
CODE ENGINEERING
version 18.1

user guide

No Magic, Inc.

2015

All material contained herein is considered proprietary information owned by No Magic, Inc. and is not to be
shared, copied, or reproduced by any means. All information copyright 1998-2015 by No Magic, Inc. All Rights
Reserved.

C O N T E N T S
 INTRODUCTION 7
Overview 7
Code Engineering Sets 8
Generating Code 10

Code Generation for Set 11
Code Generation for Model Element 12

Reverse 12
Rules of the association or attribute creation on reverse 14

Global options for Code Engineering 17
Code engineering options for all sets in your project 17
Java Documentation Properties dialog box 21
Round Trip 22
Type Mapping Table 22

Files of Properties 23

 JAVA CODE ENGINEERING 24
Introduction 24

Abbreviations 24
References 24
Java support in MagicDraw 24

Java Mapping to UML 25
Java Profile 25
Java referenced types 26
Mapping to UML rules 27

Java CE Properties 52
Java Reverse Properties 52
Java Language Options 53

Method Implementation Reverse 56
Sequence Diagram from Java Source Wizard 56

 C++ CODE ENGINEERING 61
Abbreviations 61
References 61

C++ ANSI Profile 61
Data Types 61
Stereotypes 64

Mapping 72
Class 72
Base Class Definition 72
Class Member Variable 73
Class Member Function 74
Class Constructor/Destructor 74
Variable 75
Variable modifiers 76
Variable extern 77
Variable default value 78
Const Volatile qualified type 79
Function 79
Function variable-length parameter list 80
3 Copyright © 1998-2015 No Magic, Inc..

C O N T E N T S
void parameter 80
Register parameter 81
Function modifiers 82
Function pointer 82
Function operator 83
Exception 83
Visibility 84
Static members 84
Friend declaration 85
Struct 86
Union 86
Enumeration 86
Typedef 87
Namespace 88
Global functions and variables 88
Class definition 89
Class Template Definition 89
Function Template Definition 90
Default template parameter 91
Template instantiation 92
Partial template instantiation 95
Template specialization 95
Forward class declaration 96
Include declaration 97

Conversion from old project version 100
Translation Activity Diagram 100
Language properties 104
Type Modifiers 123
Stereotypes 126
Tag Value 135
Constructor and Destructor name 137
Data type 139

DSL customization 145
Operation and Constructor 145
Attribute 146
Generalization 147
Enumeration literal 147
Namespace 147
Template parameter 148

Profile constraints 148
Operation 148
Constructor 148
Destructor 149
Global 149
Typedef 149
Friend 149

New in MagicDraw 12.1 150
CG Properties Editor 150
Roundtrip on #include statement and forward class declaration 150
Project Option and Code Generation Options 154
4 Copyright © 1998-2015 No Magic, Inc..

C O N T E N T S
New in MagicDraw 14.0 157
Support C++ dialects 157
CG Properties Editor 158

New in MagicDraw 16.8 159
Doxygen-after-member documentation 159
@see on documentation 160
Symbian macro 160

Tutorial 160
Type Modifier 160
Global Member 161
Typedef 161
Function Pointer 163
Friend 165
How to specify component to generate code to 167
@see support for import-code-only mode 168
Navigable short cut from model link in documentation 169

Project constraint 170
Working with QT 174

Microsoft C++ Profiles 175
Microsoft Visual C++ Profile 175
C++/CLI Profile 183
 C++ Managed Profile 192
Modeling with Microsoft Specific Profiles 194

 C# CODE ENGINEERING 229
C# 2.0 Description 229

Generics 229
Anonymous Methods 250
Partial Types 251
Nullable Types 254
Accessor Declarations 255
Static Class 256
Extern Alias Directive 257
Pragma Directives 259
Fix Size Buffer 261

C# 3.0 Description 264
Extension Methods 264
Lambda Expression Conversion 265

C# Profile 267
Stereotype 267
Data Type 272

Conversion from old project version 272
Translation Activity Diagram 272

Mapping 277
Language Properties Mapping 277
C# Properties Customization 281
Using Directive Mapping 282

Constraints 286
Mapping Constraints 286
UML Constraints 286
5 Copyright © 1998-2015 No Magic, Inc..

C O N T E N T S
Translation Constraints 289

 CORBA IDL MAPPING TO UML 290
CORBA Interface Implementation 291

 WSDL 294
WSDL Mapping to UML elements 295

Defined stereotypes 295
Definitions 295
Import, namespace 296
Messages 296
Types 298
Port types 299
Bindings 300
Services 302
Ports 304
6 Copyright © 1998-2015 No Magic, Inc..

INTRODUCTION
Overview

NOTE: Code Engineering is available in Professional, Architect and Enterprise editions only.

MagicDraw code engineering provides a simple and intuitive graphical interface for merging code and UML
models, as well as preparing both code skeletons out of UML models and models from code.

MagicDraw code engineering implements several cases where code engineering may by very useful:

• You already have code that needs to be reversed to a model.

• You wish to have the implementation of the created model.

• You need to merge your models and code.

The tool may generate code from models and create models out of code (reverse). Changes in the existing
code can be reflected in the model, and model changes may also be seen in your code. Independent changes
to a model and code can be merged without destroying data in the code or model.

MagicDraw code engineering supports Java, C++, CORBA IDL, DDL, XML Schema, WSDL, and C# lan-
guages. Your models can be converted to any of those languages, or UML models can be created from the
source code written in those languages. Also reverse from Java Bytecode and CIL is supported.

The Code Engineering Sets tool is MagicDraw tool managing center for all code engineering matters.

Code engineering is available only in Professional or Enterprise editions. In the following table you’ll find what
languages are supported in different editions:

View Online Demos Code Generation

Code Reverse

Language Professional Edition Enterprise Edition

Java Java +

Java Bytecode Java +

C++ C++ +

CORBA IDL - +

DDL/Database
engineering

With Cameo Data Modeler plugin
(separately purchaseable)

With Cameo Data Modeler plugin (free
of charge)

CIL C# +

CIL Disassembler C# +

XML Schema With Cameo Data Modeler plugin
(separately purchaseable)

With Cameo Data Modeler plugin (free
of charge)

WSDL - +

C# C# +
Copyright © 1998-2015 No Magic, Inc.7

http://www.magicdraw.com/files/viewlets/MD_100_viewlets_CodeGeneration_viewlet_swf.html
http://www.magicdraw.com/files/viewlets/MD_100_viewlets_CodeReverse_viewlet_swf.html

INTRODUCTION
Code Engineering Sets
Code Engineering Sets

You may manage code engineering through the Code Engineering Sets in the Browser tree. The Code Engi-
neering Sets tree contains the list of all sets created in the project and instruments for managing those sets.

To add a new set

1. From the Code Engineering Sets shortcut menu, choose New.

2. Choose the language you want (possible choices include: Java, Java Bytecode, C++, C#,
CIL, CIL Disassembler, CORBA IDL, DDL (Cloudscape, DB2, Microsoft Access, Microsoft
SQL Server, MySQL, Oracle, Pervasive, Pointbase, PostgreSQL, Sybase), XML Schema,
and WSDL). The new set is created.

Figure 1 -- Code engineering language options

Edit sets in the Round Trip Set dialog box. To open this dialog box

• Choose Edit from the set shortcut menu.

If you are performing round trip for the first time, the tip message box appears.

Figure 2 -- Code Engineering Sets tip message box
8 Copyright © 1998-2015 No Magic, Inc..

INTRODUCTION
Code Engineering Sets
Disable the tip message box by deselecting the Show this tip next time check box.

The Round Trip Set dialog box allows you to manage entities to be added/removed to your set.

Figure 3 -- Round Trip Set dialog box. Add files tab

Specify Working Directory for displaying source files. This option indicates files and required sub-directories,
where a code generation output goes. Type a path manually or by browsing in the directory tree, by clicking the
‘…’ button.

The Working Package option allows to define any package for reverse output or code generation. Model will
be reversed or code generated from this specified package.

The Round Trip Set dialog box has two tabs: Add Files and Add Data from Model.

The Add Files tab helps you manage the files of source code involved in your code engineering set.

NOTE The working package may be selected or changed only prior to the
addition of files from working directory to code engineering set.

Element name Function

All files Helps you find directories with the source files for the set.

Files of type Contains possible file name extensions for the chosen language.
9 Copyright © 1998-2015 No Magic, Inc..

INTRODUCTION
Generating Code
The Add Data from Model tab helps you manage elements located in the UML model.

Figure 4 -- Round Trip Set dialog box. Add data from model tab

The All Data list contains the hierarchy of UML model packages with model elements (or other packages)
inside of them. Your code engineering set can be combined out of model and code elements.

The following buttons are available in the Round Trip Set dialog box:

Generating Code

You may generate code for the selected and prepared set and directly for model elements.

Add The selected file in the All Files or All Data list is added to the set.

Add All All files in the opened or selected directory are added to the set.

Add
Recursively

All files in the selected directory and its subdirectories are added to the
set.

Remove Removes the selected entity from the set.

Remove All Removes all entities from the set.

View Online Demo Code Generation
10 Copyright © 1998-2015 No Magic, Inc..

http://www.magicdraw.com/files/viewlets/MD_100_viewlets_CodeGeneration_viewlet_swf.html

INTRODUCTION
Generating Code
Code Generation for Set

Start code generation once the set or sets are prepared. For more details about creating and editing sets, see
“Code Engineering Sets” on page 8.

• Choose Generate from the Code Engineering Sets item shortcut menu. It allows code
generating for all created sets.

• Choose Generate from the selected set shortcut menu. It allows code generating only for the
selected set.

The Code Generation Options dialog box appears.

Figure 5 -- Code Generation Options dialog box.

The Code Generation Options dialog box allows you to specify the way your code will be generated.

Once generating options are specified for the set, code can be generated.

Box name Function

Output
Directory

Type the directory where the generated files will be saved.

'...' The Set Output Directory dialog box appears. Select the directory
for the generated files.

Set as Working
Directory

The output directory is set as a working directory and files are saved
to the working directory.

Reverse before
generation

Changes your model according to changes in the existing code.

WARNING:

Exercise caution when selecting the Reverse before generation
check box. If the model differs from the code, all differences in the
model will be discarded. In such cases, you will lose some your work.
11 Copyright © 1998-2015 No Magic, Inc..

INTRODUCTION
Reverse
Code Generation for Model Element

All the classes contained in the component will be written to one file. However, code for the class can be
generated in a different way. Select the class you wish to generate in the browser Data package and click
Generate in the class shortcut menu. For packages and components, you may also select Generate, but you
will not be able to specify the generation options. All the options related to that task will be set according to the
default values.

If you have chosen framework generation for a single class or for packages, the Code Generation Options
dialog box does not appear. The code is generated according to the default values.

If no errors occurred, you may view the results with your favorite file viewer or programming environment. Look
for the files in the directory that you specified as your Working directory in the Round trip set dialog box or in the
Project Options dialog box. Additional sub-directories could be created.

Reverse

A reverse is an opposite operation to the code generation. The existing code can be converted to UML models
with the help of MagicDraw reverse mechanism.

Prepare the sets in the exact same way that you did for code generation (see “Code Engineering Sets” on
page 8)

• Choose Reverse from the Code engineering sets item shortcut menu. It allows code
reversing for all already created sets.

• Choose Reverse from the selected set shortcut menu.

If element
deleted from
model

To influence the structure of generated code, click one of the following
option buttons:

• Delete code. The representation of deleted entities will be deleted
from the code file.

• Comment code. Deleted entities will be commented in the code
file.

Use spaces in
place of tabs

When selected, spaces (instead of tabs) will be written to the code
file.

Number of
spaces

Specify the number of spaces to be written.

OK The Messages Window appears, displaying how code files are being
generated. The Messages Window informs you of problems and
errors (mainly file access and syntax errors) found in the code
generation process and generation summary. You are also prompted
to confirm that you wish to overwrite the file if the output directory
already contains one with the same name.

Cancel Closes the dialog box without saving changes.

Help Displays MagicDraw Help

View Online Demo Code Reverse

Box name Function
12 Copyright © 1998-2015 No Magic, Inc..

http://www.magicdraw.com/files/viewlets/MD_100_viewlets_CodeReverse_viewlet_swf.html

INTRODUCTION
Reverse
The UML model for the component can be reversed in the same way. Just select the component you are
interested in from the browser and click Reverse on it shortcut menu.

Models can be reversed without creating a set.

To reverse a model without creating a set

1. From the Tools menu, choose Quick Reverse. The Round Trip Set dialog box appears.

NOTE: Quick Reverse is available only in Professional and Enterprise editions.

2. Select the files from the Round Trip Set dialog box, Add Files tab.

3. Click OK. The Reverse Options dialog box appears.

Figure 6 -- Reverse options dialog box

Element name Function

CREATE CLASS FIELDS AS

Attributes Class fields are represented in model as attributes.

Associations Class fields are represented in model as association ends.

According to rules Association or Attribute creation on reverse is ability to enter
rules that help to decide if an association or attribute must be
created on reverse. For more information, see “Rules of the
association or attribute creation on reverse” on page 14.

Resolve collection
generics

Reverse engineering is able to create associations when one
class has collection of other classes and uses Java generics
(for example, List<String>). If selected, types of collection will be
resolved (property type will be not collection, but real type).

Predefined container types in Java language properties will be
appended by all the same containers in form:

·java.util.List<$$type$$>

where $$type$$ replaced to value of "type" property when code
is generated.
13 Copyright © 1998-2015 No Magic, Inc..

INTRODUCTION
Reverse
If you have a code set combined from several files, you may see changes you wish to model without reversing
all the code. Only changed files should be reversed. This type of reversing can be done by clicking the Refresh
button on the set shortcut menu, or by performing model refresh from the Code Engineering Sets dialog box.

Rules of the association or attribute creation on reverse

Association or Attribute creation on reverse is ability to enter rules that help to decide if an association or attri-
bute must be created on reverse.

Creating association or attribute creation rules on reverse

1. In the MagicDraw Browser, select the code engineering set for reverse.

2. From the set shortcut menu, choose the Reverse command. The Reverse Options dialog box
is opened.

3. In the Create class fields as group, select the According to rules radio button. Then press
the “…” button. The Class Field Creation Rules dialog box opens (see Figure 7 on page 15).

Reset already
created fields

Select this option if you want to keep already created UML
representation (attribute or association) for class fields.

MODEL REFRESH TYPE

Merge model and
code

The model elements are updated by code. Elements that do not
exist in the code will not be removed from the model.

Change model
according to code

Model will be created strictly by code. Entities in the model that
do not match entities in the code will be discarded.

VIZUALIZATION

Visualize reversed
model

Classes that are created while reversing can be added to a
diagrams.

Launch Model
Visualizer

After reversing, the Model Visualizer dialog box appears. It will
assist you in creating a class diagram or sequence diagram
(Java only) for newly created entities.

Create new class
diagram

After reversing, the Create Diagram dialog box appears.
Create a new diagram where the created entities will be added.

Add to active
diagram

After reversing, all created entities will be added to the current
opened diagram.

ANALYSIS - create dependencies between

Classifiers Dependencies between classes will be analyzed and created.

Packages Dependencies only between packages will be created.

NOTE: Method bodies are not parsed on dependency search.
Only static information is used.

Element name Function
14 Copyright © 1998-2015 No Magic, Inc..

INTRODUCTION
Reverse
Figure 7 -- The Class Field Creation Rules dialog box

Managing association or attribute creation on reverse rules

The Class Field Creation Rules dialog box lists the described rules. If type qualified name matches any of the
rule, then specified type is created. Rules described in this dialog are executed in order from the top to bottom.
If one rule matches, no others are executed. Dialog allows to add a new rule, edit or remove an old one, order
rules.

If no rules are matched, attribute or association according the radio button choice at the bottom of dialog is cre-
ated.

Press the Add button for entering expression. On editing success new rule will be created. The Rule dialog box
opens.

Press the Edit button for editing selected rule. Button is disabled, if no rule is selected. The Rule dialog box
opens.

Defining rules

You can define rules in the Rules dialog box (see Figure 8 on page 16). To invoke this dialog box, in the Class
Field Creation dialog box, press the Add or Edit button.

The Rules dialog box description:

• In the Create drop down list select to create Attribute or Association on reverse if property
matches defined critters.

• The Qualified Name expression field supports simple search patterns - supports '*' and '?'
15 Copyright © 1998-2015 No Magic, Inc..

INTRODUCTION
Reverse
• The Qualified Name expression pattern can contain qualified name of the target element, which
contains separator of UML separator style (::) and qualified name is counted to the first
package with <<modelLibrary>> stereotype

• The Element Type drop down list contains subset of UML Type names: Any, Class, Interface,
DataType, Primitive, Enumeration, Stereotype values are displayed.

• If in the Element Type drop down list Any value is selected, the element type will be matched
by qualified name expression.

Figure 8 -- The Rule dialog box

Sample of the association creation on reverse

In these two samples it will be presented how to create associations among my reversed classes, but avoid
creating associations to the used libraries (java).

Suppose you have your classes placed inside the package “com::myProduct”. Creation rules must be following:

• Create “Association” if property type qualified name match “com::myProduct::*” with “all”
element type

• If rules do not match, create class fields as attributes.

Suppose that your classes are placed inside two packages “myClient” and “myServer”. Creation rules should
be:

• Create “Association”, if type name “match” path “myClient::*” with “all” meta type

• Create “Association”, if type name “match” path “myServer::*” with “all” meta type

• If rules do not match, create class fields as attributes.
16 Copyright © 1998-2015 No Magic, Inc..

INTRODUCTION
Global options for Code Engineering
Global options for Code Engineering

Code engineering options for all sets in your project

From the Options menu, choose Project. The Project Options dialog box appears.

Figure 9 -- Project Options dialog

The Project Options dialog box has two main collections of customizable options, which are represented by
the hierarchy tree on the left side of the dialog box:

• Styles – expands the tree hierarchy of all the styles defined within the project. You may use as
many of these styles as you wish. See MagicDraw main User’s Manual, working with Projects
Section.

• Code engineering – these options are found on the right side of the Project options dialog box:

• Default Working Directory field - type the name or browse by clicking the button in
the working directory.
17 Copyright © 1998-2015 No Magic, Inc..

INTRODUCTION
Global options for Code Engineering
• Default Working Package - allows to define any package for reverse output or
code generation. Model will be reversed or code generated from this specified
package.

• Default Paths for References - add specific profiles, modules1, libraries to define
where to search paths for references during reverse/code generation.

• Default Encoding - a list of available encodings appears.

• Default language drop-down box – select the default generation language.

• Use Syntax Checker check box – when selected, the syntax checker runs while
Code Engineering is executed

• Directory for Temporal Files - it can be Active Directory, System or define other
by clicking “...” button.

1. Starting from version 18.1, referred as “used project” in MagicDraw UI. This user guide mentions the old keyword, which will be replaced
in the documentation of the next MagicDraw version.

Tab name Description

Code
generation

Set code generation options using the fields listed in the right side of the Project options
dialog box. The Code generation area contains boxes that have the same functionality
as in the Code generations options dialog box (see “Generating Code” on page 10).

Reverse Set reverse options for all reverse actions of the project using the options listed on the
right side of the Project options dialog box. The Reverse area contains boxes that have
the same functionality as in the Reverse options dialog box (see “Reverse” on
page 12).

Tab name Element name Function

Java Language
Options
Set the
generated code
style for Java
programming
languages in the
Default
language field
found on the
right side of the
Project Options
dialog box.

Generate
opening bracket
in new line

Opens a bracket in the new line that is being generated.

Generate spaces Generates spaces inside an assignment and other operators.

Generate empty
documentation

Comment brackets are placed in your code, unless class in the
model has no documentation.

Automatic
“import”
generation

Automatic generation of "import" sentences according to classes
that are referenced in the generated class.

Class count to
generate import
on demand

Specify number of classes imported from a single package until all
statements importing a single class are substituted with a statement
importing an entire package.

Documentation
Processor

After selecting Java Doc processor, click the “...” button to open the
Documentation Properties dialog box.

Style Two styles are available for documentation.
18 Copyright © 1998-2015 No Magic, Inc..

INTRODUCTION
Global options for Code Engineering
Use CLASSPATH The ’...’ button is activated. Search a classpath for importing
sentences generation in the Set classpath dialog box.

Figure 10 -- Set classpath dialog

Click the Get from System button to get CLASSPATH variable
defined by operating system or click the Add button and select the
classpath directory in the Add Classpath dialog box.

Java Source Available choices 1.4 , 5.0, or 7.0.

Header Add the specific header to all your code files. Click the button and
enter header text in the Header screen.

You may also define $DATE, $AUTHOR, and $TIME in the header.

C++ Language
Options
Set the
generated code
style for C++
programming
languages.

Generate
opening bracket
in new line

Opens a bracket in the newly generated line.

Generate spaces Spaces inside an assignment and other operators are generated.

Generate empty
documentation

Comment brackets are placed in your code, unless class in the
model has no documentation.

Generate
methods body
into class

Select check box to generate methods body into class.

Documentation

Style

Two styles are available for documentation.

Use include path Click the ’...’ button and then specify the path for the includes in the
Set Include Path dialog box.

Use explicit
macros

Select check box. The ’...’ button is activated, click it and in the C++
Macros dialog box use a set of predefined macros.

Header Add the specific header to all your code files. Click the “…” button
and enter header text in the Header screen.

You may also define $DATE, $AUTHOR, and $TIME in the header.

CORBA IDL 3.0
Language
Options

Generate
documentation

Includes the documentation of an element in the comment.

Tab name Element name Function
19 Copyright © 1998-2015 No Magic, Inc..

INTRODUCTION
Global options for Code Engineering
Generate
opening bracket
in new line

Opens a bracket in the new line generating.

Generate spaces Spaces inside an assignment and other operators are generated.

Generate empty
documentation

Comment brackets are placed in your code, unless class in the
model has no documentation.

Generate
imports

Generation of "import" statements for classes that are referenced in
the generated class.

Generate
preprocessor
directives

Generates pre-processors directives.

Documentation

Style

Three styles are available for documentation.

Header “...” Add the specific header to all your code files. Click the “...” button
and enter header text in the Header dialog. You may also define
$DATE, $AUTHOR, and $TIME in the header.

Since MagicDraw version 17.0, the variable $DOCUMENTATION
can be used for exporting the documentation of the file component
(from the File View package) as a header of the IDL file.

IMPORTANT! The variable $DOCUMENTATION is available with
MagicDraw 17.0 Service Pack 4 and later versions.

Set Include Path Specify the path for the "includes". Click the "..." button to open the
Select Folder dialog box.

DDL Language
Options

Generate
opening bracket
in new line

Opens a bracket in the new line generating.

Generate spaces Spaces inside an assignment and other operators are generated.

Generate
documentation

Comment brackets are placed in your code, unless class in the
model has no documentation.

Header Add the specific header to all your code files. Click the button and
enter header text in the Header screen. You may also define
$DATE, $AUTHOR, and $TIME in the header.

C# Language
Options
Set the
generated code
style for C#
programming
languages.

Generate
opening bracket
in new line

Opens a bracket in the newly generated line.

Generate spaces Generates spaces inside an assignment and other operators.

Generate empty
documentation

Comment brackets are placed in your code, unless class in the
model has no documentation.

Generate
required "using"
directives

Automatic generation of "using" directives. This option facilitates the
usage of namespaces and types defined in other namespaces.

Concatenate
namespace
names

If not selected namespace names are separated into several lines.

e.g.

namespace A
{
namespace B

{

Tab name Element name Function
20 Copyright © 1998-2015 No Magic, Inc..

INTRODUCTION
Global options for Code Engineering
Java Documentation Properties dialog box

To open the Java Documentation Properties dialog box

In the Project Options dialog box, Java Language Options group, select the Java Doc
processor in the Documentation field and click the “...” button to open the Documentation
Properties dialog box.

Figure 11 -- Documentation Properties dialog box

Documentation:
• Processor

• Style

• Use C# XMI processor then generates c# xmi documentation for
commenting the code.

• Select one of the listed comment styles.

Header Adds the specific header to all your code files.
Click the '...' button and type header text in the Header dialog box.

You may also define $DATE, $AUTHOR, and $TIME in the header.

Conditional
Symbols

Add the conditional symbols, which cannot be recognized and
should be skipped during reverse.
Click the '...' button and add conditional symbols in the Define
Conditional Symbols dialog box.

Box Name Function

Tag Name Type a tag name.

