
 LOGISCOPE

Logiscope Rule Checker
Writing C Rules Using Rule Checker Tcl Verifier

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier ii

Before using this information, be sure to read the general information under “Notices” section, on page 29.

© Copyright Kalimetrix 2014

Table of Contents

1. Support Procedures ... 6

1.1. MapRole .. 6

1.2. Violation.. 7

1.3. IsClassObject... 7

2. From C Code to Data Model ... 8

2.1. Scopes and Symbols .. 8

2.2. Types ... 9

2.3. Function Declaration and Definition .. 13

2.4. Variable Declaration and Definition ... 13

2.5. Expressions .. 14

2.6. Instructions and Labels ... 22

3. Shortcuts .. 27

4. Special Cases ... 28

4.1. Finding the Function Body ... 28

4.2. Implicit Function Declaration ... 28

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier iii

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier iv

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 5

Kalimetrix Logiscope

About this manual

This manual is a complement to the Kalimetrix Logiscope RuleChecker & QualityChecker – C

Reference Manual where the Tcl Verifier data model and main support procedures are described.

Reading first the above document is mandatory.

What is important to remember is that the data model mainly describes an abstract syntax tree of the

code, with some semantic information already resolved and attached to the syntax tree.

Audience

This manual is intended for Kalimetrix Logiscope™ RuleChecker C users who want to verify

new programming rules using the Tcl Verifier and develop the associated scripts.

Overview

This document describes some fine points and how C constructs translate to the data model used by

the Logiscope Tcl Verifier.

Section 1 explains some key support procedures of the Tcl Verifier.

Section 2 gives examples of how C code is translated into the data model.

Section 3 provides usual shortcuts when using the Tcl Verifier.

Section 4 addresses some special cases.

.

Conventions

The following typographical conventions are used in this manual:

italics names of textual elements (filename), notes, documentation titles.

typewriter screen and file examples.

Kalimetrix Logiscope

2 Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

Contacting KalimetrixSoftware Support

If the self-help resources have not provided a resolution to your problem,

you can contact KalimetrixSupport for assistance in resolving product

issues.

Prequisites

To submit your problem to Kalimetrix Software Support, you must have an

active support agreement. You can subscribe by visiting

http://www.kalimetrix.com .

 To submit your problem online (from the KalimetrixWeb site) you

need to be a registered user on the Kalimetrix Support Web site :

http://support.kalimetrix.com/

Submitting problems

To submit your problem to Kalimetrix Software Support:

1) Determine the business impact of your problem. When you report a

problem to Kalimetrix, you are asked to supply a severity level.

Therefore, you need to understand and assess the business impact of the

problem that you are reporting.Use the following table to determine the

severity level.

Severity Description

Block The problem has a critical business impact. You are

unable to use the program, resulting in a critical impact on

operation. This condition requires an immediate solution.

Crash The problem has a significant business impact.

The program is usable, but it is severely limited

Major The problem has a some business impact.

The program is usable, but less significant features

(not critical to operation) are unavailable.

Minor The problem has a minimal business impact.

The problem causes little impact on operations or a

reasonable circumvention to the problem was

implemented.

2) Describe your problem and gather background information, When

describing a problem to Kalimetrix, be as specific as possible. Include all

relevant background information so that Kalimetrix Software Support

specialists can help you solve the problem efficiently. To save time,

http://www.kalimetrix.com/
http://support.kalimetrix.com/

Kalimetrix Logiscope

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 3

know the answers to these questions:

 What software versions were you running when the problem

occurred?

To determine the exact product name and version, start your

product, and click Help > About to see the offering name and

version number.

 What is your operating system and version number (including any

service packs or patches)?

 Do you have logs, traces, and messages that are related to the

problem symptoms?

 Can you recreate the problem? If so, what steps do you perform to

recreate the problem?

 Did you make any changes to the system? For example, did you

make changes to the hardware, operating system, networking

software, or other system components?

 Are you currently using a workaround for the problem? If so, be

prepared to describe the workaround when you report the

problem.

