

 LOGISCOPE

Logiscope Test Checker
Testing on a Target Machine

Before using this information, be sure to read the general information under “Notices” section, on

page 22.

© Copyright Kalimetrix 2014

ii Kalimetrix Logiscope TestChecker - Testing on a target machine

iii Kalimetrix Logiscope TestChecker - Testing on a Target Machine

Table of Contents

1. Overview ... 6

1.1. Instrumented code ... 6

1.2. Support libraries .. 6

2. Instrumentation ... 7

2.1. C .. 7

2.2. C++ .. 10

2.3. Java .. 12

2.4. Ada ... 15

3. File formats .. 16

3.1. .dyn files ... 16

3.2. .trc files ... 17

4. Communicating with Logiscope TestChecker ... 19

4.1. Using TcGatWay .. 19

4.2. Using files .. 20

5. Special cases .. 21

5.1. Multi tasking OSes and/or multi processor machines .. 21

5.2. Tight environments ... 21

1 Kalimetrix Logiscope TestChecker - Testing on a Target Machine

Kalimetrix Logiscope

About this manual

Audience

This reference manual in intended for Kalimetrix Logiscope™ TestChecker users such as

software developers, project managers or quality engineers who want to perform structural based

testing and test coverage analysis and on a remote machine.

Overview

Chapter 1 explains the concepts involved in the instrumentation of an application.

Chapter 2 explains how code is instrumented.

Chapter 3 describes the file format used to store execution results.

Chapter 4 discusses the possible means to transfer the execution results to Logiscope TestChecker

tool.

Chapter 5 presents general considerations to tailor the instrumented application in order to

accommodate some common difficulties.

How to use this manual

This manual is a complement to the Kalimetrix Logiscope TestCkecker Getting Started. Reading

this document first is highly recommended.

Conventions

The following typographical conventions are used in this manual:

italics names of textual elements (filename), notes, documentation titles.

typewriter screen and file examples.

Kalimetrix Logiscope

Contacting Kalimetrix Software Support

If the self-help resources have not provided a resolution to your problem,

you can contact KalimetrixSupport for assistance in resolving product

issues.

Prequisites

To submit your problem to Kalimetrix Software Support, you must have an

active support agreement. You can subscribe by visiting

http://www.kalimetrix.com .

 To submit your problem online (from the KalimetrixWeb site) you

need to be a registered user on the Kalimetrix Support Web site :

http://support.kalimetrix.com/

Submitting problems

To submit your problem to Kalimetrix Software Support:

1) Determine the business impact of your problem. When you report a

problem to Kalimetrix, you are asked to supply a severity level.

Therefore, you need to understand and assess the business impact of the

problem that you are reporting.

2 Kalimetrix Logiscope TestChecker - Testing on a Target Machine

http://www.kalimetrix.com/
http://support.kalimetrix.com/

Kalimetrix Logiscope

Use the following table to determine the severity level.

Severity Description

Block The problem has a critical business impact. You are

unable to use the program, resulting in a critical impact on

operation. This condition requires an immediate solution.

Crash The problem has a significant business impact.

The program is usable, but it is severely limited

Major The problem has a some business impact.

The program is usable, but less significant features

(not critical to operation) are unavailable.

Minor The problem has a minimal business impact.

The problem causes little impact on operations or a

reasonable circumvention to the problem was

implemented.

2) Describe your problem and gather background information, When

describing a problem to Kalimetrix, be as specific as possible. Include all

relevant background information so that Kalimetrix Software Support

specialists can help you solve the problem efficiently. To save time,

know the answers to these questions:

 What software versions were you running when the problem

occurred?

To determine the exact product name and version, start your

product, and click Help > About to see the offering name and

version number.

 What is your operating system and version number (including any

service packs or patches)?

 Do you have logs, traces, and messages that are related to the

problem symptoms?

 Can you recreate the problem? If so, what steps do you perform to

recreate the problem?

 Did you make any changes to the system? For example, did you

make changes to the hardware, operating system, networking

software, or other system components?

 Are you currently using a workaround for the problem? If so, be

prepared to describe the workaround when you report the

problem.