Value Type the value of the tag.

Generate The selected tag will be placed in the generated code as a comment
before classifier (class or interface), operation or attribute.

Up Moves the selected item up the list.

Tab name Element name Function
21 Copyright © 1998-2015 No Magic, Inc..

INTRODUCTION
Global options for Code Engineering
Round Trip

MagicDraw round trip keeps your code and model synchronized, and because Round trip traces all the model
and code changes, you may freely change entity specifications without discarding code changes made outside
the tool.

For example, Round Trip prevents a job from being damaged by code additions or changes when these steps
are followed:

Within the tool, class Base is created.

1. Operation getInstance is added to class.

2. Code is generated

3. With external tool, programmer adds code to that operation.

4. With MagicDraw UML, operations name is changed to Instance.

5. Code is generated.

If the tool rewrites the whole code, these changes are made without corrupting the programmer’s job. The
name of the operation is changed, but the internals remain the same.

Round trip catches all changes in your project and controls the following actions:

• If the source code is not changed, it is not allowed to refresh UML model. The Refresh
command from the set shortcut menu is unavailable.

• If the model is changed but the code remains the same (new members were added or their
headers were changed), refresh is not allowed, and the Refresh command from the set
shortcut menu is unavailable. When generating code according to changes, all changes in the
model are written to the signatures of class members, leaving the old implementation in place.

• If the code is changed but the model remains the same, refresh can be executed: code will be
reversed to the UML models. If the Code Generation Options dialog box appears when you
are attempting to generate code, you may select a code action that differs from the UML model.

• If the code and model are changed while refreshing, all changes in the code are treated as new
items and added to the model.

• If data in the model file is deleted, it will be restored while refreshing, even when the code has
not been changed or the data itself is unimportant.

Type Mapping Table

Languages supported by MagicDraw UML have their own built-in types. One language’s type might have no
matches in another language, or it might have multiple matches. Additionally, some names are interpreted
differently in different languages. When performing code generation, therefore, problems may occur when
switching between different languages. To avoid this, MagicDraw UML uses type-mapping tables to manage

Down Moves the selected item down the list.

Add Adds a new item in the list.

Remove Removes the selected item from the list.

OK Saves changes and closes the dialog box.

Cancel Closes the dialog box without saving changes.

Help Displays MagicDraw Help.

Box Name Function
22 Copyright © 1998-2015 No Magic, Inc..

INTRODUCTION
Files of Properties
mapping between languages. It describes the rules of how one language’s built-in types are converted to those
of another language

Files of Properties

The code can be generated out of prepared UML models. The mapping between the identifiers, used in the
UML model and the language to which the model is being generated, should be implemented. This mapping
includes the following sections:

• Build-in types (their default values)

• Generalization types

• Possible class declarations. Attributes and operations declaration and visibility modifiers

• Code generation options.

The separate prop file is created for every language that is supported by MagicDraw. Files are located in the
<MagicDraw installation directory>/data folder. The file name pattern is lang.prop, where lang stands for the
name of the programming language.

Files of language properties are separated into sections where all related elements are grouped. You may edit
existing entities, add new ones, and change the default values.

We strongly recommend that you edit default values only. In general, all the sections have the list of possible
and default values for the element.

Supported
language

File of Properties

JAVA java.prop

C++ C++.prop

CORBA IDL idl.prop

JAVABytecode javabytecode.prop

DDL ddl.prop

CIL cil.prop

CIL Disassembler cil disassembler.prop

C# c#.prop

IDL idl.prop

XML Schema xmlschema.prop

WSDL wsdl.prop
23 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE
ENGINEERING
Introduction

Java Code Engineering chapter describes how Java language elements are mapped to UML by MagicDraw,
what profiles to use and describes Java code engineering properties.

Chapter "Java Mapping to UML", on page 25 describes general rules how each Java element is mapped to
UML by MagicDraw and what profile is used. You will find an example and corresponding model in MagicDraw
with marked properties used in Java to describe mapping rules.

Chapter "Java CE Properties", on page 52 introduces specific Java options.

Abbreviations

References

Gosling, J., Joy, B., Steele, G., Bracha, G., & Buckley, A. (2012, February 6). The Java™ Language Specifica-
tion. Java SE 7 Edition. Retrieved March 29, 2012, from http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf

Java support in MagicDraw

You may perform the following actions with MagicDraw:

• Import Java source code into model (reverse engineering).

• Generate Java code from the model (code generation).

• Apply changes to the source code from the model (round-trip). You may change Java
declaration headers and apply them to already existing source code, however you cannot
change method implementation.

• Create sequence diagram from the selected method body.

• Create model from the Java byte code.

UML Unified Modeling Language

JLS Java Language Specification

CE Code Engineering

CES Code Engineering Set

JVM Java Virtual Machine
Copyright © 1998-2015 No Magic, Inc.24

http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf

JAVA CODE ENGINEERING
Java Mapping to UML
Java Mapping to UML

Java Profile

UML specification does not provide elements to cover fully JLS, therefore MagicDraw is using UML stereotypes
to mark UML class or interface to be some specific Java element.

Java stereotypes are provided in Java_Profile.xml file in MagicDraw profiles directory. Some stereotypes have
tagged values used for mapping special Java language elements or keywords, which are not mapped to the
standard UML properties. All Java stereotypes are derived from the «JavaElement». Another abstract
stereotype «JavaTypeElement» is used to group all Java type elements. These two stereotypes are abstract
and are not used directly.

Each other stereotype is used to represent appropriate Java element: «JavaImport» represents Java import,
«JavaOperation» - Java operation, «JavaClass» - Java class type, etc.
25 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Figure 12 -- Stereotypes

Java referenced types

Java built-in types are used from the “UML Standard Profile”, which is automatically loaded with every new
project.

Every referenced class from the other libraries (including JDK libraries) should be imported/created into project
and referenced in CES reference path (by default reference path is “Data” package in the model).

MagicDraw resolves referenced classes from the specified class path (by default class path is boot class path
taken from the JVM on which MagicDraw is started) and creates in appropriate package structure (for more

NOTE UML Standard Profile by default is hidden. If you want see it, click the
Show Auxiliary Resources button in the Browser.
26 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
information see "Sorting reversed classes according to the classpath", on page 27).

If referenced class is not found nor in model neither in class path, reference is created in the “Default“ package.

Java Profile defines UML Class with a name “?“. It is used for mapping parameterized types.

Sorting reversed classes according to the classpath

References are sorted to packages according to the classpath entry.

See a sample in Figure 13 on page 27, there reverse result is represented of the following java code:

import javax.swing.*;
public class CustomFrame extends JFrame
{

String mTitle;
}

Figure 13 -- Sample: The String, JFrame and CustomFrame classes location after reverse

Mapping to UML rules

Package

Java package is mapped to the general UML package. It does not have any specific stereotypes and
properties. However if UML package represents Java package, it must not have «modelLibrary» stereotype
from standard UML profile. «modelLibrary» stereotype is used to show root package, where Java package tree
ends and all parent packages, including «modelLibrary» are not part of Java package structure. In picture
27 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
below is “java.lang.String” added into the “working package“. Packages “java” and “lang“ represents general
Java packages, but “working package“ with “L“ is stereotyped with «modelLibrary» and is not part of the Java.

Figure 14 -- Package Structure

Class

Java class is mapped directly to the UML Class with stereotype «JavaClass». This stereotype is optional and if
UML class doesn’t have any stereotype, Java CE treats it as Java class. Class modifiers are mapped into UML
Class properties or to the Java language properties for class, if no appropriate property is found in UML.

Java class fields, operations and inner classes are mapped to the appropriate UML Properties, UML
Operations and UML Classes

Class mapping table

Java element MagicDraw-UML element

Class declaration UML Class with stereotype «JavaClass» (optional)

Class name UML Class name

Class documen-
tation

UML Class Documentation

Class e Is mapped to the UML Generalization relationship,
where supplier is extended class and client is mapped
class

Class imple-
ments clause

Is mapped to the UML Interface Realization relation-
ship, where supplier is extended class and client is
mapped class.

Visibility modifier UML Class “Visibility” property

Abstract modifier UML Class “Is Abstract” property
28 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Final modifier UML Class “Is Final Specialization“ property

Static modifier Java Language property “Static modifier“

Strictfp modifier Java Language property “Strictfp modifier“

Example

Java Source Code
/**
 * Comment of the class MyList
 */
public final class MyList extends ArrayList implements Cloneable
{
}

MagicDraw UML Model

Figure 15 -- Class diagram

Java element MagicDraw-UML element
29 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Figure 16 -- UML Class specification dialog
30 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Figure 17 -- UML Class language properties

Field

Java field is mapped directly to the UML Property with stereotype «JavaField». This stereotype is optional and
if UML class doesn’t have any stereotype, Java CE treats it as Java field. Field modifiers are mapped into UML
Property properties or to the Java language properties, if no appropriate property is found in UML.

Worth to know, that Java field type modifiers is mapped to the MagicDraw specific property “Type Modifier“, but
not to the UML Multiplicity.

Field mapping table

Java element MagicDraw-UML element

Field declaration UML Property, owned by UML Class, with stereotype
«JavaProperty» (optional)

Field name UML Property Name

Field documen-
tation

UML Field Documentation

Field type Is mapped to the UML Type property. It is reference to
the UML Classifier, which by its package structure and
name represents referenced Java class

Field type modifi-
ers

Is mapped to the MagicDraw specified property “Type
Modifier“

Visibility modifier UML Property “Visibility” property

Final modifier UML Property “Is Read Only“ property
31 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Static modifier UML Property “Is Static“ property

Transient modi-
fier

Java Language property “Transient modifier”

Volatile modifier Java Language property “Volatile modifier”

Example

Java Source Code
public final class MyClass
{

/**
 * myList comment
 */
public static java.util.List myList;

}

MagicDraw UML Model

Figure 18 -- Class with property
32 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Figure 19 -- UML Property specification dialog
33 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Figure 20 -- UML Property language properties

Operation

Java operation is mapped directly to the UML Operation with stereotype «JavaOperation». This stereotype is
optional and if UML class doesn’t have any stereotype, Java CE treats it as Java operation. Operation modifiers
are mapped into UML Property properties or to the Java language properties, if no appropriate property is
found in UML.

Java operation return type is mapped to the UML Type property of UML Parameter with “Return“ direction kind.
Java Operation parameters are mapped to the UML Parameters. Direction kind is set “In“ for “final” parameters.

Worth to know, that Java parameter type modifiers is mapped to the MagicDraw specific property “Type Modi-
fier“, but not to the UML Multiplicity.

Operation mapping table

Java element MagicDraw-UML element

Operation decla-
ration

UML Operation, owned by UML Class, with stereotype
«JavaOperation» (optional)

Operation name UML Operation Name
34 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Parameter mapping table

Operation docu-
mentation

UML Operation Documentation

Parameters list UML Operation “Parameters” list

Return type Is mapped to the UML Parameter type with “return“ direc-
tion kind (resides in UML Operation parameters list). It is
reference to the UML Classifier, which by its package
structure and name represents referenced Java class

Return type
modifiers

Is mapped to the MagicDraw specified property “Type
Modifier“

Visibility modifier UML Operation “Visibility” property

Final modifier UML Operation “Is Leaf“ property

Abstract modifier UML Operation “Is Abstract“ property

Static modifier UML Operation “Is Static“ property

Synchronized
modifier

UML Operation “Concurrency“ kind “guarded”

Throws list UML Operation “Raised Exception“ list.It is list of refer-
ences to the UML Classes, which by its package structure
and name represents referenced Java exception class

Native modifier Java Language property “Native modifier”

Strictfp modifier Java Language property “Strictfp modifier”

Java element MagicDraw-UML element

Parameter decla-
ration

UML Parameter, owned by UML Operation, with stereotype «JavaParameter»
(optional)

Parameter name UML Parameter Name

Parameter docu-
mentation

When is used JavaDoc preprocessing, it is mapped to UML Parameter Docu-
mentation, else it is part of UML Operation Documentation.

Return type Is mapped to the UML Type property. It is reference to the UML Classifier, which
by its package structure and name represents referenced Java class.

Return type
modifiers

Is mapped to the MagicDraw specified property “Type Modifier“

Final modifier Direction kind “in“ of UML Parameter
35 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Figure 22 -- UML Operation specification dialog

Example

Java Source Code
public class MyList
{

/**
 * Operation Comment
 */
public abstract void foo(final List list) throws

IllegalArgumentException;
}

MagicDraw UML Model

Figure 21 -- Class with operation
36 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Figure 23 -- UML Operation language properties
37 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Figure 24 -- UML Parameter specification dialog

Interface

Java interface is mapped directly to the UML Interface with stereotype «JavaInterface». This stereotype is
optional and if UML Interface doesn’t have any stereotype, Java CE treats it as Java interface. Interface
modifiers are mapped into UML Interface properties or to the Java language properties for interface, if no
appropriate property is found in UML.

All mapping rules used in Java class mapping is applicable to the Java interface. See “Class” on page 28.

Enumeration

Java enumeration is mapped directly to the UML Class with stereotype «JavaEnumeration». Enumeration
modifiers are mapped into UML Class properties or to the Java language properties for interface, if no
appropriate property is found in UML.

Java enumeration literals are mapped to the UML Property, but with stereotype «JavaEnumerationLiteral». All
contained fields, operations and inner classes are mapped to appropriate UML Properties, UML Operations,
UML Classes.

All mapping rules used in Java class mapping is applicable to the Java enumeration. See “Class” on page 28.
38 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Enumeration Literal

Java enumeration literal is mapped directly to the UML Property with stereotype «JavaEnumerationLiteral». It is
not required to specify any specific modifiers for enumeration literal.

Enumeration literal mapping table

Example

Java Source Code
enum MyInterface
{
}

MagicDraw UML Model

Figure 25 -- UML Enumeration

Java element MagicDraw-UML element

Literal declara-
tion

UML Parameter with stereotype «JavaEnumerationLit-
eral», owned by UML Class with stereotype «JavaEnu-
meration»

Literal name UML Property Name

Literal documen-
tation

When is used JavaDoc preprocessing, it is mapped to
UML Parameter Documentation, else it is part of UML
Operation Documentation.

Example

Java Source Code
enum MyEnumeration
{

ONE, TWO, THREE;

int attribute1;
String attribute2;

}

MagicDraw UML Model

Figure 26 -- UML Class representing Java enumeration with enumeration literals
39 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Annotation type

Java annotation declaration is mapped directly to the UML Interface with stereotype «JavaAnnotation».
Annotation modifiers are mapped into UML Interface properties. Annotation members are mapped to the UML
Interface operations with stereotype «JavaAnnotationMember».

Annotation mapping table

Annotation Member

Java annotation member is mapped directly to the UML Operation, owned by the interface stereotyped as
«JavaAnnotation». Operation, by itself, can have stereotype «JavaAnnotationMember», but it is optional,
unless you are going to specify default value for it.

Java annotation member type is mapped to UML Type property of UML Parameter with “Return“ direction kind.

Annotation member mapping table

Java element MagicDraw-UML element

Annotation dec-
laration

UML Interface with stereotype «JavaAnnotation»
(optional)

Annotation name UML Interface name

Annotation docu-
mentation

UML Interface Documentation

Visibility modifier UML Interface “Visibility” property

Example

Java Source Code
/**
 * Comment of annotation
 */
public @interface Annotation
{
}

MagicDraw UML Model

Figure 27 -- UML Interface representing Java annotation type

Java element MagicDraw-UML element

Annotation mem-
ber declaration

UML Operation with stereotype «JavaAnnotationMem-
ber» (Optional), owned by UML Interface with Stereo-
type «JavaAnnotation».

Annotation mem-
ber name

UML Operation Name
40 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Annotation mem-
ber documenta-
tion

UML Operation Documentation

Annotation mem-
ber type

Is mapped to the UML Parameter type with “return“
direction kind (resides in UML Operation parameters
list)

Annotation mem-
ber type modifi-
ers

Is mapped to the MagicDraw specified property “Type
Modifier“

Default value {JavaAnnotationMemberDefaultValue} tagged value of
«JavaAnnotationMember» stereotype. Stereotype is
set on UML Operation

Example

Java Source Code
/**
 * Comment of annotation
 */
public @interface Annotation
{
 int id();
 String name() default "[unassigned]";
}

MagicDraw UML Model

Figure 28 -- UML Interface representing Java annotation type with Java annotation members
41 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Figure 29 -- UML Operation, representing Java annotation member, specification dialog
42 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Figure 30 -- Default value set for UML Operation, representing Java annotation member

Annotations Usage

Java element can be annotated. Such annotation is mapped top the {JavaAnnotations} tagged value of the
stereotype «JavaElement». «JavaElement» is base stereotype for all stereotypes, used in Java mapping, and it
can be used directly or any other stereotype derived from it. Annotation is mapped as simple string value.
43 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Figure 32 -- Annotation used on operation “foo”

Example

Java Source Code
public class Test
{

@Annotation
(
 id = 2,
 name = "Rick"
)
public void foo(){}

}

MagicDraw UML Model

Figure 31 -- Java annotation usage
44 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Type Variables

Type variables are mapped to the UML Template Parameter of UML Class, Interface or UML Operation,
regarding to what Java element has type variables. If bound type are present, they are mapped into the UML
Class or UML Interface connected with UML Generalization or UML Interface Realization as a supplier and
client is UML Class, which is “Parametered Element” of the UML Template Parameter.

Type variable mapping table

Java element MagicDraw-UML element

Type variable
declaration

Is mapped to the UML Template Parameter. This UML
Template Parameter is of the Class type from the UML
Metamodel. UML Template Parameter has property
“Parametered Element“ of the UML Template Parame-
ter. Metamodel type “Class“ is taken from the “UML
Standard profile/UML 2 Metamodel”

Type variable
name

Is mapped to the UML Class name. This UML Class is
“Parametered Element“

Type bounds If bound type is a Java class, it is mapped to the Gen-
eral class of the “Parametered Element“. If bound type
is a Java interface, than it is mapped to the Realized
Interface.

Example

Java Source Code
public class Test <E extends Cloneable>
{

E attribute;
}

MagicDraw UML Model

Figure 33 -- UML Class with template parameter E, representing Java type variable
45 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Figure 34 -- Marked UML Template Parameter, with residing UML Class named E (Parametered Element)

Note, that residing UML Class E in UML Template Parameter is realizing interface “java.util.Cloneable“ and this
class is used as type for UML Class attribute.

Figure 35 -- Template parameters in UML Class specification dialog
46 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Parameterized Type

Parameterized types are mapped to the general UML Classifier connected with UML Template Binding to the
UML Classifier. Supplier of this binding link is UML Classifier with UML Template Parameters and represents
Java generic type with type parameters. Client of UML Template Binding is UML Classifier of the same UML
type as supplier is. Java type parameters are mapped directly to the UML Template Parameter Substitution of
the UML Template Binding.

Parameterized type mapping table

Java element MagicDraw-UML element

Parameterized
type

In UML it is called bounded elements, which is con-
nected to the UML Classifier by the UML Template
Binding as a client. Client must be of the same type as
is supplier. Supplier must have at least one UML Tem-
plate Parameter.

Parameter for
type

Is mapped to the UML Template Parameter Substitu-
tion of the UML Template Binding. Each UML Template
Parameter from the supplier must be substituted by
the UML Template Parameter Substitution. Type of
type parameter is any reference to the UML Classifier
from the model which is set as “Actual“ value of the
UML Template Parameter Substitution

Type modifiers of
the parameter

It is mapped to the MagicDraw property “Type modifi-
ers” of the UML Template Parameter Substitution

Wildcard UML Class with a name “?“ from the Java Profile is
used as “Actual” value in UML Template Parameter
Substitution.

Wildcard with
bounds

Java bounding type is mapped to the UML Classifier
and it is used as “Actual” value in UML Template
Parameter Substitution. “? extends“ or “? super“
bounding is mapped to the appropriate tag {JavaArgu-
mentBount} value “extends“ or “super“ of the «JavaTy-
peArgument» stereotype applied to the UML Template
Parameter Substitution.
47 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Example

When you have type with type variables represented in the model, you can create parameterized
type for Java. For this you need to create empty UML Classifier of the type the template classifier
(type with type variables) is. Then create a UML Template Binding and create UML Template
Parameter Substitution for UML Template Parameters.

In order to create “java.util.List<String>” type, we need to create UML Interface first, with UML Tem-
plate Parameter representing “java.util.List”.

Figure 36 -- UML Interface representing “java.util.List” with template parameter

Then create another UML Interface and connect with List interface with UML Template Binding.

Note, that in order to draw UML Template Binding, client element must have at least one UML Tem-
plate Parameter created

Figure 37 -- UML Template Binding between template class and bounded element

You need to open UML Template Binding specification dialog and create UML Template Parameter
Substitution for appropriate UML Template Parameter.
48 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Figure 38 -- Creating UML Template Parameter Substitution

For created substitution element, you need to select actual value - at current situation it is UML class
representing “java.lang.String”.

Now we have created parameterized type, which can be used in the model to represent type
java.util.List<String>

Figure 39 -- Created parameterized type for “java.util.List<String>”

Imports

parameters

Java element MagicDraw-UML element

Type import Mapped to the UML Element Import with stereotype
«JavaImport» (optional). Supplier is imported UML
Classifier, which represents imported Java type, and
client is UML Classifier which requires imported ele-
ment.
49 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Package import Mapped to the UML Package Import with stereotype
«JavaImport» (optional). Supplier is imported UML
Package, which represents imported Java package,
and client is UML Classifier which requires imported
elements.

Static import for
all static mem-
bers

Mapped to the UML Element Import with stereotype
«JavaStaticImport». {JavaImportAll} tag of «JavaStat-
icImport» must have “true“ value. Supplier is imported
UML Classifier, owner of static members, which are
imported, and client is UML Classifier which requires
imported elements.

Static import for
single static
members

Mapped to the UML Element Import with stereotype
«JavaStaticImport». {JavaImportAll} tag of «JavaStat-
icImport» must have “false“ value and tag {JavaImport-
edMember} must have reference to the imported
member. Supplier is UML Classifier, owner of static
member, which is imported, and client is UML Classi-
fier which requires imported elements.

If there are several static members imported, {JavaIm-
portedMember} can have listed all of them.
50 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java Mapping to UML
Example

Java Source Code
import java.util.List;
import java.util.*;
import static java.lang.Math.*;

public class Test
{
}

MagicDraw UML Model

Figure 40 -- Java imports in diagram
51 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java CE Properties
Java CE Properties

Java Reverse Properties

These options are visible every time you attempt to reverse source code. Here we will describe marked options
in Figure 41 on page 52. Other options are common for all languages and are described in "Reverse", on page
12.

Figure 41 -- Java reverse properties

Resolve Collection Generics Option

By default this option is turned on. Since the JLS 3, in Java was introduced parameterized types and to all Java
collections were added type variables. Now, on reverse engineering now it is possible to find out what type is in
Java collection and make association directly to the contained type instead of the Java collection.

On reverse engineering, it finds out Java parameterized collection and retrieves Java type which is used in
container. This type is set as a “Type” to the UML Property. Container type is set to the UML Property Java
language property “Container“ as simple string.

Example

Source Code Sample
public class Test
{

java.util.List<String> attribute;
}

MagicDraw UML Model

Figure 42 -- Attribute type, retrieved from collection
52 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java CE Properties
Figure 43 -- Collection type in UML Property specification

Note, that $$type$$ shows where should be in lined UML Property type on code generation.

Java Language Options

You can find these options at the Options-> Project-> Code Engineering-> Java Language Options.
53 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java CE Properties

Figure 44 -- Java language options

Generate Opening Bracket In New Line

By default is turned on. If element (Java type or operation) is generated for the first time into source, curly
bracket is generated from the new line, if options is on, or in the same line as declaration header ends, if option
is off.

Generate Spaces

By default it is turned on. If option is on - adds additional space after open bracket and before close bracket in
parameter declaration list.

Generate Empty Documentation

By default is turned off. If option is turned on, MagicDraw is generating documentation to the source even, if
there are no documentation in model. Just adds Java documentation start and ending symbols.

Here is generated class header with options turned on. UML Class A doesn’t have documentation, but still in
code is added documentation elements.

/**
 *
 */
54 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Java CE Properties
class A

Automatic “import“ Generation

By default is turned on. If option is turned on, all required imports are added automatically by used references
on code generation. If this option is off, than imports are managed by user using specific mapping (see
“Imports” on page 49).

