22 Advizony
[24 Clean Fules

S22 4 3 Advizony
+ ¥ Cormplexity_11_MoCommadndT &
+ ! ControlFlow_10_SwitchBetterThs
- ¥ Reszource_9_Parameterllse [1]
- mazter.c [in C:\Program Files' !
@ Line 79

[T T (NSRS [o PN [

P

¥
dig[&] =

void mainfint argc,

F

2lzs
wal =

(wal + 5 % B;

15 — dig[4] - dig[3] - dig[2] - di

<% >RELANFeszource 9_Parameterlze: CP: Reguix
Arg

unent list not uzed but declared for 2
char#*® argv[])

char inst:
int_;esult;

Note that the relaxations found in the code are notified in the Build Output tab:

Felazations:

C:sProgram Files-Telelogic-Logiscope_ 6.5 zamples-C-Hasztermind-base. c(56): Viol
- Program Files-Telelogic<Logiscope_6.5<zamples-C-Mastermind-master c(79): Vi
Z:Program Files-TelelogicsLogiscope_ 6. 5<zamples-C-Mastermind-plaver c(250): %
Build finished.

[41> [»1] Messages A Buid /

1.5.7 Importing External Violations

By checking the Activate external violations import box, you can specify a Logiscope
Project folder in which you will put files that contain violation information from external
tools, for example compilation results, or the results of a program that you have written.
These files will then be taken into account and their violations added to the violation
information available in the project.

These data files containing the external violation information shall comply with the
following format.

Import data file format

The data file to import should contain lines respecting one of the following formats:

"pathname" line number "rule mnemonic" ["message"]

or

"pathname" start char end char line number "rule mnemonic" ["message"]
where:

« pathname: is the pathname (either relative to the project, or the full path) of the
source file where a violation has been found,

 line_number: is the line number of the violation,
» rule_mnemonic: is the mnemonic of the violated rule,

« start_char: is the position of the first character of the text to select for the violation
(counting from the beginning of the file),

« end_char: is the position of the last character of text to select for the violation
(counting from the beginning of the file),

« message: is an optional free text comment associated to either the violation or the
rule.

When start_char and end_char are omitted, the whole line is selected when locating the
violation in the file.

Each line in the file will be transformed into a violation.

A Studio Guided Tour 29

30

Example:
"C:\Mastermind\machine.c" 14 "indentation"
"C:\Mastermind\machine.c" 21 "indentation"
"C:\Mastermind\machine.c" 153 160 7 "reserved classes"

Files to import can have any suffix as long as the data they contain respect the specified
format.

Adding a violation data file into a Logiscope Project
The files to be imported have to be added to the Logiscope Project as described below:
 Create a new folder in the Project named "Imported Files".

« Add all files to be imported in the newly created folder.

=l

=Gl Mastermind.
- M astermind. ttp
-3 Imported Files
E’I E sternalfiolations. b=t
-3 Quality Model
@] Logizcope. ref
-3 Rule St
T tastermind st
-3 Souce Files
=] bazec
=] machine.c
master.c
plaver.c
FCOME.C
Lkl
write. o

Sl Fileview | B qualy |

Add rule files to your project that correspond to the rules that are going to be found in the
violation file. The rule files should be in the following format:

« the file for the rule rule_mnemonic should be called rule_mnemonic.std

« the contents of the file should follow this syntax:
.NAME long_name
.DESCRIPTION user_description
.COMMAND external

where:

» long_name is free text, that can include spaces. It’s a more detailed title of the rule. It
will appear as an explanation of the rule name in Logiscope.

 user_description is the description of the rule, that will be available in Logiscope.

+ external is the type of command used for this rule, and should not be changed.

Example: The rule file is called indentation.std.

It contains these lines:
.NAME Use indentation
.DESCRIPTION
Use correct indentation to clarify code.
.COMMAND external

The external rules should be added to the project. You can use the project settings.

You will need to rebuild the project to see the imported violations in the Logiscope
project.

For more details, please refer to the Kalimetrix Logiscope Basic Concepts manual.

1.5.8Managing Generated Source Code

It is possible to specify to Logiscope RuleChecker that all or part of the source code has
been generated by a user-specified tool (e.g. Rational Rhapsody). Therefore, rule
violations found in the generated code are hidden. The violations found in the generated
source code can also be seen as relaxed violations by setting the “Show violations in
generated code as relaxations» option.

A source code file is is considered as tool-generated if it contains one of the following:
« acomment starting by #[,

* acomment starting by ##,

e acomment containing //! Generated Date:

Otherwise, the source code file is considered as “hand written”.

In generated file, user-written code is detected using the following rules:

» aline following a line starting by a comment starting with ## is a user code line,
. a line ending with comment starting with ## is a user code line,

« aline starting with a comment starting with #[open a block of user code ending on
a line starting with a comment starting with #].

Exception: if a comment ## is followed by “auto generated” it does not introduce
user code.

A Studio Guided Tour 31

1.6

32

Viewing QualityChecker Results

Viewing results through the Browse menu and the Logiscope toolbar gives a full
description of the analysis performed and of the language used.

The analysis of the project performed with Logiscope QualityChecker gives out

information on: Application ', Modules, Classes "=, Methods & Functions ®
SCopes.

For each of these scopes, information is available at the:
- Factors level @

« Criteria level ®. and,

» Metrics level 0.

1.6.1 Quality Model

1. Select the Quality tab in the Workspace View and expand the folder corresponding
to the Logiscope project programming language: e.g.: C.
The Quality tab allows to see the specification of the Quality Model: the breakdown
in Factors- Criteria - Metrics levels at each scope (e.g. Application, Packages, Mod-
ules, Classes or Functions) depending on the programming language.

2. Expand the Criteria folder and then the Function sub-folder
The Criteria included in the chosen Quality Model file at Function scope are now
listed. In this context, the four criteria are the sub-characteristics associated to the
Maintainability characteristic as specified in the 1SO 9126-1: 2001 international
standard. The default Logiscope Quality Model complies with the recommendations
of the ISO standard.

3. Double-click on the different items: e.g. TESTABILITY, an Information window is
displayed with their definitions.
For instance, at function scope, the level of TESTABILITY is evaluated by
combining 4 metrics.

4. Click on one of the metric identifiers to get its description: e.g. mc_va.

| xl

mind.ttp
scope.ref

L0,

C

=3 Factor

+-[_] Application

+--[_7 Function

=3 Criteria

+--[_1 Application

=23 Function
& ANALYZARILITY
0 CHAMGEARBILITY
& STaBILTY
L ¥ TESTARILITY

=3 Metic

+--[_1 Application

+--[_7 Function

C++

JAA,

| ’

Bl Quality

A Information

& Criteria : TESTABILITY

This criteria applies to Functions for C language.
The farmula to compute the criteria is

TESTABILITY = rmc_wg +ic param + de calls + ot path

TESTABILITY: the capability of the =s=oftware product to
enable modified =s=oftware to be validated [ISO-IEC 9126-1:

7 Metric : McCabe cyclomatic number (mc_vg)

This metric applies to Functions for C language.
The farmula to compute the metric is

mc_vg = ct vy + ¢t ternary + of andthen + ¢t orelse

MzCabe Cyclomatic number of the function:
no_vg = ct_wg + ct_ternarv + ct_andthen + ct_orelses
wvhere:
ct_wg i= the control graph cyclomatic numnber,
ct_ternary 1= the number of occurrences of the "7
ct_andthen i= the number of occurrences of the "&é
ct_orelse is the number of occurrences of the "||"
The later 3 measures add all condition= to the "branch"
control graph cvclomatic numnber .

In this case, the metric mc_vg is not a basic metric but the sum of some other basic
metrics provided by Logiscope QualityChecker. This definition is written in the Quality
Model file. Of course, such a definition can be changed to be tuned to match the quality
requirements of the project under review.

The Metrics Dictionary provides an exhaustive list of the metrics.

A Studio Guided Tour 33

1.6.2 Metrics Dictionary

5. Select the Browse-Metrics Dictionary menu or click on the _@.J icon.

6. Expand the folder corresponding to the Logiscope project programming language:
e.g.: C.
The various scopes of metrics available for this programming language are displayed
as folders: e.g.: Application, Modules, Functions

7. Expand the Application folder.
All the basic metrics available in Logiscope QualityChecker for assessing the level of
quality of the Application appear.