3) Submit your problem to Kalimetrix Software Support. You can submit

your problem to Kalimetrix Software Support in the following ways:

 Online: Go to the Kalimetrix Software Support Web site at

Kalimetrix Logiscope TestChecker - Testing on a Target Machine 3

Kalimetrix Logiscope

http://support.kalimetrix.com

4 Kalimetrix Logiscope TestChecker - Testing on a Target Machine

http://support.kalimetrix.com/

Kalimetrix Logiscope

Bibliography

[TCL94] JOHN K. OUSTERHOUT

Tcl and the Tk Toolkit - Addison-Wesley Professional Computing Series

1994 ISBN 0-201-63337-X

[TCL03] BRENT WELCH, KEN JONES, JEFFREY HOBBS

Practical Programming in Tcl and Tk (4th Edition) – Prentice Hall

2003 ISBN 0-130-38560-3

Kalimetrix Logiscope TestChecker - Testing on a Target Machine 5

Kalimetrix Logiscope

1. Overview

An instrumented application is produced by modify the source code of the application. Extraneous

instructions are inserted at the beginning of function, at every Decision to Decision Point (DDP),

that is at every test or loop, at every function call point and, if applicable, at every complex boolean

expression (only for MC/DC).

The extra instructions are simple: they consist only in function calls to external functions. These

functions are to be defined by the support libraries, which are responsible to format the events into a

form that can be understood by Logiscope TestChecker.

The border between what is done by the instrumented code and what is done by the support library

is hazy, especially for the C language, for which the instrumentation may be heavily customized.

1.1. Instrumented code

The inserted instructions allow to record events of interest during execution of the source code:

• Entering a function. The data associated with this event are the Logiscope name of the function

and the date of the Logiscope analysis that produced the instrumented code.

• Executing a DDP(other than the first) of a function. The data associated with this event are the

Logiscope name of the function and the number of the ddp.

• Calling a function. The data associated with this event are the Logiscope name of the calling

function and the Logiscope name of the called function.

• Executing a complex boolean expression (for MC/DC). The data associated with this event are

the Logiscope name of the function, the number of the condition in the function, the truth value

of the condition and a vector of truth values of the inner conditions.

1.2. Support libraries

Every execution event detected by the instrumented code is directed to a function that must be

defined by a support library. The library is responsible for determining how to communicate with

Logiscope TestChecker, and to format the event data to fit the communication mean.

The support library must define one interface function for every event type.

All the delivered support libraries may be customized in order to accommodate specific needs. This

is the simplest way to tailor the instrumented application to specific contexts and objectives.

The only constraints is to respect the interfaces used by the instrumented code.

6 Kalimetrix Logiscope TestChecker - Testing on a Target Machine

Kalimetrix Logiscope

2. Instrumentation

2.1. C

The instrumentation process for C uses the program log_cc, the startup syntax of which is described

in the Logiscope RuleChecker & QualityChecker C Reference Manual:

log_cc -inst master.c

produces a master.inst.c and a master.inst.h without instrumentation for MC/DC.

log_cc -inst -cond master.c

produces a master.inst.c and a master.inst.h with instrumentation for MC/DC.

The application header files are not instrumented: the .inst.c file contains the whole translation unit

for the C file, thus the instrumentation of the header files used in master.c is included in

master.inst.c.

The master.inst.h file is generated by a TCL file, which is evaluated by the Logiscope instrumenter.

Let's have a look at the instrumentation produced for the following code:

void main(int argc, char* argv[])

{

char inst;

int result;

/* if a parameter is present, the machine code is displayed */

if (argc > 1)

JACKPOT = 1;

while (!instruction()); /* to display game rules*/

player = TRUE;

game_won = FALSE;

format_output("Do you want to guess, or make up the code,",0);

format_output(" g/m [default is g] -> ",0);

if ((inst = getchar()) != '\n')

while (getchar() != '\n');

/*result used for FullMCDC test */

result =(inst == 'm' || inst == 'M');

The resulting master.inst.c file is (with MC/DC instrumentation):

void main (int argc , char * argv [])