3) Submit your problem to Kalimetrix Software Support. You can submit

your problem to Kalimetrix Software Support in the following ways:

 Online: Go to the Kalimetrix Software Support Web site at

http://support.kalimetrix.com

http://support.kalimetrix.com/

Kalimetrix Logiscope

4 Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

Bibliography

[TCL94] JOHN K. OUSTERHOUT

Tcl and the Tk Toolkit - Addison-Wesley Professional Computing Series

1994 ISBN 0-201-63337-X

[TCL03] BRENT WELCH, KEN JONES, JEFFREY HOBBS

Practical Programming in Tcl and Tk (4th Edition) – Prentice Hall

2003 ISBN 0-130-38560-3

[C90] ISO/IEC 9899:1990

International standard Programming languages - C

Kalimetrix Logiscope

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 5

1. Support Procedures

1.1. MapRole

The main support procedure is MapRole. The main purpose of this procedure is to allow

navigation in the data model, as described in the Kalimetrix Logiscope RuleChecker &
QualityChecker C Reference Manual .

But it can also be used in other ways. The purpose of this procedure is to allow actions on the target

objects of a link in the data model, but it returns a count of objects on which the action has been

performed.

For example, if you want to know whether a type is qualified with const, you may use the fact that

there is a QualifierConst object in the qualifier role of the type:

if {[MapRole $type qualifier -filterclass QualifierConst {expr 0;#}]}

Here, the action is to return 0, which stops the MapRole as soon as a QualifierConst is

encountered during the navigation on the role. ;# introduces a TCL comment, so that the exact

action performed, expr 0;# <handle on qualifier>, does not see the handles on the

qualifier objects. This MapRole will return 0 if no action is performed (i.e. there is no

QualifierConst object in the role), or 1 if there is at least one QualifierConst. The

MapRole will stop as soon as a QualifierConst object is processed.

Another example: you may compute the number of operands of an ExpressionComplex (i.e an

expression with operator or function) with:

set argumentCount [MapRole $expression operand]

(a missing action is like having an action that always returns 1).

A filter can be inserted between the name of the link that is to be followed and the action. The filter

restricts the objects that are subject of the action. Note that these objects are thus not counted in the

result of MapRole.

The filter can be:

• -filter <script fragment>. The <script fragment> is evaluated, like the action,

with the object handle appended. If the filter returns 0, the action is not evaluated; if the filter

returns 1, the action is evaluated.

• -filterclass <class list> . The action is evaluated only if the object is an instance of

one of the classes of <class list>.

For example, to perform an action on all expressions using the ternary operator (?:):

proc isTernary {expression} {

expr {[isClassObject ExpressionComplex $expression] && \

[isClassObject FunctionTernary [GetRole $expression function]]}

}

MapRole application expression -filter isTernary action

To count the number of typedef in a translation unit $scopeTU:

Kalimetrix Logiscope

6 Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

set typedefCount [MapRole $scopeTU symbolDef \

-filterclass SymbolType]

1.2. Violation

The other important support procedure is Violation:

Violation $object $::thisRule “message”

The global variable thisRule is always set to the value of the .KEY keyword of the rule file

before evaluation of the rule code. But what is interesting here is the $object part: this must be an

object handle, and the object must belong to a class which inherits of the class Origin; the object
handle is used to know where (file, line, function, if applicable) the violation will be shown. So you
can play tricks with it. For example, if you want to flag a non conforming identifier for a variable, it
may be best to issue a violation notice on all declarations and definitions of the variable.

1.3. IsClassObject

The isClassObject procedure performs the same function as the -filterclass filter of

MapRole: it allows to efficiently test the class of a data model object.

set clist {InstructionDefinition InstructionTentativeDefinition}

if {[isClassObject $clist $object]} {

...

}

is equivalent to

if {[lsearch -exact $clist [Class $object]] >= 0} {

...

}

except that the isClassObject procedure is more memory and time efficient, and that it checks

the validity of the class names in $clist.