Sk

=Rk M aztermind. tp

-5 Application
"@ ap_cg_cycle: Call graph recurzions
"@ ap_co_edae: Call araph edges
'13 ap_cg_leaf: Call graph leaves
'13 ap_ca_levl: Call graph depth
'13 ap_cg_mardeq; Maximum callers/Called
'13 ap_ca_rmawring Maximum callers
'13 ap_ca_masout: b asimunm of called
'13 ap_cg_node: Call graph niodes
'13 ap_cg_roat: Call graph roots
'13 ap_func: Mumber of application functions
'13 ap_line: Mumber of lines
'13 ap_zhlank: Mumber of empty lines
'13 ap_zcamm: Mumber of lines of comments
'13 ap_zcpp: Mumber of preprocessor statements
'13 ap_zline: Mumber aof lines
'13 ap_zloc: Murmber of lines of code
'13 ap_zshra; Mumber of lines with lone braces
'13 ap_ztat: Wumber of statements
'13 ap_vg: Sum of cyclomatic numbers of the application funchions
+-] Modules
+-[_7] Functions
+ 0 C++
-

JAMA,

4| | E

File “Wigw @] [uiality '13 Diu:tiu:unar_l,lJ

With a double-click on a metric its full description is displayed.

All the metrics can be used to determine calculated metrics or evaluate criteria in the
Quality Model. For more details, please refer to the Chapter Standard Metrics in the
corresponding Kalimetrix Logiscope RuleChecker & QualityChecker - <Language>
Reference Manual.

1.6.3 Criteria Level

8. Select the Browse-Quality-Criteria Level menu or click on the _g] icon:

A new tab Criteria appears in the Workspace View. It lists all the types of software
components analyzed (e.g.: Function, Application according to the programming
language) and for each, the list of Quality criteria defined in the Quality Model: e.g.
ANALYZABILITY, CHANGEABILITY, STABILITY, TESTABILITY as specified in
the ISO/IEC 9126-1 Quality Model internal standard.

Note: you can define your own Quality criteria by editing the Quality Model.

| x|

=Rl Maztermind. ttp
-5 Application
+ & SIZE
-3 Functionz
@ ANALYZABILITY
+ & CHANGEABILITY
@ STABILITY
+ @ TESTABILITY

File “igwm @] Cluality m Dictionany ° Critenia]_

Different actions are now possible from this tab:

9. Expand any criterion to see associated rating levels or categories specified in the
Quality Model in use: for instance, TESTABILITY

B EXCELLENT, GOOD, FAIR, POOR.

10.Expand each rating level to discover the components which have been rated
according to the Quality Model.
For the TESTABILITY criterion, 2 functions are rated “POOR”

11. ouble-click on one of the listed items: function, class or file to make the
corresponding source code appear. In the output window, the list of metrics used for
the analysis with each corresponding value per metric; minimum and maximum
thresholds is also displayed. A status column indicates if the metric value is correct or
out of range (-1).

A click on the column title allows to sort the metric list according to name, value or
status.

Double-click on a metric in the Output window and its corresponding definition is
displayed in the result pane.

A Studio Guided Tour 35

e achinee = OX

= - Hasterrpinq.ttp woid machine_plav=() Y
-3 Application I
-2 Functions % Function: computer looking for * .
g2 playver's code *®.
¥ CHAMGEABILITY int t. u, w:
<@ STABILITY int w, ®. v, z:
- TESTABILITY int randomizing = TRUE:
445 EXCELLENT int guit = FALSE:
int refreshed:
- GUOD char car;
+-5 FAIR
o3 POOR checl = TRUE:
& machine_plays f_Drmat_DuEput{ "Io wou T?nilz e to double che
& Dlaver plays if l{l_{n:ar = getchar()) I= '~n')}
player_piay while {(getchar{) = '~n'l;
if (car == 'n' || car == 'H')
checl: = FALSE:
it {I_:heclig) S%® get t1h§! plaver code before tlsw
File View | [Ouaity| @ Citeia | |€ >
ﬂ Metric : machine_plays | Walue | Min | R | Status |
'19 ct_path: Mumber of paths 45384 0 a0 -1
'13 ct_ternary: Mumber of ternary operatars 0 -0n0 +00 1]
'13 ct_wi: Cyclomatic number PG s 0 10 -1
m de_calling: Mumber of callers 1 0 ¥ 1]
m de_calls: Humber af direct callz 11 0 7 -1
_13 ic_param: Mumber of parameters]] b 1]
m lc_comm: Mumber of inez of comments 22 -00 +00 1]
'19 lc_ztat; Humber of statements 166] a0 -1
'19 mc_vg: McCabe cyclomatic number a2] 15 -1
'19 M1: Taotal number of operators G189 -0n0 +00 1]
'13 r1: Mumber of distinct operators i) -0n0 +00 1]
'13 n: Mumber of distinct operands | 0 a0 -1
m M2 Total number of operands 445 -0n0 +00 1]
m struc_pag: Structuring 1 0 1 1]
| | | [\ Meszages A Metrics f

12.Close the Source file window in the Result window.

1.6.4 Factor Level

13.Select Browse-Quality-Factor Level or click on the Factor ﬂ icon of the
Logiscope Toolbar.
A new tab titled Factors in the Workspace view appears.

14.Then browse through as for the Criteria level to discover the list of functions that
have been rated “Poor” for MAINTAINABILITY.

36

RS

i Masztermind.ttp
3 Application
+ - STATISTICS
£3 Functions
=g MAINTAIMABILITY
8 E=CELLEMT
a2 Go0oD
P FAIR
a2 POOR
% consistent
& machine_plays

+

T-F-E

File “iewm @ [uaality ° Criteria | & Factars]_

B util.c

vwold consistent()

1

int %=, v, =:

for {2 = 0; =z ¢ cur; z++)

1

dumnnv[z].blacks = dumnnv([z].whites = |

for (= = 0:; ® ¢ 4; =H++)
quesses[cur] . pegs(=] used = dumnny[:

for (= = 0; = ¢ 4; =H++)
if {guesses[cur] . pegs[=] color == |

dummy[z] . peg=[x] . used = gues=e:
dummy[z] . blacks++:

I
if {(dummv[=z].blacks = 43}
1

far o = M- - A - Lt

The 2 “POOR” rated functions for MAINTAINABILITY should be subject to a detailed
code review to understand the reasons of this status and decide of the appropriate actions
to help the code to reach a higher level of Maintainability.

The results provided by Logiscope Viewer can help in such a code review (see the next

chapter).

A Studio Guided Tour 37

1.6.5 Quality Report

15.Select the Browse-Quality-Quality Report or click on the aj icon.

The Logiscope Quality Report gives you an HTML synthesis at each level of the
Application analysis performed with Logiscope QualityChecker.

Rational Logiscope Quality Report

Date: 11 Mar 20049

This document contains information concerning the quality analysis of the project MastermindReviewesr made with
Logiscope QualityChecker which is part of IBM® Rational® Logiscope.

The following levels of information are availakle:

& Applicatian
« Functions
& 3Source files list

Application Level

The following levels are available for Application analysis:

s @A Factor level
» & Criteria lzvel
+) Metriclevel

Use the HTML Browser Toolbar to navigate back and forth in the report. It is possible
to save the Quality Report by using File-Save As... Therefore it can be edited on an
intranet in order to be accessible by everyone in the company.

16.Click on the Functions link: the Quality Report is updated.
17.Click on the Factor level link, you get the following graph:

38

Functions Factor Level

In the fallowving array you will find for each factor which applies to functions:

* The name ofthe factor.
» The list of categories.

To have mare information concerning the factor description, wou just hawve to follow the link.

Factor
MAINTAINAEILITY

47 %
Ay
2%,
I ECCELLENT (2500%) COOD {46 225
FAIR (21 28%) B rOOR (5.25%)

Note: The pies presented in the following chapters are not available on UNIX. They are
replaced by tables. To generate a report with pies, change HTML reports option in
Tools-Options... command (you will see the pies in your favorite Internet naviga-

tor).

18.Click on the “POOR” part (i.e.: the red slice) in the MAINTAINABILITY pie and the
Quality Report looks will list the “POOR” rated functions:

@ Factor : MAINTAINABILITY : POOR

Functions name

machine_plays

consistent

A Studio Guided Tour 39

19.Click on the Application Level in the left frame of the Quality Report and select the

Application Metric Level.