Note, that if option is turned off, than no imports are created automatically and all imports, retrieved from source
code on reverse engineering, are mapped into UML relationships as described in “Imports” on page 49.

Class Count To Generate Import On Demand

By default value is 10. It means, that if there will be 9 references from the same package to different types, then
imports will be generated explicitly to these classes, but if there will be 10 and more references, than it will be
generated one import to the package.

This option is valid only, when “Automatic import generation“ is turned on.

Documentation

Java documentation has two options by itself. It has Processor and Style. Style is used to define how to
format documentation by adding some comments. There are predefined two styles:

Style 1

/**
 *
 */

Style 2

/**
*
*/

Processor is responsible for analyzing documentation context. There are two types <none> and Java Doc.

<none> options does nothing with documentation and just set it as is on element.

Java Doc is processing documentation by resolving parameter tags or on code generation building
documentation by collecting comments from the UML Parameters and adding missed tags for thrown
exceptions or return.

There are additional Java Doc options (button “...”). These options can be used to declare what tags would not
be generated or what order to use on code generation or perhaps to add some additional tag to documentation
for all elements.

Note, that Java Doc processor splits operation documentation for UML Parameter and UML Operation on
source code reverse and on code generation UML Parameter documentation is used to build Java
documentation for operation.

Classpath

You can define classpath here by referencing jar files or class files directories.

This options is used by Java reverse engineering. If referenced element is not found in model for some
reasons, that it is searched in this defined path. And if class is matched by name, this class is added into model.
55 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Method Implementation Reverse
By default, MagicDraw imports boot classpath of the JVM, on which is running.

Java Source

By default is Java 5.0. There are options 1.4 and 5.0. If you are reversing older specification source code,
where, for example “enum“ is not a keyword and can be a variable name, then you will need to choose 1.4
Java source, else MagicDraw parser can emit error.

Header

It is a header for a newly generated Java files. There can be added some template string which will be
preprocessed on writing to source code.

Template strings

Method Implementation Reverse

Java reverse to Sequence diagram functionality allows visualizing Java method implementation with UML
Sequence diagram. Created from method Sequence diagram cannot be updated, every time new diagram
should be generated.

To launch Sequence Diagram from Java Source Wizard and specify options needed for the reverse

• You are able to reverse any operation from the Browser: right click an operation, choose
Reverse Implementation and launch Sequence diagram from Java Source Wizard.

• From the Tools menu, choose Model VIsualizer, and then choose Sequence Diagram from
Java Source WIzard.

• When reversing, in the Reverse Options dialog box, choose Launch Model Visualizer and
then choose Sequence Diagram from Java Source Wizard.

The more detailed example of how this functionality works, see MagicDraw Tutorials.pdf, which is locate in
<MagicDraw installation directory>, manual folder.

Sequence Diagram from Java Source Wizard

Sequence Diagram from Java Source Wizard is the primary tool for reversing s sequence diagram from Java
method. It contains four steps that are described below.

$FILE_NAME File name, without a path

$DATE System date

$TIME System time

$AUTHOR User name on the system
56 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Method Implementation Reverse
STEP 1 Specify Name and Package.

Figure 45 -- Sequence Diagram from Java Source Wizard

In this step, type the name of the newly created sequence diagram. Be default class name and selected
operation name with a word “implementation” will be included in the sequence diagram name.

Also choose the package that will contain created sequence diagram. If you want to create a new package and
place there a sequence diagram, click the New button and define package parameters in the Package
Specification dialog box.
57 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Method Implementation Reverse
STEP 2 Select Operation

In this step, select an operation for which you want to create a sequence diagram. If the Java source file is not
shown you must select it manually.

IMPORTANT To specify implementation files, we suggest, before reversing, to spec-
ify Java Default working directory in the Project Options dialog box
(specify root folder where all source files can be found).
58 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Method Implementation Reverse
STEP 3 Select Classes for Diagram

In the Select Classes for Diagram step, all referenced classes are displayed. Select the desired classes and
instances of those classes will be added into diagram with call messages to them.

• Select the Analyze and split long expressions in diagram check box if expression contains
calls and cannot be displayed as call message. Then every call will be shown as separate call
message with temporary variable initialization.

• Select the Create return message check box, if you want to display return message for every
call message.

• Select the Wrap message text check box and specify the maximum message text length in
pixels, to wrap longer message.
59 Copyright © 1998-2015 No Magic, Inc..

JAVA CODE ENGINEERING
Method Implementation Reverse
STEP 4 Specify Symbols Properties

Figure 46 -- Sequence Diagram from Sequence Wizard. Specify Symbols Properties

In this step, define symbols properties for lifelines and messages.
60 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Abbreviations

References

C++ ANSI Profile

The ANSI C++ profile is the base for all other C++ profiles. Other specialized C++ profiles need to inherit from
this profile (by creating a generalization in MD).

Data Types

Fundamental types defined by ANSI (ANSI spec 3.9.1) are mapped to UML data type.

Each fundamental type with a modifier (signed, unsigned, short, long) can be declared in different order, but it
is the same type. For example, short int or int short. Only versions defined as “type” by ANSI simple-type-spec-
ifiers are created as datatype in the profile. (See ANSI spec 7.1.5.2) If an UML synonym dataType is found
during the reverse process, then a class is created with this name.

Each fundamental type has 3 corresponding cv-qualified versions: const, volatile, and const volatile (or volatile
const). See Const Volatile qualified type for mapping.

UML data types defined in the MD UML profile contain char, int, double, float, or void. We use these datatypes
for mapping C++ type.

These datatypes are MD specific. In UML 2 only Integer, Boolean, String, and UnlimitedNatural are defined and
they are not defined as datatypes, but as primitives. In the current version of MD UnlimitedNatural is not
defined in any profile and Integer and boolean (b is lowercase) are datatypes.

GUI Graphical User Interface

CE Code Engineering

CES Code Engineering Set

AST Abstract Syntax Tree

RT Round-Trip forward and backward code engineering without code loss

CLR Common Language Runtime

DSL Domain Specific Language

ISO/IEC 14882 C++ ANSI spec ANSI_C++_Spec_2003.pdf

MSDN Library - Visual Studio 2005 ECMA-372 C++/CLI Language Specification
Copyright © 1998-2015 No Magic, Inc.61

C++ CODE ENGINEERING
C++ ANSI Profile
Figure 47 -- C++ datatype

char

char types are represented as signed char and unsigned char according to the compiler implementation. char
does not have a synonym.

signed char

signed char does not have a synonym.

unsigned char

unsigned char does not have a synonym.

int

Synonyms for int are

• signed

• signed int

• int signed

unsigned int

Synonyms for unsigned int are

• unsigned

• int unsigned
62 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
C++ ANSI Profile
unsigned short int

Synonyms for unsigned short int are

• unsigned short

• short unsigned

• unsigned int short

• short unsigned int

• short int unsigned

• int short unsigned

• int unsigned short

unsigned long int

Synonyms for unsigned long int are

• unsigned long

• long unsigned

• unsigned int long

• long unsigned int

• long int unsigned

• int long unsigned

• int unsigned long

long int

Synonyms for long int are

• long

• int long

• signed long

• long signed

• signed long int

• signed int long

• long signed int

• long int signed

• int signed long

• int long signed

short int

Synonyms for short int are

• short

• int short

• signed short

• short signed

• signed short int
63 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
C++ ANSI Profile
• signed int short

• short signed int

• short int signed

• int signed short

• int short signed

double

double does not have asynonym.

long double

long double does not have a synonym

float

float does not have a synonym.

void

void does not have a synonym.

bool

bool does not have a synonym.

wchar_t

wchar_t does not have asynonym.

Stereotypes

All C++ stereotypes are based on «C++Element» stereotypes.

Constraints described in this chapter are for information only, syntax of these constraints need to be checked
with the future OCL interpreter.

«C++Class», «C++Operation», «C++Parameter», «C++Attribute», «C++LiteralValue», «C++Include»,
«C++Generalization», and «C++TemplateParameter» are invisible stereotypes and are used only to store C++
language properties. These stereotypes and their tag definitions are used by the DSL framework.
64 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
C++ ANSI Profile
Figure 48 -- C++ Stereotype tag definitions
65 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
C++ ANSI Profile
C++Operation

«C++Operation» is an invisible stereotype used to include language properties for any C++ operation.

C++Operator

«C++Operator» stereotype is used to define a C++ operator function. This stereotype extends the «C++Opera-
tion» stereotype. See Function operator for more information.

Name Meta class Constraints
C++Operation Operation Const function

void f() const;

Constraint: Only valid for member function
if isQuery then

stereotype-
>select(name=’C++Global’)->isEmpty()

Tag Type Description
inline boolean[1]=false Inline function

inline a();
throw exception C++ThrowType[1]

=any
Exception specification.
operation.raisedExpression is not empty, the throw
expression is generated.

void f() throw(int);

If operation.raisedExpression is empty and throw expression
is none, a throw expression without argument is generated.

void f() throw ()

If operation.raisedExpression is empty and throw expression
is any, does not generate a throw keyword.

void f();
virtual boolean[1]=false Virtual function

virtual a();

Constraint: Only valid for member function and non static
stereotype-

>select(name=’C++Global’)
->isEmpty() and IsStatic =

false
volatile boolean[1]=false Volatile function

void f() volatile;
funtionTryBlock boolean[1]=false Function try block

void f() try{}

Name Meta class Constraints
C++Operator Operation operator function

T& operator+(T& a);

Constraint: name start with “operator”
66 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
C++ ANSI Profile
C++Parameter

«C++Parameter» is an invisible stereotype used to include language properties for any C++ function parame-
ter.

C++Attribute

«C++Attribute» is an invisible stereotype used to include language properties for any C++ variable.

name Meta class Constraints

C++Parameter Parameter

Tag Type Description

c type declaration boolean[1]=false Declare parameter’s type in C style
C style:

void a(enum Day x);

C++ style:
void a(Day x);

register boolean[1]=false Register parameter
void a(register int x);

array String[0..1] C++ array definition
void a(int x[2][2]);

name Meta class Constraints

C++Attribute Property Constraint for code generation. It is valid to have a default value for
any kind of attribute, but it is illegal to initialize a member variable
within its definition. (Eg. class A { int x = 1; };)
if defaultValue.size() > 0 then

owner.stereotype-
>exists(name='C++Global') or (isStatic =
true and typeModifiers.contains(“const”))

Tag Type Description

abbreviated
initialization

boolean[1]=false Initialize the attribute with the abbreviate form.
int x(5);

Constraint
owner.stereotype-

>exists(name='C++Global')

bit field String[0..1] Bit field declaration
int x:2;

Constraint: Only valid for member function
stereotype->select(name=’C++Global’)

->isEmpty()

c type declaration boolean[1]=false Declare attribute’s type in C style
C style:

enum Day x;

C++ style:
Day x;

container String[0..1] container of the attribute. $ character is replaced by the attribute
type.

vector<$> x;
67 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
C++ ANSI Profile
C++LiteralValue

«C++LiteralValue» is an invisible stereotype used to include language properties for any C++ enum field. See
Enumeration for more info.

C++Friend

«C++Friend» stereotype is used to define C++ friend relationship. See Friend declaration for more info.

C++Struct

«C++Struct» stereotype is used to define C++ struct. See Struct for more info.

C++Typedef

«C++Typedef» stereotype is used to define C++ typedef. See Typedef for more info.

mutable boolean[1]=false Attribute mutable modifier.
mutable int x;

Constraint: Only valid for member function
stereotype->select(name=’C++Global’)

->isEmpty()

array String[0..1] C++ array definition
int x[2][2];

name Meta class Constraints

C++LiteralValue EnumerationLiteral

Tag Type Description

value String[0..1] Value definition of an enum field. (A valid C++ expression)
enum Day {Mon = 2};

Name Meta class Constraints

C++Friend Dependency Client is Class or Operation and supplier is Class
(client.oclIsTypeOf(Class) or

client.oclIsTypeOf(Operation)) and
supplier.oclIsTypeOf(Class)

name Meta class Constraints

C++Struct Class

name Meta class Constraints

C++Typedef Class A typedef does not contain operation and attribute
feature->isEmpty()

A «C++BaseType» dependency is defined
68 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
C++ ANSI Profile
C++Union

«C++Union» stereotype is used to define C++ union. See Union for more info.

C++Global

«C++Global» stereotype is used to define global functions and variables. (functions and variables outside a
class/struct/union declaration). See "Global functions and variables", on page 88 for more info.

C++Namespace

«C++Namespace» stereotype is used to define C++ namespace. See Namespace for more info.

C++Constructor

«C++Constructor» stereotype is used to define C++ constructor. This stereotype extends «C++Operation» ste-
reotype. See Class Constructor/Destructor for more info.

C++Destructor

«C++Destructor» stereotype is used to define C++ destructor. This stereotype extends «C++Operation» ste-
reotype. See Class Constructor/Destructor for more info.

name Meta class Constraints

C++Union Class

name Meta class Constraints

C++Global Class Only 1 «C++Global» class into a package
owner.ownedElement->select(

stereotype->select(name=’C++Global’)).size()=1

All operations and attributes are public
feature->forAll(visibility = #public)

name Meta class Constraints

C++Namespace Package

Tag Type Description

unique namespace
name

String[0..1] Unnamed namespace
namespace {}

Name Meta class Constraints

C++Constructor Operation name = owner.name

Tag Type Description

explicit boolean[1]=false Explicit constructor
explicit a();

initialization list String[0..1] Constructor initialization
a() : x(1) {}

Name Meta class Constraints
69 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
C++ ANSI Profile
C++Extern

«C++Extern» stereotype is used to define C++ extern variable. See Variable extern for more info.

C++FunctionPtr

«C++FunctionPtr» stereotype is used to define C++ function pointer. See Function pointer for more info.

C++FunctionSignature

«C++FunctionSignature» stereotype is used as a container to model C++ function pointer. See Function pointer
for more info.

C++Class

«C++Class» stereotype is an invisible stereotype used to include language properties for any C++ variable.

C++BaseType

«C++BaseType» stereotype is used to link base type of a typedef.

C++Destructor Operation name = “~”+owner.name

Name Meta class Constraints

C++Extern Operation, Property owner.stereotype->exists(name=’C++Global’)

Tag Type Description

linkage String[0..1] Linkage specification
extern “C”

Name Meta class Constraints

C++FunctionPtr Parameter, Property

Tag Type Description

signature Operation The signature of the function (C++ function pointer
definition without the operation name)

member class Class The class used for pointer to member function.

Name Meta class Constraints

C++FunctionSignature Class The class cannot have properties.
properties->isEmpty()

Name Meta class Constraints

C++Class Class

Name Meta class Constraints

C++BaseType Dependency Client is type of Class with «C++Typedef» stereotype.

Tag Type Description
70 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
C++ ANSI Profile
C++Include

«C++Include» stereotype is used to keep the information about include type used for generating include and
forward class declaration.

The header include tag is used when the client component has header file extension, “*.h”, otherwise the imple-
mentation include tag will be used.

The User Include tag value is used for generating user include, such as #include “test.h”.

The System Include tag value is used for generating system include, such as #include <string.h>

The Class Forward tag value is used for generating forward class declaration.

C++TemplateParameter

«C++Template Parameter» is used to keep type keyword between class and typename for template parameter
declaration.

type modifiers String[0..1] Type modifiers of the typedef or function pointer.

member class Class[0..1] Memberclass of typedef or function pointer.

array String[0..1] Array definition.

Name Meta class Constraints

C++Include Association,
Dependency,
Generalization,
Parameter, Property,
TemplateBinding,
TemplateParameter

Client is type of Component

Tag Type Description

header include String The value of tag is one of the following
• None
• User Include
• System Include
• Class Forward

implementation
include

String The value of tag is one of the following
• None
• User Include
• System Include
• Class Forward

Name Meta class Constraints

C++TemplateParameter TemplateParameter

Tag Type Description

type keyword C++TemplateTypeKeyword=class The value of tag is one of the following
• class
• typename
71 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
C++Generalization

«C++Generalization» is used for information related to generalization and interface realization.

Mapping

This chapter describes the mapping between C++ and UML.

Class

C++ class map to a UML class

Base Class Definition

Base class definition is mapped to UML generalization, a generalization is created between the base class and
the super class.

Access visibility (public, protected and private) and virtual properties of the base class are mapped to C++ lan-
guage properties of the UML generalization.

Name Meta class Constraints

C++Generalization Generalization,
InterfaceRealization

Tag Type Description

inheritance visibility C++GeneralizationVisibility[1]=n
one

The value of tag is one of the following
• None
• public
• protected
• private

Example: class A : private B {};

virtual inheritance boolean[1]=false Virtual inheritance
Example: class A : virtual B{};

Code MD-UML

class A {
};
72 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Class Member Variable

Class member variables are mapped to UML attributes. See Variable for more info.

Code MD-UML
class BaseClass {};
class OtherBaseClass {};
class SuperClass :

public BaseClass,
protected virtual OtherBaseClass {

};

Figure 49 -- SuperClass Generalization relationship

Figure 50 -- Generalization language properties

Code MD-UML
73 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Class Member Function

Class member functions are mapped to UML operations. See Function for more info.

Class Constructor/Destructor

C++ class constructor and destructor are mapped to UML operation with «C++Constructor» stereotype and
«C++Destructor» stereotype. See C++Constructor and C++Destructor for more info.

class ClassVariable {
int age;
char* name;

};

Code MD-UML

class ClassFunction {
public:

void simpleFunc();
float paramFunc(int x,char y);

};

Code MD-UML

class ConstructClass {
public:

ConstructClass();
~ConstructClass();

}

74 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Variable

C++ variable is mapped to UML attribute, the variable type is mapped to the attribute type.

Figure 51 -- Variable property age

C++ type pointer/reference is mapped to Type Modifier property of the attribute. $ character is replaced by the
type name.

Code MD-UML

int age;

Code MD-UML

int* ptrVar;
int& refVar

Figure 52 -- Variable property ptrVar
75 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
C++ array type is mapped to array tag value of the attribute. If array is set, then multiplicity property of UML
attribute is set to “[0..*]”

Variable modifiers

Mutable variable modifiers are mapped to UML attribute’s language properties Mutable.

Constraint: only member variable can be mutable (global variable cannot).

Figure 53 -- Variable property refVar

Code MD-UML
int arrayVar[5];

Code MD-UML

mutable int x;
76 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Bit field is mapped to Bit field tag value.

Variable extern

C++ extern variable is mapped to «C++Extern» stereotype. Linkage tag value is used to specify the kind of link-
age “C” or “C++”, if linkage is empty (or without value) extern without linkage is generated.

See C++Extern for more info.

Code MD-UML
struct BitStruct {

int a:2;
};

Code MD-UML
77 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Variable default value

Variable initial value is mapped to UML attribute’s default value.

Variable initial value set using function style method is mapped to UML attribute’s default value and attribute’s
language property Abbreviated Initialization set to true.

Constraint: Only “static const” member variables can be initialized, and they cannot be initialized using function
style method.

extern int externVar;

Code MD-UML
int var = 5;
int var2(10);
78 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Const Volatile qualified type

C++ const and volatile modifiers for attribute/function parameter are mapped to Type Modifiers properties.

For const attribute, the property Is Read Only is set to true during reverse.

The character $ into Type Modifier value is replaced by the type name.

Constraint : If the property Is Read Only is set and Type Modifiers is not set to const or const volatile (set to
const, or an error message will display during syntax check)

Function

C++ function is mapped to UML operation, parameter of function is mapped to UML parameter with property
direction set to “inout”, return type of function is mapped to UML parameter with property direction set to
“return”. Type of parameter is mapped to type of UML parameter.

C++ default parameter value is mapped to defaultValue property of UML parameter.

Pointer, reference and array type of parameter are mapped to property Type Modifier of parameter. See Vari-
able modifiers for more info.

Code MD-UML

class CVModifiers {
const int* const constAttribute;

}

Code MD-UML

float paramFunc(int x, char x);
79 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Function variable-length parameter list

C++ function variable-length parameter list is mapped to a UML parameter with name “...” (dot 3 times) and
without type.

void parameter

C++ void function parameter is mapped to a UML parameter without name and with type “void”.

Code MD-UML
Class FunctionClass {
public:

EllipsisFunc(...);
};

Code MD-UML
80 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Register parameter

C++ register parameter is mapped to UML parameter language property Register

Depending on the compiler, register can be limited on some types (int, char).

Class FunctionClass {
public:

void voidParam(void);
};

Code MD-UML
class RegisterParamClass {

void registerParam(register int x);
};
81 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Function modifiers

C++ function modifiers are mapped to Language properties of Operation.

Virtual function is mapped to Virtual modifier property.

Inline function is mapped to Inline modifier property.

Explicit function is mapped to Explicit modifier property. Constraint: explicit is only valid for constructor.

Const function is mapped to UML operation Is Query property.

Volatile function is mapped to Tag value volatile.

Function pointer

C++ function pointer type is mapped to attribute/parameter with «C++FunctionPtr» stereotype, a dependency
with «C++BaseType» stereotype link from the attribute/parameter to the operation in a «C++FunctionSigna-
ture» class, and type modifiers of the dependency is set to *$.

Member function pointer use the same mapping, and member class tag of «C++BaseType» stereotype point to
a class.

Code MD-UML

class FuncModifierClass {
explicit FuncModifierClass();

};

Code MD-UML
82 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Function operator

C++ function operator is mapped to normal function with the C++ operator name mapped to UML operation
name. See C++Operator for more info.

Exception

C++ exception is mapped to UML operation’s raised exception properties. If raisedExpression is empty, and
throw exception tag is set to none a throw without parameter is generated. If raisedExpression is empty, and
throw exception tag is set to any throw keyword is not generated. If the tag throw exception is not set, then gen-
erate specific raisedExpression, or do not generate throw if raisedExpression is empty.

float (A*funcPtr)(int);

Code MD-UML

Class Op {
Public:

Op operator+(Op x);
};

Code MD-UML

void throwFunc() throw (int,char);
83 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Visibility

Variables and function visibility are mapped using the UML visibility property.

Members of C++ class without access visibility specified are private.

Members of C++ struct or union without access visibility specified are public.

Variables and functions outside a class/struct/union are public.

Static members

Static variables and functions are mapped to UML Is Static property.

Pure virtual function and abstract class

Pure virtual C++ function is mapped to UML operation with property Is Abstract set to true. If one or more func-
tions are abstract in a class, the property Is Abstract of the UML class is set to true.

Code MD-UML

class ClassVisibility {
int privateVar;

protected:
int protectedVar;

public:
int publicVar;

};

Code MD-UML

class StaticClass {
static int staticVar;
static void staticFunc();

};
84 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Constraint: if no operation is abstract, the class cannot be abstract.

Friend declaration

C++ friend function is mapped with a «C++Friend» stereotyped dependency relationship between the function
(an UML operation) and the friendClass. This relationship grants the friendship to the friendClass. See
C++Friend for more info.

C++ friend member function is mapped with a «C++Friend» stereotyped dependency relationship between the
member function and the friend class. This relationship grants the friendship to the friend class.

Code MD-UML

class AbstractClass {
virtual abstractOperation()=0;

};

Code MD-UML

class ClassB {
public:

friend void friendFunc();
};
void friendFunc();

Code MD-UML

class ClassD {
void func(ClassC c);

};
class ClassC {

friend void ClassD::func(ClassC
c);
};
85 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
C++ friend class are mapped with a «C++Friend» stereotyped dependency relationship between the class and
the friendClass. This relationship grants the friendship to the friend class.

Struct

C++ struct are mapped to a UML class with stereotype «C++Struct». See C++Struct for more info.

NOTE The current version of MD use class’s language property “Class Key”

Union

C++ union is mapped to a UML class with stereotype «C++Union». See C++Union for more info.

NOTE The current version of MD use class’s language property “Class Key”

Enumeration

C++ enum is mapped to UML enumeration. C++ enum fields are mapped to UML enumeration literals.

C++ enum field with a specified value is mapped to tag value of «C++LiteralValue» stereotype.

Code MD-UML

class FriendClass {
public:

friend class ClassA;
};
class ClassA {
};

Code MD-UML

struct MyStruc {
};

Code MD-UML

union MyUnion {
};

Code MD-UML

enum Day {
Mon,
Tue=2

};
86 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Typedef

C++ typedef is mapped to a class with «C++Typedef» stereotype. A «C++BaseType» dependency links to the
original type.