Kalimetrix Logiscope TestChecker - Testing on a Target Machine 7

Kalimetrix Logiscope

{

VLG_MCDC_DEF_0(VLG_CM_NEST_COMP8,VLG_SZ_VECT_COMP8);

VLG_CD1(main,8)

{

char inst ;

int result ;

if (argc > 1)

{

VLG_CDX(main,8,2)

JACKPOT = 1 ;

}

else

VLG_CDX(main,8,3)

{

int vlgbrk = 0;

while (VLG_CM_0(0,main,8,88,4,1,1, ! VLG_EVAL_0(0, 0,

(VLG_CALL(main,8,1,9,1),instruction()))))

{

VLG_CDX(main,8,4)

;

}

if (!vlgbrk) VLG_CDX(main,8,5)

}

player = 1 ;

game_won = 0 ;

(VLG_CALL(main,8,2,3,2),format_output ("Do you want to guess, or

make up the code," , 0));

(VLG_CALL(main,8,3,3,2),format_output (" g/m [default is g] -> " ,

0));

if ((inst = (-- ((& _iob [0])) -> _cnt >= 0 ? 0xff & *

((& _iob [0])) -> _ptr ++ : (VLG_CALL(main,8,4,2,3),_filbuf

((& _iob [0]))))) != '\n')

{

VLG_CDX(main,8,6)

{

int vlgbrk = 0;

while ((-- ((& _iob [0])) -> _cnt >= 0 ? 0xff & * ((& _iob

8 Kalimetrix Logiscope TestChecker - Testing on a Target Machine

Kalimetrix Logiscope

[0])) -> _ptr ++ : (VLG_CALL(main,8,5,2,3),_filbuf ((& _iob

[0])))) != '\n')

{

VLG_CDX(main,8,7)

;

}

if (!vlgbrk) VLG_CDX(main,8,8)

}

}

else

VLG_CDX(main,8,9)

result = VLG_CM_0(0,main,8,99,0,2,2, (VLG_EVAL_0(0, 0, inst == 'm')

|| VLG_EVAL_0(0, 1, inst == 'M'))) ;

(Note that the macros are expanded in the instrumented C code).

When instrumenting the C code, Logiscope TestChecker introduces macro calls in the code:

• VLG_CD1: entry of the function.

• VLG_CDX: another ddp.

• VLG_CALL: a function call.

• VLG_MCDC_DEF_0: initialization of the data structure needed to keep tracks of the MC/DC

events.

• VLG_CM_0: a complex boolean expression.

• VLG_EVAL_0: an inner condition in a complex boolean condition.

These macros, and the support data structure are defined in the master.inst.h, which is produced by

a TCL script.

Example: the simplest form of the VLG_CDX macro generating a .trc file would be:

#define VLG_CDX(name, functionIndex, ddpNumber) \

fprintf(TRCFILE, “X\n%s\n%d\n”, #name, ddpNumber);

This is a bit faulty, since the name of the function is not a correct Logiscope name.

The standard definition is:

#define VLG_CDX(name,num,num_cdd) \

vlg_c_cdx(vlg_arrayfunc[num], num_cdd, PARAM);

and the master.inst.h file defines the array vlg_arrayfunc:

static char *vlg_arrayfunc[] = {

"**"

,"rest"

,"_filbuf"

Kalimetrix Logiscope TestChecker - Testing on a Target Machine 9

Kalimetrix Logiscope

,"format_output"

,"setcolors"

,"time"

,"srand"

,"rand"

,"master/main" /* functionIndex is 8 */

,"instruction"

,"player_plays"

,"machine_plays"

,"exit"

};

Support library

The C support library is located in instr\src\vlgtchk.c.

Support libraries adapted for multi tasked applications under PSOS and VxWorks real time OSes

may be purchased separately. They are located in instr\rtos\psos_12.zip and

instr\rtos\vxworks_12.zip respectively.

2.2. C++

The instrumentation process for C uses the program lginst, the startup syntax of which is described

in the help file bin\lginst.hlp:

lginst -lang C++ Hangman.cpp

produces a Hangman.inst.cpp file. The C++ instrumenter does not support MC/DC.

