

 LOGISCOPE

TestChecker Getting Started

ii Kalimetrix Logiscope TestChecker Getting Started

Before using this information, be sure to read the general information under “Notices” section, on

page 107.

© Copyright Kalimetrix 2014

November 2014 Kalimetrix Logiscope TestChecker Getting Started iii

Table of Contents

Chapter 1 About this manual

Chapter 2 Notion of Test Coverage

2.1 Suggested Approaches .. 1

2.2 Instruction Blocks ... 2

2.3 Decision to Decision Paths .. 2

2.4 Modified Condition/Decision ... 4

2.4.1 Definition .. 4

2.4.2 Test Coverage .. 6

2.5 Coverage Precision ... 7

2.6 Coverage Gain .. 7

2.6.1 Example 1 ... 8

2.6.2 Example 2 ... 9

Chapter 3 Building C++ Instrumented Code with Logiscope Studio

3.1 Before you start .. 11

3.2 Starting a Logiscope Studio Session ... 11

3.3 Creating a TestChecker Project .. 12

3.4 Introducing Logiscope Studio ... 19

3.5 Building the Instrumented Executable .. 21

3.6 Updating the alias file ... 23

3.6.1 Syntax of the file ... 23

3.6.2 Example .. 24

Chapter 4 Testing on a Host Machine

4.1 The Logiscope TestChecker Window .. 27

4.2 Creating and Running Your First Test .. 29

4.2.1 Starting the Test .. 29

4.2.2 Viewing Coverage While Testing is in Progress 30

4.2.3 Creating and Running More Tests ... 32

4.3 Displaying Tested and Untested DDPs ... 32

4.4 Displaying the Source Code ... 34

4.5 Saving and closing a Project ... 35

Chapter 5 Analyzing Test Coverage from Logiscope Studio and Viewer

5.1 Test Coverage Analysis Using Logiscope Studio .. 37

5.1.1 Test Coverage .. 37

5.1.2 Test Report .. 38

ii Kalimetrix Logiscope TestChecker Getting Started

5.2 Test Coverage Analysis Using Logiscope Viewer ... 40

5.2.1 Selecting/Deselecting a Function .. 42

5.2.2 Viewing Test Coverage Results ... 43

5.2.3 Ending Viewer and Studio Sessions ... 47

Chapter 6 Building a C Instrumented Code for MC/DC Analysis

6.1 Before you start ... 49

6.2 Creating a TestChecker Project ... 49

6.3 Building an Instrumented Executable ... 56

6.4 Testing the Instrumented Executable .. 59

6.4.1 Starting the Test .. 59

6.4.2 Viewing MC/DC While Testing .. 59

6.5 Refining Modified Conditions .. 61

Chapter 7 Testing on a Target Machine

7.1 Preliminaries ... 63

7.2 Creating and Running Your First Test .. 65

7.2.1 Starting the Test .. 65

7.2.2 Viewing Coverage Rates While Testing is in Progress 66

Chapter 8 Creating and Testing Ada Instrumented Code

8.1 Before you start ... 69

8.2 Creating an Ada TestChecker Project ... 69

8.3 Inserting Pragmas for the Probes .. 76

8.4 Building the Instrumented Executable .. 76

8.5 Testing the Instrumented Executable .. 78

8.6 Customizing the Instrumentation Primitives ... 82

Chapter 9 Building and Testing Java Instrumented Code

9.1 Before you start ... 85

9.2 Creating a Java TestChecker Project. .. 85

9.3 Building the Instrumented Executable .. 91

9.4 Testing the Instrumented Executable .. 94

9.4.1 Settings ... 94

9.4.2 New Test .. 95

Chapter 10 Command Line Mode

10.1 Logiscope create .. 97

10.1.1 Command Line Mode ... 97

10.1.2 Makefile mode .. 98

10.1.3 Options .. 99

10.2 Logiscope batch ... 103

November 2014 Kalimetrix Logiscope TestChecker Getting Started iii

10.2.1 Options ... 103

10.2.2 Examples of Use ... 104

10.3 Logiscope lgdynld ... 105

10.3.1 Options ... 105

10.3.2 Examples of Use .. 105

10.3.3 Merging .trc Files ... 106

Chapter 11 Notices

vi Kalimetrix Logiscope TestChecker Getting Started November 2014

About this manual 7

Kalimetrix Logiscope

Chapter 1

About this manual

Audience

This manual introduces Kalimetrix Logiscope™ TestChecker and get you started. Within

one hour you will be familiar with the tool main features and concepts. Step-by-step

instructions will show you Logiscope TestChecker from different points of view.

Overview

Throughout this document you will observe how to take advantage of test coverage

measurements produced by Logiscope TestChecker to improve testing strategy for the

software application under test and how to generate automatically test coverage reports.

Applications can be written in Ada, C, C++ or Java and all these cases will be seen

throughout this manual.

This consists in the following phases:

1. An introduction to the notion of Test Coverage presenting the various levels of

coverage produced by Logiscope: e.g. Decision To Decision Path (DDP) coverage,

Multiple Conditions / Decisions Coverage (MC/DC).

2. Building C++ Instrumented Code with Logiscope Studio.

In this second phase you will discover Logiscope Studio (if you are not yet familiar

with it) and you will produce your program instrumented binary through a

TestChecker project.

3. Testing on a Host Machine with Logiscope TestChecker.

You will create your first test sessions, generate and analyse your application first test

coverage results.

4. Viewing Results from Logiscope Studio and Viewer.

Previous results will be viewed in different types in these two tools. You will get

acquainted with Logiscope Viewer if you never met it.

5. Building C Instrumented Code. In this part, you will enhance your knowledge of

Studio and TestChecker through the a C example introducing the MCDC.

6. Testing on a Target Machine with TestChecker TcGatway.

7. Building and Testing an Ada Instrumented Code.

8. Building and Testing a Java Instrumented Code.

9. Using TestChecker in Command Line mode.

Kalimetrix Logiscope

2 Kalimetrix Logiscope TestChecker Getting Started

Related Documents

Additional information can be found in:

• Kalimetrix Logiscope TestChecker - Testing on a target machine.

• Kalimetrix Logiscope Studio Reference Manual.

Conventions

The following writing conventions are used in this manual:

• bold: names of commands (e.g. vcs), files and folders (e.g. LogiscopeProjects), and

file extensions (.res)

• italic: names of user-defined textual elements (version_1, component_2), notes,

• typewriter: screen messages (Reference filename) requiring user action,

• keycaps (<Enter>).

<InstallationDir> will refer to the Rational Logiscope installation directory.

<Version> will refer to the Logiscope current version: e.g. 6.6 or upper.

Note: Screen displays in this manual can be slightly different from those you get when

running the Getting Started.

Kalimetrix Logiscope

About this manual 3

Contacting Kalimetrix Software Support

If the self-help resources have not provided a resolution to your problem, you can contact

Kalimetrix Support for assistance in resolving product issues.

Prerequisites

To submit your problem to Kalimetrix Software Support, you must have an active sup-

port contract

To submit your problem online (from the Kalimetrix Web site) to Kalimetrix Software

Support, you must additionally:

• Be a registered user on the Kalimetrix Software Support Web site. For details about

registering, go to http://support.kalimetrix.com

• Be listed as an authorized caller in the service request tool

Submitting problems

To submit your problem to Kalimetrix Software Support:

1. Determine the business impact of your problem. When you report a problem to

Kalimetrix, you are asked to supply a severity level. Therefore, you need to

understand and assess the business impact of the problem that you are reporting.

http://www-01.ibm.com/software/support/
http://www-01.ibm.com/software/support/
http://www-01.ibm.com/software/support/

Kalimetrix Logiscope

4 Kalimetrix Logiscope TestChecker Getting Started

Use the following table to determine the severity level.

Severity Description

1

The problem has a critical business impact. You are unable to

use the program, resulting in a critical impact on operation.

This condition requires an immediate solution.

2

The problem has a significantl business impact. The program

is usable, but it is severely limited.

3

The problem has a some business impact.The program is

usable, but less significant features (not critical to operation)

are unavailable.

4

The problem has a minimal business impact.The problem

causes little impact on operations or a reasonnable circumven-

tion to the problem was implemented.

2. Describe your problem and gather background information, When

describing a problem to Kalimetrix, be as specific as possible. Include all

relevant background information so that Kalimetrix Software Support

specialists can help you solve the problem efficiently. To save time, know

the answers to these questions:

• What software versions were you running when the problem occurred?

To determine the exact product name and version, use the option

applicable to you:

• Start your product, and click Help > About to see the offering name and

version number.

• What is your operating system and version number (including any

service packs or patches)?

• Do you have logs, traces, and messages that are related to the problem

symptoms?

• Can you recreate the problem? If so, what steps do you perform to

recreate the problem?

• Did you make any changes to the system? For example, did you make

changes to the hardware, operating system, networking software, or

other system components?

• Are you currently using a workaround for the problem? If so, be

prepared to describe the workaround when you report the problem.

Kalimetrix Logiscope

About this manual 5

3. Submit your problem to Kalimetrix Software Support. You can submit your

problem to Kalimetrix Software Support going online to the Kalimetrix

Software Support Web site at http://support.kalimetrix.com .

https://www.ibm.com/software/rational/support/
https://www.ibm.com/software/rational/support/
https://www.ibm.com/software/rational/support/
https://www.ibm.com/software/rational/support/

Kalimetrix Logiscope

6 Kalimetrix Logiscope TestChecker Getting Started

Kalimetrix Logiscope

Kalimetrix Logiscope TestChecker Getting Started 1

Chapter 2

Notion of Test Coverage

2.1 Suggested Approaches

In order to evaluate the completeness of the tests performed, Logiscope measures the test

coverage as the following ratio:

number of objects executed

number of objects to be executed

which just leaves the notion of object to be defined.

Test coverage represents the percentage of objects exercised by executed tests.

As execution paths cannot be identified automatically, objects are considered as portions

of the execution paths.

The larger the size of these portions, the more they integrate control structure

combinations. The effort to obtain maximum test coverage is greater but the risk of

software failure is reduced.

Logiscope proposes several types of approach to measuring test coverage.

Objects considered are:

• Instruction Blocks (IBs),

• Decision-to-Decision Paths (DDPs),

• Modified Conditions/Decisions (MC/DCs).

Kalimetrix Logiscope

Notion of Test Coverage 2

2.2 Instruction Blocks

Instruction Blocks (or IBs) represent sequential instructions in the function such that the

execution of the first instruction block leads to the execution of the last. They are

symbolized on the control graph by squares.

Example:

Instruction Blocks

Note

:

Control graph with 4 IBs

Only Logiscope Viewer makes possible the display of IB coverage in graphic and tabu-

lar form. For details, refer to the Logiscope Viewer online help.

2.3 Decision to Decision Paths

A Decision-to-Decision Path (or DDP) is a sequence of instructions whose origin is the

entry point of the function or a decision (if, while,...) and whose end is the exit point of

the function or the next decision. No decision should be found between the point of

origin and the end point. Control instructions are symbolized on the graph by nodes ().

Components beginning and end, symbolized on the graph by nodes (), are taken as

decisions feedback.

Kalimetrix Logiscope

Kalimetrix Logiscope TestChecker Getting Started 3

Example:

In the component represented by the pseudo-code illustrated below, the following five

DDPs and control graph are detailed:

DDP example

Logiscope Viewer enhances the qualitative aspect provided by Logiscope TestChecker

by displaying DDP coverage in graphic (see control graph above) and tabular form. It

also indicates necessary conditions to execute non-tested DDPs. For details, refer to the

Logiscope Viewer online help.

Kalimetrix Logiscope

Notion of Test Coverage 4

2.4 Modified Condition/Decision

The Modified Condition/Decision Coverage (MC/DC) provides most of the benefits of

multiple–condition testing while keeping the number of required tests from growing

exponentially.

The DO-178B standard (Software Considerations in Airborne Systems and Equipment

Certification) defines testing objectives according to the application degree of criticality,

as it relates to real-life aircraft failure conditions.

DO-178B classifies software according to consequences of failure ranking from Level

A: the most critical to Level E. Level A corresponds to software whose failure “would

cause or contribute to a failure of system function resulting in a catastrophic failure

condition for the aircraft.”

For the verification process, DO-178B states that level A software requires 100% of

Modified Condition/Decision Coverage .

2.4.1 Definition

The Modified Condition/Decision Coverage criterion is satisfied if the following

requirements are met:

• Requirement 1: every entry and exit point of the program module under

consideration has been invoked at least once, and each program decision has switched

to all possible outcome values at least once.