Type modifiers tag of «C++BaseType» dependency is used to define type modifiers. $ character is replaced by
the type name.

A typedef on a function pointer is mapped by linking a «C++BaseType» dependency to an operation and type
modifiers tag of «C++BaseType» dependency is set to *$. Operation signature can be stored in a «C++Func-
tionSignature» class.

See C++Typedef for more info.

Code MD-UML
87 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Namespace

C++ namespace is mapped to a UML package with the stereotype «C++Namespace». See C++Namespace for
more info.

Unnamed namespace is named unnamed+index number of unnamed namespace (start at 1), and unique
namespace name tag is set to the source file path+:+index number of unnamed namespace (start at 0).

1Global functions and variables

Global functions and variables are mapped to operations and attributes into an unnamed class with stereotype
«C++Global». «C++Global» class resides in its respective namespace, or in a top package.

See C++Global for more info.

typedef int UINT32;
typedef int* INT_PTR;
typedef double (*funcPtrType)(int,
char);
;

Code MD-UML

namespace n {
namespace m {
}

}

1.
88 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Class definition

Variables can be created after a class/struct/union declaration. These variables are mapped to UML attribute,
and placed in their respective namespace/global/class container.

Class Template Definition

C++ template class is mapped to UML class with template parameters properties added.

Type of template parameter is always set to UML Class. To generate/reverse typename keyword, type keyword
tag is set to typename.

Code MD-UML

int var;
int func(int x);

namespace std {
int err;
void printf();

}

Code MD-UML

class VarInitClass {
} c, d;
class OuterVarInit {

class InnerVarInit {
} e;

};
89 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Function Template Definition

C++ template function is mapped to UML operation with template parameters properties added.

C++ template function overload is mapped to a normal function. (the same name with the same number of
parameter, but different type of parameter)

Code MD-UML
template <class T>
class simpleTemplate {
};
template <typename T>
class TypeNameTemplate {
};
90 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
New style of template function overloading is mapped to a normal function. (the same name with the same
number of parameter, but different type of parameter) and a template binding relationship is created between
the overload operation and the template operation, with specific template parameter substitutions.

Default template parameter

C++ default template parameter is mapped to UML default template parameters.

Instantiation using the default template parameter is mapped using a template binding relationship with an
empty actual property for the template parameter substitution.

Code MD-UML

template <class T>
void simpleFunc(T x);
// overload old style
void simpleFunc(int x);
// overload new style
template<>
void simpleFunc<char>(char x);

Code MD-UML
template <class T=int>
class defaultTemplate {
};
91 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Template instantiation

Template instantiation are mapped to template binding relationship between the template class and the instan-
tiate class, the template parameter substitution of the binding relationship is set using the template argument.

Code MD-UML
template <class T>
class simpleTemplate {
};

simpleTemplate<int> simpleTemplateInstance;
92 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
For template argument using template instantiation as argument, an intermediate class is created with the spe-
cific binding

.

For template argument using multiple template instantiations in an inner class (b<int>::c<char>), the intermedi-
ate class instance is created in the outer class instance.

Code MD-UML

template <class T>
class T1Class {
};
template <class T>
class T2Class {
};

T1Class<T2Class<int>> ...

Code MD-UML

template <class T>
class b {

template <class T>
class c {
};

};

b<int>::c<char> ...
93 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Example of complex template instantiation. Containment relationship are placed on diagram for information
only, these relationships are not created during a reverse process. Containment relationship is modeled by
placing a class into a specific class/package. See Containment tree below the diagram.
94 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Partial template instantiation

C++ partial template instantiation use the same mapping as Template Instantiation and the unbinded parameter
is binded to the specific template parameter class.

Template specialization

C++ Template specialization uses the same mapping as Template Instantiation.

Code MD-UML
template <class T,class U,class V>
class PT {};
template <class A,class B>
class PT<B, int, A> {};
95 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Forward class declaration

The example code is declared in A.h file. The file component A.h has the «use» association applied by
«C++Include» stereotype with "Class Forward" tag value.

Code MD-UML
template <class T>
class TS {};
template <>
class TS<int> {};

Code MD-UML

class C;
class A {

private:
 C* c;

};
96 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Include declaration

The example code is declared in A.h file. The «use» association is also applied to C++Include stereotype
shown in section 3.36 Forward class declaration.
97 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
Code MD-UML
#include "B.h"
#include <E.h>
class A {

private:
 B* b;
 E* e;

};

Specification for #include "B.h"

Specification for #include <E.h>
98 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Mapping
The example code is declared in D.cpp file.

Code MD-UML
#include <E.h>
class B;
class D {
private:B* b;
E* e;
}

Specification for #include <E.h>

Specification for class B;
99 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Conversion from old project version

This chapter describes the changes applied when loading a MD project version <= 11.6.

Translation Activity Diagram

There are projects that use C++ language properties or C++ profile or have type modifier, which need to be
translated with version of MagicDraw project less than or equal 11.6.

Open local project

Figure 54 -- Open local project Activity Diagram
100 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Open teamwork project

Figure 55 -- Open teamwork project Activity Diagram
101 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Import MagicDraw project

Figure 56 -- Import MagicDraw project Activity Diagram
102 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Use module

Figure 57 -- Use module Activity Diagram
103 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Update C++ Language Properties and Profiles

Figure 58 -- Update C++ Language Properties and Profiles Activity Diagram

Language properties

Until MD version 11.6, language properties are stored in a specific format, since MD version 12 language prop-
erties are moved to stereotype’s tag value.
104 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Class

There are class, struct and union class key in Class Language Properties.

Figure 59 -- Class Language Properties
105 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Class - Class key

Old value Translation

class no change.

struct Apply the «C++Struct» stereotype.

union Apply the «C++Union» stereotype.
106 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Operation

This example is OperationClass class that has operation named OperationClass() which is constructor and
operation named myOperation.

Figure 60 -- Operation Example in Class Diagram

The Model that is being shown in the figure below is a translation.

Figure 61 -- Translated Operation in Class Diagram

There are Inline modifier and Virtual modifier in Operation Language Properties that need to be translated
and apply the «C++Operation» stereotype.

Figure 62 -- Operation Language Properties (Operation)

There are Initialization list and Explicit modifier in Operation Language Properties that need to be translated
and apply the «C++Constructor» stereotype.
107 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Figure 63 -- Operation Language Properties (Constructor)

Note: Initialization list and Explicit modifier will be translated when it was set in Constructor. The Constructor is
an operation that has the same name as its owner or applies the «constructor» stereotype in UML Standard
Profile.

Operation - Initialization List

Figure 64 -- Operation Initialization list

Old value Translation

<empty> no change.

myAttribute(n) Apply the «C++Constructor» stereotype and set
initialization list tag value to myAttribute(n).
108 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Operation - Inline Modifier

Figure 65 -- Operation Inline modifier

Old value Translation

not inline Apply the «C++Operation» stereotype and set inline
tag value to false.

inline Apply the «C++Operation» stereotype and set inline
tag value to true.
109 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Operation - Virtual Modifier

Figure 66 -- Operation Virtual modifier

Old value Translation

not virtual Apply the «C++Operation» stereotype and set
virtual tag value to false.

virtual Apply the «C++Operation» stereotype and set
virtual tag value to true.
110 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Operation - Explicit Modifier

Figure 67 -- Operation Explicit modifier

Old value Translation

not explicit Apply the «C++Constructor» stereotype and set
explicit tag value to false.

explicit Apply the «C++Constructor» stereotype and set
explicit tag value to true.
111 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Operation - Return value changeability

This Example is ReturnValueChangeabilityClass class that has three operations and all operations have set
return value changeability in Language Properties to const as below.

Figure 68 -- Return value changeability Example in Class Diagram

The Model that is being shown in the figure below is a translation.

Figure 69 -- Translated Return value changeability in Class Diagram

The Return value changeability Language Properties is being shown in the figure below.
112 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Figure 70 -- Operation Return value changeability

Old value Translation

none no change.

const, operation doesn’t has
parameter.

Create one return type parameter and set Type
Modifier to const $.

const, operation has parameter but
does not have return type
parameter.

Create one return type parameter and set Type
Modifier to const $.
113 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Attribute

This example is AttributeClass class that has attribute named myAttribute, return type is int and type modi-
fier is [15].

Figure 71 -- Attribute Example in Class Diagram

The Model that is being shown in the figure below is translation.

const, operation has return type
parameter.

Set Type Modifier in return type parameter to const
$.
114 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Figure 72 -- Translated Attribute in Class Diagram

There are Mutable, Bit field, Abbreviated Initializer and Container in Attribute Language Properties that
need to be translated and apply the «C++Attribute» stereotype. A Volatile in Attribute Language Properties
will move to Type Modifier.

Figure 73 -- Attribute Language Properties

Attribute - Mutable

Figure 74 -- Attribute Mutable
115 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Attribute - Volatile

Figure 75 -- Attribute Volatile

Old value Translation
false Apply the «C++Attribute» stereotype and set mutable

tag value to false.
true Apply the «C++Attribute» stereotype and set mutable

tag value to true.

Old value Translation

false no change.

true Set Type Modifier to volatile $.
116 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Attribute -Bit field

Figure 76 -- Attribute Bit field

Old value Translation
<empty> no change.
4 Apply the «C++Attribute» stereotype and set bit

field tag value to 4.
117 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Attribute -Abbreviated initializer

Figure 77 -- Attribute Abbreviated Initializer

Old value Translation

false Apply the «C++Attribute» stereotype and set abbreviated
initialization tag value to false.

true Apply the «C++Attribute» stereotype and set abbreviated
initialization tag value to true.
118 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Attribute - Pointer to function

Figure 78 -- Attribute Pointer to function

Old value Translation

false no change.

true no change.
119 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Attribute - Container

Figure 79 -- Attribute Container

Old value Translation

<empty> no change.

vector<T> Apply the «C++Attribute» stereotype and set
container tag value to vector<T>.

list<T> Apply the «C++Attribute» stereotype and set
container tag value to list<T>.

map<Key, T, Compare> Apply the «C++Attribute» stereotype and set
container tag value to map<Key, T, Compare>.

stack<T> Apply the «C++Attribute» stereotype and set
container tag value to stack<T>.

multimap<Key, T, Compare> Apply the «C++Attribute» stereotype and set
container tag value to multimap<Key, T, Com-
pare>.

set<Key, Compare> Apply the «C++Attribute» stereotype and set
container tag value to set<Key, Compare>.
120 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Generalization

These examples are ParentClass class and childClass class that extends from ParentClass class.

Figure 80 -- Generalization Example in Class Diagram

There are Inheritance type and Virtual modifier in Generalization Language Properties that need to be trans-
lated and apply the «C++Generalization» stereotype.

Figure 81 -- Generalization Language Properties
121 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Generalization - Inheritance type

Figure 82 -- Generalization Inheritance type

Old value Translation

public Apply the «C++Generalization» stereotype and
set inheritance visibility tag value to public.

protected Apply the «C++Generalization» stereotype and
set inheritance visibility tag value to protected.

private Apply the «C++Generalization» stereotype and
set inheritance visibility tag value to private.
122 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Generalization - Virtual modifier

Figure 83 -- Generalization Virtual modifier

Type Modifiers

In version 12, type modifiers use the $ character to specify the type modifiers construct. This allows mapping of
complex type modifiers. For example, const int* const is mapped to const $* const.

Array

The Attribute Type Modifier is being shown in the figure below.

Old value Translation

nonvirtual Apply the «C++Generalization» stereotype and
set virtual inheritance tag value to false.

virtual Apply the «C++Generalization» stereotype and
set virtual inheritance tag value to true.
123 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Figure 84 -- Array type modifier in Attribute

The Parameter Type Modifier is being shown in the figure below.

Figure 85 -- Array type modifier in Parameter

Old value Translation

[15] Apply the «C++Attribute» stereotype and set
array tag value to [15].

Set Multiplicity field to 0..*.

Remove [15] from type modifier field.
124 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
[15] Apply the «C++Parameter» stereotype and set
array tag value to [15].

Set Multiplicity field to 0..*.

Remove [15] from type modifier field.
125 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Stereotypes

«C++EnumerationLiteral»

This example is EnumClass class that has literal value named literal. This literal value applies the «C++Enu-
merationLiteral» stereotype and sets C++Initializer tag value to 0.
126 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Figure 86 -- «C++EnumerationLiteral» stereotype Example in Class Diagram

The «C++EnumerationLiteral» stereotype is being shown in the figure below.

Figure 87 -- «C++EnumerationLiteral» stereotype

The C++Initializer tag value is being shown in the figure below.

Figure 88 -- Enumeration Literal Tag Value

Old value Translation

Enumeration Literal applies the «C++Enu-
merationLiteral» stereotype and sets
C++Initializer tag value to 0.

Apply the «C++LiteralValue» and set value tag
value to 0.

Remove the «C++EnumerationLiteral» stereo-
type and C++Initializer tag value from Enumera-
tion Literal.
127 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
The Model that is being shown in the figure below is a translation.

Figure 89 -- Translated Enumeration Literal in Class Diagram

«C++Namespace»

This example is MyPackage package that applies the «C++Namespace» stereotype in old profile and sets
unique namespace name tag value to myNamespace.

Figure 90 -- «C++Namespace» stereotype Example in Class Diagram
128 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
The «C++Namespace» stereotype is being shown in the figure below.

Figure 91 -- «C++Namespace» stereotype

The unique namespace name tag value is being shown in the figure below.

Figure 92 -- unique namespace name tag value

Old value Translation

Package applies the «C++Namespace» ste-
reotype in old profile (C++ Profile) and sets
unique namespace name tag value to
myNamespace.

Apply the «C++Namespace» stereotype in new
profile (c++ ANSI profile) and set unique
namespace name tag value to myNamespace.

Remove the «C++Namespace» stereotype
(C++ Profile) and unique namespace name tag
value.
129 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
«C++Typename»

The «C++Typename» stereotype can apply to Template Parameters. Therefore, Elements that have template
parameters could apply this stereotype.
130 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Figure 93 -- Elements that can have template parameters

In version 12.0, all elements that have template parameters must apply the «C++TemplateParameter» stereo-
type.

If elements from old version apply the «C++Typename» stereotype, the translation will apply the «C++Tem-
plateParameter» stereotype and set type keyword tag value to typename. If not, the translation will apply the
«C++TemplateParameter» stereotype and set type keyword tag value to class.

Figure 94 -- «C++Typename» stereotype
131 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
The «C++TemplateParameter» stereotype is being shown in the figure below.

Figure 95 -- «C++TemplateParamater» stereotype

Old value Translation

Template Parameter does not apply the
«C++Typename» stereotype.

Apply the «C++TemplateParameter» stereotype
and set type keyword tag value to class.

Template Parameter applies the
«C++Typename» stereotype.

Apply the «C++TemplateParameter» stereotype
and set type keyword tag value to typename.

Remove the «C++Typename» stereotype.
132 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
«constructor» and «destructor» in UML Standard Profile

These examples are UMLStandardConstructorClass class that has an operation named myOperation() which
applies the «constructor» stereotype in UML Standard Profile and UMLStandardDestructorClass class that has
an operation named myOperation() which applies the «destructor» stereotype in UML Standard Profile.

Figure 96 -- «constructor» and «destructor» stereotype Example in Class Diagram

«constructor»

The «constructor» stereotype is being shown in the figure below.

Figure 97 -- «constructor» stereotype
133 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
«destructor»

The «destructor» stereotype is being shown in the figure below.

Figure 98 -- «destructor» stereotype

Old value Translation

Operation applies the «constructor» stereo-
type in UML Standard Profile.

Apply the «C++Constructor» stereotype (c++
ANSI profile).

Remove the «constructor» stereotype (UML
Standard Profile).
134 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Tag Value

C++ThrownExceptions

The «C++Operation» stereotype can apply to an operation.

Figure 99 -- C++ThrownExceptions Example in Class Diagram

In version 12.0, all operations must apply «C++Operation» stereotype and default throw exception tag value
is any.

The C++ThrownExceptions tag value is being shown in the figure below.

Old value Translation

Operation applies the «destructor» stereo-
type in UML Standard Profile.

Apply the «C++Destructor» stereotype (c++
ANSI profile).

Remove the «destructor» stereotype (UML
Standard Profile).
135 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Figure 100 -- C++ThrownExceptions Tag Value

Old value Translation

Operation does not apply the «C++Opera-
tion» stereotype in old profile (C++ Profile).

Apply the «C++Operation» stereotype in new pro-
file (c++ ANSI profile) and set throw exception
tag value to any.

Operation applies the «C++Operation» ste-
reotype in old profile (C++ Profile) and set
C++ThrownExceptions tag value to any.

Apply the «C++Operation» stereotype in new pro-
file (c++ ANSI profile) and set throw exception
tag value to any.

Remove the «C++Operation» stereotype (old pro-
file) and C++ThrownExceptions tag value.

Operation applies the «C++Operation» ste-
reotype in old profile (C++ Profile) and set
C++ThrownExceptions tag value to none.

Apply the «C++Operation» stereotype in new pro-
file (c++ ANSI profile) and set throw exception
tag value to none.

Remove the «C++Operation» stereotype (old pro-
file) and C++ThrownExceptions tag value.
136 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Constructor and Destructor name

This example is myClass class that has operations named myClass() which is the constructor and
~myClass() which is the destructor.

Figure 101 -- Constructor and Destructor name Example in Class Diagram

The Constructor and Destructor name are being shown in the figure below.

Figure 102 -- Constructor and Destructor name

Old value Translation

Operation name is the same as the owner’s
name.

Apply the «C++Constructor» stereotype.
137 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Operation name is ‘~’ + the same name as the
owner’s name.

Apply the «C++Destructor» stereotype.
138 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Data type

bool

There are five cases of using bool data type such as Attribute type, Parameter type, Return type, Actual in Tem-
plate Parameter Substitution and Default in Classifier Template Parameter. MagicDraw will change old bool
data type to new bool data type in new profile.

Figure 103 -- bool data type Example in Class Diagram

Attribute type

The old bool data type in Attribute type is being shown in the figure below.

Figure 104 -- old bool data type in Attribute type

Old value Translation

Old bool data type in old profile (C++ Profile). Change to the new bool data type in new profile
(c++ ANSI profile).
139 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Parameter type

The old bool data type in Parameter type is being shown in the figure below.

Figure 105 -- old bool data type in Parameter type

Old value Translation

Old bool data type in old profile (C++ Profile). Change to the new bool data type in new profile
(c++ ANSI profile).
140 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Return type

The old bool data type in Return type is being shown in the figure below.

Figure 106 -- Figure 57 -- old bool type in Return type

Old value Translation

Old bool data type in old profile (C++ Pro-
file).

Change to the new bool data type in new profile
(c++ ANSI profile).
141 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Actual in Template Parameter Substitution

The old bool data type in Actual in Template Parameter Substitution is being shown in the figure below.

Figure 107 -- old bool data type in Actual in Template Parameter Substitution

Old value Translation

Old bool data type in old profile (C++ Pro-
file).

Change to the new bool data type in new profile
(c++ ANSI profile).
142 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Default in Classifier Template Parameter

The old bool data type in Default in Classifier Template Parameter is being shown in the figure below.

Figure 108 -- old bool data type in Default in Classifier Template Parameter
143 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Conversion from old project version
Old value Translation

Old bool data type in old profile (C++ Pro-
file).

Change to the new bool data type in new profile
(c++ ANSI profile).
144 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
DSL customization
DSL customization

This chapter describes how to customize tag values that transform from stereotypes in old C++ profile and lan-
guage properties.

Operation and Constructor

There are Inline and Virtual in Operation Language Properties that translate to Operation tag values.

Figure 109 -- tag values in Operation

There are Explicit and Initialization list in Operation Language Properties that translate to Constructor tag
values.

Figure 110 -- tag values in Constructor
145 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
DSL customization
There is C++ThrownExceptions tag value that translate to Operation tag value.

Figure 111 -- Throw exception tag value in Operation

Attribute

There are Abbreviated initialization, Bit field, Mutable and Container in Attribute Language Properties and
Array from Type Modifier that translate to Attribute tag values.

Figure 112 -- tag values in Attribute
146 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
DSL customization
Generalization

There are Virtual inheritance and Inheritance visibility in Generalization Language Properties that translate
to Generalization tag values.

Figure 113 -- tag values in Generalization

Enumeration literal

There is value from «C++EnumerationLiteral» stereotype that translate to Enumeration literal tag value.

Figure 114 -- tag value in Enumeration literal

Namespace

There is value from «C++Namespace» stereotype that translate to Namespace tag value.
147 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Profile constraints
Figure 115 -- tag value in Namespace

Template parameter

There is value from «C++Typename» stereotype that translate to Template parameter tag value.

Figure 116 -- tag value in Template parameter

Profile constraints

This chapter describes all constraints added by the ANSI profile.

Operation
• isQuery set to true can only apply to member operation (non global)

• virtual tag set to true can only apply to non static member operation.

Constructor

operation with «C++Constructor» stereotype

• Name should be the same as the owner’s name.
148 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Profile constraints
Destructor

operation with «C++Destructor» stereotype

• Name should be ‘~’ + the same name as the owner’s name.

Global

Class with «C++Global» stereotype:

• Name length should be 0.

• All operations and attributes should be public.

• Only one global class by namespace.

• Owner of global class can only be package

Typedef

Class with «C++Typedef» stereotype:

• One and only one «C++BaseType» dependency from a «C++Typedef» class.

• «C++BaseType» supplier dependency can only be Classifier or Operation.

• «C++Typedef» class cannot contain attribute and operation.

• Only one inner Class or inner Enumeration is valid.

Friend

Dependency with «C++Friend» stereotype:

• «C++Friend» client dependency can only be Class or Operation.

• «C++Friend» supplier dependency can only be Class.
149 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
New in MagicDraw 12.1
New in MagicDraw 12.1

CG Properties Editor

Figure 117 -- New properties

File Separator Format

This property is used to indicate the format of file separator used in code generation.

Default Return Value

Now you can set the default return value, which will be used for generating function body for new function. For
example, if the default return value of bool is set to false and generated the function shown below will be cre-
ated in .cpp file.

bool func(); in .h file,
bool func()
{
return false;
}

Roundtrip on #include statement and forward class declaration

From the previous version of MagicDraw, the #include statement will be generated only at the first generation of
a newly created file. According to this, it prevents user from doing roundtrip code engineering. Therefore,
150 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
New in MagicDraw 12.1
#include statement and forward class declaration are mapped to the model in MD 12.1. See the mapping sec-
tion for more information.

At the generation time, the required #include statement will be generated by collecting data from model. Include
generator will collect include information from

-Property

-Generalization

-Parameter

-Template Parameter Substitution

-Template Parameter default value

-Usage

Note: The usage relationship corresponding to the #include statement is also created in the model

Property

Include information will be collected from both normal property (i) and association end property (j).Generaliza-
tion

Model Code

#include "B.h"
class A{

B i;
C* j;

};

Model Code

#include "B.h"
class A:B{

};
151 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
New in MagicDraw 12.1
Parameter

Template Parameter Substitution

Model Code

#include "B.h"
class A{

public:
void func(B i);

};

Model Code

#include "B.h"
template <class Tclass>
class TP{};
class A{

TP i;
};
152 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
New in MagicDraw 12.1
Template Parameter Default Value

Usage

Model Code

#include "B.h"
template <class TClass=B>
class A{};

Model Code

#include "B.h"
class A{

};
153 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
New in MagicDraw 12.1
Project Option and Code Generation Options

Figure 118 -- New Option in Project Options

If this new option is selected, the same option in Code Generation Option dialog will be selected as shown
below.

Figure 119 -- New option in Code Generation Options

If the user generates code with this option selected, code generator will automatically detect and remove
unnecessary usage relationship from model. See the example below for better understanding
154 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
New in MagicDraw 12.1
.

From model above, if the user removes function f():Y from class X, in the model point of view, the usage from
X.h to Y.h is not necessary.

Model Code

//X.h
#include "Y.h"
class X{
Y f();
};
155 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
New in MagicDraw 12.1
See the difference between outcomes when selecting and not selecting Automatic remove unnecessary usage
relationship.