Contrary to the C instrumenter, the C++ instrumenter instruments individually the header files:

lginst -lang C++ Hangman.cpp

produces a Hangman.inst.h file, analogous to the Hangman.inst.cpp file.

Let's have a look at the instrumentation produced for the following code:

BOOL CHangman::CheckLetter(char Letter)

{

BOOL LetterAdded = FALSE;

int Size =0;

int Index =0;

word

check

Size = m_CurrentWord.GetLength(); // Get length of current

for(Index=0; Index<Size; Index++) // Step through word to

{

10 Kalimetrix Logiscope TestChecker - Testing on a Target Machine

Kalimetrix Logiscope

if(m_CurrentWord[Index] == Letter) // If we hit a

letter then

{

m_CurrentGuess.SetAt((Index*2), Letter); // Set

current guess to

LetterAdded = TRUE; // letter and change bool

}

}

if(LetterAdded == FALSE)

DecrementGuessRemain(); // If no letter added

decrement guesses remaining

far

IncrementTotalGuesses(); // Increment total guesses so

return(LetterAdded); // Return TRUE/FALSE if

letter added or not

}

The resulting Hangman.inst.cpp file is:

BOOL CHangman::CheckLetter(char Letter)

{

/* function begin */

char *vlg_funcname = "CHangman::CheckLetter::37";

VLG_DDP1(vlg_funcname, "10/17/02-11:59:56");

{

BOOL LetterAdded = FALSE;

int Size =0;

int Index =0;

word

Size = m_CurrentWord.GetLength(); // Get length of current

for(Index=0;VLG_COND(vlg_funcname, (int) (Index<Size), 2, 3);

Index++) // Step through word to check

{

if(VLG_COND(vlg_funcname, (int) (m_CurrentWord[Index] ==

Letter), 4, 5)) // If we hit a letter then

{

m_CurrentGuess.SetAt((Index*2), Letter); // Set

current guess to

LetterAdded = TRUE; // letter and change bool

Kalimetrix Logiscope TestChecker - Testing on a Target Machine 11

Kalimetrix Logiscope

}

}

7))

if(VLG_COND(vlg_funcname, (int) (LetterAdded == FALSE), 6,

DecrementGuessRemain(); // If no letter added decrement

guesses remaining

IncrementTotalGuesses(); // Increment total guesses so far

{

/* return */

return(LetterAdded);

} // Return TRUE/FALSE if letter added or not

}/* function end */

}

(Note that the macros are NOT expanded in the instrumented C++ code).

The instrumentation introduces macro calls in the C++ code:

• VLG_DDP1(functionName, analysisDate): a function entry.

• VLG_COND(functionName, expressionValue, ddpIfTrue, ddpIfFalse):

another ddp of the function.

Support library

The C++ support library is located in instr\src\vlgtchk.c.

These macros are defined in the instr\include\log_inst.h file, that may be customized to

accommodate different needs.

Support libraries adapted for multi tasked applications under PSOS and VxWorks real time OSes

may be purchased separately. They are located in instr\rtos\psos_12.zip and

instr\rtos\vxworks_12.zip respectively. The current version of these library needs minor tweaking to

be used with C++.

2.3. Java

The instrumentation process for Java uses the program lginst, the startup syntax of which is

described in the help file bin\lginst.hlp:

lginst -lang Java Hangman.java

produces a Hangman.inst.java file. The instrumentation does not support MC/DC.

Let's have a look at the instrumentation produced for the following code:

public void init() {

int i;

// load in dance animation

12 Kalimetrix Logiscope TestChecker - Testing on a Target Machine

Kalimetrix Logiscope

danceMusic = getAudioClip(getCodeBase(), "dance.au");

danceImages = new Image[40];

for (i = 1; i < 8; i++) {

Image im = getImage(getCodeBase(), "T" + i + ".gif");

if (im == null) {

break;

}

danceImages[danceImagesLen++] = im;

}

// load in hangman image sequnce

hangImages = new Image[maxTries];

for (i=0; i<maxTries; i++) {

hangImages[i] = getImage(getCodeBase(), "h"+(i+1)+".gif");

}

// initialize the word buffers.