• Requirement 2: program decisions having been broken down into basic Boolean

conditions connected by logical operators (AND, OR, etc.), every one of these

conditions has taken all possible outcome values; every condition has acted on the

outcome of the decision independently. In other words, the outcome of a decision has

changed as a result of changing a single condition.

Example:

Kalimetrix Logiscope

Kalimetrix Logiscope TestChecker Getting Started 5

The following example illustrates a simple Modified Condition/Decision Coverage test:

Modified Condition/Decision Coverage

In this basic example a 100% DDP (Decision-to-Decision Path) coverage rate is

achieved: test 1 with X = T (True) and Y = T (True) covers DDPs A and C, and test 3

with X = F (False) and Y = T (True) covers DDPs A and B. The outcome of these tests

also satisfies requirement 1. Note that expression Y has not taken on the value F, which

means that more testing has to be conducted to satisfy requirement 2. Tests 1 and 3 have

not shown that Y independently affects the outcome of the decision.

The truth table in Figure 2 shows that the (T,T) test is required, as it is the only one that

will allow to reach the T value. The (F,T) test is also required as it is the only test that

will change the value of X as well as the outcome of the decision, thus showing the

independence of X. Similarly, the (T,F) test is required to show the independence of Y.

Therefore, three tests are required to meet requirements 1 and 2.

Kalimetrix Logiscope

Notion of Test Coverage 6

2.4.2 Test Coverage

The table below details tests for the example decision (X and (Y or Z)).

Pair table for (X and (Y or Z))

The first column lists test case numbers, and three columns on the right are used to pair

tests relevant for conditions X, Y and Z. This table shows that the pair of a given test

case for a condition is the test case which establishes the independence of this condition.

From Figure 3 it can be demonstrated that test case 1 (T,T,T) and test case 5 (F,T,T) can

be paired to show the independence of X. Consequently, test case 1 is the unique pair for

test case 5 as far as condition X is concerned.

As mentioned above, the pair table indicates that test case 1 (T,T,T) and test case 5

(F,T,T) show the independence of X. Similarly, test case 2 (T,T,F) and test case 4 (T,F,F)

show the independence of Y, and test case 3 (T,F,T) and test case 4 (T,F,F) can be paired

to show the independence of Z. As a result, the test set {1,5,2,4,3} satisfies the Modified

Condition/Decision Coverage for the expression X, Y and Z. Obviously, this is not the

only possible combination.

Coverage rates are obtained by calculating, from executed tests, a set of tests sufficient to

demonstrate that all conditions of the decision are indeed independent. Coverage is

obtained from the result of the following ratio:

Kalimetrix Logiscope

Kalimetrix Logiscope TestChecker Getting Started 7

2.5 Coverage Precision

Let us illustrate this with the control graph of the previous figure. In the testing phase

executed test cases have made it possible to pass through some structures in the control

graph. In the control graph, paths taken are represented by a continuous line and paths

that have not been taken are represented by a broken line.

Control graph of paths taken

With respect to the various objects, running these test cases has covered:

objects proportion coverage

IBs 4 out of 4 100%

DDPs 4 out of 5 80%

MC/DCs 3 out of 6 50%

These three approaches correspond to three degrees of measurement precision, and the

choice of which approach to use will depend on the criticality of the software to be tested

and the objective to be reached.

n for a trivial application, an IB coverage rate of 100% may be sufficient,

n for a critical application, a DDP coverage rate close to 100% may be advisable,

n for a very critical application, a MC/DC coverage rate close to 100% may be

required.

2.6 Coverage Gain

Gain, or improvement represents the percentage of objects specifically executed during a

test. In other words it gives the percentage of objects executed exclusively by a test. This

notion is a dynamic one. Each time a test is added (executed) or removed using

Logiscope TestChecker, the gain of each test may decrease or increase accordingly.

Kalimetrix Logiscope

Notion of Test Coverage 8

2.6.1 Example 1

Here is an example to illustrate the notion of gain. Suppose to analyze a program

containing a function which has 5 DDPs, and 3 tests (T1, T2 and T3) executing some of

these DDPs for this function. The table below provides DDP coverage, the percentage

covered by each test or by the sum of all tests, and gain for each test.

X (in uppercase) indicates a DDP which is executed by one test only. Gain is positive for

this test.

x (in lowercase) indicates a DDP which is executed by several tests. Gain is null for this

test and for this DDP.

Kalimetrix Logiscope

Kalimetrix Logiscope TestChecker Getting Started 9

2.6.2 Example 2

Assuming the execution of another test (T4) at this point. Look at the resulting change in

the gain column below. In fact, this new test will not increase global coverage because all

covered DDPs have already been executed by another test, in other words, gain will be

0%.

In addition to this, gain for T1 will decrease because 2 out 3 of the DDPs covered by T1

have already been executed by other tests: T4 will execute DDP1, which has already

been tested by T1.

In such a case, deleting T4 will not affect global coverage. The list of “efficient’’ tests

will still be T1, T2, T3.

Kalimetrix Logiscope

Notion of Test Coverage 10

Kalimetrix Logiscope

Building C++ Instrumented Code with Logiscope Studio 11

Chapter 3

Building C++ Instrumented

Code with Logiscope Studio

3.1 Before you start

Along with this chapter, you are provided with a program written in C++ language, an

implementation of an ATM machine. The program has been carefully designed for you to

use all features of Logiscope TestChecker.

Source files of this program are stored in the directory

<InstallationDir>\samples\Tchk\C++\ATM.

As a precaution to keep original files safe, it is highly recommended that you copy this

subdirectory into a working directory of your own: e.g. C:\ATM. on Windows,

$HOME/ATM on UNIX.

In addition, you will create Logiscope projects and associated repositories: i.e. sets of

files containing internal data used by Logiscope. It is recommended to a create a

dedicated directory to store these data: e.g. a folder named LogiscopeProjects.

3.2 Starting a Logiscope Studio Session

1. To begin a Logiscope Studio session:

• On Windows:

- click the Start button and select the Kalimetrix Logiscope <version> item in the

Kalimetrix Programs Group.

• On UNIX (i.e. Solaris or Linux):

- launch the vcs binary .

The Logiscope splash screen is first displayed and then the Logiscope Studio main

window appears as follows:

Kalimetrix Logiscope

12 Kalimetrix Logiscope TestChecker Getting Started

3.3 Creating a TestChecker Project

First, you shall define a Logiscope TestChecker project which mainly consists in:

• the list of source files to be first instrumented and then being tested for test coverage

analysis,

• applicable source code instrumentation options according to the compilation

environment,

• the special traces that will be generated by the Logiscope libraries during the

execution of the test cases on the instrumented application.

2. In the File menu, select the New... command or click the icon.

Kalimetrix Logiscope

Building C++ Instrumented Code with Logiscope Studio 13

The New Logiscope Projects dialog box appears.

3. In the Project name: pane, enter the name for the new Logiscope project to be

created. In the context of the guided tour, this simply can be the name of the

application under test: e.g. ATM.

The information provided in this pane will be then refer as the <ProjectName>.

4. Then select its Location: i.e. the directory where the Logiscope project (i.e. a “.ttp”

file) and the associated Logiscope repository will be created; the Logiscope repository

is a folder in which Logiscope internal analysis result files are generated.

The information provided there will be then refer as the <LogiscopeRepository>.

Note: By default, the project name is automatically added to the specified location. This

implies that a subdirectory named <ProjectName> is automatically created.

5. Click OK to access to the Logiscope Project Definition first window.

Kalimetrix Logiscope

14 Kalimetrix Logiscope TestChecker Getting Started

6. Select the Project Language: i.e. the programming language in which are written

the source code files to be analysed.

For the ATM project, select C++.

Note: Only one language can be selected. If your application contains source code

files written in several languages, you should create several distinct Logiscope

projects: one for each language.

7. Select the Project Modules: i.e. the verification modules to be activated on the

source files of the project .

For the guided tour, select TestChecker.

Notes: At least one module should be selected. The TestChecker module cannot be

selected with another module.

For more details on QualityChecker and RuleChecker modules, please refer to

Kalimetrix Logiscope QualityChecker & RuleChecker Getting Started.

For more details on CodeReducer module, please refer to Kalimetrix Logiscope

CodeReducer - Identifying Code Similarities .

8. Click the Next button to continue the creation.

Kalimetrix Logiscope

Building C++ Instrumented Code with Logiscope Studio 15

The Project Source Files dialog box allows to specify what source files are to be

analysed and where they are located.

.

Source files root directory shall specify the location directory of the source files to be

analyzed.

9. Browse to select the directory where the ATM sample source files are located: i.e. in

the samples/Tchk/C++/ATM folder of the Logiscope installation directory or in the

directory where the source files have been copied as recommended in previous

section: e.g. C:/ATM

The Directories choice allows to select the list of repertories covering the application

source files.

- Include all subdirectories means that selected files will be searched for in every sub-

directory of the source file root directory.

- Do not include subdirectories means that only files included in the application

directory will be selected.

- Customize subdirectories to include allows the user to select the list of directories

that include application files through a new page.

Suffixes choices allow to specify applicable source, header and inline file extensions

needed in the above selected directories. Extensions shall be separated with a semi-

colon.

10. Click the Next button.

Kalimetrix Logiscope

16 Kalimetrix Logiscope TestChecker Getting Started

The TestChecker Settings dialog box is now displayed. It allows to specify some of the

key settings of a Logiscope TestChecker project.

11. The Test repository: is the directory in which instrumented code and traces files

generated when executing the instrumented executable will be saved.

Keep the default location i.e. a Test folder to be created in the Logiscope repository

specified in the New Logiscope Projects dialog box (see Item 3.).

12. The Working directory: is the directory where the make file can be found and where

the executable will be generated (unless otherwise specified by the make file).

13. The Executable for a test session: shall specify the instrumented executable.

In this context, the executable is not yet generated and will be chosen later.

14. The Make command file shall contains the command to build the instrumented

executable. Type the following:

on UNIX: make lgatm

on Windows, cmd /c MakeLog.bat

Note: According to your DOS version, use the equivalent of the ‘cmd’ command.

The Make command will launch the make file in which a Logiscope target has been

defined, to compile and link-edit together the instrumented source files and the

instrumentation library file located in <InstallationDir>/instr/src/vlgtchk.c.

In the next section “Building the Instrumented Executable”, you will be prompted to edit

and modify the make file specified in this pane to adapt it to your compilation

environment.

Kalimetrix Logiscope

Building C++ Instrumented Code with Logiscope Studio 17

15. Click the Next button.

The following wizard box will allow you to complete the project specification with some

specifics of the C++ language .

In the Instrumentation method part, you can choose Memory instrumentation

checkbox but it is an advanced usage for some targets only.

In the Parser configuration part, you can choose the tool in charge of parsing and

instrumenting the source code.

TCL and alias files are defined by default (included in Logiscope product).You can find

details about updating the alias file in section 4.5 Updating the alias file.

16. Click the Next button to confirm.

The last wizard window is displayed. You can check if all files are correct by expanding

folders.

Kalimetrix Logiscope

18 Kalimetrix Logiscope TestChecker Getting Started

17. Click Finish to create your first C++ TestChecker project.

The Studio main window is now updated and contains the workspace view of your

project (see next section).

Two files has been created by this process and are of the form: <ProjectName>.ttp for

project and <ProjectName>.ttw for associated workspace. They are both located in the

folder specified as the Logiscope Repository.

Kalimetrix Logiscope

Building C++ Instrumented Code with Logiscope Studio 19

3.4 Introducing Logiscope Studio

Once the Logiscope TestChecker project has been created, the Logiscope Studio main

window looks as below:

It contains the following components:

Kalimetrix Logiscope

20 Kalimetrix Logiscope TestChecker Getting Started

1 Tool Bar

Provides shortcuts for most commonly used commands of File and Edit menus.

2 Browse Bar

 Provides shortcuts for Browse menu commands.

3 Tcl Script Bar

 The script wizard: Logiscope internal data navigator.

4 UML Browser Bar

5 Project Bar

Allows navigation in HTML documents and internal data.

Build the project and start the Viewer and TestChecker tools.

6 Logiscope TestChecker Bar

 Allows to display key TestChecker results.

• Test Coverage,

• HTML Test Coverage Report

7 Workspace View

Displays a specific view related to the project: header files, the quality model file and

source files.

With a double-click on any file, the original one is displayed in the Result Pane.

8 Result Pane

Used to display various windows.

9 Status Bar

Indicators when building and idle . The status bar also shows short definitions

corresponding to toolbars described above.

10 Output Window

Displays project messages as the first tab is created; also shows errors messages,

warnings or results.

You can use the View command to customize toolbars.