Automatic remove
unnecessary
usage relationship

Model Code

Selected //X.h
#include "Y.h"
class X{};

Not Selected //X.h
class X{};
156 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
New in MagicDraw 14.0
New in MagicDraw 14.0

Support C++ dialects

C++ code engineering set in MagicDraw 14.0 supports three dialects

• ANSI – conform to ISO/IEC 14882 specification for C++ programming language

• CLI – conform to ECMA-372 C++/CLI Language Specification base on Microsoft Visual studio
2005

• Managed – conform to Managed Extensions for C++ Specification introduced in Microsoft
Visual Studio 2003

Figure 120 -- New dialects in C++ CE

Note The syntax under Managed dialect is deprecated in Microsoft Visual
studio 2005.
157 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
New in MagicDraw 14.0
CG Properties Editor

Figure 121 -- New properties
158 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
New in MagicDraw 16.8
New in MagicDraw 16.8

Doxygen-after-member documentation

A doxygen documentation after a member is reversed now, the comment after the member should use the spe-
cial doxygen tag used to mark a documentation after a member.

• '/**<'

• '///<'

Property
name

Description

Interactiv
e mode

If enabled, user will be questioned during the reverse process when the parser cannot decide
whether the symbol is a class or namespace.

For example

If you reverse the following code

class A {
 B::X i;

};

The parser does not have enough information to decide whether B is class or namespace.

Figure 122 -- Question dialog for interactive mode

NOTE If the default mode, not interactive mode, the reverse module will automatically do the
best guess according to the information in code.

Parse
error
before
stop

This property allows users to specify the number of errors to ignore before the reverse process
will be terminated. The user can set the property to zero to allow CE to reverse all code before
stopping.

Parse
Includes

If set to false, the reverse module will reverse only the selected files and ignore all #include
statements.

Show
message
for not
found
includes

Used to display messages in the message window when the reverse module cannot find the
files included in the #include statement.

NOTE You have to set the property Parse Includes to true in order to use the property Show
message for not found includes.

NOTE This feature only works for import-code-only mode.
159 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Tutorial
• '//!<'

@see on documentation

Documentation with doxygne @see tag is reversed with a link to the model. The documentation should use one
of the following special doxygen tag to describe an @see element.

• @see

• \see

• @sa

• \sa

Symbian macro

The following macro definitions have been added to the explicit macro list.

// Symbian macro
#define _L(string) TPtrC((const TText*) string)
#define _LIT(name,s) const static TListC<sizeof(s)> name = {sizeof(s) -1,s}
#define _LIT8(name,s) const static TListC<sizeof(s)> name = {sizeof(s) -1,s}

#define IMPORT_C /*__declspec(dllimport)*/
#define EXPORT_C /*__declspec(dllexport)*/

#ut NONSHARABLE_CLASS(x) class x
#define NONSHARABLE_STRUCT(x) struct x

#define GLREF_D extern
#define GLDEF_D
#define LOCAL_D static
#define GLREF_C extern
#define GLDEF_C
#define LOCAL_C static

Tutorial

Type Modifier

In order to correctly generate code, the user has to put type modifier in the correct format. The dollar sign, $,
will be replaced with Type.

For example, If you want to generate the following code,

class A
{

 const int* const i;
};

NOTE This feature only works for import-code-only mode.

NOTE The documentation must be in the form of “@see element”. Only one ele-
ment follows @see will be reversed as an element link in model docu-
mentation.
160 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Tutorial
type modifier must be set to “const $* const” as shown in the figure below.

Figure 123 -- Type Modifier Example

Global Member

The new C++ ANSI profile allows you to model C++ global member. In order to do this, please follow the steps
below.

1. Create a class

2. Apply stereotype «C++Global»

3. Create members, attribute and function in this class. All members should set their visibilities to
Public.

See "Global functions and variables", on page 88 for example.

Typedef

With new C++ ANSI profile, you can model both normal Typedef and Typedef of function pointer.

Note You can leave the class unnamed. Name of «C++Global» class does
not have any effect on code generation.
161 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Tutorial
Normal Typedef

The steps below show you how to create the model that can be used to generate the following code.

typedef int* INT_PTR;

1. Create a class, apply stereotype «C++Typedef» and name it with typedef name. In this case,
INT_PTR.

2. Draw Dependency relationship from such class to base type element. In this case, int.

3. Apply the Dependency with «C++BaseType» and set type modifier value of Dependency to
“$*”.

Typedef of function pointer

The steps below show you how to create the model that can be used to generate the following code.
162 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Tutorial
typedef double (*funcPtrType)(int, char);

1. Create a class, apply stereotype «C++Typedef» and name it with typedef name. In this case,
funcPtrType.

2. Create an operation with function signature type of function pointer in «C++FunctionSignature»
class. The operation name does not have any effect on code generation.

.

3. Draw Dependency relationship from funcPtrType class to f(int, char): double, apply
«C++BaseType» to the Dependency and set type modifier to *$.

See Typedef for mapping example.

Function Pointer

The steps below show you how to create the model that can be used to generate the following code.

class A
{
 public:

float func1(int x);
};
float (A*funcPtr)(int);

Suppose that the model for class A is already created.

Note If «C++FunctionSignature» class does not exist, create a new one.
163 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Tutorial
1. Create attribute with name, in this case, funcPtr and apply «C++FunctionPtr» stereotype. In this
example, funcPtr is created in «C++Global» class means that funcPtr is global mem-
ber.

2. Create an operation with function signature type of function pointer in «C++FunctionSignature»
class. The operation name does not have any effect on code generation.

3. Draw a Dependency from funcPtr to f that is just created in «C++FunctionSignature» class and
set «C++BaseType» stereotype to the Dependency.
164 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Tutorial
4. Open specification dialog of «C++BaseType» Dependency.
Put *$ as value of Type Modifier in C++ Language Properties.
Set Member class to class A.

See 3.16 Function pointer for mapping example.

Friend

With new C++ ANSI profile, you can model C++ friend, both friend class and friend function.

Friend Class

The steps below show you how to create the model that can be used to generate the following code.

class A{};
class B
{

friend class A;
};

1. From the existing classes, A and B, draw dependency from class A to class B.
165 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Tutorial
2. Apply stereotype «C++Friend» to the dependency

Friend Function

To model friend function, do the same steps as modeling friend class.

class A
{

void func(int i);
};
class B
{

friend void A::func(int i);
};

1. From the existing classes, A and B, draw dependency from func in class A to class B.

2. Apply stereotype «C++Friend» to the dependency.

See Friend declaration for mapping example.
166 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Tutorial
How to specify component to generate code to

For general case, if the user adds data from a model in Round Trip Set (as shown below), the default compo-
nent, in this case A.cpp and A.h, will be added to code engineering set, which means that on code generation,
class A and its members will be created.

However, MagicDraw allows user to specify the component to generate the model into by using Realization.

See the figure below for better understanding.
167 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Tutorial
When drawing the Realization from component A.h to class B. Class B will be added to code engineering set as
you can see in the red circle, which means that class B will be generated in A.h.

You can also specify component to generate global member as shown in the figure below.

@see support for import-code-only mode

Documentation with doxygne @see tag is reversed with a link to the model. The documentation should use one
of the following special doxygen tag to describe an @see element.

• @see

• \see

• @sa

• \sa
168 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Tutorial
Example:

Navigable short cut from model link in documentation
• Ctrl + click

MagicDraw will open the specification dialog of the model that the link point to.

• Ctrl + Alt + click
MagicDraw will navigate to the documentation of the model that the link point to.

/**
 * Sample class
 */
class Sample {};

/**
 * @see Sample
 * \see Sample
 * @sa Sample
 * \sa Sample
 */
class Sample2: Sample {};
169 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Project constraint
Project constraint

This chapter describes how to set include paths for include system file.

Figure 124 -- Include system file example

If you include any system file, you need to set system file path as well.

Figure 125 -- System file paths

To set include path

1. From the Options menu choose Project.

2. Expand Code Engineering, choose C++ Language Options. Select the Include path check-
box. Use include paths button (…) appears on the right side of the Project options dialog box.
Click this button.

3. The Set Include Path dialog appears.
170 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Project constraint
Figure 126 -- Set Include Path dialog box

Then select the code-engineering set and then select Properties.

Button Action

Add The Open dialog box appears for select directory path.

Remove Remove the selected Include path.

Up Move the selected Include path upward.

Down Move the selected Include path downward.
171 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Project constraint
172 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Project constraint
Finally set the “Parse includes” property to “true”.

Note If the user sets the “Parse Includes” property to “false”, then during reverse engineer-
ing of the C++ code, MagicDraw will not parse inside the header file and all the
unknown type will be created in the “Default” package of the model. This way the user
can solve some keyword specific problems in the library, speed up the reverse pro-
cess, and remove unnecessary model inside the header file.
173 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Project constraint
Working with QT

To reverse engineer QT code, we recommend you set Parse Includes option to "false". You will also need to
set MagicDraw preprocessor to skip some QT macros ("Options"-> "Project"-> "C++ Language Options"-> "Use
explicit macros").

MagicDraw has already defined some default skipped macros for QT.
174 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
Microsoft C++ Profiles

Support for Microsoft specific structure and keywords, MagicDraw will provide new profiles named “Microsoft
Visual C++ Profile”, “C++/CLI Profile”, and “C++ Managed Profile”.

Figure 127 -- Profile Dependency

Microsoft Visual C++ Profile provides stereotypes and tagged values for modeling Microsoft Visual C++, which
has additional specific keywords and constructs. It conforms to Microsoft Visual C++ 6.0 and later. However, it
does not include keywords and constructs related to Managed features.

Microsoft Visual C++ Profile

Profile Name: Microsoft Visual C++ Profile

Module Name: C++_MS_Profile.xml

Data type

The Microsoft Visual C++ profile includes only the data types that do not exist in the ANSI C++ profile.

Microsoft C/C++ supports sized integer types. Declaration of 8-, 16-, 32-, or 64-bit integer variables can be
done by using the __intn type specifier, where n is 8, 16, 32, or 64.

Note Microsoft Visual C++ with Managed features has been called Managed C++, Visual
Studio 2003. Later in Visual Studio 2005, the set of keywords and constructs related
to Managed features changed and is also known as C++/CLI.
175 Copyright © 1998-2015 No Magic, Inc..

eb828cc9-684f-48a3-a898-b327700c0a63.htm
eb828cc9-684f-48a3-a898-b327700c0a63.htm

C++ CODE ENGINEERING
Microsoft C++ Profiles
The types __int8, __int16, and __int32 are synonyms for the ANSI types that have the same size, and are
useful for writing portable code that behaves identically across multiple platforms.

Figure 128 -- Microsoft Visual C++ Data Type
176 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
Stereotype

Figure 129 -- Microsoft Visual C++ Stereotypes

NOTE The profile table and description in this section does not include the
tagged value inherited from C++ ANSI profile.
177 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
VC++Class

«VC++Class» inherits from «C++Class» and «VC++StorageClass»

VC++Struct

«VC++Struct» inherits from «C++Struct» and «VC++StorageClass»

Name Meta class Constraints

VC++Class Class

Tag Type Description

inheritance inheritanceType[0..1] = single

(Enumeration)

See inheritanceType

Represent the utilization of
VC++ keywords,
__single_inheritance,
__multiple_inheritance and
__virtual_inheritance.

abstract boolean[1] = false Represent the utilization of key-
word __abstract or abstract,
depending on C++ dialects.

Inherited tag Type Description

declspecModifier
«VC++StorageClass»

String For keeping extended declara-
tion modifier of __declspec

See Extended storage-class
attributes with __declspec

C++Attributes

«VC++Element»

String For keeping C++ Attributes

 Name Meta class Constraints

VC++Struct Class

Inherited tag Type Description

declspecModifier
«VC++StorageClass»

String For keeping extended declara-
tion modifier of __declspec

See Extended storage-class
attributes with __declspec

C++Attributes

«VC++Element»

String For keeping C++ Attributes
178 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
VC++Union

VC++Enumeration

VC++Typedef

Name Meta class Constraints

VC++Union Class

Inherited tag Type Description

declspecModifier
«VC++StorageClass»

String For keeping extended declara-
tion modifier of __declspec

See Extended storage-class
attributes with __declspec

C++Attributes

«VC++Element»

String For keeping C++ Attributes

Name Meta class Constraints

VC++Enumeration Enumeration

Tag Type Description

Type Classifier[0..1] Represent the type of enumera-
tion literal

Name Meta class Constraints

VC++Typedef Class

Inherited tag Type Description

C++Attributes

«VC++Element»

String For keeping C++ Attributes

<<VC++Typedef>> inherits from <<C++Typedef>> and <<VC++StorageClass>>
179 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
VC++Attribute

VC++Operation

Name Meta class Constraints

VC++Attribute Property

Inherited tag Type Description

C++Attributes

«VC++Element»

String For keeping C++ Attributes

Name Meta class Constraints

VC++Operation Operation

Tag Type Description

callingConvention callingConvention [0..1]

(Enumeration)

See callingConvention

Represent the utilization of key-
words.

• __cdecl

• __clrcall

• __stdcall

• __fastcall

• __thiscall

__inline boolean[1] = false Represent the utilization of
__inline keyword.

__forceinline boolean[1] = false Represent the utilization of
__forceinline keyword.

Inherited tag Type Description

declspecModifier
«VC++StorageClass»

String For keeping extended declara-
tion modifier of __declspec

See Extended storage-class
attributes with __declspec

C++Attributes

«VC++Element»

String For keeping C++ Attributes
180 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
VC++Parameter

VC++StorageClass

«VC++StorageClass» is an abstract stereotype corresponding to extended declaration modifier of __declspec.

VC++Element

Name Meta class Constraints

VC++Parameter Parameter

Inherited tag Type Description

C++Attributes

«VC++Element»

String For keeping C++ Attributes

Name Meta class Constraints

VC++StorageClass Element

Tag Type Description

declspecModifier String For keeping extended declara-
tion modifier of __declspec

See Extended storage-class
attributes with __declspec

Name Meta class Constraints

VC++Element Element

Tag Type Description

C++Attributes String For keeping C++ Attributes
181 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
VC++Interface

VC++Event

Enumeration

inheritanceType

inheritanceType will be used as value of tag named “inheritance” under «VC++Class».

callingConvention

callingConvention will be used as value of tag named “calling convention” under «VC++Operation»

Name Meta class Description

VC++Interface Interface Represent interface declaration
with __interface keyword.

Name Meta class Description

VC++Event Operation, Property Represent interface, method or
member declaration with
__event keyword

Tag Type Description

isVirtualEvent boolean[1] = false Support virtual event as shown
in the example below.

// data member as event

virtual __event ClickEventHan-
dler* OnClick;

Literal Description

single Representation of __single_inheritance keyword

multiple Representation of __multiple_inheritance keyword

Virtual Representation of __virtual_inheritance keyword

Literal Description

__cdecl Represent the utilization of __cdecl modifier.

__clrcall Represent the utilization of __clrcall modifier.

__stdcall Represent the utilization of __stdcall modifier.

__fastcall Represent the utilization of __fastcall modifier.

__thiscall Represent the utilization of __thiscall modifier.
182 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
C++/CLI Profile

Stereotype

Figure 130 -- C++/CLI Stereotypes

C++CLIClass

Note The profile table and description in this section does not include the
tagged value inherited from C++ ANSI profile.

Name Meta class Constraints

C++CLIClass Class

Tag Type Description

CLI Type CLI Type[1] = ref

(Enumeration)

See CLI Type

Represent the utilization of ref
class or value class keywords
for definding CLR class.
183 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
C++CLIStruct

Inherited tag Type Description

inheritance

«VC++Class»

inheritanceType[0..1] = single

(Enumeration)

See inheritanceType

Represent the utilization of
VC++ keywords,
__single_inheritance,
__multiple_inheritance and
__virtual_inheritance.

declspecModifier
«VC++StorageClass»

String For keeping extended declara-
tion modifier of __declspec

See Extended storage-class
attributes with __declspec

C++Attributes

«VC++Element»

String For keeping C++ Attributes

abstract

«VC++Class»

boolean[1] = false Represent the utilization of
abstract keyword.

accessSpecifier

«C++CLIClassMember»

CLIvisibilityKind[0..1]

(Enumeration)

See CLIvisibilityKind

Represent the usage of visibility
kind introduced in C++/CLI
including

• internal

• protected public

• public protected

• private protected

• protected private

Name Meta class Constraints

C++CLIStruct Class

Inherited tag Type Description

managedType

«C++CLIClass»

CLI Type[1] = ref

(Enumeration)

See CLI Type

Represent the utilization of ref
class or value class keywords
for defining CLR class.

abstract

«C++CLIClass»

boolean[1] = false Represent the utilization of
abstract keyword.

inheritance

«VC++Class»

inheritanceType[0..1] = single

(Enumeration)

See inheritanceType

Represent the utilization of
VC++ keywords,
__single_inheritance,
__multiple_inheritance and
__virtual_inheritance.

declspecModifier
«VC++StorageClass»

String For keeping extended declara-
tion modifier of __declspec

See Extended storage-class
attributes with __declspec
184 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
C++CLIEnumeration

C++CLIInterface

VC++Attributes

«VC++Element»

String For keeping VC++ Attributes

Name Meta class Constraints

C++CLIEnumeration Enumeration

Tag Type Description

declarationKeyword classKey[1] = class

(Enumeration)

See classKey

Represent the utilization of
enum class or enum struct.
keywords.

See enum class, enum struct

Inherited tag Type Description

type

«VC++Enumeration»

Classifier[0..1] Represent the type of enumera-
tion literal

Name Meta class Constraints

C++CLIInterface Interface

Tag Type Description

declarationKeyword classKey[1] = class

(Enumeration)

See classKey

Represent the utilization of inter-
face class or interface struct.
keywords.

See ref class, ref struct, value
class, value struct, interface
class, interface struct

Inherited tag Type Description

declspecModifier
«VC++StorageClass»

String For keeping extended declara-
tion modifier of __declspec

See Extended storage-class
attributes with __declspec

C++Attributes

«VC++Element»

String For keeping C++ Attributes

Inherited tag Type Description
185 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
C++CLIClassMember

C++CLIAttribute

Name Meta class Constraints

C++CLIClassMember Operation, Property This stereotype is an abstract
stereotype for keeping access-
Specifier tag definition.

Tag Type Description

accessSpecifier CLIvisibilityKind[0..1]

(Enumeration)

See CLIvisibilityKind

Represent the usage of visibility
kind introduce in C++/CLI includ-
ing

• internal

• protected public

• public protected

• private protected

• protected private

Name Meta class Constraints

C++CLIAttribute Property

Tag Type Description

field attributeField[0..1]

(Enumeration)

See attributeField

Represent the usage of initonly
or literal keywords.

Inherited tag Type Description

accessSpecifier

«C++CLIClassMember»

CLIvisibilityKind[0..1]

(Enumeration)

See CLIvisibilityKind

Represent the usage of visibility
kind introduce in C++/CLI includ-
ing

• internal

• protected public

• public protected

• private protected

• protected private

declspecModifier
«VC++StorageClass»

String For keeping extended declara-
tion modifier of __declspec

See Extended storage-class
attributes with __declspec

C++Attributes

«VC++Element»

String For keeping C++ Attributes
186 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
C++CLIOperation

Name Meta class Constraints

C++CLIOperation Operation

Tag Type Description

abstract boolean[1] = false Represent the utilization of
abstract keyword.

overrideSpecifier operationOverrideSpeci-
fier[0..1]

(Enumeration)

See Override Specifiers

Represent the utilization of C++/
CLI operation override specifi-
ers, new and override.

explicitOverride Operation[0..*] Represent the usage of explicit
override feature.

Inherited tag Type Description

accessSpecifier

«C++CLIClassMember»

CLIvisibilityKind[0..1]

(Enumeration)

See CLIvisibilityKind

Represent the usage of visibility
kind introduce in C++/CLI includ-
ing

• internal

• protected public

• public protected

• private protected

• protected private

callingConvention

«VC++Operation»

callingConvention[0..1]

See callingConvention

Represent the utilization of key-
words.

• __cdecl

• __clrcall

• __stdcall

• __fastcall

• __thiscall

C++Attributes

«VC++Element»

String For keeping C++ Attributes
187 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
C++CLIProperty

«C++CLIProperty» is used to define a CLR property, which has the appearance of an ordinary data member,
and can be written to or read from using the same syntax as a data member.

C++CLIDelegate

«C++CLIDelegate» is used to define a delegate, which is a reference type that can encapsulate one or more
methods with a specific function prototype. Delegates provide the underlying mechanism (acting as a kind of
pointer to member function) for events in the common language runtime component model.

Name Meta class Constraints

C++CLIProperty Property The stereotype must not be
applied to the same attribute as
«C++Attribute» or other stereo-
types derived from «C++Attri-
bute»

Tag Type Description

propertyIndexType String[0..*] index type keeps the list of prop-
erty index types.

isVirtualProperty boolean[1] = false Specify whether the property is
virtual or not.

propertyType PropertyType[1] = property
data member

Specify property type between:

• property data member

• property block with get

• property block with set

• property block with get and set

Inherited tag Type Description

accessSpecifier

«C++CLIClassMember»

CLIvisibilityKind [0..1]

(Enumeration)

See CLIvisibilityKind

Represent the usage of visibility
kind introduce in C++/CLI includ-
ing

• internal

• protected public

• public protected

• private protected

• protected private

Name Meta class Constraints

C++CLIDelegate Class Declaration of delegate can be
only in a managed type.

The declaration of delegate can-
not have attribute and operation.

Represent the utilization of dele-
gate keyword.
188 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
C++CLIEvent

C++CLIGeneric

Name Meta class Constraints

C++CLIEvent Property «C++CLIEvent» can be applied
only when the attribute type is
«C++CLIDelegate».

Represent the utilization of
event keyword.

Tag Type Description

isCLIVirtualEvent boolean[1] = false Specify whether the event is
vitual or not.

Inherited tag Type Description

accessSpecifier

«C++CLIClassMember»

CLIvisibilityKind[0..1]

(Enumeration)

See CLIvisibilityKind

Represent the usage of visibility
kind introduce in C++/CLI includ-
ing

• internal

• protected public

• public protected

• private protected

• protected private

Name Meta class Constraints

C++CLIGeneric Class, Interface, Operation,
Property

Represent the usage of generic
keyword.
189 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
C++CLIGenericParameteredElement

C++CLIGeneralization

Enumeration

CLI Type

CLI Type will be used as value of tag named "CLI Type" under «C++CLIClass».
The possible values are ref and value.

operationOverrideSpecifier

operationOverrideSpecifier will be used as value of tag named "overrideSpecifier" under «VC++Opera-
tion».

Name Meta class Constraints

C++CLIGenericParametere-
dElement

Class

Tag Type Description

genericConstraintType genericConstraintType[0..*]

(Enumeration)

See genericConstraintType

Specify generic constraint type
including

• ref class

• ref struct

• value class

• value struct

• gcnew

Name Meta class Constraints

C++CLIGeneralization Generalization

Tag Type Description

CLIInheritanceVisibility C++CLIGeneralizationVisibil-
ity[1] = none

(Enumeration)

See C++CLIGeneralization-
Visibility

virtualInheritance boolean[1] = false

Literal Description

ref For defining a CLR reference class

value For defining a CLR value class
190 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
The possible values are new and override which are keywords that can be used to qualify override behavior
for derivation.

attributeField

attributeField will be used as value of tag named “field” under «C++CLIAttribute». The possible values are
initonly and literal which are keywords that can be used to qualify field type of attribute.

classKey

Remark: enum class and enum struct are equivalent declarations.

 interface class and interface struct are equivalent declarations.

Literal Description

new Indicate the use of new keyword to qualify override behavior for derivation.

In VC++, new is a keyword to indicate that a virtual member will get a new
slot in the vtable; that the function does not override a base class method.

override Indicate the use of override keyword to qualify override behavior for deriva-
tion.

In VC++, override is a keyword to indicate that a member of a managed
type must override a base class or a base interface member. If there is no
member to override, the compiler will generate an error.

Literal Description

initonly Represent the utilization of initonly keyword.

initonly indicates that variable assignment can only occur as part of the
declaration or in a static constructor in the same class.

literal Represent the utilization of literal keyword.

It is the native equivalent of static const variable.

Constraint: Is Static and Is Read Only must be set to true.

Literal Description

class Represent the keyword that has the word, class.

struct Represent the keyword that has the word, struct.
191 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
CLIvisibilityKind

genericConstraintType

C++CLIGeneralizationVisibility

C++CLIGeneralizationVisibility is an enumeration inheriting from C++GeneralizationVisibility and CLIvisibility-
Kind, so its literals include none, public, protected, private, internal, protected public, public protected,
private protected, and protected private.