wrongLettersCount = 0;

wrongLetters = new char[maxTries];

secretWordLen = 0;

secretWord = new char[maxWordLen];

word = new char[maxWordLen];

wordFont = new java.awt.Font("Courier", Font.BOLD, 24);

wordFontMetrics = getFontMetrics(wordFont);

resize((maxWordLen+1) * wordFontMetrics.charWidth('M') +

maxWordLen * 3,

hangImagesHeight * 2 + wordFontMetrics.getHeight());

}

The resulting Hangman.inst.java file is:

public void init() {

/* function begin */

Kalimetrix Logiscope TestChecker - Testing on a Target Machine 13

Kalimetrix Logiscope

String vlg_funcname = "Hangman::init::120";

VlgInstrument.ddp1(vlg_funcname, "10/17/02-11:59:56");

{

int i;

// load in dance animation

danceMusic = getAudioClip(getCodeBase(), "dance.au");

danceImages = new Image[40];

+) {

for (i = 1;VlgInstrument.cond(vlg_funcname, (i < 8), 2, 3); i+

Image im = getImage(getCodeBase(), "T" + i + ".gif");

if (VlgInstrument.cond(vlg_funcname, (im == null), 4, 5)) {

break;

}

danceImages[danceImagesLen++] = im;

}

// load in hangman image sequnce

hangImages = new Image[maxTries];

for (i=0;VlgInstrument.cond(vlg_funcname, (i<maxTries), 6,

7); i++) {

hangImages[i] = getImage(getCodeBase(), "h"+(i+1)+".gif");

}

// initialize the word buffers.

wrongLettersCount = 0;

wrongLetters = new char[maxTries];

secretWordLen = 0;

secretWord = new char[maxWordLen];

word = new char[maxWordLen];

wordFont = new java.awt.Font("Courier", Font.BOLD, 24);

wordFontMetrics = getFontMetrics(wordFont);

14 Kalimetrix Logiscope TestChecker - Testing on a Target Machine

Kalimetrix Logiscope

resize((maxWordLen+1) * wordFontMetrics.charWidth('M') +

maxWordLen * 3,

hangImagesHeight * 2 + wordFontMetrics.getHeight());

}/* function end */

}

The instrumentation introduces function calls in the code:

• VlgInstrument.ddp1(String funcName, String anlysisDate): a function

entry.

• VlgInstrument.cond(String funcName, boolean conditionValue, int

ddpIfTrue, int ddpIfFalse): another ddp of the function.

The Java support library is located in instr\jv\VlgInstrument.java and instr\jv\VlgTrace.java.

2.4. Ada

The Ada instrumentation is described in the Kalimetrix Logiscope TestChecker Getting Started

manual.

The Ada support libraries are located in the data\audit_ada\instrument.ada (Ada95) and

data\audit_ada\instrument83.ada (Ada83).

It is possible to customize these code files to accommodate different needs.

Kalimetrix Logiscope TestChecker - Testing on a Target Machine 15

Kalimetrix Logiscope

3. File formats

Two file formats may be loaded in Logiscope TestChecker to describe test results for a project. The

first, and historical, one is the .dyn format; this is the format in which Logiscope TestChecker

saves the tests. The second, much more verbose, but of great importance for our purpose since it is

easier to fiddle with is the .trc format.

3.1. .dyn files

This file format is compact, but is difficult to modify and produce. This is the default file format

output by the support libraries when the instrumented programs are not launched from Logiscope

TestChecker.

Let's look at a .dyn file produced for the Hangman sample, interspersed with explanations in italics:

<archive VD2.0>

NA

... This is "current application" in french.

... Do not change this.

Application_courante

CV

... List of test suites in this file (there always be

... only one test suite in the file).

CURRENT_SUITE

CM

CURRENT_SUITE

... List of tests in the test suite named CURRENT_SUITE.

TEST_1 09/13/00-13:50:12

TEST_2 09/13/00-13:51:02

... Coverage results for test TEST_1.

MO

TEST_1 09/13/00-13:50:12

... Catalog of components (functions) executed during

... TEST_1.

.NM.

