Understand

Source Code Analysis & Metrics #

User Guide and
Reference Manual

Version 3.0
September 2012

SciTools

Maintain your # Software

Scientific Toolworks, Inc.
249 East Tabernacle, Suite 200
St. George, UT 84770

Copyright © 2012 Scientific Toolworks, Inc. All rights reserved.

The information in this document is subject to change without notice. Scientific Toolworks,
Inc., makes no warranty of any kind regarding this material and assumes no responsibility
for any errors that may appear in this document.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the Government is subject to re-
strictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Com-
puter Software clause at DFAR 252.227-7013 (48 CFR). Contractor/Manufacturer is
Scientific Toolworks, Inc., 249 East Tabernacle, Suite 200, St. George, UT 84770.

NOTICE: Notwithstanding any other lease or license agreement that may pertain to or ac-
company the delivery of this restricted computer software, the rights of the Government re-
garding use, reproduction, and disclosure are as set forth in subparagraph (c)(1) and (2) of
Commercial Computer Software-Restricted Rights clause at FAR 52.227-19.

Part Number: USTAND3.0-GEN-UG-629 (9/12)

Chapter 1

Chapter 2

Chapter 3

Contents

Introduction

Whatis Understand?, 13
Licensing ISSUBSttt 14
Languages Supported 15
For Those Who Don't Liketo Read Manuals 16

Parts and Terminology

Using Understand Windows 18
Understand Terminology 19
Parts. . .. 20
StartingUnderstand 21
Other Waysto Run Understand. 22
Context Menus Are Everywhere. 23
Quickly Find Things in Your Source 25
Entity Filter. 25
Entity Locator. 26
Instant Search 26
FindinFiles i i 27
Favorites 27
Information Browser 28
Source Eitor 29
Architecture Browsert 30
Graphical VIiews e 31
ASClland HTML Reportso 32
APIs for Custom Reporting.ot 32

Configuring Your Project

About Understand Projects. i 34
The Understand Project Database. 34
Creatinga New Project. 35
New Project Wizard 35
Project Configuration Dialog., 39
Languages Category 41
Files Category.o e 42
Adding Directories 43
AddingFiles 44
Removing Directoriesand Files 45
SettingOverrides 45
Scanning Watched Directories. 46
Setting File Portability 47
File Types . . . oo e 48
File Options. i 49

Understand 3.0 User Guide and Reference Manual

Scheduled Activities 50

MetriCS .. 52
Metrics > Selected Category 53
REPOIS . . . 54
Reports > OQutput Categoryccovvvn.... 54
Reports > Options Category.ovv i .. 55
Reports > Selected Category. 56
Visual Studio. 57
ANNOtatioNS o 59
AdaOptions 61
Ada>MacrosCategoryttt 63
Assembly Options. 65
COBOL OptioNS . .o i oo e e 67
COBOL > Copybooks Category. 67
CH+OPLONS . ..o 69
C++>lIncludesCategoryo 71
C++ >Includes > Auto Category 72
C++ > Includes > Ignore Category. 72
C++ > Includes > Replacement Text 73
C++>Macros Category. 73
C++ > Macros > Undefines Category. 75
C++ (Strict) OptionNso 76
C++ (Strict) > Includes Category 77
C++ (Strict) > Includes > Frameworks Category 78
C++ (Strict) > Includes > Prefix Headers Category 79
C++ (Strict) > Macros Category oove e 79
CHOPLONS . ..o 79
FORTRAN Options. . .. vttt e e 80
Fortran>Includes Category. 82
Other Fortran Categories. 82
Java OptioNS. oot 83
Java > Class Paths Category. 83
JOVIAL OpPtioNS . . o oo e 85
Jovial > 1ICopy Category.t 86
Pascal Options 87
Pascal > Macros Category. 88
Pascal > Namespaces Category 88
Pascal > Standard Library Paths Category 88
Pascal > Search Paths Category. 89
PLIMOPLIONS 89
PL/M>Includes Categoryoiiiiune... 90
Python Options. 91
Python > Imports Category 91
VHDLOPLIONS. 91
Web Options. e 92
Setting General Preferences 93
General Category.o oo 94