Kalimetrix Logiscope

Building C++ Instrumented Code with Logiscope Studio 21

3.5 Building the Instrumented Executable

Your project is ready to be built. Building consists in:

• instrumenting the code using the instrumentation method selected for the project,

• generating (i.e. compiling and linking) the instrumented executable.

When building the instrumented executable, in order the makefile works, the original

sources files are temporarly replaced by the instrumented ones and then restored.

First of all, you must adapt the Make Command to your compilation environment:

1. Open a text editor and load either the file makefile file or the file makefile.vc if you

intend to compile the code using a Microsoft Visual compiler.

It starts by the following lines:

makefile for ATM c++ exampleV1.5

LOGISCOPE_INSTALL = ../../../..

2. Adapt the value of the variable LOGISCOPE_INSTALL to correspond to the path of the

Logiscope installation directory.

3. On Windows only: open a text editor and load the MakeLog.bat file located in the

directory where the ATM source files are: e.g. C:\ATM.

It contains the two following commands:

call "c:\program files\microsoft visual studio\vc98\bin\vcvars32.bat"

nmake /A /F makefile.vc lgatm

4. Update the path specified in the call command to correspond to the installation
directory of the compiler to be used.

Once the Make command has been adapted:

5. Select the Project-Build command or click the icon. A new tab is added in the

Output window and will contain code instrumentation and generation messages:

Instrumenting: ../ATM/account.cc...

Instrumenting: ../ATM/atm.cc...

Instrumenting: ../ATM/bank.cc...

...

gcc -c -I../../../../instr/include ./account.cc -o Objects/account.o ...

gcc -c -I../../../../instr/include ./atm.cc -o Objects/atm.o ...

gcc -c -I../../../../instr/include ./bank.cc -o Objects/bank.o ...

...

lgatm Objects/account.o Objects/atm.o ...

Build finished

After building the project, the Message tab of the Output window will contain final
results.

The project is built. Otherwise this window will display error messages.

You will now end up TestChecker settings specifications.

Kalimetrix Logiscope

22 Kalimetrix Logiscope TestChecker Getting Started

6. Select Project-Settings option or run the <Alt+F7> command to specify the

executable file. Or, use a shortcut: right click on the Project filename as follows:

7. Select the TestChecker tab.

8. You can now specify the Executable for test session: i.e.the command to launch the

instrumented executable:

On Windows: Click on the button.

A browse window appears. Select the ATM.exe executable file that has been

generated in the Objects sub-directory of the Working Directory when running the

Build command.

On Unix: Type xterm -e lgatm

Kalimetrix Logiscope

Building C++ Instrumented Code with Logiscope Studio 23

If you command name has blank spaces put it between double-quotes (“). The space is

interpreted as the separator between the command and its parameters.

9. Click OK to take changes into account.

10.Save your project with File-Save Workspace.

The instrumented executable generation is complete, your project is ready to be tested.

For this you are going to use the Logiscope TestChecker tool. Move to the next chapter.

3.6 Updating the alias file

The alias file can be used to inform the parser about special macros.

3.6.1 Syntax of the file

// Introduces a line of comments

<macro-name>| <replacement>

<macro-name>()| <replacement>

<macro-name>(<param>[,<param>]*)| <replacement>

where:

<macro-name> is the name of the macro to replace

<param> is either ## for "normal parameter" or $$ for "special parameter" (see below)

<replacement> is one of the following:

{ : the macro is to be considered as an opening curly bracket

} : the macro is to be considered as a closing curly bracket

function{ : the macro id to be considered as a function definition containing the first

opening bracket, the $$ parameter will indicate the position of the name of

the function. Other parameters will be ##

function : same as function{ but not containing the first opening bracket

; : the macro is to be considered as a semicolon.

for : the macro is to be considered as a "for" instruction, the $$ parameter

indicates the position of the loop condition

while : the macro is to be considered as a "while" instruction, the $$ parameter

indicates the position of the loop condition

Kalimetrix Logiscope

24 Kalimetrix Logiscope TestChecker Getting Started

if : the macro is to be considered as a "if" instruction, the $$ parameter

indicates the position of the condition

switch{ : the macro is to be considered as a "switch" instruction including the

opening curly bracket. The $$ parameter indicates the position of the

"expression" of the switch.

switch : same as the previous one but not including the opening curly bracket.

case: : the macro is to be considered as a "case" instruction including the colon

symbol. The $$ parameter indicates the position of the condition.

case : same as the previous one, but not including the colon symbol.

default: : the macro is to be considered as a default instruction including the colon

symbol.

default : same as the previous one, but not including the colon symbol

catch{ : the macro is to be considered as a "catch" instruction including the opening

curly bracket. The $$ parameter indicates the position of the catch

expression.

catch : same as the previous one, but not including the opening curly bracket.

3.6.2 Example

Source file:

#define DECLARE(x,y,z) void x(y,z)

#define FOR(x,y,z) for (x;z;y)

DECLARE(f,int argc, char **argv)

{

A a;

FOR(int x=0, x++, x<10) {

a.print();

}

}

Analyzing this code without a correct alias file will provide the following output:

Output without correct alias file:

/* file begin */

#include "log_inst.h"

#define DECLARE(x,y,z) void x(y,z)

#define FOR(x,y,z) for (x;z;y)

Kalimetrix Logiscope

Building C++ Instrumented Code with Logiscope Studio 25

DECLARE(f,int argc, char **argv)

{

/* function begin */

char *vlg_funcname = "::DECLARE::5"; <== The function should be named

"f"

VLG_DDP1(vlg_funcname, "05/11/04-17:40:04");

{

A a;

FOR(int x=0, x++, x<10) { <== the for condition has not been

detected

a.print();

}

}/* function end */

}

/* file end */

If we add the following lines in the alias file (log_inst.al):

DECLARE($$,##,##) |function

FOR(##,##,$$) |for

Output with a correct alias file:

/* file begin */

#include "log_inst.h"

#define DECLARE(x,y,z) void x(y,z)

#define FOR(x,y,z) for (x;z;y)

DECLARE(f,int argc, char **argv)

{

/* function begin */

char *vlg_funcname = "::f::5"; <== The name of the function is correct

VLG_DDP1(vlg_funcname, "05/11/04-17:40:04");

{

A a;

FOR(int x=0, x++,VLG_COND(vlg_funcname, (x<10) ? 1 : 0, 2, 3)) {

<== for condition has been detected

a.print();

}

}/* function end */

}

Kalimetrix Logiscope

26 Kalimetrix Logiscope TestChecker Getting Started

/* file end */

Kalimetrix Logiscope

Testing on a Host Machine 27

Chapter 4

Testing on a Host Machine

4.1 The Logiscope TestChecker Window

1. In Logiscope Studio, open the Project menu and select the Start TestChecker option

or click the icon in the Logiscope toolbar.

The Logiscope TestChecker tool opens up and looks like this:

1. Project window

The Components pane displays the list of analyzed files. If you select and expand one

Kalimetrix Logiscope

28 Kalimetrix Logiscope TestChecker Getting Started

of these items, corresponding source file components (functions or methods) appear.

The Tests pane shows the list of Logiscope test result files. At this point, nothing can

be displayed because no test has been executed yet.

2. Tool bar

Provides shortcuts to most commonly used Logiscope TestChecker commands.

3. Project window tabs

Used to switch between the Test pane and the Component pane.

4. Result pane

This pane will be used later to display TestChecker results. Component or Test pane

will also be used to navigate from one result set to the other.

5. Messages window

Displays error and warning messages

Kalimetrix Logiscope

Testing on a Host Machine 29

4.2 Creating and Running Your First Test

Tests are stored in test suites. You can create as many test suites as you need. They allow

you to handle tests according to how your testing process is organized. Before running a

test, you must create a test suite. This test suite will contain test coverage results. Of

course, if a test suite has already been created it can be reused.

4.2.1 Starting the Test

1. Select the Test pane of the Project window by clicking on the Tests tab. You are ready

to create a test suite.

2. Select the File-New command or use the toolbar icon to create the test suite.

A test suite window is displayed with the name Tchk1, as shown in the illustration

below.

3. Select the test suite you just created by clicking on it and select the Edit-New Test

command or click the icon.

This action creates a new test in the current test suite. The default name for this new

test is TEST_1.

Kalimetrix Logiscope

30 Kalimetrix Logiscope TestChecker Getting Started

4.2.2 Viewing Coverage While Testing is in Progress

1. Select the View-DDP Spy command.The DDP Spy window appears.

It will display the progress of code coverage during testing:

- the Global bar shows the cumulated coverage for all tests,

- the Current bar shows the coverage for the current test,

- the Improvement bar shows the global coverage improvement secured through the

execution of the current test.

2. Click on TEST_1. This is the test you are going to run.

3. Press the <F5> key or click the icon.

The test begins: a window appears in which you simulate a withdrawing operation.

Kalimetrix Logiscope

Testing on a Host Machine 31

As you execute / test the ATM program, you can see coverage rates increase in the DDP

Spy window, but TEST_1 is the only test executed for the moment so three indicators

display identical values.

At the end of the test execution, the DDP Spy window displays the total coverage of the

TEST_1.

Kalimetrix Logiscope

32 Kalimetrix Logiscope TestChecker Getting Started

4.2.3 Creating and Running More Tests

1. Create another test TEST_2 in the Tchk1 test suite and run it as indicated before.

2. Create another test suite, Tchk2 for instance.

3. Similarly create and run another test TEST_3 in Tchk2.

At this point, your TestChecker window should look approximately like the illustration

below, although test coverage figures may somewhat differ.

4.3 Displaying Tested and Untested

DDPs

Logiscope TestChecker can display tested and untested Decision-to-Decision Paths

(DDPs) for a function or a method. This will help you design complementary tests to

achieve a better overall test coverage of the program.

To display the DDP Coverage window for a component:

Kalimetrix Logiscope

Testing on a Host Machine 33

1. Select a component, either in a Component window or in the Components pane of the

Project window.

2. Select the View-DDP Coverage command.

The DDP Coverage window appears and shows tested and untested DDPs for the

function or method currently selected.

Unreached DDPs are displayed in red. Covered DDPs are displayed in your standard font

color.

Note: Tested and untested DDPs color display depend on your computer settings.

The above illustration shows that at line 107 the required condition to execute the

untested DDP: While Amount <= 0 must be true.

You just have to design a new test case in order to cover this DDP and thus increase the

test coverage.

Kalimetrix Logiscope

34 Kalimetrix Logiscope TestChecker Getting Started

4.4 Displaying the Source Code

Logiscope TestChecker can also display the source code related to a function/method or

to a DDP.

To display the Source Code window:

1. Select a Component in a Component window or in the Components pane, or a DDP in

a DDP Coverage window.

2. Select the View - Source Code command.

3. The Code window pops up and displays the source code of the function/method or

decision selected: e.g. Update::Execute in the file update.cc.

4. Select another component: the Source Code window is updated accordingly.

5. In a DDP Coverage window, select a decision line: here again, the Source Code

displays appropriate lines of code.

Kalimetrix Logiscope

Testing on a Host Machine 35

4.5 Saving and closing a Project

To save the current project:

1. Select File-Save All command. Save test sessions under Tchk1.dyn and Tchk2.dyn.

2. When TestChecker is closed, a warning message pops up from Logiscope Studio

asking for reloading the current modified workspace. Click Yes to reload.

The Studio main view is updated taking into account test sessions done previously.

These are stored in the Dynamic Files folder in the tree structure of the project.

3. In TestChecker window, select the File - Save Project command.

To close the current project:

4. Select the File-Close Project command.

5. Select File-Exit to quit Logiscope TestChecker tool.

Kalimetrix Logiscope

36 Kalimetrix Logiscope TestChecker Getting Started

Kalimetrix Logiscope

Analyzing Test Coverage from Logiscope Studio and Viewer 37

Chapter 5

Analyzing Test Coverage from

Logiscope Studio and Viewer

At the end of the previous chapter, you have executed several test cases on the ATM

program.

Logiscope Studio and Viewer help you reviewing the progress of the testing process

using test coverage results.

5.1 Test Coverage Analysis Using

Logiscope Studio

5.1.1 Test Coverage

1. Select Browse-Test-Component Coverage menu or click the icon.

A new tab is added to the Output window containing the list of tested components

with the associated DDP (Decision-to-Decision Path) coverage rate, as well as the

whole test set to which each component belongs.

If you double click on the component, the corresponding source code appears.

Kalimetrix Logiscope

38 Kalimetrix Logiscope TestChecker Getting Started

You can rank components according to their coverage rate by clicking on the DDP

Coverage column. By default, they are sorted alphabetically.

5.1.2 Test Report

1. Select Browse-Test-Test Report menu or click the icon. An HTML window is

displayed containing a synthesis of your application test coverage.