1 CHangman32App::CHangman32App::26 09/13/00-11:42:46

2 CHangman32App::InitInstance::41 09/13/00-11:42:46

3 CPictureButton::CPictureButton::18 09/13/00-11:42:46

... And so on for every component of the test catalog.

.CC.

... Component Changman32App::CHangman32App::26 has

... executed its first ddp.

16 Kalimetrix Logiscope TestChecker - Testing on a Target Machine

Kalimetrix Logiscope

1 1

... Component CHangman32App::InitInstance::41 has

... executed its ddp numbered 1, 3 and 4, but not 3.

2 1 0 1 1

3 1

... And so on for every component of the test catalog.

... Then the content is repeated for every test in

... the test suite.

3.2. .trc files

This format is more verbose than the .dyn format, but is easier to manipulate and produce. It

consists of one record for each occurrence of one of these events:

• Entering a function.

• Executing a ddp (other than the first) of a function.

• Calling a function.

• Executing a complex boolean expression (for MC/DC only).

A .trc file is produced by the support library vlgtchk.c if the environment variable VLGTYP is set to

TRACKS.

This is also the format that is used natively by Logiscope TestChecker to retrieve the execution

events from an instrumented application that it launches.

Let's have a look at this file format for the Mstrmind sample, heavily edited and interspersed with

explanations in italics:

... Entering function master/main. The function has been

... analyzed on January the 29th, 1999.

1

master/main

01/29/99-12:05:36

... Executing ddp number 3 of the function master/main.

X

master/main

3

... Calling function instruction from function master/main.

P

master/main

instruction

... Entering function instruction.

Kalimetrix Logiscope TestChecker - Testing on a Target Machine 17

Kalimetrix Logiscope

1

instruction 01/27/99-

15:51:08

... Complex conditions executed (inst == 'm' || inst == 'M')

... this is complex condition number 2 in the function

... master/main. The result was true (1), and the first

... condition was true, and the second not evaluated (1-).

C

master/main

2

1

1-

18 Kalimetrix Logiscope TestChecker - Testing on a Target Machine

Kalimetrix Logiscope

4. Communicating with Logiscope TestChecker

4.1. Using TcGatWay

TcGatWay is a specialized application, designed to appear as an instrumented application to

Logiscope TestChecker. This tool merely pass back all information received on a TCP socket or a

serial link to Logiscope TestChecker.

TcGatWay startup syntax is different for serial links on Microsoft Windows and UNIX.

On Microsoft Windows:

TcGatWay [-serial <port> [-mode <mode>]] |

[-tcp [-reuse]] |

[[-tcp] [-reuse] -host <host> [-port <port>]] |

[[-tcp] [-reuse] [-host <host>] -port <port>]

-prefix <string>

• -serial designates the serial port (COM1, COM2, etc.).

• -mode designates the mode of operation of the serial port in usual Microsoft Windows syntax.

On UNIX:

TcGatWay [-serial -in <fd>] |

[-tcp -in <fd>] | [-tcp [-reuse]] |

[[-tcp] [-reuse] -host <host> [-port <port>]] |

[[-tcp] [-reuse] [-host <host>] -port <port>]

-prefix <string>

• -serial means that the file file descriptor designated by the -in option is to be used as the serial

input. The serial port must have been configured beforehand with the command stty.

• -tcp means that a TCP socket is to be used. The default host is localhost, the default port is

6309. On UNIX systems, an already opened TCP socket may be used by specifying its file

descriptor with the -in option. The instrumented application is supposed to connect to the the port
used by TcGatWay.

To use TcGatWay with Logiscope TestCheker, a customized support library must be developed
and linked with the instrumented application. The library must connect to the TCP port of the

hostname, or the serial link, where TcGatWay has been launched from Logiscope TestCheker,

and then send the execution events in the .trc format on this communication link.

TcGatWay is useful in demo conditions, or when setting up things. Its interactive nature does not

turn it into the solution of choice for production environments. In these cases, it is easier to work

with files.

Kalimetrix Logiscope TestChecker - Testing on a Target Machine 19

Kalimetrix Logiscope

4.2. Using files

As outlined above, the easiest format to work with is the .trc format. If the target has a file system, it

is sufficient to store the execution results in a file, and transfer the file to the host at the end of the

test.