Understand 3.0 User Guide and Reference Manual

Chapter 4

User Interface Category.ooiv ... 96

User Interface > Lists Category 97
User Interface > Alerts Category 98
User Interface > Windows Category 99
Key Bindings Category.cooiii e 100
Analyze Category.co vt 101
Configure Category, 102
Command Window Category, 102
Portability Category 103
Dependency Categoryooviii e 104
EditorCategory i 105
Editor > Advanced Category 107
Editor > Styles Categoryc. ... 110
Editor > Navigation Category. 111
Editor > External Editor Category. 112
Graphs Categoryt 113
Analyzingthe Code. i 114
Using the Missing Header Files Tool 116
Using the Undefined Macros Tool 118
Converting an Understand 1.4 Project 119

Exploring Your Codebase

PLEASERIGHT CLICK e 121
Various Windows Explained... 122
Entity Filter 123
Using the Filter Field 124
Customizing the Display. 124
Root Filters. 124
Information Browser 125
Drilling Down A Relationship 126
Displaying More or Less Information 126
Searching the Information Browser 127
Syncing the Information Browser. 127
Visiting Source Code i 128
Visiting References 128
Viewing Metrics i 129
Saving and Printing Information Browser Text. 129
Entity History 130
Project BrOWSEr . ..ot 130
Exploringa Hierarchy 132
Dependency Browser 133
Favorites. 135
Creating a Favorite Entity. 135
Creating a Favorite View 136
Using a Favorites Groupo 136
Creating a Plain Text Favorite 138

Understand 3.0 User Guide and Reference Manual

Chapter 5

Chapter 6

Searching Your Source

Searching: AnOverview i 140
InstantSearch. 141
FindinFiles 143
FindResults 145
ReplaceinFiles 146
Entity Locator 148
ResizingColumns 148
Long versus ShortNames 148
ColumnHeaders 149
ChoosingColumns. i, 149
Filteringthe List 149
Finding Windows 152
Source Visiting History o 153
ViewMenuCommands 153
Displaying Toolbars 154
SearchinginaFile 155
Find Nextand Previous, 155
Find&Replace............ 155
Contextual Information Sidebar 156

Editing Your Source

Source Eitor 158
Scope List ... 159
Status ICoNS 159
Status Line. ... 159
Selectingand Copying Text. 160
Browse Mode. 160
ContextMenu. 161
HoverMenu 161

Saving Source Code.t 162

Other Editing Features 163
Bracket Matching L. 163
Foldingand Hiding 163
Splitting the Editor Window 164
Commenting and Uncommenting. 164
Fixing Indentation. 164
ChangingCase i, 164
Line Wrappingo 165
Insert and Overtype Modes 165
Sorting Lines Alphabetically. 165
Keyboard Commands oo 165
Recording and Replaying Macros 165
Creatingand Opening Files 165
Bookmarking 166
Managing Source EditorTabs 167
Changing the Source Code FontSize 167

ANNOtALIONS. . . .o 168

Understand 3.0 User Guide and Reference Manual

Chapter 7

Chapter 8

Addingan Annotation. 168

Editing an Annotation. 170
Deletingan Annotation. 170
Managing Annotation Files and Display.............. 170
Searching Annotations. 171
Filtering Annotations 172
Managing Orphaned Annotations 173
Printing Source Views. 174

Architecting Your Codebase

About Architectures 176
Using the Architecture Browser 177
Exploring Architectures 177
Viewing Architecture Dependency Graphs................ 179
Graph Customizer Toolbar. 180
Graph CustomizerFields 180
Viewing Architecture Metrics. 183
Managing Architectures 184
Creating an Architecture. 185
Using the Architecture Wizard 186
Building an Architecture 187
Using XML to Manage Architectures 189
Exporting Architecturesto XML 189
Importing XML Architectures 189

Using Reports

Configuring Reports 191
Customizing ReportColors 193
Generating Reports i 193
Viewing Reports 194
An Overview of Report Categories. 195
Augment with the PERLorCAPI 196
Cross-Reference Reports. 197
Data Dictionary Report., 197
Program Unit Cross-Reference Report 198
File ContentsReport 198
Object Cross-Reference Report. 199
Type Cross-Reference Report. 199
Class and Interface Cross-Reference 199
Macro Cross-Reference., 200
Include File Cross-Reference. 200
Exception Cross-Reference Report 201
Structure Reports 202
Declaration Tree. e 202
ClassExtend Tree 203
Invocation Tree Report. 203
Simple Invocation Tree Report. 203
With Tree Report 204