You can use the HTML Browser Toolbar to navigate back and forth within the Test

Report. It is possible to save it using the command File-Save As...

Note: Histograms shown in the following chapters are not available on UNIX. They are
replaced by tables. If you want to generate a report with histograms, change HTML
reports option in Tools-Options... command (you will see them in your favorite Internet
navigator).

Kalimetrix Logiscope

Analyzing Test Coverage from Logiscope Studio and Viewer 39

2. Click on the 60-70% yellow bar. The list of components whose DDP coverage is

between 60% and 70% is displayed.

3. Select the Home icon in the HTML toolbar to go back to the Report first page.

4. Click on the AT MTest hypertext link. The list of project source files appears.

5. Select File-Close to close the Test Report.

6. Select File-Close Workspace to save all project modifications before lanching

Logiscope Viewer and get more results on test coverage

Kalimetrix Logiscope

40 Kalimetrix Logiscope TestChecker Getting Started

5.2 Test Coverage Analysis Using

Logiscope Viewer

Open Logiscope Viewer from the Project-Start Viewer menu of Logiscope Studio or

click the icon..

The Logiscope Viewer main window looks as follows:

Kalimetrix Logiscope

Analyzing Test Coverage from Logiscope Studio and Viewer 41

This window contains the following elements:

1 Toolbar

Provides shortcuts for most commonly used commands of File and Edit menus.

2 Status Bar

Indicates the status (RECEPTION, NON RECEPTION) of the active window dis-

played in the Result Pane.

3 Control Palette: Workspace1-Component list Window

Displays a view of the components after loading a Logiscope project. Select or dese-

lect the one you want to explore.

4 Navigation bar

Provides shortcuts for the commands of the Navigate menu.

5 Selection Bar

Provides shortcuts for the most commonly used commands of the Select menu.

6 Component windows bar

Allows to display graphical results: control graph, source code, metric and criteria

Kiviat graph, and to go to the Application window.

7 Selector Bar

Uses the selectors to choose and display additional information in the active Domain

window. The content of this bar depends on the view being displayed in the active

Domain window.

8 Messages window

Displays error messages or indications on the loading project.

9 Result Pane

Used to display window command results.

Use the View menu to show or hide some items described above and to customize the

Viewer main window as you wish.

Kalimetrix Logiscope

42 Kalimetrix Logiscope TestChecker Getting Started

5.2.1 Selecting/Deselecting a Function

All functions and methods defined in the program are listed in Workspace1-

Component list window as well as in the Control Palette .

You can use indifferently either the Control Palette or the Workspace1-Component

list window to select or deselect functions.

1. In the Control Palette, click the function Update::Execute::86.

The selection has been propagated to the Workspace1-Component list window.

You can select a particular function in every Domain window displayed in the Result

Pane.

Kalimetrix Logiscope

Analyzing Test Coverage from Logiscope Studio and Viewer 43

5.2.2 Viewing Test Coverage Results

Decision to Decision Path Coverage

1. Select View-DDP Coverage Distribution. The component list window is updated.

2. Select Options-Scale to change the display format.

You can parametrize Scale Display using Options-Scale Parameters... command.

Kalimetrix Logiscope

44 Kalimetrix Logiscope TestChecker Getting Started

Let us go back to the Workspace1- Metric distribution window.

If you select a bar, it becomes blue and all components in this category are check-marked

in the workspace view as well as selected in the Control Palette.

This distribution is the same as the one in the Test Report representation (see previous

chapter).

3. Select View-Component List to make the list of all project components appears.

4. Select the component Update::Execute::86 .

5. Select Window-Control or click the icon. The corresponding control graph is

displayed in a new window.

The control graph is the graphical representation of the selected function with

featuring geometric symbols (nodes) linked by arrows (edges). It represents the

logical structure of the function.

If you place the cursor over the first diamond-shaped node the pseudo-code linked

with it is displayed as shown below:

For more details on the control graph representation, please refer to the IBM Rational

Logiscope Basic Concepts manual.

Kalimetrix Logiscope

Analyzing Test Coverage from Logiscope Studio and Viewer 45

6. Select Options-DDP Numbers to add DDPs numbers to the graph.

7. Select Options-Coverage to display covered and not covered paths.

Now the control graph looks like this:

Covered paths are represented by black solid lines and not covered paths by red dotted

lines.

For instance, the DDP #3 has not yet been exercised by the executed test cases. you can

used many way to understand what decision shall be satisfied to test this untested path:

• place the cursor over the corresponding diamond-shaped node as shown previously,

• select the DDP starting node and display the entire pseudo-code at the same time as

the control graph thanks to Window-Split command,

• use the Window-Source command to display the source code of the function in a new

window and then, select the DDP starting node to highlight the corresponding code.

Kalimetrix Logiscope

46 Kalimetrix Logiscope TestChecker Getting Started

These representations can be configured with the File-Preferences menu.

8. Select Window-Coverage or click the icon. Rearrange both windows to compare

all results.

In the DDP Coverage window, you can see the coverage of each test case and for each

DDP of the function: value is 1 for covered DDP and 0 for uncovered. The Total line

indicates how many times the DDP has been exercised by the test cases.

Kalimetrix Logiscope

Analyzing Test Coverage from Logiscope Studio and Viewer 47

Test Coverage: Instructions Block Coverage

1. Select the Workspace1- Metric distribution window.

1.

2. Select View-IB Coverage Distribution.

The Workspace view is updated

You can repeat the steps of the previous paragraph about control graph replacing DDP by

IB.

5.2.3 Ending Viewer and Studio Sessions

1. In Logiscope Viewer, select File-Exit to end the Logiscope Viewer session.

2. In Logiscope Studio, select File-Exit to end the Logiscope Studio session.

Kalimetrix Logiscope

48 Kalimetrix Logiscope TestChecker Getting Started

Kalimetrix Logiscope

Building a C Instrumented Code for MC/DC Analysis 49

Chapter 6

Building a C Instrumented Code

for MC/DC Analysis

6.1 Before you start

Along with this chapter, you are provided with a program written in C language, an

implementation of the Mastermind game. The program has been carefully designed for

you to use all features of Logiscope TestChecker.

Source files of this program are stored in the directory

<InstallationDir>\samples\Tchk\C\Mstrmind.

As a precaution to keep original files safe, it is highly recommended that you copy this

subdirectory into a working directory of your own: e.g. C:\Mstrmind. on Windows,

$HOME/Mstrmind on UNIX.

In addition, you will create Logiscope projects and associated repositories: i.e. sets of

files containing internal data used by Logiscope. It is recommended to a create a

dedicated directory to store these data: e.g. a folder named LogiscopeProjects.

6.2 Creating a TestChecker Project

First, you shall define a Logiscope TestChecker project which mainly consists in:

• the list of source files to be first instrumented and then being tested for test coverage

analysis,

• applicable source code instrumentation options according to the compilation

environment,

• the special traces that will be generated by the Logiscope libraries during the

execution of the test cases on the instrumented application.

1. Open a Logiscope Studio session (see section 3.2).

2. In the File menu, select the New... command or click the icon.

Kalimetrix Logiscope

50 Kalimetrix Logiscope TestChecker Getting Started

The New Logiscope Projects dialog box appears.

3. In the Project name: pane, enter the name for the new Logiscope project to be

created. In the context of the guided tour, this simply can be the name of the

application under test: e.g. Mastermind.

The information provided in this pane will be then refer as the <ProjectName>.

4. Then select its Location: i.e. the directory where the Logiscope project (i.e. a “.ttp”

file) and the associated Logiscope repository will be created; the Logiscope repository

is a folder in which Logiscope internal analysis result files are generated.

The information provided there will be then refer as the <LogiscopeRepository>.

Note: By default, the project name is automatically added to the specified location. This

implies that a subdirectory named <ProjectName> is automatically created.

5. Click OK to access to the Logiscope Project Definition first window.

Kalimetrix Logiscope

Building a C Instrumented Code for MC/DC Analysis 51

6. Select the Project Language: i.e. the programming language in which are written

the source code files to be analysed.

For the Mastermind project, select C.

Note: Only one language can be selected. If your application contains source code

files written in several languages, you should create several distinct Logiscope

projects: one for each language.

7. Select the Project Modules: i.e. the verification modules to be activated on the

source files of the project .

For this guided tour, select TestChecker.

8. Click the Next button to continue the creation.

Kalimetrix Logiscope

52 Kalimetrix Logiscope TestChecker Getting Started

The Project Source Files dialog box allows to specify what source files are to be

analysed and where they are located.

Source files root directory shall specify the location directory of the source files to be

analyzed.

9. Browse to select the directory where the Mastermind sample source files are located:

i.e. in the samples/Tchk/C/Mstrmind folder of the Logiscope installation directory

or in the directory where the source files have been copied as recommended: e.g. C:/

Mstrmind.

The Directories choice allows to select the list of repertories covering the application

source files.

- Include all subdirectories means that selected files will be searched for in every sub-

directory of the source file root directory.

- Do not include subdirectories means that only files included in the application

directory will be selected.

- Customize subdirectories to include allows the user to select the list of directories

that include application files through a new page.

Suffixes choices allow to specify applicable source file extensions needed in the above

selected directories. Extensions shall be separated with a semi-colon.

10.Click the Next button.

Kalimetrix Logiscope

Building a C Instrumented Code for MC/DC Analysis 53

The C Language Settings dialog box allows setting up C source code parsing options:

The default values are here appropriate for the context of the Mastermind example.

For more details on these options, please refer to the chapter Parsing Options in the

Kalimetrix Logiscope RuleChecker & QualityChecker C Reference Manual.

11. lick the Next button.

Kalimetrix Logiscope

54 Kalimetrix Logiscope TestChecker Getting Started

The TestChecker Settings dialog box is now displayed. It allows to specify some of the

key settings of a Logiscope TestChecker project.

12. The Test repository: is the directory in which the traces files generated when

executing the instrumented executable will be saved.

Keep the default location i.e. a Test folder to be created in the Logiscope repository

specified in the New Logiscope Projects dialog box (see Item 3.).

13.The Working directory: is the directory where the make file can be found and where

the executable will be generated (unless otherwise specified by the make file).

14.The Executable for a test session: shall specify the instrumented executable.

In this context, the executable is not yet generated and will be chosen later.

15. The Make command file shall contains the command to build the instrumented

executable. Type the following command:

on UNIX: make lgmstrmind

on Windows, cmd /c MakeLog.bat

Note: According to your DOS version, use the equivalent of the ‘cmd’ command.

The Make command will launch the make file in which a Logiscope target has been

defined, to compile and link-edit together the instrumented source files and the

instrumentation library file located in <InstallationDir>/instr/src/vlgtchk.c.

In the next section “Building the Instrumented Executable”, you will be prompted to edit

and modify the make file specified in this pane to adapt it to your compilation

environment.

Kalimetrix Logiscope

Building a C Instrumented Code for MC/DC Analysis 55

16.Click Next.

The following wizard box will allow you to complete the TestChecker project

specification with some specifics of the C language.

17.In the Instrumentation method part, you can choose the way of instrumenting the

source code. In the context, keep the default instrumentation model provided with the

product.

18.As an example for this session, check the MC/DC instrumentation option to benefit

from the MC/DC advantages .

.

For more details on MC/DC, please refer to Chapter 2.

19.Click Next.

The last wizard window is displayed. You can check if all files are correct by expanding

folders:

Kalimetrix Logiscope

56 Kalimetrix Logiscope TestChecker Getting Started

20. Click Finish to create your first C TestChecker project.

The Logiscope Studio main window is now updated and contains the workspace view of

your project (see next section).

Two files has been created by this process and are of the form: <ProjectName>.ttp for

project and <ProjectName>.ttw for associated workspace. They are both located in the

folder specified as the Logiscope Repository.

6.3 Building an Instrumented Executable

Your project is ready to be built. Building consists in:

• instrumenting the code using the instrumentation method selected for the project,

• generating (i.e. compiling and linking) the instrumented executable.

When building the instrumented executable, in order the makefile works, the original

sources files are temporarly replaced by the instrumented ones and then restored.

First of all, you must adapt the Make Command to your compilation environment:

1. Open a text editor and load either the file makefile file or the file makefile.vc if you

intend to compile the code using a Microsoft Visual compiler.

It starts by the following lines:

makefile for Mastermind C example

LOGISCOPE_INSTALL = ..\..\..\..

Kalimetrix Logiscope

Building a C Instrumented Code for MC/DC Analysis 57

OUTDIR = Objects

INDIR = ..\Mstrmind

...

2. Adapt the value of the variable LOGISCOPE_INSTALL to correspond to the path of the

Logiscope installation directory.