The file may then be loaded in Logiscope TestChecker to analyze the coverage of the test.

Any communication mean between the target machine and the host that can transfer text streams is

adequate for this task.

20 Kalimetrix Logiscope TestChecker - Testing on a Target Machine

Kalimetrix Logiscope

5. Special cases

5.1. Multi tasking OSes and/or multi processor machines

The .trc format allows the different event records to be interspersed freely, but the records must not

be broken.

A multi tasked application must then take special caution to not break the atomicity of the event

records. Several solutions are available:

• Synchronization; but this may disturb the expected time behavior of the application, and this may

forbid to instrument the interrupt service routines.

• One file (or stream) of event reports per thread of execution; this may complicate the sending of

the event reports if real time streams are used instead of pipes. This may also forbid to instrument

the code of the file system driver.

No single solution is a best fit for all situations. It is often necessary to examine closely the inner

workings of the application and the coverage measurement goals to find the appropriate solution for

a specific situation.

But, whatever the solution needed, the great flexibility of the articulation between the instrumented

code and the support library allows to implement it.

5.2. Tight environments

The instrumented application has more code than the original application. This may lead to troubles

if the target environment does not have enough program memory to accommodate the instrumented

application.

To reduce the program space needed by the instrumented application, it is possible to reduce the

number of event kinds sent by the application: in C, the call graph coverage is often not needed,

thus it suffice to #define out the VLG_CALL macro.

If this is not sufficient, it will be necessary to design a special instrumentation and library to

drastically reduce the memory requirements of the instrumented program. This involves the design

of a new format to store and transfer the execution events; then on the host, .trc file must be created

from this new format.

Kalimetrix Logiscope TestChecker - Testing on a Target Machine 21

Kalimetrix Logiscope

Notices

© Copyright 2014

The licensed program described in this document and all licensed material

available for it are provided by Kalimetrix under terms of the Kalimetrix

Customer Agreement, Kalimetrix International Program License Agreement

or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments

may vary significantly. Some measurements may have been made on

development-level systems and there is no guarantee that these measurements

will be the same on generally available systems. Furthermore, some

measurements may have been estimated through extrapolation. Actual results

may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-Kalimetrix products was obtained from the

suppliers of those products, their published announcements or other publicly

available sources. Kalimetrix has not tested those products and cannot

confirm the accuracy of performance, compatibility or any other claims

related to non-Kalimetrix products. Questions on the capabilities of non-

Kalimetrix products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include

the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Copyright license

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

Kalimetrix, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples have

not been thoroughly tested under all conditions. Kalimetrix, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from Kalimetrix

Corp. Sample Programs. © Copyright Kalimetrix Corp. _enter the year or years_.

22 Kalimetrix Logiscope TestChecker - Testing on a Target Machine

Kalimetrix Logiscope

Trademarks

Kalimetrix, the Kalimetrix logo, Kalimetrix.com are trademarks or registered

trademarks of Kalimetrix, registered in many jurisdictions worldwide. Other product and

services names might be trademarks of Kalimetrix or other companies.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript are

trademarks of Adobe Systems Incorporated or its subsidiaries and may be registered in

certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International Business

Machines Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc.

in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Macrovision and FLEXnet are registered trademarks or trademarks of Macrovision

Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other

Microsoft products referenced herein are either trademarks or registered trademarks of

Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of Netscape

Communications Corporation in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks of

Sun Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

ITIL is a registered trademark, and a registered community trademark of the Office of

Government Commerce, and is registered in the U.S Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product or service names may be trademarks or service marks of others.

Kalimetrix Logiscope TestChecker - Testing on a Target Machine 23

	1. Overview
	1.1. Instrumented code
	1.2. Support libraries

	2. Instrumentation
	2.1. C
	2.2. C++
	2.3. Java
	2.4. Ada

	3. File formats
	3.1. .dyn files
	3.2. .trc files

	4. Communicating with Logiscope TestChecker
	4.1. Using TcGatWay
	4.2. Using files

	5. Special cases
	5.1. Multi tasking OSes and/or multi processor machines
	5.2. Tight environments

	Notices