Application Metric Level

[n the following arvay you will find for each metric which applies to the application:

* The mnemaonic and the name of the metric.
& The min and max bounds for the metric.
» Thewvalue ofthe metric forthe current application (areen when in bounds, red when outside).

To have mare information concerning the metric description, you just have to follow the link.

Mnemonic
ap_cg_lend
ap_comf
ap_eloc
ap_func
ap_scomm
ap_sline
ap_sloc
ap_sshra
ap_stat
ap_va

ap_wmc

40

Metric Name

Call graph depth
Application comment rate

Application effective lines of code

Humber of application functions

Humber of lines of comiments

Humber of lines

Humber of lines of code

Humber of lines with lone Iwaces

Humber of statements

Sum of cyclomatic numbers of the application functions

Averadge complexity of functions

The values of the metrics selected at Application scope in the Quality

available in the Quality Report:
- Call graph depth,
- Effective lines of code
- Number of statements
- Cyclomatic number: total and average,
- etc.

Min

1

0.20

-0

Bili]

-0

1.00

Max
12
+00
200000
3000
+00
300000
+00
+00
100000
G000
5.00

Clicking on a Metric Name would provide the definition of the metric.

20.Close the Quality Report.

Value
7
0.12
1157
32
225
1815
1437
280
922
235
7.34

Model are

1.6.6Select from Properties

Browse-Select from properties

The Select window appears and is used to build a request according to:

a Scope: Method/Function or Class

a Property kind: Criteria or Factor

a Property name of criterion or factor

a Property value: EXCELLENT, GOOD, FAIR or POOR

a Request: rename the request User Requestl to “MyRequest”, press OK and

Select |

" Class '

P Froperty kind —— - I
| Criteria " Factor .

Property name:

| SNALYZERILITY |

Property value:

|EXCELLENT |

~ Request———— oAt il

| Bequest name: |User Request 1

! & fdd in "User Request" tab

. ™ Create a new tab

Frbie T R e ol LT e e |

|]] Canizel _i

21.Change the Property value: to “POOR” and click on OK. A new tab appears in the
Workspace view with the list of functions satisfying the request.

Sk

S | L zer Request 1 [ANAL
& machine_plays

& instruction

ABILITY = POOR)

Ll

File Views | [Quality | 7% User Fequest

A Studio Guided Tour 41

42

A double-click on any function will display the source file window and shows a metric
list in the Output Window.

You can make as many requests as you like either by adding them in the User Request
tab or by creating a new tab.

1.6.7 Kiviat Diagram (only available on Windows)

22.Click on the Factor tab of the Workspace view. Expand successively the Functions,
MAINTAINABILITY, POOR tree nodes and select the function consistent.

23. Select the View-Kiviat graph menu:

Kiviat Diagram for consistent

This graph represents all metric values. The outer circle symbolizes upper bounds and
the inner circle symbolizes lower bounds.

The Kiviat view is also available for the application and the functions as well as from the
Factors tab of the Workspace View.

1.6.8 Quality Model Editor

24.Click on the File View tab in the Workspace View and then double-click on the
quality model file: i.e. the Logiscope.ref file associated to the icon @l

The Quality Model editor is displayed together with the metrics, criteria and factors used
in the Quality Model for the selected language.

a S B, [Factor] MAINTAINADILITY M= E3
Logsscope.rel o T —————
s owm e B [Criteria] TESTABILITY |.10] X
* 0 C I [Metric] AVGS: Average size of statements M= E3
= @ Cos [
= 4y Factor
5 23 Application Qm Cs+ Scope Funchon Usad By
& MAINTAINABILITY U Metics
=12y Class = @ Cotena
‘9 MAINTAINABILITY M ¥ funchion_ANALYZABILITY
& REUSABILTY = @ Facloes
=24 Function faves function_MAN TAINABILITY
e MAINTAINABILITY Name
& relativeCal_MAMNTAINABILITY '_Awam size of galemerts
=23 Crtens Dessipho
= ‘;j Applcaton 5
ANALYZABILITY ek
CHANGEABILITY This metnc (AVerage Size of statements] comespands 1o the average number
STABILITY of operands and operalons wsed by each of the funchion's axacutable slabements.
@ TESTABILITY It i caboulated as folovss:
= 53 Class AYGS = [N1+N2) / [lc_stat):
where
@ ANALYZABILITY N1 is the rumbes of operator cocurmences.
@ CHAanGEABILITY
SPECIALIZABILITY Elgsnssian
STABILITY
TESTABILITY POt N2 Al 3
@ usasiuTy - Limits
= =3 Function H Min Max
il A s \ﬁ]l\u i L'ﬂ Float - 'Im lgw
S - |ﬁ ® @r = | .

This editor is used to modify or create new metrics, criteria and factors which are then
taken into account during the analysis of a QualityChecker project.

Before starting to modify a Quality Model, it is highly recommended to make a copy of

the corresponding file. Some default Quality Models can be found in the directory Ref in
the Logiscope installation directory.

In this view, it is possible to add a new factor, criteria or metric. Select the chosen
language, right-click and select the new functionality required among:

New Application Factor
New Module Factor
New Class Factor

New Function Factor
New Application Criteria
New Module Criteria
New Class Criteria

New Function Criteria

A Studio Guided Tour 43

1.7

44

New Application Metric
New Module Metric
New Class Metric

New Function Metric

A dialog box is then opened allowing to supply name, description, expression, categories
and other items depending on the context.

The result pane may have to be enlarged to display all information because there is no
scroll bar.

To add a new category in a factor or a criterion, select the top category in the Categories
field and press the Insert key on the keyboard: a new category is inserted at the top, its
name and limits can then be changed. Watch the information that may be displayed in the
Messages View.

To suppress a category, select it and press the Delete/Suppr key on the keyboard.

Conclusion

You are now able to build a Logiscope project, you can check programming rules and
source code metric analysis results of the project using the Logiscope Studio.

You can either quit Logiscope Studio:
25.Select File-Exit;

or learn how to view some more QualityChecker results using Logiscope Viewer in the
next chapter.

Chapter 2

A Viewer Guided Tour

2.1

Now that you know how to create and build Logiscope QualityChecker projects, you can
start the second phase: result exploration with Logiscope Viewer. You will see and learn
how to display results with Logiscope Viewer such as:

« the Control Graph of a selected function,
+ the Metrics Kiviat Graph of a selected function,
« the Criteria Kiviat Graph of a selected function,

+ the Quality Report.

Starting a Logiscope Viewer Session

To begin a Logiscope Viewer session:
 from the Studio with an active project: Project-Start Viewer command.

« On UNIX (i.e. Solaris or Linux):
- launch the Igviewer binary

* On Windows:

- click the Start button, select the Kalimetrix Programs Group, then Kalimetrix
Tools, then Kalimetrix Logiscope 2014 and at last, Logiscope Viewer.

The Logiscope splash screen is first displayed and then the Logiscope Viewer main
window appears.

If you do not launch Logiscope Viewer from Studio, open the Logiscope project you
built in Chapter 2 (the “.ttp” file) with the File-Open command.

The Logiscope Viewer main window looks as follows:

A Viewer Guided Tour 45

File Edit §elect Navigate View Options Window Help

WO R l—i)’l@l\ £z (5 4 | %% 2ln] €€

'INumber m IPropeltles 3 ’ &by .l‘l‘l.ﬁ.l?ﬁl m]-

|

Workspace! - Comporj o Workspacel - Component list

(‘/"—'\

1 CaboutDlg:CaAboutDlg []
+-[7 CAboutDlg:De 2 CAboutDlg:DoDataExchange [CD ataE xchange®)
~-[] CGenericDlg:C 3 CGenericDlg:CGenericDlg [Cwnd?)
-]~ CGenericDlg:: 4 CGenericDlg::DoDataE xchange [CDataE xchange®)
-[7 CGenericDlg:* 5 CGenericDlg:SetQuote [CString)
-7 CHangman32¢ 6 CHangman324pp::CHangman324pp (]
5 7 CHangman324pp:Initinstance ()
: II: En angmangi 8 CHangman32app::ProcessMessageFilter (int, LPMSG)
= SNgITAn s 9 CHangman32Dlg::CHangman32Dlg [Cwnd®)
CHangman32C 10 CHangman32Dlg::DoD ataE xchange (CD ataE xchange?)
‘[~ CHangman32C 11 CHangman32Dlg:DolLoser ()
-]~ CHangman32C 12 CHangman32Dlg:DowWinner ()
-7 CHangman32C 13 CHangman32Dlg::DrawPic ()
I CHangman32C 14 CHangman32Dlg::0nButton10_J ()

I CAbouDig:CA §No. => | Name

15 CHangman32Dlg:0nButton11_K ()
II: Ena"gm"’“ggg 16 CHangman32Dlg-OrButtont 2 L (]

Ml_ CHangman32[_ 17 CHangman32Dlg::OnButton13_M () :_l

angman. % - “m e N N PRI P

-1 CHangman32C I [»
-]~ CHangman32C

-~ CHangman32C

3 FHannman??l‘
Jd

+ loading project.