Kalimetrix Logiscope

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 7

2. From C Code to Data Model

2.1. Scopes and Symbols

A Symbol is an identifier in a scope. Scope objects are name spaces for identifiers,

The identifiers visible in the whole application are in the role symbolDef of the ScopeGlobal

(there may be here only instances of SymbolVariable and SymbolFunction). There is only

one instance of ScopeGlobal.

Every C file introduces a ScopeTranslationUnit which is the name space representing the C

file with all included files expanded. Here are SymbolVariable and SymbolFunction

declared with the keyword static, SymbolType (typedef identifiers), SymbolTag (tags of

structures, unions and enumerations) and SymbolEnum (enumeration constant) that are declared at

file level, and all SymbolMacro encountered in the C file and the included files.

Every structure and union introduces a new name space, represented by a ScopeStructure, that

contains the SymbolField (field identifiers).

Every defined function introduces a new name space (ScopeFunction), that contains the

parameter identifiers (of class SymbolVariable) and the goto labels (SymbolLabel).

Every macro function introduces a new name space (ScopeFunction), that contains the

parameter identifiers (SymbolVariable). Note that the Variable objects linked to these

parameters have no type role.

Every block of instructions introduces a new name space (ScopeBlock), that contains all the

identifiers declared and defined in the block.

The Scope* objects, besides holding Symbol* objects in the symbolDef role, also hold the

Variable (variableDef role) and Function (functionDef role) objects which are valid

within the scope: functions being either extern or static, their containing scope may only be

the ScopeGlobal or a ScopeTranslationUnit; Variable objects may be automatic,

extern or static, thus their containing scope may be a ScopeBlock, the ScopeGlobal or

a ScopeTranslationUnit, respectively. Note that static block variables are represented by

a Variable object in a ScopeBlock, with the attribute permanent set to true.

Scope* objects also hold the declarations and definitions of the variables and functions in the

instructionDef role. The InstructionDeclaration (for variables and functions),

InstructionDefinition and InstructionTentativeDefinition (for variables) are
described below.

/* The C file (and all its includes) introduces a

ScopeTranslationUnit */

struct { /* Introduces a new ScopeStructure,

subScope of the ScopeTranslationUnit */

int a; /* a SymbolField (name = "a") within the ScopeStructure */

}

/* A SymbolVariable within the ScopeTranslationUnit */

static int a;

Kalimetrix Logiscope

8 Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

/* A SymbolVariable within the ScopeGlobal */

extern int b = 3;

/* A SymbolFunction within the ScopeGlobal */

/* The parameter list introduces a new ScopeFunction,

subScope of the ScopeGlobal, since the function is external */

void f(int c) {

/* The body of the function introduces a new BlockScope */

/* Same Variable object as above but different Symbol,

this one being in the BlockScope */

extern int a;

{

/* another BlockScope, the superScope of which is

the previous BlockScope */

/* same Variable object as above but different Symbol */

extern int b;

}

}

2.2. Types

Types come in different flavors:

• Built in types, represented by the classes TypeVoid, TypeInt, etc.

• Constructed types, such as pointers, arrays and function types.

• Enumeration types.

• Structure and union types.

• Symbolic types, defined with typedef.

TypeMeta may not be encountered in an instantiation of the data model.

The instantiation of the data model for the different types is illustrated below.

int a[5];

(only the type of a is represented here, not the whole declaration)

TypeInt

type

TypeArray

size

ExpressionConstant

type TypeInt

Kalimetrix Logiscope

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 9

int a[3][2];

(only the type of a is represented here, not the whole declaration)

TypeInt

type

TypeArray

size

ExpressionConstant

type TypeInt

type

TypeArray

size

ExpressionConstant

type TypeInt

int *a[5];

(only the type of a is represented here, not the whole declaration)

TypePointer

type TypeInt

type

TypeArray

size

ExpressionConstant

type TypeInt

extern void f(double d, ...);

(only the type of f is represented here, not the whole InstructionDeclaration)

TypeDouble TypeVararg

parameter

TypeFunction

type

TypeVoid

Kalimetrix Logiscope

10 Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

enum en {

e1 = 3 + 4,

e2

};