Understand 3.0 User Guide and Reference Manual

Simple With TreeReport 204

Generic Instantiation Report 204
Renames Report i 204
Import Report. e 204
Quality Reports.o 205
Program Unit Complexity Report 205
FORTRAN Extension Usage Report 206
Implicitly Declared Objects Report. 207
Uninitialized Items 207
Unused Variables and Parameters 207
Unused Objects Report 207
Unused Types Report 207
Unused Program Units Report. 208
Uses Not Needed Report. 208
Withs Not Needed Report 208
MetricsS REPOItS. . . . oo 209
Project Metrics Report 209
Class Metrics Reporto, 210
Class OO Metrics Report.o, 210
Program Unit Metrics Report 210
File Metrics Report. 211
File Average Metrics Report. 212
Chapter 9 Using Metrics
ADOUt MEtriCSo 214
Metrics Summary i e 215
MetricsS BrOWSEro e 216
Exporting MetricSstoHTML 217
Exporting Metricstoa CSV File 218
Configuring Metric Charts. 220
Using the Metrics Treemap.o o oo e e e 223
Exporting Dependency Metrics. 225
Exporting Dependenciestoa CSV File 226
Exporting Dependencies to a CSV Matrix File. 227
Exporting Dependencies to Cytoscape 227
Chapter 10 Using Graphical Views
Project Overview Graphics. 229
Graphical View Browsers i 231
Hierarchy Views i i 232
Structure VIEWSo 233
General Commands for Using Graphical Browsers. 233
Filtering Out Entities. 235
Reuse Checkbox 236
Sync Checkbox 236
Graph Options 236
Types of VIEWSo 237
Hierarchy View Types 237

8 Understand 3.0 User Guide and Reference Manual

Hierarchy View Examples 238

Structure View TypesS ot 240
Structure View Examples. 241
Graphical Notation 245
Controlling Graphical View Layout 245
CalledbyMenu i, 246
Constants MeNU.ttt 246
Default MembersMenuciiin.. .. 246
DependentOf Menu., 246
DependentMenu 246
Depth . .. 246
Duplicate SubtreesMenu. 246
Expand Recursive Notes 247
Expand Repeated Notes 247
ExtendedByMenu.................. 247
Extends Menu 247
External FunctionsMenu 247
FilenameMenu 247
Function PointerMenu. 247
GlobalsMenu. i 247
ImplementsMenu. i, 247
Implemented ByMenu........................... 248
Imports Menu. 248
IncludedByMenu 248
IncludesMenu 248
Inherits Menu 248
Inherited By Menu, 248
IntrinsicMenu. 248
Invocations MenU. oov vttt 249
LayoutMenu 249
Level MeNU. e 250
Locals Menu.o ittt e 250
MembersMenu 250
Name Menu i 250
ObjectsMenu. i 251
Operators Menu e 251
ParametersMenu. i 251
Private MembersMenu 251
Protected MembersMenuc ... 251
PublicMembersMenuc ... 251
RenamesMenu 251
Routines Menu. 251
ScaleMenu 252
SOt MENU. . ..o e 252
Spacing Menut e 252
SAIMENU e 252
StaticMenu e 252
TextMenu e 252
TypesS Menu 253
Typetext Menu 253

Understand 3.0 User Guide and Reference Manual

Chapter 11

Chapter 12

Chapter 13

Unknown Menu
Unresolved Menu.
Usedby Menu.c i
Uses MenuU. e
VariablesMenu i
Withs Menu
WithBysMenu.

Controlling Cluster Graph Layout

Saving Graphical Views
Saving ViewstoFiles............................
Saving Views as VisioFiles
Saving Viewsas DOTFiles

Printing Graphical Views. o ..
Graphical View Printing

Using CodeCheck for Standards Verification
About CodeCheck. i

Runninga CodeCheck
FilesTab
ChecksTab

Viewing CodeCheck Results
Usingthe ResultLog,
Using the Resultsby File Tab
Using the Results by Check Tab
Using the Result Locator
Usingthe Result Treemap,
Printing and Exporting Results.
Ignoring Checks and Violations

Using CodeCheck Configurations.