 C++ Managed Profile

NOTE The profile table and description in this section does not include the tagged value inherited from other
profiles.

Literal Description

internal Represent the internal visibility.

protected public Represent the protected public visibility.

public protected Represent the public protected visibility.

private protected Represent the private protected visibility.

protected private Represent the protected private visibility.

Literal Description

ref class Represent the usage of ref class keyword in generic constraint clause.

ref struct Represent the usage of ref struct keyword in generic constraint clause.

value class Represent the usage of value class keyword in generic constraint clause.

value struct Represent the usage of value struct keyword in generic constraint clause.

gcnew Represent the usage of gcnew keyword in generic constraint clause.
192 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
Stereotype

Figure 131 -- C++ Managed Stereotypes

C++ManagedClass

C++ManagedStruct

Name Meta class Constraints

C++ManagedClass Class Represent the class declaration
with version 1 of Managed
Extension for C++.

Tag Type Description

managedType managedType[1] = __gc

(enumeration)

See managedType

Name Meta class Constraints

C++ManagedStruct Class Represent the struct declaration
with version 1 of Managed
Extension for C++.
193 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
C++ManagedOperation

C++ManagedDelegate

Enumeration

managedType

Modeling with Microsoft Specific Profiles

CLR Data Type Keyword

ref class, ref struct, value class, value struct, interface class, interface struct

class_access ref class name modifier : inherit_access base_type {};

class_access ref struct name modifier : inherit_access base_type {};

class_access value class name modifier : inherit_access base_type {};

class_access value struct name modifier : inherit_access base_type {};

interface_access interface class name : inherit_access base_interface {};

Name Meta class Constraints

C++ManagedOperation Operation

Tag Type Description

__property boolean[1] = false Represent the usage of
__property keyword. It is a fea-
ture in version 1 of Managed
Extension for C++.

Name Meta class Constraints

C++ManagedDelegate Class Represent the delegate declara-
tion with version 1 of Managed
Extension for C++.

It defines a reference type that
can be used to encapsulate a
method with a specific signature.

Literal Description

__gc Represent managed declaration with __gc keyword.

__nogc Represent the usage of __nogc keyword, which is used to explicitly specify
that an object is allocated on the standard C++ heap.

__value Represent managed declaration with __value keyword.

A __value type differs from __gc types in that __value type variables
directly contain their data, whereas managed variables point to their data,
which is stored on the common language runtime heap.
194 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
interface_access interface struct name : inherit_access base_interface {};

enum class, enum struct

access enum class name [: type] { enumerator-list } var;

Code MD-UML

ref class MyRefClass
{
};

with «C++CLIClass» and tagged value CLI Type = ref

ref struct MyRefStruct
{
};

with «C++CLIStruct» and tagged value CLI Type = ref

value class MyValueClass
{
};

with «C++CLIClass» and tagged value CLI Type = value

value struct
MyValueStruct
{
};

with «C++CLIStruct» and tagged value CLI Type = value

interface class
MyInterfaceClass
{
};

with «C++CLIInterface» and tagged value declarationKeyword =
class

interface struct
MyInterfaceStruct
{
};

with «C++ICLIInterface» and tagged value declarationKeyword =
struct
195 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
access enum struct name [:type] { enumerator-list } var;

property

modifier property type property_name; // property data member

modifier property type property_name { // property block

 modifier void set(type);

 modifier type get();

}

modifier property type property_name[,] {

 modifier void set(type);

 modifier type get();

}

Code MD-UML

enum class EnumClassDay
:int
{
 sun,
 mon
};

enum struct
EnumStructDay :int
{
 sun,
 mon
};

Code
public ref class MyClass
{
 // property data memberproperty
 property String ^ propertyX;
 // property block
 property int propertyY
 {

int get();
void set(int value);

 }
 //property block with index
 property int propertyZ[int, long]
 {

int get(int index1,long index2);
void set(int index1,long index2, int value);

 }
};

MD-UML
196 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
delegate

access delegate function_declaration

access (optional)

The accessibility of the delegate outside of the assembly can be public or private. The default is private. Inside
a class, a delegate can have any accessibility.

function_declaration

The signature of the function that can be bound to the delegate. The return type of a delegate can be any man-
aged type. For interoperability reasons, it is recommended that the return type of a delegate be a CLS type.

To define an unbound delegate, the first parameter in function_declaration should be the type of the this pointer
for the object
197 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
Code MD-UML

public delegate void MyDelegate(int
i);
ref class A
{
 MyDelegate^ delInst;
};
198 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
event

modifier event delegate ^ event_name; // event data member

modifier event delegate ^ event_name

{

 modifier return_value add (delegate ^ name);

 modifier return_value remove(delegate ^ name);

 modifier return_value raise(parameters);

} // event block

public delegate void
MyDelegate(int);
ref class B {
 event MyDelegate^ MyEvent;
};
199 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
Override Specifiers

abstract

Code MD-UML

ref class MyAbstractClass
abstract
{
};

with «C++CLIClass» and tagged value abstract=true

Code MD-UML

ref class MyAbstractClass2
{
 public:
virtual void func()
abstract;
};

func() with «C++CLIOperation» and tagged value abstract =
true and virtual = true
200 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
201 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
new

override

Code MD-UML
ref class MyClassWithNewFunction
 {
public:
 virtual void func() new {}
};

func() with «C++CLIOperation» and tagged value
overrideSpcifier = new

ref class BaseClass {
 public:
virtual void f();
};

ref class SubClass : public
BaseClass {
 public:
virtual void f() override {}
};
202 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
sealed

interface class MyInterface
{
 virtual void f();
 virtual void g();
};
ref class MyClass sealed: public
MyInterface
{
public:

virtual void f(){};
virtual void g(){};

};
203 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
interface class MyInterface2 {
 public:
virtual void f();
virtual void g();
};
ref class MyClass2 : MyInterface2 {
 public:
 virtual void f() { }
 virtual void g() sealed { }
 // sub class cannot override g()
};
204 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
Keywords for Generics

Generic Functions

[attributes] [modifiers]
return-type identifier <type-parameter identifier(s)>
[type-parameter-constraints clauses]

([formal-parameters])
{
 function-body
}

Parameters

attributes (Optional)

Additional declarative information. For more information on attributes and attribute classes, see attributes.

modifiers (Optional)

A modifier for the function, such as static. virtual is not allowed since virtual methods may not be generic.

return-type

The type returned by the method. If the return type is void, no return value is required.

identifier

The function name.

type-parameter identifier(s)

Comma-separated identifiers list.
205 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
formal-parameters (Optional)

Parameter list.

type-parameter-constraints-clauses

This specifies restrictions on the types that may be used as type arguments, and takes the form specified in
Constraints.

function-body

The body of the method, which may refer to the type parameter identifiers.

Generic Classes

[attributes]

generic <class-key type-parameter-identifier(s)>

[constraint-clauses]

[accessibility-modifiers] ref class identifier [modifiers]

[: base-list]

{

 class-body

} [declarators] [;]

Parameters

attributes (optional)

Additional declarative information. For more information on attributes and attribute classes, see Attributes.

class-key

Code MD-UML
generic <typename ItemType>
void G(int i) {}

ItemType with «C++TemplateParameter» applied and
set tagged value type keyword = typename.

ref struct MyStruct {
 generic <typename Type1>
 void G(Type1 i) {}

 generic <typename Type2>
 static void H(int i) {}
};
206 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
Either class or typename

type-parameter-identifier(s)

Comma-separated list of identifiers specifying the names of the type parameters.

constraint-clauses

A list (not comma-separated) of where clauses specifying the constraints for the type parameters. Takes the
form:

where type-parameter-identifier : constraint-list ...

constraint-list

class-or-interface[, ...]

accessibility-modifiers

Allowed accessibility modifiers include public and private.

identifier

The name of the generic class, any valid C++ identifier.

modifiers (optional)

Allowed modifiers include sealed and abstract.

base-list

A list that contains the one base class and any implemented interfaces, all separated by commas.

class-body

The body of the class, containing fields, member functions, etc.

declarators

Declarations of any variables of this type. For example: ^identifier[, ...]
207 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
Generic Interfaces

[attributes] generic <class-key type-parameter-identifier[, ...]>

[type-parameter-constraints-clauses]

[accesibility-modifiers] interface class identifier [: base-list] { interface-body} [declarators] ;

Parameters

attributes (optional)

Additional declarative information. For more information on attributes and attribute classes, see Attributes.

class-key

class or typename

type-parameter-identifier(s)

Comma-separated identifiers list.

type-parameter-constraints-clauses

Takes the form specified in Constraints

accessibility-modifiers (optional)

Code MD-UML
interface class MyInterface {};
ref class MyBase{};

generic <class T1, class T2>
where T1 : MyInterface, MyBase
where T2 : MyBase
ref class MyClass {};
208 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
Accessibility modifiers (e.g. public, private).

identifier

The interface name.

base-list (optional)

A list that contains one or more explicit base interfaces separated by commas.

interface-body

Declarations of the interface members.

declarators (optional)

Declarations of variables based on this type.

Generic Delegates
[attributes]
generic < [class | typename] type-parameter-identifiers >
[type-parameter-constraints-clauses]
[accessibility-modifiers] delegate result-type identifier
([formal-parameters]);

Parameters

attributes (Optional)

Code MD-UML
generic <typename Itype1,
typename Itype2>
public interface class List {
 Itype1 x;
};

generic <typename ItemType>
ref class List2 : public
List<ItemType, char>
{
};
209 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
Additional declarative information. For more information on attributes and attribute classes, see Attributes.

type-parameter-identifier(s)

Comma-separated list of identifiers for the type parameters.

type-parameter-constraints-clauses

Takes the form specified in Constraints

accessibility-modifiers (Optional)

Accessibility modifiers (e.g., public, private).

result-type

The return type of the delegate.

identifier

The name of the delegate.

formal-parameters (Optional)

The parameter list of the delegate.

Code MD-UML
generic < class IT>
delegate IT GenDelegate(IT p1, IT%
p2);
210 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
Clr Data Member option

initonly

initonly indicates that variable assignment can only occur as part of the declaration or in a static constructor in
the same class.

literal

A variable (data member) marked as literal in a /clr compilation is the native equivalent of a static const vari-
able.

A data member marked as literal must be initialized when declared and the value must be a constant integral,
enum, or string type. Conversion from the type of the initialization expression to the type of the static const
data-member must not require a user-defined conversion.

Code MD-UML

ref struct MyStruct {
 initonly
 static int staticConst1;

 initonly
 static int staticConst2 = 2;

 static MyStruct() {
 staticConst1 = 1;
 }
}; MyStruct with «C++CLIStruct»

staticConst1 and staticConst2 have
«C++CLIAttribute» applied with tagged value field
= initonly and Is Static = true

Code MD-UML
211 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
Inheritance Keywords
__single_inheritance, __multiple_inheritance, __virtual_inheritance
Grammar:
class [__single_inheritance] class-name;
class [__multiple_inheritance] class-name;
class [__virtual_inheritance] class-name;

Parameter

class-name

ref class MyClassWithLiteral
{
 literal int i = 1;
};

MyClassWithLiteral with «C++CLIClass»

Attribute i has «C++CLIAttribute» applied with
tagged value field = literal and set to Is Static =
true and Is Read Only = true
212 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
The name of the class being declared.

Microsoft-Specific Native declaration keywords

__interface

Grammar:
modifier __interface interface-name {interface-definition};
A Visual C++ interface can be defined as follows:

• Can inherit from zero or more base interfaces.

• Cannot inherit from a base class.

• Can only contain public, pure virtual methods.

• Cannot contain constructors, destructors, or operators.

• Cannot contain static methods.

• Cannot contain data members; properties are allowed.

Code MD-UML

class __single_inheritance S;

Class with «VC++Class»

Code MD-UML

__interface MyInterface {};
213 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
__delegate

Grammar:
__delegate function-declarator
A delegate is roughly equivalent to a C++ function pointer except for the following difference:

• A delegate can only be bound to one or more methods within a __gc class.

When the compiler encounters the __delegate keyword, a definition of a __gc class is generated. This __gc class has the
following characteristics:

• It inherits from System::MulticastDelegate.

• It has a constructor that takes two arguments: a pointer to a __gc class or NULL (in the case of
binding to a static method) and a fully qualified method of the specified type.

• It has a method called Invoke, whose signature matches the declared signature of the
delegate.

__event
Grammar:
__event method-declarator;
__event __interface interface-specifier;
__event member-declarator;

Native Events

Com Events

The __interface keyword is always required after __event for a COM event source.

Code MD-UML

__delegate int MyDelegate();

Code MD-UML

class Source {
public:
 __event void MyEvent(int i);
};

Code MD-UML

__interface IEvents {
 };
class CSource {
public:
 __event __interface IEvents;
};

__event __interface IEvents;

is mapped to attribute without name
214 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
Managed Events

Microsoft-Specific Modifiers

Based addressing with __based

The __based keyword allows you to declare pointers based on pointers (pointers that are offsets from existing pointers).

type __based(base) declarator

Example
// based_pointers1.cpp

// compile with: /c

void *vpBuffer;

struct llist_t {

 void __based(vpBuffer) *vpData;

 struct llist_t __based(vpBuffer) *llNext;

};

NOTE This mapping produces the exceptional case for syntax checker. The syntax checker has
to allow attribute without name for this case.

Code MD-UML

public __delegate void D();
public __gc class X {
public:
 __event D* E;
 __event void noE();
};

NOTE __delegate is in C++ Managed Profile whereas __event is in Microsoft Visual C++ Profile.

Code MD-UML

void *vpBuffer;
void __based(vpBuffer) *vpData;
215 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
Function calling conventions

The Visual C/C++ compiler provides several different conventions for calling internal and external functions.

__cdecl

return-type __cdecl function-name[(argument-list)]
This is the default calling convention for C and C++ programs. Because the stack is cleaned up by the caller, it can do
vararg functions. The __cdecl calling convention creates larger executables than __stdcall, because it requires each
function call to include stack cleanup code. The following list shows the implementation of this calling convention.

Code MD-UML

class CMyClass {
 void __cdecl myMethod();
};
216 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
__clrcall

return-type __clrcall function-name[(argument-list)]

Specifies that a function can only be called from managed code. Use __clrcall for all virtual functions that will
only be called from managed code. However, this calling convention cannot be used for functions that will be
called from native code.

Example

// compile with: /clr:oldSyntax /LD

void __clrcall Test1() {}

void (__clrcall *fpTest1)() = &Test1;

Code MD-UML

void __clrcall Test1() {}
void (__clrcall *fpTest1)(
) = &Test1;
217 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
__stdcall

return-type __stdcall function-name[(argument-list)]

The __stdcall calling convention is used to call Win32 API functions. The callee cleans the stack, so the com-
piler makes vararg functions __cdecl. Functions that use this calling convention require a function prototype.
218 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
__fastcall

return-type __fastcall function-name[(argument-list)]

The __fastcall calling convention specifies that arguments to functions are to be passed in registers, when
possible. The following list shows the implementation of this calling convention.

Example

class CmyClass3 {
 void __fastcall mymethod();
};

Code MD-UML

class CmyClass2 {
 void __stdcall mymethod();
};
219 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
__thiscall

return-type __thiscall function-name[(argument-list)]

The __thiscall calling convention is used on member functions and is the default calling convention used by
C++ member functions that do not use variable arguments. Under __thiscall, the callee cleans the stack, which
is impossible for vararg functions. Arguments are pushed on the stack from right to left, with the this pointer
being passed via register ECX, and not on the stack, on the x86 architecture.

Example

// compile with: /c /clr:oldSyntax
class CmyClass4 {
 void __thiscall mymethod();
 void __clrcall mymethod2();
};

Code MD-UML

class CmyClass3 {
 void __fastcall mymethod();
};

Code MD-UML

class CmyClass4 {
 void __thiscall mymethod();
};
220 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
__unaligned

type __unaligned pointer_identifier

When a pointer is declared as __unaligned, the compiler assumes that the type or data pointed to is not
aligned. __unaligned is only valid in compilers for x64 and the Itanium Processor Family (IPF).

Example

// compile with: /c
// processor: x64 IPF
#include <stdio.h>
int main() {
 char buf[100];
 int __unaligned *p1 = (int*)(&buf[37]);
 int *p2 = (int *)p1;
 *p1 = 0; // ok
 __try {
 *p2 = 0; // throws an exception
 }
 __except(1) {
 puts("exception");
 }}

Code MD-UML

 int __unaligned *p1;
221 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
__w64

type __w64 identifier

Parameters

type

One of the three types that might cause problems in code being ported from a 32-bit to a 64-bit compiler: int,
long, or a pointer.

identifier

The identifier for the variable you are creating.

__w64 lets you mark variables, such that when you compile with /Wp64 the compiler will report any warnings
that would be reported if you were compiling with a 64-bit compiler.

Example

// compile with: /W3 /Wp64
typedef int Int_32;
#ifdef _WIN64
typedef __int64 Int_Native;
#else
typedef int __w64 Int_Native;
#endif
int main() {
 Int_32 i0 = 5;
 Int_Native i1 = 10;
 i0 = i1; // C4244 64-bit int assigned to 32-bit int

 // char __w64 c; error, cannot use __w64 on char

}

222 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
Extended storage-class attributes with __declspec

The extended attribute syntax for specifying storage-class information uses the __declspec keyword, which
specifies that an instance of a given type is to be stored with a Microsoft-specific storage-class attribute listed
below. Examples of other storage-class modifiers include the static and extern keywords. However, these key-
words are part of the ANSI specification of the C and C++ languages, and as such are not covered by extended
attribute syntax. The extended attribute syntax simplifies and standardizes Microsoft-specific extensions to the
C and C++ languages.

decl-specifier:

__declspec (extended-decl-modifier-seq)

extended-decl-modifier-seq:

extended-decl-modifieropt

extended-decl-modifier extended-decl-modifier-seq

extended-decl-modifier:

align(#)

allocate("segname")

appdomain

deprecated

dllimport

dllexport

jitintrinsic

naked

Code MD-UML

 int __w64 i;
223 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
noalias

noinline

noreturn

nothrow

novtable

process

property({get=get_func_name|,put=put_func_name})

restrict

selectany

thread

uuid("ComObjectGUID")

White space separates the declaration modifier sequence.

Extended attribute grammar supports these Microsoft-specific storage-class attributes: align, allocate, appdo-
main, deprecated, dllexport, dllimport, jitintrinsic, naked, noalias, noinline, noreturn, nothrow, novtable,
process, restrict, selectany, and thread. It also supports these COM-object attributes: property and uuid.

The dllexport, dllimport, naked, noalias, nothrow, property, restrict, selectany, thread, and uuid storage-
class attributes are properties only of the declaration of the object or function to which they are applied. The
thread attribute affects data and objects only. The naked attribute affects functions only. The dllimport and dll-
export attributes affect functions, data, and objects. The property, selectany, and uuid attributes affect COM
objects.

The __declspec keywords should be placed at the beginning of a simple declaration. The compiler ignores,
without warning, any __declspec keywords placed after * or & and in front of the variable identifier in a declara-
tion.

Note:

• A __declspec attribute specified in the beginning of a user-defined type declaration applies to
the variable of that type.

• A __declspec attribute placed after the class or struct keyword applies to the user-defined
type.

Code MD-UML
class __declspec(dllimport) X {};
224 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
__restrict

The __restrict keyword is valid only on variables, and __declspec(restrict) is only valid on function declara-
tions and definitions.

Code MD-UML
__declspec(dllimport) class X {}
varX;
225 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
When __restrict is used, the compiler will not propagate the no-alias property of a variable. That is, if you
assign a __restrict variable to a non-__restrict variable, the compiler will not imply that the non-__restrict
variable is not aliased.

Generally, if you affect the behavior of an entire function, it is better to use the __declspec than the keyword.

__restrict is similar to restrict from the C99 spec, but __restrict can be used in C++ or C programs.

Example

// __restrict_keyword.c
// compile with: /LD
// In the following function, declare a and b as disjoint arrays
// but do not have same assurance for c and d.
void sum2(int n, int * __restrict a, int * __restrict b,
 int * c, int * d) {
 int i;
 for (i = 0; i < n; i++) {
 a[i] = b[i] + c[i];
 c[i] = b[i] + d[i];
 }
}

// By marking union members as __restrict, tells the compiler that
// only z.x or z.y will be accessed in any given scope.
union z {
 int * __restrict x;
 double * __restrict y;
};

Code MD-UML

 int * __restrict x;
226 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
__forceinline, __inline

The insertion (called inline expansion or inlining) occurs only if the compiler's cost/benefit analysis show it to be
profitable. Inline expansion alleviates the function-call overhead at the potential cost of larger code size.

The __forceinline keyword overrides the cost/benefit analysis and relies on the judgment of the programmer
instead. Exercise caution when using __forceinline. Indiscriminate use of __forceinline can result in larger
code with only marginal performance gains or, in some cases, even performance losses (due to increased pag-
ing of a larger executable, for example).

Using inline functions can make your program faster because they eliminate the overhead associated with
function calls. Functions expanded inline are subject to code optimizations not available to normal functions.

The compiler treats the inline expansion options and keywords as suggestions. There is no guarantee that
functions will be inlined. You cannot force the compiler to inline a particular function, even with the __forcein-
line keyword. When compiling with /clr, the compiler will not inline a function if there are security attributes
applied to the function.

The inline keyword is available only in C++. The __inline and __forceinline keywords are available in both C
and C++. For compatibility with previous versions, _inline is a synonym for __inline.

Grammar:

__inline function_declarator;

__forceinline function_declarator;

Code MD-UML

__inline int max(int a , int b) {
 if(a > b)
 return a;
 return b;
}

227 Copyright © 1998-2015 No Magic, Inc..

C++ CODE ENGINEERING
Microsoft C++ Profiles
C++ Attributes

Attributes are designed to simplify COM programming and .NET Framework common language runtime devel-
opment. When you include attributes in your source files, the compiler works with provider DLLs to insert code
or modify the code in the generated object files.

Code MD-UML

[coclass,
aggregatable(allowed),
 uuid("1a8369cc-1c91-
42c4-befa-5a5d8c9d2529")]
class CMyClass {};
228 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description

The MagicDraw UML C# Code Engineering Project is responsible for providing round-trip functionality between
The MagicDraw UML and C# codes. In the current version of this project, it supports up to C# version 3.0.

Generics

Generics permit classes, structs, interfaces, delegates, and methods to be parameterized by the types of data
they store and manipulate. Generic class declaration should be mapped to the UML classifier (class or
interface) with a template parameter. (See the detail of Generics in C# Specification chapter 20)

Additionally, Generics still affect other parts of the program structure such as attribute, operation, parameter,
parent class, and overloading operators. The mappings of these are shown in the next part of this document.

Generic Class

Class S has one template parameter named T. The default type of T is Class.

Code MD-UML

public class S<T>

{

}

Copyright © 1998-2015 No Magic, Inc.229

C# CODE ENGINEERING
C# 2.0 Description
Generic Struct

The type parameter of generic struct is created the same as generic class, but we apply «C#Struct» stereotype
to the model.

Code MD-UML

struct S<T>

{

}

230 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
Generic Interface

Generic Delegate

To create a generic delegate, we create a class model and apply the «C#Delegate» to the model. We, then,
create an empty named method with delegate return type, and add template parameter like a normal generic
class.

Code MD-UML

interface S<T>

{

}

Code MD-UML

delegate string D<T>();
231 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
Generic Attribute

The type of attributes in the class can be generic binding (template binding) or template parameter of owner
class.

The example code shows attributes that use template binding as its type
232 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
Code MD-UML

class C<T>

{

}

class D<T>

{

private C<int> c1;

private C<string[]> c2;

private C<T> c3;

private T c4;

}

The following shows how to create each attribute.

..

Private C<int> c1;

Template binding for C<int>
233 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
Open the specification of template binding link and add the binding type in Template Parameter
Substitutions section. For binding with int datatype, select data type int in the Actual.

..

private C<string[]> c2;

Template binding for C<string[]>
234 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
Create binding type as usual.

To add type modifier [] to string, open the specification of template parameter substitution, and then
add [] to Type Modifier property.

..

private C<T> c3;

Template binding for C<T>
235 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
To create template binding for C<T>, we have to select the correct T element for the Actual. In this
case, the binding type T is the template parameter of its owner class that is D<T>.

The following panel shows the correct type for creating template binding type T.