TypeInt

TypeInt

SymbolTag
name = “en”

type

type

tag

typeTagged

SymbolEnum
name = “e1”

symbol

enumValue

ExpressionConstant ExpressionConstant

operand

TypeEnum

typeEnum enumValue

EnumValue

value ExpressionComplex

function FunctionAdd

EnumValue value

enumValue
symbol

SymbolEnum
name = “e2”

Kalimetrix Logiscope

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 11

struct st {

char *f1;

int :2;

int f2:6;

};

SymbolTag
name = “st”

tag

typeTagged

SymbolField
name = “f1”

symbol

typeField

TypeStruct

typeStructured typeField

TypeField

type TypePointer

type TypeChar

length

ExpressionConstant

type TypeInt

TypeBitField type TypeInt

ExpressionConstant

type

TypeInt
length

TypeBitField type

TypeInt

typeField
symbol

SymbolField
name = “f2”

Note that the data model cannot distinguish between:

struct st {

char *f1;

int :2;

int f2:6;

};

Kalimetrix Logiscope

12 Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

and:

struct st {

char *f1;

int :2, f2:6;

};

Beware that the names TypeField and TypeBitField may be confusing: their instances are

not types, but fields of structures and unions.

SymbolType
name = “t2”

typedef int t1; typedef t1 *t2;

SymbolType
name = “t1”

symbol
typeSymbol

symbol
typeSymbol

TypeSymbol

ancestor TypePointer

type TypeSymbol

ancestor TypeInt

(note that the role expansion does not work).

2.3. Function Declaration and Definition

Function objects have InstructionDeclaration, but no InstructionDefinition, nor

InstructionTentativeDefinition.

As may be expected, an InstructionDeclaration is created when

extern int function(int i);

is encountered in the code. The InstructionDeclaration object is linked to the

SymbolFuction, which has function as attribute name. By following the link from the

SymbolFunction object to the Function object, all other SymbolFunction objects for the
same function may be retrieved, and thus all the declarations for the function.

Retrieving the function definition and code is a bit trickier, and is covered below.

As a special case,

extern int f(void), g(int i);

creates two InstructionDeclaration objects, one for f and one for g.

2.4. Variable Declaration and Definition

Variable objects have InstructionDeclaration, InstructionDefinition, and

InstructionTentativeDefinition.

InstructionDefinition objects are created for every declaration of a variable that reserves

memory for the variable:

• Every variable declaration with an initializer.

• Every variable declaration in a block that is not introduced with the keyword extern.

Kalimetrix Logiscope

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 13

InstructionDeclaration objects are created for every declaration of a variable that cannot

reserve memory for the variable:

• Every variable declaration without initialization that is introduced with the keyword extern.

All other variable declarations are represented by a InstructionTentativeDefinition

object. It is an obscure feature of the C language that such declarations do not reserve memory for

the variable by themselves: if no definition is found for the variable at the end of the translation

unit, the C compiler will reserve memory for the variable. A common extension found in C

compilers on UNIX systems allows the linker to merge the memory allocated by the compiler for

the different tentative definitions of the same variable name with external linkage.

Most of the time, InstructionTentativeDefinition objects are to be used like

InstructionDefinition objects in rules.

When several variables are declared or defined in the same statement, one

InstructionDeclaration, InstructionDefinition or

InstructionTentativeDefinition object is created for each variable.

Examples:

static int a; /* InstructionTentativeDefinition */

int b; /* InstructionTentativeDefinition */

extern int c; /* InstructionDeclaration */

extern int b = 3; /* same b, InstructionDefinition */

int a = 4; /* same a, InstructionDefinition */

void f(void) {

extern int a; /* same a InstructionDeclaration */

int d, e; /* two InstructionDefinition */

}

2.5. Expressions

Expressions come in different flavors:

• ExpressionConstant represents the literal constant (numeric or string).

• ExpressionSymbol represents the symbolic expressions, such as a variable name, a function

name, an enumeration value name, a structure or union field name.

• ExpressionType represents a type, when used in an expression, as part of a sizeof

argument or in a cast.

• ExpressionComplex represents an expression with an operator and its operands, or a

function call.