+ loaded 149 function(s)
+ loaded 19 class(es)

(1)
Press F1 for Help [NON RECEPTION - | INUM | 7
This window contains the following elements:
1. Toolbar:
Provides shortcuts for the most commonly used commands of the File and Edit
menus.

46

2. Status Bar
Mostly indicates the status (RECEPTION, NON RECEPTION) of the active window
displayed in the Result Pane.

3. Control Palette: Workspacel-Component list Window
Displays a view of the components after loading a Logiscope project. Select or
deselect the one you want to explore.

4. Navigation bar
Provides shortcuts for the commands of the Navigate menu.

5. Selection Bar
Provides shortcuts for the most commonly used commands of the Select menu.

6. Component windows bar
Allows to display graphical results: control graph, source code, Metric and Criteria
Kiviat graph, and to go to the Application window.

7. Selector Bar
Use the selectors to choose and display additional information in the active Domain
window. The content of the Selector bar depends on the view being displayed in the
active Domain window.

8. Messages window
Displays error messages or indications on loading the project.

9. Result Pane
Used to display Window command results.

Use the View menu to show or hide some items described above and to customize the
Viewer main window as you wish.

A Viewer Guided Tour 47

2.2

48

Selecting/Deselecting a function

You can indifferently use either the Control Palette or the Workspacel-Component
list Domain window in the Result Pane to select or deselect functions.

1. In the Control Palette, click the function master/main.

|Wnrkspace1 - Component list j
[T consistent -
M end_game
[T find_digit

[T farmnat_output

[T get_code_mac

[T get_code_player

[T help

[T hi_scores_dizp

[T hi_scores write

[T irstruction

[T machine_plays

[T machine_print_scone
[T machine_read fil

[T machine_update_scores
[T make_code
| ™28 rraster/main
[T play

[T player_plays
[T player_score

[T print_help w

The master/main function is now also selected in the Workspacel-Component list
Domain window.

2. Click now on the help component in the Workspacel-Component list Domain
window.

The master/main function is now also deselected. Only the help function remains
selected: i.e. ticked.

If you want to select several components, you can:
+ either use the Control Palette,

e oruse <ctrl> + click mode in the Domain window.

2.3 Viewing the first results

2.3.1 Control Graph

You want to explore further into the function and get an inside view of it? Well, the
control graph is the map you need now. It is the graphical representation of a particular
function in a program.

1. Click on the Control Graph E’.J icon or select the Window-Control command. A
new window called help-Control Graph is displayed in the Result Pane.

<= help - Control Graph

You can see the representation featuring geometric symbols (nodes) linked by arrows

(edges). From experience you may have already guessed that the control graph

represents the selected function’s logical structure. If you are a newcomer to Logiscope

QualityChecker, this kind of representation may mean nothing to you yet. Do not worry,

you will quickly become familiar with it.

2. Place the cursor over the first diamond-shaped node in the lower left side of the graph.
Some information now appears on the Control Graph, as illustrated below:

aven

It represents the pseudocode linked with this node.

A Viewer Guided Tour 49

£

< help - Pseudo code

woid {
2 =tatementi=);

i

¥
¥

3 =tatement{=):
if guesse=[z-1] . peg=s[w-1] . u=z=ed==
1 =tatementi{=);

¥

1f guesse=s[z-1] . pegs[w-1] . u=sed==
1 =tatementi=):

¥

if guesse=s[z-1]. pegs[wv-1] . u=ed==
1l =tatement{=):

!

2 statement{=);
while (#tt=getchar())!='~n"' {
1 =tatement (=)

1 =tatement(=):

while w<l||w>d £

3 =tatement(=s):

while (#tt=getchar())!="~n' {
1 =tatement(=):

3. Now, select the Window-Split command and move the cursor from left to right to
display the pseudocode associated with the control graph.

50

Now it becomes crystal clear: each geometric symbol (node) represents one or more
control statements. The diamond you have selected indicated a for statement.
Selection propagation works the other way too, from pseudocode to control graph.

For more details on the control graph representation, please refer to the Kalimetrix
Logiscope Basic Concepts manual.

2.3.2 The Source Code

Logiscope Viewer can also display the function source code.

4. Click on the Source Code icon, or select the Window - Source command.

The Source window pops up and displays the content of the player.c source file in which
the function help is defined. The first line of the function definition is shown in reverse
video.

Clicking on a node in the control graph moves the selection to the corresponding
statement(s) in the Source window.

2.3.3 Metric Kiviat Graph

Now, request the Metric Kiviat graph to check whether the help function meets C quality
requirements.

5. Click on the gl icon or select the Window - Metric Kiviat command.
A new window named help -Metric Kiviat Graph is displayed in the Result Pane.

= help - Metric Kiviat Graph [ZI[EWE

If the information displayed in the Metric Kiviat Graph is difficult to read you can

maximize the window by clicking on thegl button located in the upper right corner.

You can see two concentric circles and coordinate axes radiating from the graph center.

Each axis represents one of the complexity metrics selected for assessing the function
quality. For instance, the Ic_stat axis corresponds to the number of executable statements

contained in the function.

Circles represent lower and upper limit values for metrics represented in the graph.
Boxes on the axes indicate the metric value for the selected function. If a box is out of
the inner circle and inside the outer circle, then the metric value for the function being
inspected is within acceptable limits (displayed in green).

A Viewer Guided Tour 51

52

From this graph, you can see that the function help has all metric figures within limits.

The table below the graph provides a list of metric values. For the metric Ic_stat:
Number of statements, the lower limit (LOW) is set to 1, the upper limit (HIGH) is 50
and the value measured is 24.

6. Select View - Kiviat Table command to view the selected metric’s full name.

These measurements are of significant interest to developers, who use the Reference File
(the first file you selected when creating your Logiscope project) to choose metrics they
want to appear on the metric Kiviat graph. Lower and upper limits are also defined in
this file and depend on programming standards used for the project.

2.3.4 Criteria Kiviat Graph

The Criteria Kiviat Graph is a graphical representation with a terminology closer to
what is generally used to describe software quality.

7. Click on the 3' icon or select the Window-Criteria Kiviat command.
A new window named help-Criteria Kiviat Graph is displayed in the Result Pane.

help - Criteria Kiviat Graph

STABILITY ct_path
de_calling

me_ve TESTABILITY
. lo_param

de_calls

avg_size

faln]

. m_fraq
CHANGEAEILITY voo_freq lo_stat ANALYZABILITY

CEITERICOH CLAZE
TESTAEILITY EXCELLENT
STABILITY EXCELLENT
CHAMNGEAEBILITY EXCELLENT
ANALTZABILITY EXCELLENT
SYNTHESLS EXCELLENT

The Criteria Kiviat Graph is based on the same principle as the Metric Kiviat Diagram.
Experience has shown that more than one metric should be used for evaluating quality
criteria. For instance, to assess the extent to which the ANALYZABILITY criterion has
been met, a combination of four different metrics is used:

« ct_vg: Cyclomatic number,

« avg_size: Average size of statements,
 Ic_stat: Number of statements,

« com_freq: Comment frequency.

Below the graph, the table indicates the level achieved for the four evaluated criteria.
This level depends on how many metrics are in the limits specified. The function help
falls into the EXCELLENT category for all criteria: all of its metric results are within the
limits specified. The bottom table row, labeled SYNTHESIS, gives a global result, a
comprehensive idea of the degree to which the different quality criteria have been met
for the help function.

For more details on the Quality Model, please refer to the Kalimetrix Logiscope Basic
Concepts manual.

8. Close all windows related to the help function to clear the Result Pane. Be careful
not to close the Workspacel-Component list window.