3. On Windows only: open a text editor and load the MakeLog.bat file located in the

directory where the Mastermind source files are: e.g. C:\Mstrmind.

It contains the following lines:

set VC8=C:\Program Files\Microsoft Visual Studio 8\Vc\bin\vcvars32.bat

set VC7=C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\bin\vcvars32.bat

set VC6=C:\program files\microsoft visual studio\vc98\bin\vcvars32.bat

4. If you intend to compile the code using a Microsoft Visual compiler, set the

appropriate path to the installation directory of the compiler to be used.

Once the Make command has been adapted:

5. Select the Project-Build command or click the icon. A new tab is added in the

Output window and will contain code instrumentation and generation messages:

Analyzing: ../Mstrmind/base.c...

log_cc : using default options file : ANSI.def

Analyzing: ../Mstrmind/machine.c...

log_cc : using default options file : ANSI.def

Analyzing: ../Mstrmind/master.c...

log_cc : using default options file : ANSI.def

...

After building the project, the Message tab of the Output window will contain final

results.

The project is built. Otherwise this window will display error messages.

You will now end up TestChecker settings specifications.

6. Select Project-Settings option or run the <Alt+F7> command to specify the
executable file.

7. Select the TestChecker tab.

8. You can now specify the Executable for test session: i.e.the command to launch the

instrumented executable:

On Windows: Objects/lgmstrmind.exe

On Unix: xterm -e lgmstrmind

If you command name has blank spaces put it between double-quotes (“). The space is

interpreted as the separator between the command and its parameters.

Kalimetrix Logiscope

58 Kalimetrix Logiscope TestChecker Getting Started

9. Click OK to confirm.

10. Do not forget to save your project!

Select File-Save Workspace to save it.

The instrumented executable generation is complete, your project is ready to be tested.

For this you are going to use the Logiscope TestChecker tool.

Kalimetrix Logiscope

Building a C Instrumented Code for MC/DC Analysis 59

6.4 Testing the Instrumented Executable

1. Select Project-Start TestChecker to load the Mastermind project in Logiscope

TestChecker. The main window looks as follows:

6.4.1 Starting the Test

1. Select the Test pane of the Project window by clicking on the Tests tab. You are ready

to create a test suite.

2. Select the File-New command or use the toolbar icon to create the test suite.

A test suite window is displayed with the name Tchk1.

3. Select the test suite you just created by clicking on it and select the Edit-New Test

command or click the icon.

This action creates a new test in the current test suite. The default name for this new

test is TEST_1. This is the test you are going to run.

6.4.2 Viewing MC/DC While Testing

1. Select the View-MCDC Spy command.The MCDC Spy window appears.

It will display the progress of code coverage during testing:

- the Global bar shows the cumulated coverage for all tests,

Kalimetrix Logiscope

60 Kalimetrix Logiscope TestChecker Getting Started

- the Current bar shows the coverage for the current test,

- the Improvement bar shows the global coverage improvement secured through the

execution of the current test

2. Press the <F5> key or click the icon.

The test begins: a window appears in which you start playing mastermind.

Your screen will look like this:

Kalimetrix Logiscope

Building a C Instrumented Code for MC/DC Analysis 61

6.5 Refining Modified Conditions

Logiscope TestChecker can refine further conditions of a decision coverage.

To do this:

1. Select a component or function in a Component window or in the Components pane
of the Project window for example machine.c/instruction.

2. Select the View-MC/DC command.

The Modified Condition/Decision Coverage window pops up and displays the modified

condition/decision coverage (MC/DC). This window lists boolean expressions of the

selected component and its MC/DC coverage.

3. Select a boolean expression in the left part of the window. In the right part of the

window appears the decomposition of the selected boolean expression.

4. Select the View – DDP Coverage command.

Kalimetrix Logiscope

62 Kalimetrix Logiscope TestChecker Getting Started

5. Select another boolean expression: the DDP Coverage window shows the DDP

associated to the selected expression.

6. Select another component: the Modified Condition/Decision Coverage and DDP

Coverage windows are updated accordingly.

Kalimetrix Logiscope

Testing on a Target Machine 63

Chapter 7

Testing on a Target Machine

7.1 Preliminaries

The Logiscope product supplies as an example a way to test on the following Real Time

Operating System (RTOS) targets: VxWorks and PSOS. For other targets, please contact

your Kalimetrix for customization.

When testing on a target machine, TestChecker runs on the host machine and your

instrumented application runs on the target. Both processes communicate by a

communication program named TestChecker Gateway.

The C project construction used in this case is the same as before but it is now named

Target. The only difference is the executable command used to start your tests.

1. In Logiscope Studio after creating and building your project, open the Settings

window:

Settings window for target testing

Kalimetrix Logiscope

64 Kalimetrix Logiscope TestChecker Getting Started

The communication-handling program used for these tests is TcGatWay.exe located in

the <log_install_dir>\bin directory. It takes as parameter -port_name, where port_name

is an available communication device (-tcp or -serial COM2 for example) for

communicating with the target machine on which the instrumented application will be

executed. Please refer to TestChecker on-line Help for information on the TcGatWay

options.

2. Save your project and load Logiscope TestChecker.

3. Select File-Open command and open the Mastermind Logiscope project.

At startup, the Logiscope TestChecker main window is as follows:

For more information on main window fields, see Chapter 4, Testing on a Host Machine.

Then change the settings to allow the communication with TcGatWay:

1. Select Build-Settings.

2. On the Test tab, check Use standard communication pipe option.

3. Click OK to keep the changes.

Kalimetrix Logiscope

Testing on a Target Machine 65

7.2 Creating and Running Your First Test

Tests are stored in test suites. You can create as many test suites as you need. This allows

you to handle tests according to how your testing process is organized. Before running a

test, you must create a test suite. This test suite will contain the test coverage results. Of

course, if a test suite has already been created it can be reused.

7.2.1 Starting the Test

1. Select the Tests pane of the Project Window by clicking on the Test tab. You are ready

to create a test suite.

2. Select the File - New command, or use the toolbar icon to create the test suite.

A test suite window is displayed with the name Tchk1, as shown in the illustration

below.

3. Select the test suite you have just created by clicking on it,

4. Select the Edit - New Test command or click the icon.

This action creates a new test in the current test suite. By default, this test is named

TEST_1.

Kalimetrix Logiscope

66 Kalimetrix Logiscope TestChecker Getting Started

7.2.2 Viewing Coverage Rates While Testing is in

Progress
1. Select the View - DDP Spy command.

The DDP Spy appears. This window will display the progress of code coverage

during testing:

- the Global gauge shows the cumulated coverage for all tests,

- the Current gauge shows the coverage for the current test,

- the Improvement gauge shows the global coverage improvement secured through

the execution of the current test.

2. Click on TEST_1. This is the test you are going to run.

3. Press the F5 key or click the icon.

TcGatWay starts up: an empty MS-DOS window appears. The Logiscope

TestChecker gateway is waiting for information from the instrumented binary.

4. Run the Mstrmind.exe instrumented application on the target machine and follow

instructions to play the mastermind game.

Kalimetrix Logiscope

Testing on a Target Machine 67

p

As you play, you can see coverage rates increase in the DDP Spy window, but TEST_1

being the only test that has been executed for the moment, three progress indicators

display identical values.

Kalimetrix Logiscope

68 Kalimetrix Logiscope TestChecker Getting Started

Kalimetrix Logiscope

Creating and Testing Ada Instrumented Code 69

Chapter 8

Creating and Testing Ada

Instrumented Code

8.1 Before you start

Along with this chapter, you are provided with a program written in Ada language, an

implementation of the One Armed Bandit game. The program has been carefully

designed for you to use all features of Logiscope TestChecker.

Source files of this program are stored in the directory

<InstallationDir>\samples\Tchk\Ada\OneArmedBandit.

As a precaution to keep original files safe, it is highly recommended that you copy this

subdirectory into a working directory of your own: e.g. C:\OneArmedBandit. on

Windows, $HOME/OneArmedBandit on UNIX.

In addition, you will create Logiscope projects and associated repositories: i.e. sets of

files containing internal data used by Logiscope. It is recommended to a create a

dedicated directory to store these data: e.g. a folder named LogiscopeProjects.

8.2 Creating an Ada TestChecker Project

First, you shall define a Logiscope TestChecker project which mainly consists in:

• the list of source files to be first instrumented and then being tested for test coverage

analysis,

• applicable source code instrumentation options according to the compilation

environment,

• the special traces that will be generated by the Logiscope libraries during the

execution of the test cases on the instrumented application.

1. Open a Logiscope Studio session (see §3.1).

2. In the File menu, select the New... command or click the icon.

Kalimetrix Logiscope

70 Kalimetrix Logiscope TestChecker Getting Started

The New Logiscope Projects dialog box appears.

3. In the Project name: pane, enter the name for the new Logiscope project to be

created. In the context of the guided tour, this simply can be the name of the

application under test: e.g. OneArmedBandit.

The information provided in this pane will be then refer as the <ProjectName>.

4. Then select its Location: i.e. the directory where the Logiscope project (i.e. a “.ttp”

file) and the associated Logiscope repository will be created; the Logiscope repository

is a folder in which Logiscope internal analysis result files are generated.

The information provided there will be then refer as the <LogiscopeRepository>.

Note: By default, the project name is automatically added to the specified location. This

implies that a subdirectory named <ProjectName> is automatically created.

5. Click OK to access to the Logiscope Project Definition first window.

Kalimetrix Logiscope

Creating and Testing Ada Instrumented Code 71

6. Select the Project Language: i.e. the programming language in which are written

the source code files to be analysed.

For the OneArmedBandit project, select Ada.

Note: Only one language can be selected. If your application contains source code

files written in several languages, you should create several distinct Logiscope

projects: one for each language.

7. Select the Project Modules: i.e. the verification modules to be activated on the

source files of the project .

For this guided tour, select TestChecker.

8. Click the Next button to continue the creation.

Kalimetrix Logiscope

72 Kalimetrix Logiscope TestChecker Getting Started

The Project Source Files dialog box allows to specify what source files are to be

analysed and where they are located.

9. Source files root directory shall specify the location directory of the source files to

be analyzed.

Browse to select the directory where the OneArmedBandit sample source files are

located: i.e. in the samples/Tchk/Ada/OneArmedBandit folder of the Logiscope

installation directory or in the directory where the source files have been copied as

recommended in section 1.2: e.g. C:/OneArmedBandit.

The Directories choice allows to select the list of repertories covering the application

source files.

- Include all subdirectories means that selected files will be searched for in every sub-

directory of the source file root directory.

- Do not include subdirectories means that only files included in the application

directory will be selected.

- Customize subdirectories to include allows the user to select the list of directories

that include application files through a new page.

Suffixes choices allow to specify applicable source file extensions needed in the above

selected directories. Extensions shall be separated with a semi-colon.

10.In this case, you are going to include two file types only: *.adb and *.ads. So, you

can delete the *.ada extension.

11. lick the Next button.

Kalimetrix Logiscope

Creating and Testing Ada Instrumented Code 73

The TestChecker Settings dialog box is now displayed. It allows to specify some of the

key settings of a Logiscope TestChecker project.

12. The Test repository: is the directory in which instrumented code files are generated .

Keep the default location i.e. a Test folder to be created in the Logiscope repository

specified in the New Logiscope Projects dialog box (see Item 3.).

13.The Working directory: is the directory where:

• the make file can be found

• the executable will be generated (unless otherwise specified by the make file) ,

• the traces files will be saved.

14. The Executable for a test session: shall specify the instrumented executable.

In this context, the executable is not yet generated and will be chosen later.

15. The Make command file shall contain the command to build the instrumented

executable. Type the following command:

On UNIX: MakeLogAda.

On Windows: cmd /c MakeLog.bat.

Note: According to your DOS version, use the equivalent of the “cmd’ command.

In the next section, you will be prompted to edit and modify the make file specified

in this pane to adapt it to your compilation environment.

16.Click Next.

Kalimetrix Logiscope

74 Kalimetrix Logiscope TestChecker Getting Started

The following wizard box will allow you to complete the TestChecker project

specification with some specifics of the Ada language.

TheInstrumentation model is an Ada file to be used as a template to generate the

instrumentation file when building the instrumented executable (see next section).

A default instrumentation model file named instrument.ada is provided in the

\data\audit_ada\ folder in the Logiscope installation directory. With this default

instrumentation model, the test coverage information is produced in a file named

instrum.dyn in the Working directory, which has a specific format.

In order not to write the test coverage information in such a file, or to modify the for-

mat of this file, the default file can be modified and use as a new instrumentation

model.

17.In this context, keep the default instrumentation model.