All expressions, with built in operators or function call follow a unified model. Here are two

examples, the first with a binary operator, the second with a unary operator:

Kalimetrix Logiscope

14 Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

a + 3 gives (provided that a is a variable or a function parameter):

SymbolVariable
name = “a”

symbol variable

Variable

function

ExpressionComplex

operand

symbol

ExpressionSymbol

FunctionAdd

ExpressionConstant

type

TypeInt

!a gives (provided that a is a variable or a function parameter):

SymbolVariable
name = “a”

symbol variable

Variable

function

ExpressionComplex

operand

symbol

ExpressionSymbol

FunctionNot

The data model is analogous for all unary and binary operators, only the function differs:

Table 1Arithmetic operators

Operator Class

+ (unary) FunctionPlus

- (unary) FunctionMinus

+ FunctionAdd

- FunctionSub

* FunctionMul

/ FunctionDiv

% FunctionMod

Kalimetrix Logiscope

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 15

Table 2Bitwise operators

Operator Class

>> FunctionRsh

<< FunctionLsh

& FunctionBand

| FunctionBor

^ FunctionBxor

~ FunctionBnot

Table 3Relational and logical operators

Operator Class

< FunctionLt

<= FunctionLe

> FunctionGt

>= FunctionGe

== FunctionEq

!= FunctionNe

&& FunctionAnd

|| FunctionOr

! FunctionNot

Table 4Assignment operators

Operator Class

= FunctionAssign

+= FunctionAddAssign

-= FunctionSubAssign

*= FunctionMulAssign

/= FunctionDivAssign

%= FunctionModAssign

>>= FunctionRshAssign

<<= FunctionLshAssign

&= FunctionBandAssign

|= FunctionBorAssign

^= FunctionBxorAssign

++ (prefix) FunctionPreInc

++ (postfix) FunctionPostInc

Kalimetrix Logiscope

16 Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

Operator Class

-- (prefix) FunctionPreDec

-- (postfix) FunctionPostDec

All other operators follow the same model:

a ? 'a' : b

SymbolVariable
name = “a”

symbol variable

Variable

function

ExpressionComplex

operand

symbol

ExpressionSymbol

FunctionTernary

ExpressionConstant

type

TypeInt

ExpressionSymbol

symbol

(note that 'a' has type int in C).

SymbolVariable
name = “b”

symbol variable

Variable

f(), g() (this is the comma operator, not the argument separator)

FunctionBuiltout

symbol function

SymbolFunction
name = “f”

function

ExpressionComplex

operand

function

ExpressionComplex

operand

FunctionSequence
ExpressionComplex

operand

function

FunctionBuiltout

symbol function
SymbolFunction

name = “g”

Kalimetrix Logiscope

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 17

function

ExpressionComplex
(unsigned int)a

operand

ExpressionType

type

TypeUnsignedInt

FunctionCast
ExpressionSymbol

symbol

SymbolVariable
name = “a”

symbol variable

Variable

sizeof(“a”)

ExpressionComplex operand ExpressionConstant

function

type

FunctionSizeof TypePointer

type TypeChar

sizeof(int)

ExpressionComplex

operand

ExpressionType

function

type

FunctionSizeof TypeInt

(note that ExpressionType is merely an adapter that allows to use a type as an expression.)

Kalimetrix Logiscope

18 Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

function

ExpressionComplex

&a

operand

SymbolVariable
name = “a”

symbol

ExpressionSymbol

symbol variable

Variable

FunctionAddress

function

ExpressionComplex

*a

operand

SymbolVariable
name = “a”

symbol

ExpressionSymbol

symbol variable

Variable

FunctionRef

Kalimetrix Logiscope

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 19

function

ExpressionComplex

a[3]

operand

SymbolVariable
name = “a”

symbol

ExpressionSymbol

symbol variable

Variable

FunctionIndex

ExpressionConstant

type TypeInt

(*a[0])(1, 3.0)

Variable

variable
symbol

SymbolVariable
name = “a”