9. Clickon the :FEI icon in the Selection Bar or choose the Select-Deselect command to
deselect all functions on the Component List.

2.3.5 Preferences

You can customize the look of the Viewer graphs. Follow the next instructions:
1. Select the File-Preferences menu.

Control Graph] Control Graph Resultz] Pzeudo Code]
Function Dizplay Fields] Clazz Dizplay Fields] Colors] Global Dptions]
Call Graph l |nheritance Graph] Comp. List] Clazz List] Diigt. b etric]

* Long Names [PPP Mumbers

& Mames [Coverage

" MWode Mumbers [External Components

2. Click the Colors tab.
3. Open the Kiviats colors option.

A Viewer Guided Tour 53

54

4. Change the color of the outer ellipse (into Blue in this example) by clicking on the
Brush button:

Basic colars: :
Er R
Contral Graph . I_ I_ . I_ - .
CalGraph | - T T T W
Function Dizplay Fie - .
[=1- Kiviats colors - - .
Outer ellipze - - - - . I_ - I_

- |nner ellipse
- GoodMin-h a;

Pzeuda Code
st I [higt. et I
Global Options

.. Bad/twerage Custorn colars:

E----L|r1|:|Efir1|E:|:| vl I_ I_ I_ I_ I_ I_ I_ I_
[|

Define Custom Colors »» |

5. Change the color of the inner ellipse (Pink) by clicking on the Brush and Define
Custom Colors. Use the arrow on the right to define a new color, click OK when
satisfied.

Color E |

- Basic colors

Control Graph .I_I_-I_.--
CalGraph | - N T 0 [
Function Dizplay Fie--

EEEEEEEN
- Inner elipzeI_-I_

: GoodMin-ba; C i
.. Bad/tiverage Lustom colors:

- Undsfined val I_ I_ I_ I_ I_ I_ I_ I_
Hue; IEI Bed: Iﬁ
Frrrrrr- o =

[HEfie EEbom Eal bt | ColarlSolid Lurm: |21 n Blue: I‘I 91
1 0k, I Cancel | Add ta Cugtam Calors |

6. Click OK in the Preferences window to confirm and if you want to keep the new
defined Kiviat Colors for good, click Save first.

[=- Kiviats colors
{ Outer elipze

2.3.6 Average Kiviat Graph

This Kiviat graph displays average and standard deviation values for all analyzed
component metrics

1. Select the View-Average Kiviat, you get the following graph:

ad Workspacel - Average kiviat

struc_pg de_calls

BETS LOW. HIGH. InIIH. I AVERAGE

Ic stat .00 50,00 200 1ag,00 2881
cor freg 020 +oo 0,00 .00 (1,66
avg gize 0,00 Q.00 3,25 10,00 5,71
ct 0,00 10,00 1,00 56,00 1,34
ct nest 0,00 4,00 0,00 6,00 203
1 0,00 30,00 200 a9, 00 16,97
c_freg 0,00 4,00 1,00 1236 3,73
ct_path 0,00 20,00 1,00 4% 324,00 1 5382 44
de_calling 0,00 7,00 0,00 21,00 2,28
stric_pe 0,00 1,00 1,00 20,00 2,47
de calls 0,00 7,00 0,00 14,00 431
1 param .00 500 .00 3,00 .66
o Ve 0,00 15,00 1,00 #2.00 03l

2. Move the mouse close to the metric boxes to get the corresponding values:

ct_nest ot vg

vy _gize

corn_freg
oc_freq
lc_stat
:t_path
e _g

A Viewer Guided Tour 55

3. Select the View-Average Table to see computed values for each metric:

= Workspace1 - Average table

Metrics Ident, Average | Stddev. | Min. walue Mazx, value % Acc, | %% Undef,
Mumber of statements lc_skat 23,81 37,48 2,00 166,00 78,13 0,00
Cormment frequency com_freq 0,566 0,93 0,00 4,00 62,50 0,00
Averane size of skatements avg_size 5,71 1,70 3,25 10,00 093,75 0,00
Cyclomatic number (WE) ck_vig 7,34 10,12 1,00 56,00 7E,13 0,00
Maximum nesting level ck_nesk 2,03 1,55 0,00 6,00 93,75 0,00
Mumber of distinct operands nz 16,97 16,21 2,00 &9,00 87,50 0,00
Yacabulary Frequency wor_freq 3,73 2,58 1,00 12,36 A3,75 0,00
Mumber of paths ct_path 1 552,44 5408,72 1,00 43 354,00 87,50 0,00
Murber of callers dc_calling 2,28 3,97 0,00 21,00 93,75 0,00
Skructuring shruc_pg 2,47 5,34 1,00 30,00 4,38 0,00
Mumber of direct calls dc_calls 4,31 3,85 0,00 14,00 a4,33 0,00
Mumber of parameters ic_param 0,66 0,77 0,00 3,00 100,00 0,00
McCabe cyclomatic number mc_wog 9,31 14,67 1,00 gz,00 a4, 38 0,00
4] v

2.3.7 Quality Report

To get a global view of the whole program quality level: use the Quality Report.

1. Select the View-Report command from the menu bar. Note that a significant percent-
age (6.3%) of the Mastermind program functions belong to the "POOR" category.

2. Click on the “POOR” slice, all the components classified in this category are
automatically selected in the Control Palette.

|Wurkspace1 - Comnponert list j = Workspace1 - Quality report

¥ consistent -~
[T end_game

[find_digit

[T Format_output

[T get_code_mac

I get_code_player EXCELLENT: 25.0%
[T help

[hi_scores_disp
[T hi_scores_wiite GO0 46.9%

[T instruction POOR: £.3%
¥ machine_plays

[T machine_print_score
[T machine_read_file FAIR: 21 9%
[T machine_update_scores
[make_code

[T master/main

[T play

[T player_plays

[player_score

™ orint helo

56

2.3.8 Application Results

You can view the Application general results. Select Window-Application or click on

the El icon to get the following graph:

&% Application Results - Metric Kiviat Graph Z E|[Z|
ap_c_lewl
P _IE
ap_sline
ap_fime
ATFIE LOWY. HIGH. VALUE
ap_comf 0,20 +o0 0,12
ap_eloc 0,00 200 000,00 1 157,00
ap_cg levl 1,00 12,00 7.00
ap_winc 1,00 5,00 734
ap_wg 0,00 6 000,00 235,00
ap_shne 0,00 300 000,00 1 315,00
ap_func 0,00 3 000,00 32,00
ap_stat 0,00 100 000,00 822,00

From this graph, you can see the Application scope metric values.

Congratulations, you have just completed the first part of your Logiscope Viewer tour.

3. Close all windows in the Result Pane.
The Viewer looks empty as no project workspace is activated.

Now you will learn how to get results about Classes.

A Viewer Guided Tour 57

2.4 Reviewing Classes

2.4.1 Opening an existing project

1. Select the File-Open... command.

2. In the Open window, browse to select the ATMAudit.ttp Logiscope project file in
the samples/C++/LogiscopeProjects folder in the Logiscope installation directory.

2.4.2 Opening a Class List Window

1. First of all, click on the J button to iconify the Workspace-Component list win-
dow, you will not need it.
2. Select the File-New... command.

3. In the New dialog box, select Class Workspace and click OK.

A window called Workspace-Class list is displayed. This window shows all classes of
the ATM program:

|'W'-:urkspa-:32 - Class list ﬂ w! Workspace?2 - Class list [ZI[E|E|

[ATM . Name
M Account 1 ATM
[T Eark 2 Account
[T Card®utharization 3 Bark o
4 Cardfuthorization
[T CashCard
; 5 CashCard
I Cashier & Cashier
[T CashierStation 7 CashierStation
[CashierTranzaction 8 CashierTransaction
[T Conszortium Consorkiarnm
[T Customer Cuskomer
[Date Date
[EntryStation EntryStation
™ PolyTest PalyText
Al lex] RemoteTransackion
[T RemateTransaction Text
[T Text Transackion
[Tranzaction Update
[T Update BankCbj .
[BankObj Cashardoh]
[CashCardOb EnsrLm L]
.) CustomerObj
r I:l:unsnrtluml:lll:q Updateoh;
[T Customerdb|
[Updatedb

From this point on, and as long as you work on a class workspace, function-related
features such as the control graph and coverage charts will remain unavailable.

58

2.4.3 Viewing Class Results

To find out about analysis results of a given class, proceed as follows:

1. From the Control Palette, click on the class named Bank. This class becomes also
active in the Workspace-Class list window.