The Instrumentation file file is generated from the instrumentation template during the

building of the instrumented executable (see next section). Its purpose is to produce the

test coverage information during an execution of the instrumented executable. This file

must be compiled and linked with the instrumented application.It can consist:

• either in a single file also named instrument.ada as the instrumentation template,

• or in two separate files named audit_instrum.ads for the specification and

audit_instrum.adb for the body depending if the Separate body and specification

option is checked .

In some context, you can use the Linkage file pane to specify either the name of the file

to be generated or even an existing file.

18. In your case, as you have separate sources (.ads and .adb source files), check the

Separate body and specification option.

Kalimetrix Logiscope

Creating and Testing Ada Instrumented Code 75

19.Click Next.

The last wizard window is displayed. You can check if all files are correct by expanding

folders.

20. Click Finish to create your first Ada TestChecker project.

The Studio main window is now updated and contains the workspace view of your

project (see next section).

Two files has been created by this process and are of the form: <ProjectName>.ttp for

project and <ProjectName>.ttw for associated workspace. They are both located in the

folder specified as the Logiscope Repository.

Kalimetrix Logiscope

76 Kalimetrix Logiscope TestChecker Getting Started

8.3 Inserting Pragmas for the Probes

By default, during the execution, traces are written in a file called coverage file. In order

not to undermine time behaviour during execution, the coverage file is not written at

each trace, but before the end of execution, or at special defined steps.

This may be realized either directly inside the source code (before the instrumentation),

or inside the instrumented files. Inside the source code, insert the following statement:

pragma Audit_Instrum;

This statement can be added at several places before the possible exits or at a place repre-

senting a partial execution which is of interest.

This pragma has no effect when the source code is compiled normally. When this code is

instrumented before compilation, all occurrences of this pragma are transformed into the

following statement:

Audit_Instrum.Audit_Stop;

which by default performs the writing of the coverage file.

The implementation of the Audit_Instrum.Audit_Stop procedure can be changed using

the instrumentation template: e.g. to write the test coverage results not into a file, change

the format of the traces.

An alternative to inserting the Audit_Instrum pragma in a source file is to insert the call

to Audit_Instrum.Audit_Stop into the corresponding instrumented file or even into a

non instrumented file, e.g. a main test program. In the last case, a with

Audit_Instrum; statement shall also be inserted.

8.4 Building the Instrumented Executable

In this part, you will define necessary commands for this program compilation and link.

This information is contained in MakeLog.bat file for Windows and in MakeLogAda

for UNIX.

1. Select File-Open command. Change the file type in order to show the All files (*.*)

option.

Kalimetrix Logiscope

Creating and Testing Ada Instrumented Code 77

2. Select MakeLog.bat file and click Open to edit it.

These commands have been written for a Gnat compiler. If you have another compiler,

you shall replace them with the right commands. Note that you have to compile the

audit_instrum.adb file (coming from the instrumentation) with your program.

3. If you have changed some commands, save this file with the File-Save command

confirming the update or click on the icon.

Your project is now ready to be built.

4. Select Project-Build to launch the generation of the instrumented executable.

Kalimetrix Logiscope

78 Kalimetrix Logiscope TestChecker Getting Started

Results files of the binary generation are generated at the same level as the source files.

8.5 Testing the Instrumented Executable

In this section, you are going to proceed differently, executing directly the instrumented

binary outside the Logiscope tools.

For Logiscope Ada TestChecker projects there is only one way to proceed: first execute

outside TestChecker and then add generated execution trace file (.dyn) to the project.

1. Double click on the SlotMachine.exe file. A DOS window opens up and you can start

playing. Good luck !!

Kalimetrix Logiscope

Creating and Testing Ada Instrumented Code 79

2. To end the test session, run <Ctrl+C> command. A test coverage file called

instrum.dyn is then generated in the Working directory .

Note: If you make others tests, results will be appended to this file.

3. This file should be added to your project to take into account tests results. To do this,

go back to Logiscope Studio, right click on OneArmedBanditTest.ttp in the

Workspace view.

4. The Open window is displayed. Select instrum.dyn file and click OK to insert it.

5. Select the newly added file and move it up to Dynamic Files folder as shown below:

6. Save your project with File-Save Workspace command.

7. Open the Logiscope TestChecker as you know how.

8. Double click on the ONEARMEDBANDIT.BET component:

Kalimetrix Logiscope

80 Kalimetrix Logiscope TestChecker Getting Started

TestChecker main view

Kalimetrix Logiscope

Creating and Testing Ada Instrumented Code 81

9. Select View-DDP Coverage.

ONEARMEDBANDIT.BET DDP Coverage

10. Select View-MCDC to visualize modified conditions:

ONEARMEDBANDIT.BET MC/DC

As shown in Chapter 5, you can use the Studio and the Viewer to see tests coverage

results.

Kalimetrix Logiscope

82 Kalimetrix Logiscope TestChecker Getting Started

8.6 Customizing the Instrumentation

Primitives

The instrumentation model must contain several Ada subprograms which will be called

by the instrumented executable. These subprograms (called instrumentation primitives)

are aimed at detecting the passing through the different branches of the control graph, the

subprogram calls, and the MCDCs, and at producing the test coverage information. The

calls to these primitives are automatically inserted in the instrumented application during

the instrumentation.

To write a particular instrumentation template, the following primitives shall be

implemented:

• procedure Audit_Init_Application (Appli : String ; Data :

String ; Max_Func : Natural);

This procedure must be called at the beginning of the application. Its parameters

are the following:

Appli: name of the application,

Data: directory containing the results of the application analysis (control graph,

call graph, ...),

Max_Func: maximum number attributed to the subprograms in the application call

graph (>=0).

• procedure Audit_Init_Function (Func_Id : Positive ;

Func_Name: String ; Func_Date : String ; Nb_Bran : Natural

; Nb_Calls : Natural ; Nb_Mcdcs : Natural);

This procedure must be called at the beginning of the application for each instru-

mented subprogram and for each external subprogram called in the application. Its

parameters are the following:

Func_Id: identifier of the subprogram; it must be unique in the instrumentation file

(>0),

Func_Name: full name of the subprogram (prefixed with the possible package(s)

and containing the name of its possible parameters),

Func_Date: time of the last analysis of the subprogram,

Nb_Bran: number of branches in the control graph of the function (>=0),

Nb_Calls: number of (distinct) subprogram calls inside the subprogram (>=0),

Nb_Mcdcs: number of MCDCs inside the subprogram (>=0).

• function Audit_Start_Func (Func_Id : Positive ; Vect_Size

: Natural) return Boolean;

Kalimetrix Logiscope

Creating and Testing Ada Instrumented Code 83

This function is called at the beginning of each instrumented subprogram. Its

parameters are the following:

Func_Id: identifier of the subprogram (>0),

Vect_Size: maximum number of single conditions in the MCDCs of the subpro-

gram (>=0).

Its return value is not significant.

• procedure Audit_Set_Branch (Func_Id : Positive ; Bran_Id :

Natural);

This procedure is called at the beginning of each branch of the control graph. Its

parameters are the following:

Func_Id: identifier of the current subprogram (>0),

Bran_Id: number of the corresponding branch (>=0); 0 corresponds to the main

branch, before any control structure; numbers greater than 0 are the same as in the

control graph files.

• procedure Audit_Set_Call (Func_Id: Positive ;

Called_Func_Id : Positive);

function Audit_Set_Call (Func_Id: Positive ;

Called_Func_Id : Positive) return Boolean;

This procedure or this function is called just before a subprogram call. Its parame-

ters are the following:

Func_Id: identifier of the current subprogram (the calling one) (>0).

Called_Func_Id: identifier of the called subprogram (>0).

The return value of the function is not significant.

Because of certain restrictions of the Ada language, it is impossible to call this

primitive at the exact location of the call. Therefore, its execution does not fully

prove that the corresponding call has taken place.

• function Audit_Set_Mcdc (Func_Id : Positive ; Mcdc_Id :

Positive ; Nb_Cond : Positive ; Exp : Boolean) return Bool-

ean;

This function is called for each MCDC. Its parameters are the following:

Func_Id: identifier of the current subprogram (>0),

Mcdc_Id: identifier of the MCDC (>0).

Nb_Cond: number of single conditions in the MCDC (>0).

Exp: boolean result of the MCDC (which is returned by this function).

Kalimetrix Logiscope

84 Kalimetrix Logiscope TestChecker Getting Started

• function Audit_Set_Sgl_Cond (Func_Id : Positive ; Mcdc_Id

: Positive ; Index : Positive ; Exp : Boolean) return Bool-

ean;

This function is called for each single condition of a MCDC. Its parameters are the

following:

Func_Id: identifier of the current subprogram (>0),

Mcdc_Id: identifier of the current MCDC (>0).

Index: number of the condition in the MCDC (>0).

Exp: boolean value of the single condition (which is returned by this function).

• function Audit_Set_Bool_Exp (Func_Id : Positive ; Bran_T,

Bran_F : Natural ; Exp : Boolean) return Boolean;

This function is called for each boolean expression in an if or exit when struc-

ture. Its parameters are the following:

Func_Id: identifier of the current subprogram (>0),

Bran_T: number of the control graph branch corresponding to the case where the

expression is true (>0).

Bran_F: number of the control graph branch corresponding to the case where the

expression is false (>0).

Exp: result of the boolean expression (which is returned by this function).

• procedure Audit_Stop;

This procedure is aimed at producing the test coverage information.

In order to automatically include this procedure in the instrumented code, just add

the pragma Audit_Instrum in the source code. Each such pragma will be replaced

by a call to Audit_Stop during the instrumentation.

• procedure Audit_Start;

This procedure is called at the beginning of the application.

During the instrumentation, a call to Audit_Init_Application will be automati-

cally inserted at its beginning, and for each instrumented subprogram, a call to

Audit_Init_Function will be inserted at its end.

Kalimetrix Logiscope

Building and Testing Java Instrumented Code 85

Chapter 9

Building and Testing Java

Instrumented Code

9.1 Before you start

Along with this chapter, you are provided with a program written in Java language, an

implementation of the Mine Finder game. The program has been carefully designed for

you to use all features of Logiscope TestChecker.

Source files of this program are stored in the directory:

<InstallationDir>\samples\Tchk\Java\JMineFinder.

As a precaution to keep original files safe, it is highly recommended that you copy this

subdirectory into a working directory of your own: e.g. C:\JMineFinder. on Windows,

$HOME/JMineFinder on UNIX.

In addition, you will create Logiscope projects and associated repositories: i.e. sets of

files containing internal data used by Logiscope. It is recommended to a create a

dedicated directory to store these data: e.g. a folder named LogiscopeProjects.

9.2 Creating a Java TestChecker Project

First, you shall define a Logiscope TestChecker project which mainly consists in:

• the list of source files to be first instrumented and then being tested for test coverage

analysis,

• applicable source code instrumentation options according to the compilation

environment,

• the special traces that will be generated by the Logiscope libraries during the

execution of the test cases on the instrumented application.

1. Open a Logiscope Studio session (see section 4.1).

2. In the File menu, select the New... command or click the icon.

Kalimetrix Logiscope

86 Kalimetrix Logiscope TestChecker Getting Started

3. In the Project name: pane, enter the name for the new Logiscope project to be

created. In the context of the guided tour, this simply can be the name of the

application under test: e.g. JMineFinder.

The information provided in this pane will be then refer as the <ProjectName>.

4. Then select its Location: i.e. the directory where the Logiscope project (i.e. a “.ttp”

file) and the associated Logiscope repository will be created; the Logiscope repository

is a folder in which Logiscope internal analysis result files are generated.

The information provided there will be then refer as the <LogiscopeRepository>.

Note: By default, the project name is automatically added to the specified location. This

implies that a subdirectory named <ProjectName> is automatically created.

5. Click OK to access to the Logiscope Project Definition first window.

Kalimetrix Logiscope

Building and Testing Java Instrumented Code 87

6. Select the Project Language: i.e. the programming language in which are written

the source code files to be analysed.

For the JMineFinder project, select Java.

Note: Only one language can be selected. If your application contains source code

files written in several languages, you should create several distinct Logiscope

projects: one for each language.

7. Select the Project Modules: i.e. the verification modules to be activated on the

source files of the project .

For this guided tour, select TestChecker.

8. Click the Next button to continue the creation.

Kalimetrix Logiscope

88 Kalimetrix Logiscope TestChecker Getting Started

The Project Source Files dialog box allows to specify what source files are to be

analysed and where they are located.

9. Source files root directory shall specify the location directory of the source files to

be analyzed.

Browse to select the directory where the OneArmedBandit sample source files are

located: i.e. in the samples/Tchk/Java/JMineFinder folder of the Logiscope

installation directory or in the directory where the source files have been copied as

recommended: e.g. C:/JMineFinder.