TypeInt

symbol type

ExpressionSymbol ExpressionConstant

function

ExpressionComplex

operand

operand

ExpressionComplex

function

FunctionIndex

FunctionCall
ExpressionConstant

type

TypeInt

ExpressionConstant

type TypeDouble

Kalimetrix Logiscope

20 Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

function

ExpressionComplex

a.field

SymbolVariable
name = “a”

symbol

operand

ExpressionSymbol

symbol variable

Variable

FunctionSelect

ExpressionSymbol TypeStruct

symbol

typeStructured

SymbolField
name = “field”

symbol typeField

TypeField

ExpressionComplex

operand

a->field

SymbolVariable
name = “a”

symbol

ExpressionSymbol

symbol variable

Variable

function

ExpressionSymbol TypeUnion

FunctionPointerSelect
symbol

SymbolField
name = “field”

symbol typeField

typeStructured

TypeField

Kalimetrix Logiscope

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 21

int a[2][2] = {{1, 2}, {3, 4}};

TypeInt

type

TypeArray

size

ExpressionConstant

type TypeInt

type

Variable

type TypeArray

size

ExpressionConstant

type TypeInt

variable
symbol

SymbolVariable
name = “a”

TypeInt

TypeInt

symbol

instruction

type

type

InstructionDefinition ExpressionConstant ExpressionConstant

initialization operand

ExpressionComplex operand ExpressionComplex

function FunctionCompoundInit

function

FunctionCompoundInit

ExpressionComplex

function FunctionCompoundInit

operand

ExpressionConstant ExpressionConstant

type type

TypeInt TypeInt

2.6. Instructions and Labels

Kalimetrix Logiscope

22 Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

The data model for instructions is rather straightforward, once InstructionDeclaration,

InstructionDefinition, and InstructionTentativeDefinition are explained.

The only remaining difficulty is with labels and switch.

But let's look first at a simple illustration of the data model for instructions:

{

while (1) {

if (0)

a++;

else if (1)

b++;

}

b++;

}

Kalimetrix Logiscope

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 23

TypeInt

type

FunctionPostInc

SymbolVariable
name = “a”

symbol

InstructionBlock

sequence

ExpressionConstant

condition

TypeInt

type

function

ExpressionSymbol

operand

InstructionWhile ExpressionConstant ExpressionComplex

body

InstructionBlock

condition

expression

InstructionExpression

expression

ExpressionComplex

sequence

InstructionIf

ifFalse

ifTrue InstructionExpression

TypeInt

type

ExpressionConstant

operand

ExpressionSymbol

function

FunctionPostInc

condition

InstructionIf

ifTrue

ifFalse

InstructionExpression

symbol

SymbolVariable
name = “b”

symbol

expression

FunctionPostInc

function

ExpressionSymbol

operand ExpressionComplex

Instructions may be labeled, in order to allow the code to jump to a specific instruction with a goto

(InstructionGoto) or a switch (InstructionSwitch). Thus the labels come in two
flavors:

• Labels that may be used only in the body of a switch instruction: LabelCase and

LabelDefault.

• Labels that may appear anywhere in the code: LabelIdent.

Kalimetrix Logiscope

24 Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

label1:

label2:

f();

LabelIdent

labelIdent symbol

SymbolLabel
name = “label2”

InstructionExpression

tag

instruction

LabelIdent

labelIdent symbol
SymbolLabel

name = “label1”

expression

ExpressionComplex function FunctionBuiltout

operand
function
symbol

SymbolFunction
name = “f”

Kalimetrix Logiscope

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 25

switch (ch) {

case 'a':

break;

default: ;

}

SymbolVariable
name = “ch”

condition

InstructionSwitch

symbol

ExpressionSymbol

TypeInt

type

body

InstructionBlock

ExpressionConstant

sequence
target

InstructionBreak
tag

instruction

LabelCase

InstructionExpression
tag

instruction

LabelDefault

expression

Kalimetrix Logiscope

26 Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

3. Shortcuts

The TCL verifier defines several shortcuts to ease common tasks:

The application object, root of the data model, has roles to most kinds of objects of the data

model. Beware, however, that following these links may be costly for large applications, since there
may be numerous objects in these roles.