..

private T c4;

The type of attribute, c4 is not a template binding
class. Its type is a template parameter of the
owner class D<T>
236 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
We create the attribute, c4 as usual, but select the correct T type. In this case, it is template parameter
of the owner class, D<T>.
237 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
The property of template binding is shown below
238 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
Generic Operation

Generic can be applied to operation such as operation name, return type and operation parameter.

For the return type and parameters of the operation, we create them like a generic attribute creation.

Important: We have to create or select the correct binding types.

In the example code, the type of method parameter t in the first method, public void f1<T> (T t), must be the
template parameter of the owner method, f1<T>, not the template parameter of the owner class, S<T>.

For the second method, public void f1<U, V> (T t, U u), the type of parameter t must be the template parameter
of the owner class, S<T>

.

Code MD-UML

public class S<T>

{

public void f1<T>() {}

}

To create generic operation, open the specification of operation, and create template parameter as
usual.

Code MD-UML

public class S<T>

{

public void f1<T> (T t)

{

}

public void f1<U, V> (T t, U u)

{

}

}

239 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
The following panels show the selection of method parameter t of the first method.
240 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
241 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
class b

{

public T f2<T, U>(T t, U u)

where U : T { return t; }

}

242 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
Generic Overloading

Code MD-UML

class X<T>

{

public static explicit operator X<T>(T

value)

{ return null; }

public static implicit operator T(X<T> x)

{ return x.item; }

public static explicit operator

XXX<int>(X<T> x)

{ return null; }

public static explicit operator

X<T>(XXX<int> x)

{ return null; }

public static X<T> operator ++(X<T> operand)

{ return null; }

public static int operator >>(X<T> i, int c)

{ return c; }

}

243 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
Generic Parent Class

Code MD-UML

class b<T, U>

{}

class b1<X> : b<X[], X[,]>

{}
244 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
Generic Using Alias

For example, using N1_A = N1.A<int>, we create template binding for A<int> in namespace N1, and then we
create the Usage dependency from the parent component (in this case it is file component) to the template
binding class.

For more information about the mapping of Using Directive, Using Directive Mapping.

Code MD-UML

class b<T, U>

{}

interface Ib

{}

class b2<Y> : b<int?[], string[]>

{}

class c<T> : b<int?, string>

{}

class d<X, Y> : b<X, Y>, Ib<int>

{}

Code MD-UML

class b<T, U>

{}

interface Ib

{}

class g<U> : b<b<int, object>, U>,

Ib<string>

{}
245 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
Generic Constraints

Generic type and method declarations can optionally specify type parameter constraints by including type
parameter-constraints-clauses.

type-parameter-constraints-clauses:
type-parameter-constraints-clause
type-parameter-constraints-clauses type-parameter-constraints-clause

type-parameter-constraints-clause:
where type-parameter : type-parameter-constraints

type-parameter-constraints:
primary-constraint
secondary-constraints
constructor-constraint
primary-constraint , secondary-constraints
primary-constraint , constructor-constraint
secondary-constraints , constructor-constraint
primary-constraint , secondary-constraints , constructor-constraint

Code MD-UML

using N1_A = N1.A<int>;

namespace N1

{

public class A<T> {}

}

class A

{

N1_A a;

}

246 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
primary-constraint:
class-type
class

struct

secondary-constraints:
interface-type
type-parameter
secondary-constraints , interface-type
secondary-constraints , type-parameter

constructor-constraint:
new ()

Code MD-UML

public class A { }

interface IA {}

public class S<T> where T: A, IA{}
247 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
To create the first template constraint for template parameter T, we select the type of template param-
eter T as class A.

The constraint A is shown as generalization relation of T.
248 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
To create the second template constraint for template parameter T, Open the specification of template
parameter T, and then create Interface Realization as Outgoing relation to the interface IA.
249 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
Anonymous Methods

In versions of C# previous to 2.0, the only way to declare a delegate was to use named methods. C# 2.0
introduces anonymous methods.

Creating anonymous methods is essentially a way to pass a code block as a delegate parameter.

For example:

// Create a delegate instance
delegate void Del(int x);

// Instantiate the delegate using an anonymous method

To create class, struct, and new() constraints, we apply «C#Generic» stereotype to the template
parameter, and then we create the tag values.
250 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
Del d = delegate(int k) { /* ... */ };

By using anonymous methods, you reduce the coding overhead in instantiating delegates by eliminating the
need to create a separate method.

From now, there is no direct mapping for Anonymous Methods but it uses the mapping for delegate method
feature.

Partial Types

A new type modifier, partial, is used when defining a type in multiple parts. To ensure compatibility with
existing programs, this modifier is different than other modifiers: like get and set, it is not a keyword, and it
must appear immediately before one of the keywords class, struct, or interface.

class-declaration:
attributesopt class-modifiersopt partialopt class identifier type-parameter-listopt

class-baseopt type-parameter-constraints-clausesopt class-body ;opt

struct-declaration:
attributesopt struct-modifiersopt partialopt struct identifier type-parameter-listopt

struct-interfacesopt type-parameter-constraints-clausesopt struct-body ;opt

interface-declaration:
attributesopt interface-modifiersopt partialopt interface identifier type-parameter-listopt

interface-baseopt type-parameter-constraints-clausesopt interface-body ;opt

Each part of a partial type declaration must include a partial modifier and must be declared in the same
namespace as the other parts. The partial modifier indicates that additional parts of the type declaration may
exist elsewhere, but the existence of such additional parts is not a requirement. It is valid for just a single
declaration of a type to include the partial modifier.

All parts of a partial type must be compiled together such that the parts can be merged at compile-time. Partial
types specifically do not allow already compiled types to be extended.

Nested types may be declared in multiple parts by using the partial modifier. Typically, the containing type is
declared using partial as well, and each part of the nested type is declared in a different part of the
containing type.

The partial modifier is not permitted on delegate or enum declarations.
251 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
Code MD-UML

//Case #1

//The partial class is written into

one class file.

public partial class PartialA{

int a;

string actionA()

{

}

}

public partial class PartialA{

int b;

string actionB()

{

}

}

All child elements will be merged into one Class
element.

//Case #2

//The partial class is written into

separate class file.

//PartialA1.cs

public partial class PartialA{

int a;

string actionA()

{

}

}

//PartialA2.cs

public partial class PartialA{

int b;

string actionB()

{

}

}

All child elements will be merged into one Class
element, the same as both classes are written into
one class file.
252 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
//Case #3

//The partial class with inner class

public partial class PartialA{

public class B

{

int b;

}

}

public partial class PartialA{

int a;

string actionB()

{

}

public class C

{

int c;

}

}

All inner classes have to be located as inner class
of the parent class (partial class).

The "partial" tag will have a blank tagged value for Partial Class Element.

Code MD-UML
253 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
Nullable Types

A nullable type is classified as a value type:

value-type:
struct-type
enum-type

struct-type:
type-name
simple-type
nullable-type

nullable-type:
non-nullable-value-type ?

non-nullable-value-type:
type

The type specified before the ? modifier in a nullable type is called the underlying type of the nullable type.
The underlying type of a nullable type can be any non-nullable value type or any type parameter that is
constrained to non-nullable value types (that is, any type parameter with a struct constraint). The underlying
type of a nullable type cannot be a nullable type or a reference type.

A nullable type can represent all values of its underlying type plus an additional null value.

The "partial" tag will have a value of the file name that the class belongs to for each child element in
partial class element.

Code MD-UML
254 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
The syntax T? is shorthand for System.Nullable<T>, and the two forms can be used interchangeably.

Accessor Declarations

The syntax for property accessors and indexer accessors is modified to permit an optional accessor-modifier:

get-accessor-declaration:
attributesopt accessor-modifieropt get accessor-body

set-accessor-declaration:
attributesopt accessor-modifieropt set accessor-body

accessor-modifier:
protected
internal
private

protected internal
internal protected

The use of accessor-modifiers is governed by the following restrictions:

• An accessor-modifier may not be used in an interface or in an explicit interface member
implementation.

• For a property or indexer that has no override modifier, an accessor-modifier is permitted
only if the property or indexer has both a get and set accessor, and then is permitted only on
one of those accessors.

• For a property or indexer that includes an override modifier, an accessor must match the
accessor-modifier, if any, of the accessor being overridden.

• The accessor-modifier must declare an accessibility that is strictly more restrictive than the
declared accessibility of the property or indexer itself. To be precise:

• If the property or indexer has a declared accessibility of public, any accessor-modifier may
be used.

• If the property or indexer has a declared accessibility of protected internal, the accessor-
modifier may be either internal, protected, or private.

• If the property or indexer has a declared accessibility of internal or protected, the
accessor-modifier must be private.

• If the property or indexer has a declared accessibility of private, no accessor-modifier may
be used.

Code MD-UML

class class1

{

int? a = null;

System.Nullable a = null;

}
Add “Nullable” class type to C# profile.
255 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
Static Class

Static classes are classes that are not intended to be instantiated and which contain only static members. When
a class declaration includes a static modifier, the class being declared is said to be a static class.

When a class declaration includes a static modifier, the class being declared is said to be a static class.

class-declaration:
attributesopt class-modifiersopt partialopt class identifier type-parameter-listopt

class-baseopt type-parameter-constraints-clausesopt class-body ;opt

Code MD-UML

Class A

{

private string text = “init value”;

public String Text

{

protected get{ return text;}

set{ text = value;}

}

}

256 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
class-modifiers:
class-modifier
class-modifiers class-modifier

class-modifier:
new
public
protected
internal
private
abstract
sealed

static

Extern Alias Directive

Until now, C# has supported only a single namespace hierarchy into which types from referenced assemblies
and the current program are placed. Because of this design, it has not been possible to reference types with the
same fully qualified name from different assemblies, a situation that arises when types are independently given
the same name, or when a program needs to reference several versions of the same assembly. Extern aliases
make it possible to create and reference separate namespace hierarchies in such situations.

An extern-alias-directive introduces an identifier that serves as an alias for a namespace hierarchy.

Code MD-UML

static class A

{

…

}

257 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
compilation-unit:
extern-alias-directivesopt using-directivesopt global-attributesopt

namespace-member-declarationsopt

namespace-body:
{ extern-alias-directivesopt using-directivesopt namespace-member-declarationsopt }

extern-alias-directives:
extern-alias-directive
extern-alias-directives extern-alias-directive

extern-alias-directive:
extern alias identifier ;

Consider the following two assemblies:
Assembly a1.dll:
namespace N
{

public class A {}
public class B {}

}
Assembly a2.dll:
namespace N
{

public class B {}
public class C {}

}
and the following program:
class Test
{

N.A a;
N.C c;

}

The following program declares and uses two extern aliases, X and Y, each of which represent the root of a
distinct namespace hierarchy created from the types contained in one or more assemblies.

extern alias X;
extern alias Y;
class Test
{

X::N.A a;
X::N.B b1;
Y::N.B b2;
Y::N.C c;

}

258 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
Pragma Directives

The #pragma preprocessing directive is used to specify optional contextual information to the compiler. The
information supplied in a #pragma directive will never change program semantics.

pp-directive:
…
pp-pragma

Code MD-UML

extern alias X;

extern alias Y;

class Test

{

X::N.A a;

X::N.B b1;

Y::N.B b2;

Y::N.C c;

}

259 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
pp-pragma:
whitespaceopt # whitespaceopt pragma whitespace pragma-body pp-new-line

pragma-body:
pragma-warning-body

C# 2.0 provides #pragma directives to control compiler warnings. Future versions of the language may include
additional #pragma directives.

Pragma Warning

The #pragma warning directive is used to disable or restore all or a particular set of warning messages during
compilation of the subsequent program text.

pragma-warning-body:
warning whitespace warning-action
warning whitespace warning-action whitespace warning-list

warning-action:
disable

restore

warning-list:
decimal-digits
warning-list whitespaceopt , whitespaceopt decimal-digits

A #pragma warning directive that omits the warning list affects all warnings. A #pragma warning directive
that includes a warning list affects only those warnings that are specified in the list.

A #pragma warning disable directive disables all or the given set of warnings.

A #pragma warning restore directive restores all or the given set of warnings to the state that was in
effect at the beginning of the compilation unit. Note that if a particular warning was disabled externally, a
#pragma warning restore will not re-enable that warning.

The following example shows use of #pragma warning to temporarily disable the warning reported when
obsolete members are referenced.

using System;
class Program
{

[Obsolete]
static void Foo() {}
static void Main() {

#pragma warning disable 612
Foo();

#pragma warning restore 612
}

}

There is no code engineering mapping for Pragma Directives now.
260 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
Fix Size Buffer

Fixed size buffers are used to declare “C style” in-line arrays as members of structs. Fixed size buffers are
primarily useful for interfacing with unmanaged APIs. Fixed size buffers are an unsafe feature, and fixed size
buffers can only be declared in unsafe contexts.

A fixed size buffer is a member that represents storage for a fixed length buffer of variables of a given type. A
fixed size buffer declaration introduces one or more fixed size buffers of a given element type. Fixed size
buffers are only permitted in struct declarations and can only occur in unsafe contexts.

struct-member-declaration:
…
fixed-size-buffer-declaration
fixed-size-buffer-declaration:
attributesopt fixed-size-buffer-modifiersopt fixed buffer-element-type

fixed-sized-buffer-declarators ;
fixed-size-buffer-modifiers:
fixed-size-buffer-modifier
fixed-sized-buffer-modifier fixed-size-buffer-modifiers
fixed-size-buffer-modifiers:
new
public
protected
internal
private
unsafe
buffer-element-type:
type
fixed-sized-buffer-declarators:
fixed-sized-buffer-declarator
fixed-sized-buffer-declarator fixed-sized-buffer-declarators
fixed-sized-buffer-declarator:
identifier [const-expression]

Code MD-UML

unsafe struct A

{

 public fixed int x[5];

}

261 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
262 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 2.0 Description
263 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 3.0 Description
C# 3.0 Description

Extension Methods

Extension methods are static methods that can be invoked using instance method syntax. In effect, extension
methods make it possible to extend existing types and constructed types with additional methods.

Extension methods are declared by specifying the keyword this as a modifier on the first parameter of the
methods. Extension methods can only be declared in static classes.

The sample code :

public static class Extensions
{

public static int ToInt32(this string s) {
return Int32.Parse(s);

}

public static T[] Slice<T>(this T[] source, int index, int count) {
if (index < 0 || count < 0 || source.Length – index < count)

throw new ArgumentException();
T[] result = new T[count];
Array.Copy(source, index, result, 0, count);
264 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 3.0 Description
return result;
}

}

It becomes possible to invoke the extension methods in the static class Extensions using instance method
syntax:

string s = "1234";
int i = s.ToInt32();// Same as Extensions.ToInt32(s)

int[] digits = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
int[] a = digits.Slice(4, 3);// Same as Extensions.Slice(digits, 4, 3)

Lambda Expression Conversion

A lambda expression is written as a parameter list, followed by the => token, followed by an expression or a
statement block.

Code MD-UML

class K

{

Test(this int a)

{}

}
The value is created to tag “extend” in «C#Params»
265 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# 3.0 Description
The parameters of a lambda expression can be explicitly or implicitly typed. In an explicitly typed parameter list,
the type of each parameter is explicitly stated. In an implicitly typed parameter list, the types of the parameters
are inferred from the context in which the lambda expression occurs.

 Some examples of lambda expressions are below:

x => x + 1 // Implicitly typed, expression body
x => { return x + 1; } // Implicitly typed, statement body
(int x) => x + 1 // Explicitly typed, expression body
(int x) => { return x + 1; }// Explicitly typed, statement body
(x, y) => x * y // Multiple parameters
() => Console.WriteLine()// No parameters
There is no mapping for this feature.
266 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# Profile
C# Profile

Figure 132 -- C# Profile

The above diagram shows the class diagram of C# profile. The C# profile package contains many stereotype
and related tagged value to contain the properties of C# language usage. The new stereotypes and tagged
value are shown in the following part.

Stereotype

C# Profile contains many stereotypes and tagged definitions. When the mapping begins, there will be tagged
value applied to tagged definition in stereotype. Since MagicDraw 12.0 the information of language properties
is moved to tagged value in stereotype. The information of language properties of:

• Class is moved to «C#Class»

• Attribute is moved to «C#Attribute»
267 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# Profile
• Operation is moved to «C#Operation»

• The common information of the old language properties (Class, Attribute and Operation) is
moved to C#LanguageProperty

This document represents only newly stereotyped and tagged definitions, the details are shown below.

C#Attribute

«C#Attribute» is an invisible stereotype that is used to define C# attribute properties. This is used to store the
language properties of the attribute in C#.

C#Class
«C#Class» is a stereotype that is used to define property of C# class. This is used to store the language properties of the
class in C#. Moreover this class is used for store the information about the static class too.

Name Meta class Constraints

C#Attribute Property

Tag Type Description

container String
fixed Boolean Represents the usage of Fixed Size

Buffer
unsafe struct A

{

 public fixed int x[5];

}
readonly Boolean Represents the usage of read-only

attribute
Class A

{

 public readonly int x;

}
volatile Boolean Represents the usage of volatile attribute

Class A

{

 public volatile int x;

}

Name Meta class Constraints

C#Class Class

Tag Type Description

Static boolean Represents the usage of static class
static Class A

{

 public int x;

}

268 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# Profile
C#Delegate

«C#Delegate» is a stereotype that indicates that model class represents C# delegate.

C#Element

«C#Element» is a stereotype that is used to define properties of all element in model.

 C#EnumerationLiteral

«C#EnumeraltionLiteral» is a stereotype that is used to define enumeration.

C#Event

«C#Event» is a stereotype that is used to indicate that operation represents C# event.

Name Meta class Constraints

C#Delegate Class

Name Meta class Constraints

C#Element Element This stereotype can be applied to all
elements such as class, attribute,
operation and parameter.

Tag Type Description

externAlias String Represents the usage of extern alias
extern alias X;
class Test
{

X::N.A a;
}

partial String
C#Attributes String Represents C# attributes for

element.

Name Meta class Constraints

C#EnumerationLiter

al

EnumerationLiteral

Tag Type Description

C#Initializer String Represents enumeration member’s
constant value.

Name Meta class Constraints

C#Event Operation

Tag Type Description

C#AddAccessor String Adds add accessor for event
C#AddAttributes String Defines C# attributes for add

accessor.
C#RemoveAccessor String Adds remove accessor for event
C#RemoveAttributes String Defines C# attributes for remove

accessor.
269 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# Profile
C#Generic

«C#Generic» is a stereotype that is used to define generic properties.

C#Indexer

«C#Indexer» is a stereotype that is used to indicate that operation represents C# indexer.

C#LanguageProperty

«C#LanguageProperty» is the parent of «C#Class», «C#Attribute», and «C#Operation», So the «C#Class»,
«C#Attribute» and «C#Operation» also have it’s tag definition.

C#Operation
«C#Operation» is a stereotype which is used to define properties of the operation. This is used to store the language
properties of the operation in C#.

Name Meta class Constraints

C#Generic Class

Tag Type Description

type generictype Defines type for generic constraint
parameter, class, struct, and new()

Name Meta class Constraints

C#Indexer Operation

Tag Type Description

C#GetAccessor String Adds get accessor for indexer.
C#GetAttributes String Defines C# attributes for get

accessor.
C#SetAccessor String Adds set accessor for indexer.
C#SetAttributes String Defines C# attributes for set

accessor.

Name Meta class Constraints

C#LanguageProperty Element

Tag Type Description

internal boolean

new boolean

unsafe boolean Represents the usage of unsafe
element
unsafe struct A

{

 public fixed int

x[5];

}

Name Meta class Constraints

C#Operation Operation
270 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
C# Profile
C#Operator

«C#Operator» is a stereotype that is used to indicate that the operation represents C# operator.

C#Parameter
«C#Parameter» is a stereotype that is used to indicate that the element represents C#Parameter.

C#Params
«C#Params» is a stereotype that is used to indicate parameter arrays.

C#Property

«C#Property» is a stereotype that is used to indicate that the operation represents C# property.

Tag Type Description

conversion type String
extern boolean Represent the usage of extern operation

Class A

{

 public extern int x();

}
initialization String
override boolean
partial String
virtual boolean
C#ExplicitInterfac

e

Classifier Defines C# explicit interface for explicit
interface member implementation.

Name Meta class Constraints

C#Operator Operation

Name Meta class Constraints

C#Parameter Element

Name Meta class Constraints

C#Params Parameter

Tag Type Description

extend String
params String

Name Meta class Constraints

C#Property Operation

Tag Type Description

C#GetAccessor String Adds get accessor for indexer.
C#GetAttributes String Defines C# attributes for get

accessor.
C#SetAccessor String Adds set accessor for indexer.
C#SetAttributes String Defines C# attributes for set

accessor.
271 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Conversion from old project version
C#Struct
«C#Struct» is a stereotype that is used to indicate that the model class represents C# structure.

C#Using

«C#Using» is a stereotype that is used to indicate that the usage dependency is C# Using directive.

Data Type

In addition to stereotype and tagged value, C# datatype should be created in the profile. The following diagram
shows the data type of C# profile.

Figure 133 -- Data Type of C# Profile

Conversion from old project version

This chapter describes the project converter of MD project version less than 11.6.

Translation Activity Diagram

There are projects that use C# language properties, which need to be translated with version of MagicDraw
project less than or equal to 11.6.

Name Meta class Constraints

C#Struct Class

Name Meta class Constraints

C#Using Association, Realization,

Usage
The clients of dependency are
Component, and Namespace.
272 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Conversion from old project version
Open local project

Figure 134 -- Open local project Activity Diagram
273 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Conversion from old project version
Open teamwork project

Figure 135 -- Open teamwork project Activity Diagram
274 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Conversion from old project version
Import MagicDraw project

Figure 136 -- Import MagicDraw project Activity Diagram
275 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Conversion from old project version
Use module

Figure 137 -- Use module Activity Diagram
276 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Mapping
Update C++ Language Properties and Profiles

Figure 138 -- Update C# Language Properties and Profiles Activity Diagram

Mapping

Language Properties Mapping

Until MD version 11.6, language properties are stored in a specific format, since MD version 12 language
properties are moved to stereotype tag value and using DSL to customize to C# Language Properties. (The
language properties will move to C# Language Properties)
277 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Mapping
Class

Old Value Translation

New Mapped to tag “new” of «C#LanguageProperty» (The usage for
this is to apply «C#Class» and set value to tag “new”)

Internal Mapped to tag “internal” of «C#LanguageProperty» (The usage
for this is to apply «C#Class» and set value to tag “internal”)

Unsafe Mapped to tag “unsafe” of «C#LanguageProperty» (The usage for
this is to apply «C#Class» and set value to tag “unsafe”)
278 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Mapping
Attribute

Old Value Translation

New Mapped to tag “new” of «C#LanguageProperty» (The usage for
this is to apply «C#Attribute» and set value to tag “new”)

Internal Mapped to tag “internal” of «C#LanguageProperty» (The usage for
this is to apply «C#Attribute» and set value to tag “internal”)

Unsafe Mapped to tag “unsafe” of «C#LanguageProperty» (The usage for
this is to apply «C#Attribute» and set value to tag “unsafe”)

Readonly Mapped to “readonly” of «C#Attribute»

Volatile Mapped to “volatile” of «C#Attribute»

Container Mapped to “container” of «C#Attribute»
279 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Mapping
Operation

Old Value Translation

New Mapped to tag “new” of «C#LanguageProperty» (The usage for
this is to apply «C#Operation» and set value to tag “new”)

Internal Mapped to tag “internal” of «C#LanguageProperty» (The usage for
this is to apply «C#Operation» and set value to tag “internal”)

Unsafe Mapped to tag “unsafe” of «C#LanguageProperty» (The usage for
this is to apply «C#Operation» and set value to tag “unsafe”)

Override Mapped to tag “override” of «C#Operation»

Virtual Mapped to tag “virtual” of «C#Operation»

Extern Mapped to tag “virtual” of «C#Operation»

Initialization Mapped to tag “initialization” of «C#Operation»

Conversion type Mapped to tag “conversion type” of «C#Operation»
280 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Mapping
C# Properties Customization

DSL Customization is adopted to hide UML mapping, so extensions in MagicDraw should look like they are
standard elements. DSL properties should appear in specifications as regular properties, not tags.

So we disable the extension C# language properties and then move them to tagged value in stereotype of C#
profile and DSL properties. The DSL properties will conform to tagged value of stereotype.

For an old project containing old C# language properties, after performing open or import, they will be
translated to the appropriate stereotype and tagged value.