2. Click on the gl icon and the Bank Metric Kiviat graph is displayed.

= Bank - Metric Kiviat Graph

cl dep meth
cl wrac -
B FalM _IMclass
SFECIAL
F&W_OUTelass
U54EB
------ COMFelass
EHCAP
TESTAB
cu_cdusers
| cth cn_codused
cl_cobc
- in_noc ALUTONOM
L35 LOW. HIGH. WALTTE

COMFlass 020 +an 0,14
FAMN O Tclass a0 2000 =6 Il
FAN Dclass 0,00 15 100 43 10
cl dep_rmeth 0,00 & 00 19 00
i, hases 000 300 0.0
cl wanc 0,00 25,00 33,00
SPECIAL 000 2510 43 10
TUSAELE 0,00 1000 43 10
EHCATD 0,00 0 13,00
ou_cdusers 0,00 40 50
cl_cobe 0,00 12,00 500
,_noc 0,00 2,00 0,00
ATTOHOM 30,00 100,00 4157
o cdused 000 410 g 0
TESTAE 0,00 100 00 2100

This graph shows analysis results for object-oriented metrics defined in the Quality
Model in use. These are different from component and application metrics explored
before.

For more on object-oriented metrics, please refer to the Kalimetrix Logiscope Basic
Concepts manual.

3. To get a source free space, close the Metric Kiviat graph window by clicking on the

E icon.

A Viewer Guided Tour 59

2.4.4 The Inheritance Graph

The inheritance graph is a powerful feature for analyzing inheritance relationships
between classes of an application.

4. Make sure the Workspace - Class List window is currently selected.
5. Select View - Inheritance Graph.

The inheritance graph appears in the left-hand pane, as shown below.

= Workspace3 - Inheritance graph

Transaction Entryritation

EemoteTransaction CashierTransaction CashierStation 4THM

A simple inheritance graph just as an example ...

60

2.4.5 The Use Graph

The Use Graph gives the use classes relationship.
6. Select View - Use Graph.

The use graph of the classes defined in the program appears in the left-hand pane, as
shown below. A bit more complex than the inheritance graph ...

& Workspace3 - Use graph

A Viewer Guided Tour 61

2.4.6 Getting More Detailed Class Results

More analysis results about internal classes can be obtained, provided you specify the
exact information you want the Viewer to display.

7. Select View - Class list to get back to the list of the classes.
8. Click Options-Display Fields command.

Dizplay options

Clazs Digplay Fields 1

li_-'] ﬂ F'n:lpE'rrIE' =% Show »> ﬁ Mo,
[+]- % Metic et B Mame
!1 - Criterion . _Hu:le <. ,< |
- & Report Up j ann]

v Duplicates

Cancel Help

9. The Display options dialog box appears. This dialog box has two list boxes and a
certain number of buttons. The list box on the left contains information fields
available in the current project and the list box on the right shows information
currently displayed.

10.From the left list box, click on Metric to see items it contains.

11.Double-click ENCAP

12.Select cl_wmc and press the >>Show>> button
These metrics names are copied to the list box on the right.

13.Scroll down to Report and click on it to see items it contains.

14.Double-click class REUSABILITY.

The criterion is copied to the list box on the right.

15.Click on this item, now displayed in the list box on the right, drag it up, move it until
ENCAP is highlighted and drop it.

62

Dizplay options
Clazz Dizplay Fields 1
- # Criterion _ﬂ

—_,{) Report
o class MAINTAINAL

*» Show »

<< Hide <<

¥ Duplicates

E Mo

El Mame

o B ey
% cl_wmc

& clazs REUSABILITY

]

Cancel J Help

16. Click on OK to take into account these changes.
As you can see, the Workspace-Class list window now shows values about metrics
cl_wmc and ENCAP and class factor REUSABILITY for all classes of the
application.

w Workspace3 - Class list =] |r'$_(|

Mo, == | Mame EMCAP | class REUSABILITY cl e
1 ATM 4,00 QoD 12,00
2 Account 10,00 FAIR 22,00
3 13,00 PoOOR 3,00
4 CardAuthorization 10,00 POOR 28,00
5 CashCard 6,00 FAIR 9,00
& Cashier 6,00 FAIR 13,00
7 Cashierstation 2,00 QoD 7,00
8 CashierTransaction 2,00 GQooD 7,00
9 Consarkiunm 5,00 GooD 16,00
10 Custamer 6,00 FaIR 15,00
11 Date 0,00 EXCELLEMT 2,00
12 EntryStation 3,00 GQOOD 9,00
13 PolvText 1,00 QQoD 9,00
14 RemoteTransaction 2,00 GooD g,00
15 Text 0,00 @ooD g,00
16 Transackion 7,00 FAIR 16,00
17 Update 2,00 FAIR 23,00
15 Bankobj
19 CashiCardobj
20 Consortiumobj
21 Cusktomerohbi
22 Updatebi

K |+

Results windows can be customized freely in order to see the results you are interested
in. Now you can decide to print the contents of this window for the next code review or
move on to another result window.

A Viewer Guided Tour 63

64

Chapter 3

What a Logiscopian Quality
Engineer Does

3.1

You heard through the grapevine that a Logiscopian quality manager will shortly be
organizing a source code review of the Mastermind application. Rumor has it that the
agreement reached between Logiscopians and their clients specifies that Logiscopians
should meet the MAINTAINABILITY requirement as defined in ISO/IEC 9126.

In order to list the functions to be checked according to quality standards, you will:
+ select the functions to be checked,

« create a workspace step by step,

« use the control graph to make a quality diagnosis,

« print quality results.

Loading an Existing Logiscope
Project

1. First, start a new Logiscope Viewer session in the manner described in the previous
chapter.

2. Select the File-Open... command.

In the Open window, browse to select the MastermindAudit.ttp Logiscope project file
in the samples/C/LogiscopeProjects folder in the Logiscope installation directory.

The Workspacel -Component list window is displayed in the Result Pane.

What a Logiscopian Quality Engineer Does 65

3.2

Creating a Workspace of Functions
to be Inspected

You are going to fill an empty workspace with an initial set of critical functions and then
refine this workspace on the basis of quality and complexity measurements.

1. Select the File-New... command.

2. In the New dialog box, select Function Workspace and click the OK button.
A new Workspace2-Component list window is displayed in the Result Pane.

3. From the title bar, activate the Edit-Component Workspace command.
4. In the Component workspace window, click on the Remove all button.
5. Click on the OK button to confirm and close the Component workspace window.

The Workspace2-Component list window is now empty.

6. Activate the Window-Vertical Tile command to arrange the Workspacel and
Workspace2 windows side by side.

This way, you will see better step by step how the initial list of functions to be inspected
is created.

3.2.1 From the Quality Report

66

You are about to explore the quality report for the Mastermind program as the first
viewpoint for selecting critical functions.

1. Click Workspacel-Component list to make this window active.

2. Select the View-Report command from the menu bar.

3. The quality report is displayed in the Workspacel window.

4. Click on the POOR and FAIR slices of the quality report pie chart.

Functions which belong to the POOR and FAIR categories are selected, as shown in the

Control Palette. These functions may not satisfy the client and a code review could be
needed here.

5. Click on the icon or select the Edit-Copy command.
6. Click in the Workspace2-Component list window to make it the active one.

7. Click on the El icon or select the Edit-Paste command.

The list of functions which rank POOR and FAIR in the quality report are now listed in
the Workspace2-Component list window. You will soon see how in the Logiscopian
quality control department these functions are being used.

'..1 C:\Program ...ind\M stimind. vsp - Telelogic Tau Logiscope Yiewer 5.1 - Workspace? - Component list =]
File Edit Select Mavigate “iew Options *Window Help

D@ 4|=|@| o] (2] [a8] «|e|| £]z=[£] & H| £|%E| 2[2] €[]

I Mumber

=] IF'ru:uperties =] iful |§|°|31.|}: “Wl@ll

I'W'u:urkspau:eE] Enmpnrj &) Workspace? - Component list [l[=] [E3

&) Workspacel - Quality report [H[=] B3

conziztent
inztruction
machine_playz
machine_read_file
machine_update_

player_playz

e 1 M 31 |HEN 2]

23 player_plays

0D o) 0% SICELLENT: 0 3%

PR 5 44

FAR: 17 %

+ loading project:
+ loaded 55 function(s]
+ loaded 0 class[es]

Presz F1 far Help NON RECEPTION | | | Z

3.2.2 From the Call Graph

Logiscopian quality managers are extremely professional and want to examine most
strategically significant call graph functions. Get ready to inspect the following three
types of functions:

« functions which are part of a recursive path,
« functions calling a significant number of functions,
+ the main function.