The Instruction* objects have a role, subInstruction, that allows direct navigation to the

Instruction* objects that are directly dependent on them.

The Instruction* objects have a role, allInstruction, that allows direct navigation to all

Instruction* objects that are dependent on them.

The Instruction* objects have a role, expression, that allows direct navigation to the

Expression* objects that are directly dependent on them, for example in the role condtion.

The Expression* objects have a role, subExpression, that allows direct navigation to the

Expression* objects that are directly dependent on them. For an ExpressionComplex

object, this is equivalent to the role operand.

The Expression* objects have a role, allExpression, that allows direct navigation to all

Expression* objects that are dependent on them.

The allInstruction and allExpression roles are very useful when searching for usage of

identifiers in the code.

Kalimetrix Logiscope

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 27

4. Special Cases

4.1. Finding the Function Body

It is often useful to find the body of a function, starting from a FunctionBuiltout object or a

SymbolFunction object. The following schema describes how to retrieve it.

FunctionBuiltout

function symbol

SymbolFunction
name = “f”

function

functionScope

FunctionScope InstructionBlock

superScope
subScope

BlockScope

instructionBlock
blockScope

sequence

The instructions of the body

of the function are here

4.2. Implicit Function Declaration

The C language allows to call a function that is not declared. In such a case, the function is

considered to be declared as returning int and with an unknown parameter list in the most enclosing

scope.

The TCL verifier mimics this behavior by creating an InstructionDeclaration for a

SymbolFunction for every undeclared identifier (function name or not). In order to reduce the
cluttering of the data model for very old code that relies heavily on implicit function declaration, the

InstructionDeclaration is created in the ScopeGlobal. These are the only

InstructionDeclaration that may be found in the instructionDef role of the

ScopeGlobal.

Kalimetrix Logiscope

28 Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

Notices

© Copyright 2014

The licensed program described in this document and all licensed material

available for it are provided by Kalimetrix under terms of the Kalimetrix

Customer Agreement, Kalimetrix International Program License Agreement

or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments

may vary significantly. Some measurements may have been made on

development-level systems and there is no guarantee that these measurements

will be the same on generally available systems. Furthermore, some

measurements may have been estimated through extrapolation. Actual results

may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-Kalimetrix products was obtained from the

suppliers of those products, their published announcements or other publicly

available sources. Kalimetrix has not tested those products and cannot

confirm the accuracy of performance, compatibility or any other claims

related to non-Kalimetrix products. Questions on the capabilities of non-

Kalimetrix products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include

the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Copyright license

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

Kalimetrix, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples have

not been thoroughly tested under all conditions. Kalimetrix, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from Kalimetrix

Corp. Sample Programs. © Copyright Kalimetrix Corp. _enter the year or years_.

Kalimetrix Logiscope

Kalimetrix Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 29

Trademarks

Kalimetrix, the Kalimetrix logo, Kalimetrix.com are trademarks or registered

trademarks of Kalimetrix, registered in many jurisdictions worldwide. Other product and

services names might be trademarks of Kalimetrix or other companies.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript are

trademarks of Adobe Systems Incorporated or its subsidiaries and may be registered in

certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International Business

Machines Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc.

in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Macrovision and FLEXnet are registered trademarks or trademarks of Macrovision

Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other

Microsoft products referenced herein are either trademarks or registered trademarks of

Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of Netscape

Communications Corporation in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks of

Sun Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

ITIL is a registered trademark, and a registered community trademark of the Office of

Government Commerce, and is registered in the U.S Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product or service names may be trademarks or service marks of others.

	1. Support Procedures
	1.1. MapRole
	1.2. Violation
	1.3. IsClassObject

	2. From C Code to Data Model
	2.1. Scopes and Symbols
	2.2. Types
	2.3. Function Declaration and Definition
	2.4. Variable Declaration and Definition
	2.5. Expressions
	2.6. Instructions and Labels

	3. Shortcuts
	4. Special Cases
	4.1. Finding the Function Body
	4.2. Implicit Function Declaration

	Notices