The Directories choice allows to select the list of repertories covering the application

source files.

- Include all subdirectories means that selected files will be searched for in every sub-

directory of the source file root directory.

- Do not include subdirectories means that only files included in the application

directory will be selected.

- Customize subdirectories to include allows the user to select the list of directories

that include application files through a new page.

Suffixes choices allow to specify applicable source file extensions needed in the above

selected directories. Extensions shall be separated with a semi-colon.

10.Click the Next button.

Kalimetrix Logiscope

Building and Testing Java Instrumented Code 89

The TestChecker Settings dialog box is now displayed. It allows to specify some of the

key settings of a Logiscope TestChecker project.

11. The Test repository: is the directory in which traces files generated when executing

the instrumented executable will be saved.

Keep the default location i.e. a Test folder to be created in the Logiscope repository

specified in the New Logiscope Projects dialog box (see item 4.).

12.The Working directory: is the directory where the make file can be found and where

the executable will be generated (unless otherwise specified by the make file).

13. The Executable for a test session: shall specify the instrumented executable.

In this context, the executable is not yet generated and will be chosen later.

14. The Make command shall contains the command to build the instrumented

executable. Type:

On UNIX: MakeLogJava.

On Windows: cmd /c MakeLog.bat.

Note: According to your DOS version, use the equivalent of the “cmd’ command.

In the next section, you will be prompted to edit and modify the Make command

specified in this pane to adapt it to your compilation environment.

15.Click Next.

Kalimetrix Logiscope

90 Kalimetrix Logiscope TestChecker Getting Started

The following wizard box will allow you to complete the project specification with some

specifics of the Java language.

16.In this dialog box, you can choose the Tcl instrumentation file between two files:

• log_inst.tcl using the VlgInstrument.java instrumentation library for Java applet

and,

• log_inst_jvt.tcl using theVlgTrace.java instrumentation library for Java application.

Note: TheVlgInstrument.java file contains the socket declaration and related instru-

mentation functions. If your system does not support sockets, you can use the

VlgTrace.java file saving results in trace files (with the extension “.trc” files) which

can be loaded in TestChecker).

The socket declaration must contain the real name of the target machine and the chosen

port number.

For more details, see the readme.txt file in the <InstallationDir>\instr\jv folder.

17.Click Next.

Kalimetrix Logiscope

Building and Testing Java Instrumented Code 91

The last wizard window is displayed. You can check if all files are correct by expanding

folders.

18. Click Finish to create your first Java TestChecker project.

The Studio main window is now updated and contains the workspace view of your

project (see next section).

Two files has been created by this process and are of the form: <ProjectName>.ttp for

project and <ProjectName>.ttw for associated workspace. They are both located in the

folder specified as the Logiscope Repository.

9.3 Building the Instrumented Executable

In this part, you will define necessary commands for this program compilation and link.

This information is contained in MakeLog.bat file for Windows and in MakeLogJava

for UNIX. This file has been specified in the Make command pane when creating the

project.

1. Edit the MakeLog.bat file located in the JMineFinder folder.

The content of the file starts with the following lines:

@echo off

set JDK=C:/Program Files/Java/jdk1.5.0_10/bin

set LOGISCOPE_INSTALL=../../../..

...

Kalimetrix Logiscope

92 Kalimetrix Logiscope TestChecker Getting Started

2. If necessary, modify the content of the Make file to adapt it to your environment: e.g.

- JDK: the path to access to the Java compiler,

- LOGISCOPE_INSTALL the directory where Logiscope is installed.

3. And save it.

Note that you have to compile the VlgInstrument.java file with your program.

Your project is now ready to be built.

4. Select Project-Build to launch the construction of the executable.

Building TestChecker Data for Project JMineFinder.ttp...

Instrumenting: C:\jminefinder\core\Engine.java...

Instrumenting: C:\jminefinder\core\State.java...

...

*** Instrumented Java classes compilation ***

...

C:\JMineFinder>"C:/Program Files/Java/jdk1.5.0_10/bin/javac" /jminefinder/core/

Engine.java

...

C:\Program Files\...\Logiscope_6.6\samples\Tchk\Java\JMineFinder>exit 0

Build finished.

5. Open Project-Settings window to specify the execution command.

Kalimetrix Logiscope

Building and Testing Java Instrumented Code 93

6. In the Executable for test session field, enter the TcGatWay.exe path located in the

\bin install directory) between “ “ and specify -port 6309 as parameter (or another

value if you have changed the port number).

7. Save your new TestChecker project settings.

You are now ready to start testing the newly created instrumentation executable.You will

use Logiscope TestChecker to manage the test execution.

Kalimetrix Logiscope

94 Kalimetrix Logiscope TestChecker Getting Started

9.4 Testing the Instrumented Executable

9.4.1 Settings

1. In Logiscope Studio main window, open the Project menu and select the Start

TestChecker option or click the icon in the Logiscope toolbar.

2. Select Build-Settings.

3. Check Use standard communication pipe option.

4. Click OK to keep the changes.

Kalimetrix Logiscope

Building and Testing Java Instrumented Code 95

9.4.2 New Test

1. Click File-New command to create a default test suite called Tchk1 in the Test panel.

2. Select Edit-New Test to create a test called TEST_1 under Tchk1.

3. Select Build-Go to start a test session.

The TcGatWay window pops up.

Do not close it; it will close automatically when the applet exits.

4. Go to the JMineFinder directory and launch the game: i.e.

• on Windows: launch the script run.bat;

• on UNIX: launch the script run.sh .

5. Make sure you have the DDP Spy window opened in TestChecker to see the increase

in code coverage.

6. Let’s play.

7. To stop testing, just close the JMineFinder window.

Kalimetrix Logiscope

96 Kalimetrix Logiscope TestChecker Getting Started

Test coverage results are ready to be consulted.

Kalimetrix Logiscope

Command Line Mode 97

Chapter 10

Command Line Mode

10.1 Logiscope create

Logiscope projects: i.e. “.ttp” file are usually built using Logiscope Studio as described

in previous chapter.

The logiscope create tool builds Logiscope projects from a standalone command line or

within makefiles (replacing the compiler command) .

10.1.1 Command Line Mode

When started from a standard command line, The create tool creates a new project file

with the information provided on the command line.

For a complete description of the command line options, please refer to the Command

Line Options paragraph.

When used in this mode, there are two different ways for providing the files to be

included into the project:

Automatic search

This is the default mode where the tool automatically searches the files in the directories.

Key options having effect on this modes are:

-root <root_dir> : the root directory where the tool will start the search for source

files. This option is not mandatory, and if omitted the default is to start the search in the

current directory.

-recurse : if present indicates to the tool that the search for source files has to be

recursive, meaning that the tool will also search the subdirectories of the root directory.

File list

In this mode, the tool will look for the –list option which has to be followed by a file

name. This provided file contains a list of files to be included into the project. The file

shall contain one filename per line.

Example: Assuming a file named filelist.lst containing the 3 following lines:

Kalimetrix Logiscope

98 Kalimetrix Logiscope TestChecker Getting Started

/users/logiscope/samples/C/mstrmind/master.c

/users/logiscope/samples/C/mstrmind/player.c

/users/logiscope/samples/C/mstrmind/machine.c

Using the command line:
create aProject.ttp –test –lang c –list filelist.lst

will create a new Logiscope C project file named aProject.ttp containing 3 files: master.c,

player.c and machine.c on which the TestChecker module will be activated.

10.1.2 Makefile mode

When launched from makefiles, create is designed to intercept the command line usually

passed to the compiler and uses the arguments to build the Logiscope project.

The project makefiles must be modified in order to launch create instead of the compiler.

In this mode, the name of the project file (“.ttp” file) has to be an absolute path,

otherwise the process will stop.

When used inside a Makefile, create uses the same options as in command line mode,

except for:

-root, -recurse, -list : which are not available in this mode

-- : which introduces the compiler command.

The following lines can be introduced in a Makefile to build a Logiscope C project file :

CREATE=create /users/projects/myProject.ttp –test –lang c

CC=$(CREATE) -- gcc

CPP=$(CC) -E

...

In this mode, the project file building process is as follows:

1. create is invoked for each file by the make utility, instead of the compiler.

2. When create is invoked for a file it adds the file to the project, with appropriate

preprocessor options if any, then Create starts the normal compilation command which

will ensure that the normal build process will continue.

3. At the end of the make process, the Logiscope project is completed and can be used

either using Logiscope Studio or with the batch tool (see next section).

Note: Before executing the makefile, first clean the environment in order to force a full

rebuild and to ensure that the create will catch all files.

Kalimetrix Logiscope

Command Line Mode 99

10.1.3 Options

Logiscope Ada TestChecker Project Options
create –test –lang ada

<ttp_file> : Logiscope project file (".ttp" extension).

[-root <directory>] : where <directory> is the starting point

of the source search. Default is the

current directory. This option is exclusive

with -list option.

[-recurse] : if present the source search is done

recursively in subfolders.

[-list <list_file>] : where <list_file> is the name of a file

containing the list of filenames to add to

the project (one file per line).

This option is exclusive with -root option.

[-repository <directory>]: where <directory> is the name of the

directory where Logiscope derived files

will be stored.

[-source <suffixes>] : where <suffixes> is the list of accepted

suffixes for source files (e.g. "*.ada").

[-test_dir <directory>] : where <directory> is the name of the

directory where Logiscope test information

will be stored.

[-working_dir <directory>]: where <directory> is the name of the

directory to go in before starting the

instrumented binary.

[-make <cmd>] : where <cmd> is the name of the command to

build the instrumented binary.

[-exec <cmd>] : where <cmd> is the name of the command

to execute the instrumented binary.

[-link <file>] : where <file> is the name of the single

instrumentation file to generate in the

target directory.

[-sep] : causes the generation of 2 instrumentation

files:

- audit_instrum.ads for the specification,

- audit_instrum.adb for the body.

[-model <file>] : where <file> is the template to be used to

generate the instrumentation file(s).

Kalimetrix Logiscope

100 Kalimetrix Logiscope TestChecker Getting Started

Logiscope C TestChecker Project Options
create –test –lang c

<ttp_file> : Logiscope project file (".ttp" extension)

[-root <directory>] : where <directory> is the starting point

of the source search. Default is the

current directory. This option is exclusive

with -list option.

[-recurse] : if present the source search is done

recursively in subfolders.

[-list <list_file>] : where <list_file> is the name of a file

containing the list of filenames to add to

the project (one file per line).

This option is exclusive with -root option.

[-repository <directory>] : where <directory> is the name of the

directory where Logiscope derived files

will be stored.

[-source <suffixes>] : where <suffixes> is the list of accepted

suffixes for source files (e.g. "*.c").

[-test_dir <directory>] : where <directory> is the name of the

directory where Logiscope test information

will be stored.

[-working_dir <directory>]: where <directory> is the name of the

directory to go in before starting the

instrumented binary.

[-make <cmd>] : where <cmd> is the name of the command to

build the instrumented binary.

[-exec <cmd>] : where <cmd> is the name of the command

to execute the instrumented binary.

[-mcdc] : if present sources are instrumented with

multiple decision/condition coverage

ativated.

[-tcl <tcl_file>] : where <tcl_file> is the name of the TCL

script used for instrumentation.

Default is <install_dir>/util/instrument.tcl

[-dial <dialect_name>] : where <dialect_name> is one of the

available C dialects.

[-def <definition_file>] : where <definition_file> is a .def file

containing include paths and macro

definitions.

[-ign <ignore_file>] : where <ignore_file> is a .ign file

containing specification of C code to

ignore.

[-I<include_path>]* : same syntax as a compiler. To be used only

To be used only if option -- is not used.

[-D<macro_name>]* : same syntax as a compiler.

To be used only if option -- is not used

[-U<macro_name>]* : same syntax as a compiler. To be used only

To be used only if option -- is not used.

[-mode=exp|noexp]* : to specify the mode of macros preprocessing.

Kalimetrix Logiscope

Command Line Mode 101

Default is exp: macros are expanded..

[-mac <macro_file>] : where <macro_file> is a text file specifying a list of

macros statements to be or not to be expanded

according to the value of the -mode option..

[--] : when used in a makefile, this option

introduces the compilation command with

its arguments.

Logiscope C++ TestChecker Project Options
create –test –lang c++

<ttp_file> : Logiscope project file (".ttp" extension).

[-root <directory>] : where <directory> is the starting point

of the source search. Default is the

current directory. This option is exclusive

with -list option.

[-recurse] : if present the source search is done

recursively in subfolders.

[-list <list_file>] : where <list_file> is the name of a file

containing the list of filenames to add to

the project (one file per line).

This option is exclusive with -root option.