First, let's start with recursive functions.
1. Click on the Workspacel-Quality report window. It becomes the active window.
2. From the menu bar, select the View-Call Graph command.

The call graph appears in the Workspacel window. It is so complex that even with your
well-trained eyes you cannot tell which functions follow a recursive path. Logiscopians

What a Logiscopian Quality Engineer Does 67

know how to select it directly.

3. Click on the @J icon or choose the Select - Recursive command.
Function hi_score_disp is now selected and it is the only recursive-path function.

You are going to copy this function into the Workspace2 window as described below:

4. Click on the icon or select the Edit - Copy command.
5. Click in the Workspace2 - Component list window.

6. Click on the El icon or select the Edit - Paste command.

& C:\Program ...ind\Mztrmind. ¥sp - Telelogic Tau Logiscope Viewer 5.1 - Workspace2 - Component list M=l E3
File Edit Select Mavigate “iew Options Window Help

O||E]| 4[2@ - 82|/ [8] o|o| £lm=lL] 2 % €% 2|n| €&
INumI:uer j IF'ru:uperties j qul |§|°|}_|:,—14: /ﬁlﬁlal

IWDrkspaCEE - Enmpurj & Workzpace? - Component list [E[=] B3 || & ®orkzpacel - Call araph O] x|
Mo, => I M ame I *I

----- [T consistent

; i £ consigtent

""" p hI_SCDfES_IjISFI 13 hi scorez dizp

----- [instruction 15 instuction

----- [T machine_plays 16 machine_plays

..... [T machine_read_file 18 machine_read_fil

..... I machine_update 13 machine_update_scores
_____ r player_piays - 23 plaver_playz
I Ml

+ loading project:
+ loaded 55 function(s]
+ loaded 0 class|es]

Presz F1 for Help |NEIN RECEPTION | | | v

hi_score_disp is now displayed in the list of functions in the Workspace2 window.

Functions calling a significant number of functions are just as difficult to spot. Use the
Logiscopian selection box to sort this out:
7. Click in the Workspacel-Call graph window.

8. From the menu bar, select the Select - From Properties... command.

68

Logiscopians use the Query on components window to select functions with specific
characteristics. The dc_calls metric measures the number of distinct calls stemming from
a function. Logiscopians use this metric to spot the functions which have a large number
of call relations.

9. In the Properties: pane, enter the following expression: dc_calls > 7

M ame:
Iﬁ

Files: Clazzes:

C:AProgram FileshT elelogichLogis: ~
C:AProgram FileshT elelogichLogis:
C:AProgram FilessT elelogicLogis:
C:AProgram Files T elelogichLogis:
C:AProgram FileshT elelogichLogis:
[C-%Proarar Filez\T alelnaich] anize

£ b £ b

Properties;

do_calls > 7

k. | Ear‘u::el| Help |

10. Click on the OK button.

The five functions which call more than eight other functions are now selected on the

call graph.

11. Add the function main to the selection by clicking on the appropriate node (top right
root) on the call graph.

You have selected two other types of strategic functions in the call graph. Add them to
the initial list of functions to be inspected in the Workspace2 window.

12. Click on the icon or select the Edit - Copy command.

13. Click on the Workspace2 - Component list window to make it become the active
window.

14. Click on the El icon or select the Edit - Paste command.

What a Logiscopian Quality Engineer Does 69

3.3

70

Inspecting Selected Function Control
Graphs

A quick glance at functions selected in the Workspace2 window sends shivers down your
spine! If you spend time exploring all functions, Logiscopians will spot you, and they
might not like their source code being viewed by foreign explorers. Besides, your team is
expecting you back with excellent information within a couple of hours. Since you are a
sensible, cool-headed explorer, you will disregard functions which have a simple control
structure. You will however need to view the control graph for each selected function.

1. Deselect all functions in the Workspace2-Component list window and click on the
first function (i.e. consistent) of the list.

2. Click on the .“EJ icon or select the Window - Control command
The control graph of the consistent function is displayed.

“» consistent - Control Graph M= E3

e =

"
[« :

The control flow is clear but the function looks like it is overloaded with processes.
Actually, it looks as if there was a sequence of two functionalities. If this is the case, why
not make them two different C functions? A more clear-cut function would certainly
improve maintenance performance, or possible reuse of this portion of code.
Logiscopians will certainly explore further in their code review.

3. Click on the _{L_J icon to examine the next function.
The control graph of hi_score_disp function is displayed.

i hi_scores_disp - Control Graph =]

1 7

What a wonderful goto instruction! What else, a portion of the code seems out of reach.
You may wonder whether or not this is normal. It should be easy enough to make this
function easier to maintain than that! You will definitely discuss the matter in the code
review.

4. Click on the _{!'_J icon to examine the next function.

The control graph of the instruction function is displayed.

i - ingtruction - Control Graph M=l E3

What a mess! (your telescopic eye just spotted dead code). Could a bug be crawling
about? Has a Logiscopian developer missed this one?

Looking further into it, you can see that switch structures are odd. The first five cases
leave the function with a return instruction whereas the last two cases are processed

What a Logiscopian Quality Engineer Does 71

72

differently. This lack of homogeneity will make readability difficult and maintenance
will be risky, but let's carry on.

5. Click on the _{L_J icon to examine the next function.

The control graph of the machine_plays function is displayed.

“:» machine_plays - Control Graph M=l B3

e

A

4

Control Graph (machine_plays)

Now you thought you had seen a mess before! Your quality manager will not mince his
words about the Logiscopian developer when he sees this! Why are there repeated
groups of structures? Let's take a closer look at all this.

Everything is packed so tight on the screen that you can't see the wood for the trees. To
get a clearer view of the control graph:

6. Press and hold the <ALT+SHIFT> keys.

7. Click the mouse and pull the selection box around the area you want to enlarge.

8. Release the mouse button.
9

. Now it all looks a little clearer. There seems to be no code factorization at all.
Remember, when you explored the component control graph in phase 2, your guides
advised you to keep it in mind for the report. Logiscopians will soon be told to re-read
this, and correct it fast.

10. Click on the _{5'_J icon to examine the next function.

The control graph for function machine_read_file is displayed.

% machine_read_file - Control Graph M=l E3

Here you see an apparently clear sequence of nested control structures. However, there
seems to be a duplication of a portion of the code including a break statement. You will
keep this in mind for the review.

11. Click on the ,.{_!'_J icon and proceed to the next function.

The control graph of function machine_update_scores is displayed

i - machine_update_scorez - Control Graph H=]

e

The same portion of code with the break statement as in the previous function seems to
be repeated twice. Lack of code factorization between these two functions? You will
discuss the matter, no doubt.

12. Click on the {F|icon to examine the next function.

What a Logiscopian Quality Engineer Does 73

74

The control graph of the master/main function is displayed.

:- master/main - Control Graph M=l B3

R

1o 5

Its structure looks so simple that you need not inspect it, better take it off the list of
functions to be inspected now.

13. Click in the Workspace2 - Component list window.
14. Deselect all items in the graph to avoid taking them off the list.
15. Click on the master/main function to select it.

16. Click on the il icon or select the Edit - Cut command.

The master/main function has been removed from the list of functions to be inspected.
Logiscope Viewer automatically updates the Control window with the next function in
the list.

17. Click in the Control window.

The control graph of player_plays function is displayed.

«r player_plays - Control Graph H=]
FY I

14

At a first glance, the graph seems to be clear but your natural insight tells you to explore
further into the switch structure. You were right, a switch path jumps from the first to the

second case. You have no idea whether this is correct or whether the Logiscopian
developer omitted a break statement.

18. Click on the .i]’_.] icon to examine the next function.

The control graph of the player_score function is displayed.

% player_score - Control Graph M= E3

Nl Wi

'L'“‘\l'ﬁl; *|rw“.

%r
=
-

1o 7|

Your expert saw that: this function has many goto instructions. A little bit dangerous isn’t
it?