Figure 139 -- Customization Class

All DSL specific custom rules should be stored as tag values in Classes, marked with «Customization»
stereotype.

This stereotype contains special tags that should be interpreted by “MD Customization Engine” in special ways,
to enable many possible customizations in MD GUI and behavior.
281 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Mapping
Figure 140 -- DSL Properties

Using Directive Mapping

In MagicDraw version 12.1, the C# Using directive is mapped to the model as usage dependency with
«C#Using» stereotype.

The following example shows the mapping of C# Using Namespace. The usage dependency for C# Using
namespace declaration that is not in the namespace will be created under File View component.
282 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Mapping
.

The following example shows the mapping of C# Using alias. The usage dependency for C# Using alias
declared in the namespace will be created under that namespace.

Code MD-UML

using System;

using System.Collections.Generic;

using System.Text;

namespace n0

{

class using1 {}

}

Open usage dependency specification

apply «C#Using» stereotype.

For using namespace, leave the name empty.
283 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Mapping
Code MD-UML

namespace n0{ using n1 =

n1.using1<int>; using n2 =

n1.n2.using1<bool>; using n3 =

n1.n2; class using1 : n2 {

n1 a; n2 b;

n3.using1<float> c; }}namespace

n1{ namespace n2 { class

using1<T> { } } class

using1<T> { }}

Open usage dependency specification

Apply «C#Using» stereotype.

For using alias, enter the alias name.
284 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Mapping
For mapping C# Using directive in the C# Partial feature, we have to add file component name into Partial Tag
value of usage link specification.

Code MD-UML

//partial1.cs

namespace n1 {

using LL =

System.Text.Encoder;

partial class using1

{

LL a;

}

}

//partial2.cs

namespace n1 {

using LL =

System.Text.Decoder;

partial class using1

{

LL b;

}

}

285 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Constraints
Constraints

Mapping Constraints

No Mapping Cases

This section will show some cases which have no mapping in C# reverse engineering.

UML Constraints

Multiple Generic Class

In C# syntax, we can declare classes with the same name but different generic type parameters in the same
package. For example;

namespace N {

class A { .. }

class A<T> { .. }

class A<T, U> { .. }

}

The user cannot create the model for these three classes in MagicDraw manually. They can only be created in
C# reverse engineering.
286 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Constraints
Figure 141 -- Generic Classes

How to manually create class A in the model, and Figure 12 shows the error message when trying to create
class A.

Figure 142 -- Creating Class A in the Model
287 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Constraints
Figure 143 -- Conflict Message Dialog

Code Generation for Partial Class

Generate the code without the round trip feature. Separated partial classes and all its child elements will be
generated into only one class code and one class file as the example below.

Code used for reverse engineer Code after generation

//Case #1

//The partial class is written into

one class file.

public partial class PartialA{

int a;

string actionA()

{

}

}

public partial class PartialA{

int b;

string actionB()

{

}

}

public partial class PartialA{

int a;

int b;

string actionA()

{return ;}

string actionB()

{return ;}

}

//Case #2

//The partial class is written into

separate class file.

//PartialA1.cs

public partial class PartialA{

int a;

string actionA()

{

}

}

//PartialA2.cs

public partial class PartialA{

int b;

string actionB()

{

}

}

public partial class PartialA{

int a;

int b;

string actionA()

{return ;}

string actionB()

{return ;}

}

288 Copyright © 1998-2015 No Magic, Inc..

C# CODE ENGINEERING
Constraints
Translation Constraints

Property Translation

As you may know that after version 12.1 MD C# will translate C#Property from operation to attribute. After the
translation is finished, the message window will show the following message:

This message occurred because there is no Operation as a metaclass of C#Property (changing of profile), but
this will not affect the functionality of reverse engineering and translation.

After the project has been saved and reopened, the message will not be appear any more.

//Case #3

//The partial class with inner class

public partial class PartialA{

public class B

{

int b;

}

}

public partial class PartialA{

int a;

string actionB()

{

}

public class C

{

int c;

}

}

public partial class PartialA{

int a;

string actionB()

{return ;}

public class B

{int b;}

public class C

{int c;}

}

Code used for reverse engineer Code after generation
289 Copyright © 1998-2015 No Magic, Inc..

CORBA IDL MAPPING
TO UML
NOTE: This functionality is available in Enterprise edition only.

CORBA IDL mapping to UML is based on UMLTM Profile for CORBATM Specification, Version 1.0, April 2002.
http://www.omg.org/technology/documents/profile_catalog.htm#UML_for_CORBA.

Differences between UML Profile for CORBA specification and mapping in MagicDraw is listed below.

• Constraints defined in UML Profile for CORBA specification are not checked in MagicDraw.

• Stereotype CORBAAnonymousFixed is introduced. It is used to represent anonymous fixed
types. Fixed types without names are mapped to inner classes with stereotype
CORBAAnonymousFixed. These classes are bound to CORBA::fixed classes.IDL Code:

This code is mapped to the following diagram:

MagicDraw presents a CORBA IDL diagram, which simplifies the creation of standard CORB IDL elements.
The loffowing elements are available in the CORBA IDL diagram:

<<CORBAAnonymousFixed>>

fixed_8_2

<<CORBAAnonymousFixed>>

fixed_8_4

<<CORBAStruct>>

baz

+high_scale : fixed_8_4
+low_scale : fixed_8_2

fixed

digits : short
scale : short

<8, 4>
<<binding>>

<8, 2>

<<binding>>
Copyright © 1998-2015 No Magic, Inc.290

http://www.omg.org/technology/documents/profile_catalog.htm#UML_for_CORBA

CORBA IDL MAPPING TO UML
CORBA Interface Implementation

You can select either the UML Interface or the UML Class as a base element for CORBA Interface. The default
element as a base element for CORBA Interfaces is as follows:

• UML Class. A class as a base element for CORBA Interfaces is in projects created on earlier
than MagicDraw version 17.0.1. The CORBA Interfaces are modeled as classes in these
projects.

Button Shortcut key Model Element

M CORBA IDL Module

I CORBA IDL Interface

V CORBA IDL Value

SHIFT+P Class by Pattern

G Generalization

Truncatable
Generalization

Value Support
Generalization

CORBA IDL
Association

I Interface
291 Copyright © 1998-2015 No Magic, Inc..

CORBA IDL MAPPING TO UML
• UML Interface. An interface as a base element for CORBA Interfaces is in projecs created on
MagicDraw version 17.0.1 and later. The CORBA Interfaces are modeled as interfaces in
these projects.

To set a base element for CORBA Interfaces

1. On the Options menu, click Project. The Project Options dialog opens.

2. In the Tab tree, select General project options.

3. In the General project options list, click the CORBA Interfaces implemented as value cell.
The list of available values opens.

4. Do one of the following:
• Select UML Class, to set a class as the base element for the CORBA Interface.

• Select UML Interface, to set an interface as the base element for the CORBA
Interface.

5. Click OK when you are done.

To change a base element for CORBA Interfaces

1. Select the CORBA Interface element in the Model Browser or its symbol on the diagram pane.

IMPORTANT! The generalization relationship can be used only between CORBA
Interfaces based on the same element. That is, you can use the gener-
alization relationship between CORBA Intarfaces based on a class or
between CORBA Interfaces based on an interface but not between
CORBA Interface based on a class and CORBA Interface based on an
interface.
292 Copyright © 1998-2015 No Magic, Inc..

CORBA IDL MAPPING TO UML
2. On the shortcut menu of the selected CORBA Interface, point to Refactor > Convert To, and
then do the following:

• Click Class, if an interface is the current base element for CORBA Interface.

• Click Interface, if a class is the current base element for CORBA Interface.

For more information about refactoring, see “Refactoring” in “MagicDraw UserManual.pdf”.

IMMPORTANT! Convert selected CORBA Interface only to the class or interface ele-
ment. Conversion to other elements changes the CORBA Interface
element to the selected element but not the element CORBA Interface
is based on.
293 Copyright © 1998-2015 No Magic, Inc..

WSDL
NOTE: This functionality is available in Enterprise edition only.

Reference http://www.w3.org/TR/2001/NOTE-wsdl-20010315

WSDL is an XML format for describing network services as a set of endpoints operating on messages
containing either document-oriented or procedure-oriented information. The operations and messages are
described abstractly, and then bound to a concrete network protocol and message format to define an
endpoint. Related concrete endpoints are combined into abstract endpoints (services).

MagicDraw UML supports WSDL code engineering: code generation, reverse and syntax checking. WSDL
diagram is dedicated for WSDL modeling.

WSDL Profile and XML Schema Profile are used in WSDL code engineering.

WSDL Services are defined using six major elements:

• types, which provides data type definitions used to describe the messages exchanged.

• message, which represents an abstract definition of the data being transmitted. A message
consists of logical parts, each of which is associated with a definition within some type system.

• portType, which is a set of abstract operations. Each operation refers to an input message and
output messages.

• binding, which specifies concrete protocol and data format specifications for the operations
and messages defined by a particular portType.

• port, which specifies an address for a binding, thus defining a single communication endpoint.

• service, which is used to aggregate a set of related ports.
Copyright © 1998-2015 No Magic, Inc.294

http://www.w3.org/TR/2001/NOTE-wsdl-20010315

WSDL
WSDL Mapping to UML elements
WSDL Mapping to UML elements

Defined stereotypes

Definitions

A WSDL document is simply a set of definitions. There is a definitions element at the root, and definitions
inside.

Example:

<definitions name="WSDLname" xmlns="http://schemas.xmlsoap.org/wsdl/"/>

Element Stereotype name Applies to Defined
TagDefinitions

Details

Definition WSDLdefinitions
Component extension - string

name - string

targetNamespace -
string

Message WSDLmessage
Class

Port Type WSDLporrtype
Interface

Binding WSDLbinding
Class extension - string

Port WSDLport
Instance

Specification

extension - string

Service WSDLservice
Component extension - string

Type WSDLtypes
Component extension - string

WSDLimport
ElementImport,

PackageImport

xmlns
ElementImport,

PackageImport

From the XML
Schema
Profile

XSDnamespace
Package From the XML

Schema
Profile

WSDLresponse
Parameter extension - string

WSDLoperation
Operation extension - string

WSDLpart
Property typing Attribute -

string

WSDLfault
Parameter extension - string

WSDLrequest
Parameter extension - string
295 Copyright © 1998-2015 No Magic, Inc..

WSDL
WSDL Mapping to UML elements
Reversed UML model example:

Import, namespace

Example:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/">
<import location="http://www.bbb.net/wsdl" namespace="http://www.aaa.org/

wsdl"/>
</definitions>

Reversed UML model example:

Messages

Messages consist of one or more logical parts. Each part is associated with a type from some type system
using a message-typing attribute. The set of message-typing attributes is extensible.

WSDL defines several such message-typing attributes for use with XSD:

• element. Refers to an XSD element using a QName.

• type. Refers to an XSD simpleType or complexType using a QName.

Other message-typing attributes may be defined as long as they use a namespace different from that of WSDL.
Binding extensibility elements may also use message-typing attributes.

Example:

<definitions name="StockQuote"
targetNamespace="http://example.com/stockquote.wsdl"
 xmlns:tns="http://example.com/stockquote.wsdl"
 xmlns:xsd1="http://example.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
296 Copyright © 1998-2015 No Magic, Inc..

WSDL
WSDL Mapping to UML elements
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <schema targetNamespace="http://example.com/stockquote.xsd"
 xmlns="http://www.w3.org/2000/10/XMLSchema">
 <element name="TradePriceRequest">
 <complexType>
 <all>
 <element name="tickerSymbol" type="string"/>
 </all>
 </complexType>
 </element>
 <element name="TradePrice">
 <complexType>
 <all>
 <element name="price" type="float"/>
 </all>
 </complexType>
 </element>
 </schema>
 </types>

 <message name="GetLastTradePriceInput">
 <part name="body" element="xsd1:TradePriceRequest"/>
 </message>

 <message name="GetLastTradePriceOutput">
 <part name="body" element="xsd1:TradePrice"/>
 </message>
</definitions>

Reversed UML model example:
297 Copyright © 1998-2015 No Magic, Inc..

WSDL
WSDL Mapping to UML elements
Types

The types element encloses data type definitions that are relevant for the exchanged messages. For maximum
interoperability and platform neutrality, WSDL prefers the use of XSD as the canonical type system, and treats
it as the intrinsic type system.

Example:

<definitions name="StockQuote"
 targetNamespace="http://example.com/stockquote.wsdl"
 xmlns:tns="http://example.com/stockquote.wsdl"
 xmlns:xsd1="http://example.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
<types>
 <schema targetNamespace="http://example.com/stockquote.xsd"
 xmlns="http://www.w3.org/2000/10/XMLSchema">
 <element name="SubscribeToQuotes">
 <complexType>
 <all>
 <element name="tickerSymbol" type="string"/>
 </all>
 </complexType>
 </element>
 <element name="SubscriptionHeader" type="uriReference"/>
 </schema>
 </types>
</definitions>

Reversed UML model example:
298 Copyright © 1998-2015 No Magic, Inc..

WSDL
WSDL Mapping to UML elements
Port types

A port type is a named set of abstract operations and the abstract messages involved.

The port type name attribute provides a unique name among all port types defined within in the enclosing
WSDL document.

An operation is named via the name attribute.

WSDL has four transmission primitives that an endpoint can support:

• One-way. The endpoint receives a message.

• Request-response. The endpoint receives a message, and sends a correlated message.

• Solicit-response. The endpoint sends a message, and receives a correlated message.

• Notification. The endpoint sends a message.

WSDL refers to these primitives as operations. Although request/response or solicit/response can be modeled
abstractly using two one-way messages, it is useful to model these as primitive operation types.

Example:

<definitions name="StockQuote"
 targetNamespace="http://example.com/stockquote.wsdl"
 xmlns:tns="http://example.com/stockquote.wsdl"
 xmlns:xsd1="http://example.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="SubscribeToQuotes">
 <part name="body" element="xsd1:SubscribeToQuotes"/>
 <part name="subscribeheader" element="xsd1:SubscriptionHeader"/>
 </message>

 <portType name="StockQuotePortType">
 <operation name="SubscribeToQuotes">
 <input message="tns:SubscribeToQuotes"/>
 </operation>
 </portType>

 <binding name="StockQuoteSoap" type="tns:StockQuotePortType">
 <soap:binding style="document" transport="http://example.com/smtp"/>
 <operation name="SubscribeToQuotes">
 <input message="tns:SubscribeToQuotes">
 <soap:body parts="body" use="literal"/>
 <soap:header message="tns:SubscribeToQuotes" part="subscribeheader"
use="literal"/>
 </input>
 </operation>
 </binding>

 <service name="StockQuoteService">
 <port name="StockQuotePort" binding="tns:StockQuoteSoap">
 <soap:address location="mailto:subscribe@example.com"/>
 </port>
 </service>

 <types>
 <schema targetNamespace="http://example.com/stockquote.xsd"
 xmlns="http://www.w3.org/2000/10/XMLSchema">
 <element name="SubscribeToQuotes">
 <complexType>
299 Copyright © 1998-2015 No Magic, Inc..

WSDL
WSDL Mapping to UML elements
 <all>
 <element name="tickerSymbol" type="string"/>
 </all>
 </complexType>
 </element>
 <element name="SubscriptionHeader" type="uriReference"/>
 </schema>
 </types>
</definitions>

Reversed UML model example:

Bindings

A binding defines message format and protocol details for operations and messages defined by a particular
portType. There may be any number of bindings for a given portType.

The name attribute provides a unique name among all bindings defined within in the enclosing WSDL
document.

A binding references the portType that it binds using the type attribute. Binding extensibility elements are used
to specify the concrete grammar for the input, output, and fault messages. Per-operation binding information as
well as per-binding information may also be specified.

Example:

<definitions name="StockQuote"
 targetNamespace="http://example.com/stockquote.wsdl"
 xmlns:tns="http://example.com/stockquote.wsdl"
 xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
 xmlns:xsd1="http://example.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="GetTradePriceInput">
 <part name="tickerSymbol" element="xsd:string"/>
 <part name="time" element="xsd:timeInstant"/>
 </message>

 <message name="GetTradePriceOutput">
 <part name="result" type="xsd:float"/>
 </message>

 <portType name="StockQuotePortType">
 <operation name="GetTradePrice">
 <input message="tns:GetTradePriceInput"/>
300 Copyright © 1998-2015 No Magic, Inc..

WSDL
WSDL Mapping to UML elements
 <output message="tns:GetTradePriceOutput"/>
 </operation>
 </portType>

 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/
>
 <operation name="GetTradePrice">
 <soap:operation soapAction="http://example.com/GetTradePrice"/>
 <input>
 <soap:body use="encoded" namespace="http://example.com/stockquote"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded" namespace="http://example.com/stockquote"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>>
 </binding>

 <service name="StockQuoteService">
 <documentation>My first service</documentation>
 <port name="StockQuotePort" binding="tns:StockQuoteBinding">
 <soap:address location="http://example.com/stockquote"/>
 </port>
 </service>
</definitions>

Reversed UML model example:
301 Copyright © 1998-2015 No Magic, Inc..

WSDL
WSDL Mapping to UML elements
Services

A service groups a set of related ports together.

The name attribute provides a unique name among all services defined within in the enclosing WSDL
document.

Ports within a service have the following relationship:

• None of the ports communicate with each other (e.g. the output of one port is not the input of
another).

• If a service has several ports that share a port type, but employ different bindings or addresses,
the ports are alternatives. Each port provides semantically equivalent behavior (within the
transport and message format limitations imposed by each binding).

• By examining it's ports, we can determine a service's port types. This allows a consumer of a
WSDL document to determine if it wishes to communicate to a particular service based whether
or not it supports several port types.

Example:

<definitions name="StockQuote"
 targetNamespace="http://example.com/stockquote.wsdl"
 xmlns:tns="http://example.com/stockquote.wsdl"
 xmlns:xsd1="http://example.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <schema targetNamespace="http://example.com/stockquote.xsd"
 xmlns="http://www.w3.org/2000/10/XMLSchema">
 <element name="TradePriceRequest">
 <complexType>
 <all>
 <element name="tickerSymbol" type="string"/>
 </all>
 </complexType>
 </element>
 <element name="TradePrice">
 <complexType>
 <all>
 <element name="price" type="float"/>
 </all>
 </complexType>
 </element>
 </schema>
 </types>

 <message name="GetLastTradePriceInput">
 <part name="body" element="xsd1:TradePriceRequest"/>
 </message>

 <message name="GetLastTradePriceOutput">
 <part name="body" element="xsd1:TradePrice"/>
 </message>

 <portType name="StockQuotePortType">
 <operation name="GetLastTradePrice">
 <input message="tns:GetLastTradePriceInput"/>
 <output message="tns:GetLastTradePriceOutput"/>
 </operation>
 </portType>

 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
302 Copyright © 1998-2015 No Magic, Inc..

WSDL
WSDL Mapping to UML elements
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/
http"/>
 <operation name="GetLastTradePrice">
 <soap:operation soapAction="http://example.com/GetLastTradePrice"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

 <service name="StockQuoteService">
 <documentation>My first service</documentation>
 <port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">
 <soap:address location="http://example.com/stockquote"/>
 </port>
 </service>

</definitions>

Reversed UML model example:
303 Copyright © 1998-2015 No Magic, Inc..

WSDL
WSDL Mapping to UML elements
Ports

A port defines an individual endpoint by specifying a single address for a binding.

The name attribute provides a unique name among all ports defined within in the enclosing WSDL document.

The binding attribute refers to the binding using the linking rules defined by WSDL.

Binding extensibility elements are used to specify the address information for the port.

A port must not specify more than one address.

A port must not specify any binding information other than address information.

Example:

<definitions name="HelloService"
 targetNamespace="http://www.ecerami.com/wsdl/HelloService.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.ecerami.com/wsdl/HelloService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <message name="SayHelloRequest">
 <part name="firstName" type="xsd:string"/>
 </message>
 <message name="SayHelloResponse">
 <part name="greeting" type="xsd:string"/>
 </message>

 <portType name="Hello_PortType">
 <operation name="sayHello">
 <input message="tns:SayHelloRequest"/>
 <output message="tns:SayHelloResponse"/>
 </operation>
 </portType>

 <binding name="Hello_Binding" type="tns:Hello_PortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHello">
 <soap:operation soapAction="sayHello"/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:helloservice"
 use="encoded"/>
 </input>
 <output>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:helloservice"
 use="encoded"/>
 </output>
 </operation>
 </binding>

 <service name="Hello_Service">
 <documentation>WSDL File for HelloService</documentation>
 <port binding="tns:Hello_Binding" name="Hello_Port">
 <soap:address
 location="http://localhost:8080/soap/servlet/rpcrouter"/>
 </port>
 </service>
</definitions>
304 Copyright © 1998-2015 No Magic, Inc..

WSDL
WSDL Mapping to UML elements
Reversed UML model example:
305 Copyright © 1998-2015 No Magic, Inc..

	Contents
	Introduction
	Overview
	Code Engineering Sets
	Generating Code
	Code Generation for Set
	Code Generation for Model Element

	Reverse
	Rules of the association or attribute creation on reverse

	Global options for Code Engineering
	Code engineering options for all sets in your project
	Java Documentation Properties dialog box
	Round Trip
	Type Mapping Table

	Files of Properties

	Java Code Engineering
	Introduction
	Abbreviations
	References
	Java support in MagicDraw

	Java Mapping to UML
	Java Profile
	Java referenced types
	Mapping to UML rules

	Java CE Properties
	Java Reverse Properties
	Java Language Options

	Method Implementation Reverse
	Sequence Diagram from Java Source Wizard

	C++ Code Engineering
	Abbreviations
	References
	C++ ANSI Profile
	Data Types
	Stereotypes

	Mapping
	Class
	Base Class Definition
	Class Member Variable
	Class Member Function
	Class Constructor/Destructor
	Variable
	Variable modifiers
	Variable extern
	Variable default value
	Const Volatile qualified type
	Function
	Function variable-length parameter list
	void parameter
	Register parameter
	Function modifiers
	Function pointer
	Function operator
	Exception
	Visibility
	Static members
	Friend declaration
	Struct
	Union
	Enumeration
	Typedef
	Namespace
	Global functions and variables
	Class definition
	Class Template Definition
	Function Template Definition
	Default template parameter
	Template instantiation
	Partial template instantiation
	Template specialization
	Forward class declaration
	Include declaration

	Conversion from old project version
	Translation Activity Diagram
	Language properties
	Type Modifiers
	Stereotypes
	Tag Value
	Constructor and Destructor name
	Data type

	DSL customization
	Operation and Constructor
	Attribute
	Generalization
	Enumeration literal
	Namespace
	Template parameter

	Profile constraints
	Operation
	Constructor
	Destructor
	Global
	Typedef
	Friend

	New in MagicDraw 12.1
	CG Properties Editor
	Roundtrip on #include statement and forward class declaration
	Project Option and Code Generation Options

	New in MagicDraw 14.0
	Support C++ dialects
	CG Properties Editor

	New in MagicDraw 16.8
	Doxygen-after-member documentation
	@see on documentation
	Symbian macro

	Tutorial
	Type Modifier
	Global Member
	Typedef
	Function Pointer
	Friend
	How to specify component to generate code to
	@see support for import-code-only mode
	Navigable short cut from model link in documentation

	Project constraint
	Working with QT

	Microsoft C++ Profiles
	Microsoft Visual C++ Profile
	C++/CLI Profile
	C++ Managed Profile
	Modeling with Microsoft Specific Profiles

	C# Code Engineering
	C# 2.0 Description
	Generics
	Anonymous Methods
	Partial Types
	Nullable Types
	Accessor Declarations
	Static Class
	Extern Alias Directive
	Pragma Directives
	Fix Size Buffer

	C# 3.0 Description
	Extension Methods
	Lambda Expression Conversion

	C# Profile
	Stereotype
	Data Type

	Conversion from old project version
	Translation Activity Diagram

	Mapping
	Language Properties Mapping
	C# Properties Customization
	Using Directive Mapping

	Constraints
	Mapping Constraints
	UML Constraints
	Translation Constraints

	CORBA IDL Mapping to UML
	CORBA Interface Implementation

	WSDL
	WSDL Mapping to UML elements
	Defined stereotypes
	Definitions
	Import, namespace
	Messages
	Types
	Port types
	Bindings
	Services
	Ports