[-repository <directory>]: where <directory> is the name of the

directory where Logiscope derived files

will be stored.

[-source <suffixes>] : where <suffixes> is the list of accepted

suffixes for source files (e.g. "*.c; *.cpp")

[-test_dir <directory>] : where <directory> is the name of the

directory where Logiscope test information

will be stored.

[-working_dir <directory>]: where <directory> is the name of the

directory to go in before starting the

instrumented binary.

[-make <cmd>] : where <cmd> is the name of the command to

build the instrumented binary.

[-exec <cmd>] : where <cmd> is the name of the command

to execute the instrumented binary.

[-tcl <tcl_file>] : where <tcl_file> is the name of the TCL

script used for instrumentation.

Defaut is <install_dir>/util/instrument.tcl

[-alias <alias_file>] : where <alias_file> is the name of an alias

file (.al file).

Default is <install_dir>/util/log_inst.al

[-ign <ignore_file>] : where <ignore_file> is a .ign file

containing specification of code to ignore.

Default is <install_dir>/util/log_inst.ign

[-memory <file>] : where <file> is the name of the c++ file in

which coverage information is collected

Kalimetrix Logiscope

102 Kalimetrix Logiscope TestChecker Getting Started

during execution. Then, at the end of the

execution, coverage information is flushed.

[--] : when used in a makefile, this option

introduces the compilation command with

its arguments.

Logiscope Java TestChecker Project Options
create –test –lang java

<ttp_file> : Logiscope project file (".ttp" extension)

[-root <directory>] : where <directory> is the starting point

of the source search. Default is the

current directory. This option is

exclusive with -list option.

[-recurse] : if present the source search is done

recursively in subfolders.

[-list <list_file>] : where <list_file> is the name of a file

containing the list of filenames to add to

the project (one file per line).

This option is exclusive with -root option.

[-repository <directory>] : where <directory> is the name of the

directory where Logiscope derived files

will be stored.

[-source <suffixes>] : where <suffixes> is the list of accepted

suffixes for source files (e.g. "*.java").

[-test_dir <directory>] : where <directory> is the name of the

directory where Logiscope test information

will be stored.

[-working_dir <directory>]: where <directory> is the name of the

directory to go in before starting the

instrumented binary.

[-make <cmd>] : where <cmd> is the name of the command to

build the instrumented binary.

[-exec <cmd>] : where <cmd> is the name of the command

to execute the instrumented binary.

[-tcl <tcl_file>] : where <tcl_file> is the name of the TCL

script used for instrumentation. Default is

<install_dir>/util/instrument.tcl

[-alias <alias_file>] : where <alias_file> is the name of an alias

file (.al file). Default is

<install_dir>/util/log_inst.al

[-ign <ignore_file>] : where <ignore_file> is a .ign file

containing specification of code to

ignore. Default is

<install_dir>/util/log_inst.ign

Kalimetrix Logiscope

Command Line Mode 103

10.2 Logiscope batch

Logiscope batch is a tool designed to work with Logiscope in command line to:

• instrument the source code files specified in a Logiscope project: i.e. “.ttp” file,

• generate reports in HTML and/or CSV format automatically.

Note that before using batch, a Logiscope project shall have been created:

• using Logiscope Studio, refer to Section 1,

• or using Logiscope create, refer to the previous section.

Once the Logiscope project is created, batch is ready to use.

10.2.1Options

The batch command line options are the following:

batch

<ttp_file> the Logiscope TestChecker project file (with

“.ttp” extension).

[-dyn <dynamicfile>] where <dynamicfile> is the name of the

dynamic file i.e. the file containing the execu-

tion traces generated when executing the

instrumented binary.

In case several dynamic files have been ger-

erated, they shall first be merged using the

lgdynld tool (see next section),

[-tcl <tcl_file>] name of a Tcl script to be used to generate the

reports instead of the default Tcl scripts.

[-o <output_directory>] directory where the all reports are generated.

[-nobuild] generate reports without rebuilding the

project. The project must have been built at

least once previously.

[-clean] before starting the build, the Logiscope build

mechanism removes all intermediate files and

empties the import project folder when the

external violation importation mechanism is

activated.

[-addin <addin> options] where addin nis the name of the addin to be

activated and options the associated options

generating the reports.

Kalimetrix Logiscope

104 Kalimetrix Logiscope TestChecker Getting Started

[-table] generate tables in predefined html reports

instead of slices or charts. By default, slices or

charts are generated (depending on the project

type).

This option is available only on Windows as

on Unix there are no slices or charts, only

tables are generated.

[-noframe] generate reports with no left frame.

[-v] display the version of the batch tool.

[-h] display help and options for batch.

[-err <log_err_folder>] directory where troubleshooting files

batch.err and batch.out should be put. By

default, messages are directed to standard out-

put and error.

10.2.2 Examples of Use

Considering a Logiscope C TestChecker project LogProj.ttp as an example:

1 Produce an instrumented binary by typing on a command line or in a script:

batch LogProj.ttp

2 Execute the instrumented binary in order to produce one or more dynamic result files.

3 Merge the dynamic files, using the lgdynld command (see next section) in order to

obtain a single dynamic file named LogProj.dyn.

4 Generate a test coverage report using the default Logiscope Tcl script TestReport.tcl.

by typing on a command line or in a script:

batch LogProj.ttp -dyn LogProj.dyn

To read the report into an HTML browser, just open the LogProjtest.html file generated

in the <LogProj>/Logiscope/report directory.

Kalimetrix Logiscope

Command Line Mode 105

10.3 Logiscope lgdynld

lgdynld is a tool designed to merge dynamic coverage files into one file.

10.3.1Options
lgdynld

[<ttpfile>] Logiscope project.

-dyn <dynfilelist> dynfilelist is a text file containing the list of

the dynamic coverage files (one file per line) to

be merged.

[-skip] to merge or not with dynamic coverage files

already present in the .ttp file.

<outputfile> name of the resulting merged dynamic coverage

file. This file must have a .dyn extension.

10.3.2 Examples of Use

There are two main ways to use lgdynld. One allows checking consistency of the

dynamic coverage files with the results of static analysis, the other one without checking.

Without Consistency Checking
lgdynld -dyn dynfilelist output.dyn

This call will merge the dynamic coverage files found in dynfilelist into output.dyn

file.

WARNING: this call makes no consistency check, the results of the static analysis

should be the same for all dynamic coverage files to be merged in order to ensure

the accuracy of the resulting output.dyn file.

With Consistency Checking
lgdynld project.ttp -dyn dynfilelist output.dyn

This call will merge the dynamic coverage files found in the ttp file and in the

dynfilelist into output.dyn file. The consistency with the project file is secured.

Anyway, the resulting dynamic coverage file is not loaded in the ttp file at the end of
the execution. This can be done through Logiscope Studio or Logiscope Batch.

lgdynld project.ttp -dyn dynfilelist -skip output.dyn

This call using -skip option has the same behavior as the previous one except that the

dynamic coverage files found in the ttp will not be merged into output.dyn file.

Kalimetrix Logiscope

106 Kalimetrix Logiscope TestChecker Getting Started

10.3.3 Merging .trc Files

lgdynld also allows to merge raw trace files (.trc) with dynamic coverage files (.dyn)

and then generates a .dyn file.

Example:

lgdynld project.ttp –dyn trcfilelist output.dyn

where trcfilelist may contain .trc files or .dyn files, and project.ttp is

optional.

Kalimetrix Logiscope

Notices 107

Notices

© Copyright 2014

The licensed program described in this document and all licensed material

available for it are provided by Kalimetrix under terms of the Kalimetrix

Customer Agreement, Kalimetrix International Program License Agreement or

any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-Kalimetrix products was obtained from the suppliers

of those products, their published announcements or other publicly available

sources. Kalimetrix has not tested those products and cannot confirm the accuracy

of performance, compatibility or any other claims related to non-Kalimetrix

products. Questions on the capabilities of non-Kalimetrix products should be

addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Copyright license

This information contains sample application programs in source language,

which illustrate programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to Kalimetrix, for the purposes of developing, using, marketing or

distributing application programs conforming to the application programming

interface for the operating platform for which the sample programs are written.

These examples have not been thoroughly tested under all conditions.

Kalimetrix, therefore, cannot guarantee or imply reliability, serviceability, or

function of these programs.

Kalimetrix Logiscope

108 Kalimetrix Logiscope TestChecker Getting Started

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from Kalimetrix

Corp. Sample Programs. © Copyright Kalimetrix Corp. _enter the year or years_.

Trademarks

Kalimetrix, the Kalimetrix logo, Kalimetrix.com are trademarks or registered

trademarks of Kalimetrix, registered in many jurisdictions worldwide. Other

product and services names might be trademarks of Kalimetrix or other companies.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript

are trademarks of Adobe Systems Incorporated or its subsidiaries and may be

registered in certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International

Business Machines Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Macrovision and FLEXnet are registered trademarks or trademarks of Macrovision

Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other

Microsoft products referenced herein are either trademarks or registered

trademarks of Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of Netscape

Communications Corporation in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks

of Sun Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

ITIL is a registered trademark, and a registered community trademark of the Office

of Government Commerce, and is registered in the U.S Patent and Trademark

Office.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product or service names may be trademarks or service marks of

others.

	About this manual
	Notion of Test Coverage
	2.1 Suggested Approaches
	2.2 Instruction Blocks
	2.3 Decision to Decision Paths
	2.4 Modified Condition/Decision
	2.4.1 Definition
	2.4.2 Test Coverage

	2.5 Coverage Precision
	2.6 Coverage Gain
	2.6.1 Example 1
	2.6.2 Example 2

	Building C++ Instrumented Code with Logiscope Studio
	3.1 Before you start
	3.2 Starting a Logiscope Studio Session
	3.4 Introducing Logiscope Studio
	1 Tool Bar
	2 Browse Bar
	3 Tcl Script Bar
	4 UML Browser Bar
	6 Logiscope TestChecker Bar
	7 Workspace View
	8 Result Pane
	9 Status Bar
	10 Output Window
	3.5 Building the Instrumented Executable

	3.6 Updating the alias file
	3.6.1 Syntax of the file
	3.6.2 Example

	Testing on a Host Machine
	4.1 The Logiscope TestChecker Window
	1. Project window
	2. Tool bar
	3. Project window tabs
	4. Result pane
	5. Messages window

	4.2 Creating and Running Your First Test
	4.2.1 Starting the Test
	4.2.2 Viewing Coverage While Testing is in Progress
	4.2.3 Creating and Running More Tests

	4.3 Displaying Tested and Untested DDPs
	4.4 Displaying the Source Code
	4.5 Saving and closing a Project

	Analyzing Test Coverage from Logiscope Studio and Viewer
	5.1 Test Coverage Analysis Using Logiscope Studio
	5.1.1 Test Coverage
	5.1.2 Test Report

	5.2 Test Coverage Analysis Using Logiscope Viewer
	1 Toolbar
	2 Status Bar
	3 Control Palette: Workspace1-Component list Window
	4 Navigation bar
	5 Selection Bar
	6 Component windows bar
	7 Selector Bar
	8 Messages window
	9 Result Pane
	5.2.1 Selecting/Deselecting a Function
	5.2.2 Viewing Test Coverage Results
	Decision to Decision Path Coverage
	Test Coverage: Instructions Block Coverage
	2. Select View-IB Coverage Distribution.

	6.1 Before you start
	6.3 Building an Instrumented Executable
	6.4 Testing the Instrumented Executable
	6.4.1 Starting the Test
	6.4.2 Viewing MC/DC While Testing

	7.1 Preliminaries
	7.2 Creating and Running Your First Test
	7.2.1 Starting the Test
	7.2.2 Viewing Coverage Rates While Testing is in Progress

	8.1 Before you start
	8.3 Inserting Pragmas for the Probes
	8.4 Building the Instrumented Executable

	8.5 Testing the Instrumented Executable
	8.6 Customizing the Instrumentation Primitives
	9.1 Before you start
	9.2 Creating a Java TestChecker Project
	9.3 Building the Instrumented Executable

	9.4 Testing the Instrumented Executable
	9.4.1 Settings
	9.4.2 New Test

	10.1 Logiscope create
	10.1.1 Command Line Mode
	Automatic search
	File list

	10.1.2 Makefile mode
	10.1.3 Options
	Logiscope Ada TestChecker Project Options
	Logiscope C TestChecker Project Options
	Logiscope C++ TestChecker Project Options
	Logiscope Java TestChecker Project Options

	10.2 Logiscope batch
	10.2.1Options

	10.3 Logiscope lgdynld
	10.3.1Options
	10.3.2 Examples of Use
	10.3.3 Merging .trc Files

	Notices