What a Logiscopian Quality Engineer Does 75

3.4

3.5

76

To show all this to your team back home and illustrate your report, you will print the
control graph as explained below.

Printing a Control Graph

1. Inorder to get a preview of the Control Graph, you can select File-Print Preview...
option.

2. Click on the %l icon and then click on the OK button

The current control graph is to be printed out.

Saving a Workspace

Okay, finished with control graph exploration. The workspace has been narrowed down
to the eight functions which remain listed in the Control Palette. You've got your
function list ready for the code review.

Save this list as a Logiscope workspace for a further round of inspection, which will be

carried out in the next phase.

1. Click in the Workspace2-Component list window.

2. Select the File - Save command.

3. A Save As window is now displayed.

4. Use the Look In box to select the C:\Mastermind directory.

5. In the Name pane, enter the name of the Logiscope workspace to be saved: Review.
A.ws extension (Logiscope WorkSpace) is automatically added to the file name.

You can now end the Viewer session (not necessarily for another coffee break but mainly
for the needs of this story).

Select the File - Exit command.

Chapter 4

Generating a Quality Report
Automatically

Note: This section is applicable on Windows platforms only.

Automation is one of the computer industry hottest buzzwords of the day when it comes
to improving productivity, especially when talking of documentation production. With
this in mind, you will certainly appreciate how Logiscope users generate automatically
advanced reports using Logiscope WinDoc.

1. Click the Start button, and then select Logiscope WinDoc in the Kalimetrix > Kali-
metrix Tools > Kalimetrix Logiscope 2014 program group.

The Logiscope WinDoc main window appears :

E.Telelugic Tau Logiscope Windoc
Eile Edit “Window Help

B4 Mo Mame : 1

Logizcope project file [7vep, *Ipp. *hws]

iE:'xH angrmanHangman32 . vap Browse
hadel for report [*.dot]

jE:"-.F'ru:ugram Filezh T elelogichLogizcopehmodelzhF gualcp. daot _:J Browse
Wwhord report file [doc] TR
jE:'\.H angmanHaagman. doc Browse
Reference of report Author B
[¥LG/DOL/DJ/S TR /0625 |Pacino Doume r
Application W erzion [rate

{Hangman

The No Name: 1 window contains several fields for specifying different parameters of
the documentation to be generated.

Fill in all of these fields as described hereafter.

Generating a Quality Report Automatically 77

78

2. In the Logiscope project file pane, enter the name of the Logiscope project:
e.g. C:\LogiscopeProjects\Mastermind.ttp, or use the Browse... button and
navigate to this file.

The Model for report pane allows you to select the type of report to be generated.
Logiscope RuleChecker and QualityChecker offers various types of reports:

*Software Quality Evaluation Report,

*Software Maintenance Report, ...

3. Click on the Browse... button located next to the Model for report pane and select
the models folder in the Logiscope installation directory.

4. Select Rqual.dot file in the Open dialog box.

5. In the Word report file pane, directly type the name of the Word document to be
generated: e.g. C:\LogiscopeProjects\Mastermind_QualityReport.doc, or use the
Browse... button.

6. Fill the 5 other panes with the appropriate information:

Reference of report: gives the identification information you want to the gener-
ated document,

Author: enter your name,

Application: type the name of the project: e.g. Mastermind,
\ersion: type the version number of the report : e.g. V1.0,
Date: leave the Today default value for this field.

B&W: uncheck if you want the colored report.

ﬂ Telelogic Tau Logiscope Windoc
Eile Edit ‘window Help

g4 No Mame : 1 | _ O] x]

Logizcope praject file [Fwzp, *pi. * sz

il::"-.H angmansHanaman32. vzp Brovise
tadel far repart [¥. dat]

jl::"-.F'ngram FileghT elelogichLogizcopetmodels' F qualcp. dot _:J Browse
YWhord repart file [*.doc] T
1I::"-.H angman'sHagman. doc Browse
Reference of repart Althar Bisaf
[VLG/DOLDJ/STRADG2S |Pacing Doumne r
Application Yerzioh Date

{Hanaman {1.00 Today L]

7. When you have entered the requested information, select the File-Build report
command.

A message window is displayed.

8. When report generation is complete, simply open the generated Word report: e.g. :
C:\LogiscopeProject\Mastermind_QualityReport.doc and appreciate how efficient
Logiscope WinDoc automatic documentation generation is.

9. Save the current Quality Report description, so you can apply it to another document
later.

10.Select the File - Exit command to end the Logiscope WinDoc session.

Generating a Quality Report Automatically 79

80

Notices

© Copyright 2014

The licensed program described in this document and all licensed material
available for it are provided by Kalimetrix under terms of the Kalimetrix
Customer Agreement, Kalimetrix International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-Kalimetrix products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. Kalimetrix has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-Kalimetrix
products. Questions on the capabilities of non-Kalimetrix products should be
addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Copyright license

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to Kalimetrix, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions.
Kalimetrix, therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs.

Notices 81

82

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from Kalimetrix
Corp. Sample Programs. © Copyright Kalimetrix Corp. _enter the year or years_.

Trademarks

Kalimetrix, the Kalimetrix logo, Kalimetrix.com are trademarks or registered
trademarks of Kalimetrix, registered in many jurisdictions worldwide. Other
product and services names might be trademarks of Kalimetrix or other companies.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript
are trademarks of Adobe Systems Incorporated or its subsidiaries and may be
registered in certain jurisdictions.

AlX and Informix are trademarks or registered trademarks of International

Business Machines Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Macrovision and FLEXnet are registered trademarks or trademarks of Macrovision
Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other
Microsoft products referenced herein are either trademarks or registered
trademarks of Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of Netscape
Communications Corporation in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

ITIL is aregistered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product or service names may be trademarks or service marks of
others.

	A Studio Guided Tour
	1.1 Starting a Logiscope Studio Session
	1.2 Creating a Logiscope Project
	Defining the type of the Logiscope project
	Specifying the source files to be analyzed
	Setting Parsing Options
	Setting QualityChecker Parameters
	Setting RuleChecker Parameters

	1.3 Introducing the Studio Main Window
	1.4 Building the Logiscope Project
	1.5 Viewing RuleChecker Results
	1.5.1 Rule Violations
	1.5.2 Rule Violations by File
	1.5.3 Rule Violations List
	1.5.4 Rule Violations Report
	1.5.5 Customizing Rules and Rule Sets
	1.5.6 Relaxing Violations Using Special Comments
	Relaxing a single rule violation
	Relaxing several violations and/or adding a longer justification
	Relaxing all violations in pieces of code
	Relaxing a violation in the Logiscope project.

	1.5.7 Importing External Violations
	1.5.8 Managing Generated Source Code

	1.6 Viewing QualityChecker Results
	1.6.1 Quality Model
	1.6.2 Metrics Dictionary
	1.6.3 Criteria Level
	1.6.4 Factor Level
	1.6.5 Quality Report
	1.6.6 Select from Properties
	1.6.7 Kiviat Diagram (only available on Windows)
	1.6.8 Quality Model Editor

	1.7 Conclusion

	A Viewer Guided Tour
	2.1 Starting a Logiscope Viewer Session
	1. Toolbar:
	2. Status Bar
	3. Control Palette: Workspace1-Component list Window
	4. Navigation bar
	5. Selection Bar
	6. Component windows bar
	7. Selector Bar
	8. Messages window
	9. Result Pane

	2.2 Selecting/Deselecting a function
	2.3 Viewing the first results
	2.3.1 Control Graph
	2.3.2 The Source Code
	2.3.3 Metric Kiviat Graph
	2.3.4 Criteria Kiviat Graph
	2.3.5 Preferences
	2.3.6 Average Kiviat Graph
	2.3.7 Quality Report
	2.3.8 Application Results

	2.4 Reviewing Classes
	2.4.1 Opening an existing project
	2.4.2 Opening a Class List Window
	2.4.3 Viewing Class Results
	2.4.4 The Inheritance Graph
	2.4.5 The Use Graph
	2.4.6 Getting More Detailed Class Results

	What a Logiscopian Quality Engineer Does
	3.1 Loading an Existing Logiscope Project
	3.2 Creating a Workspace of Functions to be Inspected
	3.2.1 From the Quality Report
	3.2.2 From the Call Graph

	3.3 Inspecting Selected Function Control Graphs
	3.4 Printing a Control Graph
	3.5 Saving a Workspace

	Generating a Quality Report Automatically
	Notices