Writing CodeCheck Scripts. oo
Installing Custom Scripts i

Comparing Source Code

Comparing FilesandFolders
Comparing Entities
Comparing Text e e e

Exploring Differences
Code Comparisonoiiiiiiennannann.
Patch File.
Difference List

Running Tools and External Commands

Configuring Tools o
Variables

Adding Tools to the ContextMenus
Adding Toolstothe ToolsMenu.
Adding Toolstothe Toolbar

10

Understand 3.0 User Guide and Reference Manual

Chapter 14

Chapter 15

Importing and Exporting Tool Commands 294
Running External Commands. 295

Command Line Processing

Using the und Command Line 298
GettingHelponUnd. 300
Creatinga New Project, 300
Adding FilestoaProject 300
Removing Items froma Project 301
Getting Information abouta Project 301
Modifying Project Settings 301
Importing intoa Project 302
Exporting fromaProject. 302
Analyzinga Project 303
GeneratingReports i 303
Generating Metrics. 303
Using CodeCheck 304
Running Perl Scripts 304
CreatingalistofFiles........................... 304

Using the understand Command Line 305

Using Buildspy to Build Understand Projects 306

Quick Reference

FileMenu e 308
EditMenu 309
SearchMenu 309
View Menu 310
Project MenuU.t 310
Reports Menu 311
MetricS MeNU 311
GraphsMenu 312
CodeCheck Menu. i i i e 312
Annotations MeNU.o 312
Tools MenuU. 313
Window Menu. e 314
Help Menu 314

Understand 3.0 User Guide and Reference Manual

11

P

Chapter 1 Introduction

This chapter introduces the Understand software.

This manual assumes a moderate understanding of the programming language in
which your project is written.

This chapter contains the following sections:

Section Page
What is Understand? 13
Licensing Issues 14
Languages Supported 15
For Those Who Don't Like to Read Manuals 16

12 Understand 3.0 User Guide and Reference Manual

What is Understand?

What is Understand?

Understand is a source code analysis and metrics tool. It is designed to help maintain
and understand large amounts of legacy or newly created source code. It provides a
cross-platform, multi-language, maintenance-oriented IDE (interactive development

environment).

The source code analyzed may include C, C++, C#, Objective C/Objective C++, Ada,
Java, Pascal/Delphi, COBOL, JOVIAL, VHDL, FORTRAN, PL/M, Python, PHP, HTML,
CSS, JavaScript, and XML.

It offers code navigation using a detailed cross-referencing, a syntax-colorizing “smart”
editor, and a variety of graphical reverse engineering views.

Understand - C:\Users\¥vonne\AppData\Roaming\SciTools\sample\zlib\ziib.udb - ram Fi iTools\sample\zlib\minigzip.c o=k
(4 File Edit Search View Project Reporis Mefrics Graphs Tools Window Help HEE
Boyienll)2 cxlBlHI0:07 4o 12l @ 0| 83 O @ eror 2 searcn 7
E - C++ Fﬂe;iﬂl’i of 5455 entn‘.e;: ﬁ & E Getting Started » T minigzip Cx‘l& Called By Graph :errorx] z
g Show: | C++ Files > | = = i
[} * Displ d 1t
b - L '1Splay error message an eX1
o &7
£ main. - void EZzed(msg)
N minigzip.c const char *msg;
£ | miniunz.c =
%' minizip.c fprintf(stderr, "%s: %=\n", prog, msg):
W | mman.h exit(l);
i || mztools.c 1
I3 i s
£ | matcolsn (|
o |f ostream = 7+ |E
5 puffc L * Compress input to output then close both files.
B
5 | puffh */
K
; setjmp.h il
— void gz_compress(in, out)
~ Information Browser x FILE *in;
- . o zFile out;
G ~)~ ¢ |[V] Sync [] FileSyne | = =N g
File minigzip.c) E local char buf [BUFLEN] :
Fullname: C:\Program Files (x88)\SciTools\zar| R .
4 Local int len:
[> Macros int err;
4 Global
[» Varial?les H] #ifdef USE_MMRP
4 Functions =] /* Try first compressing with mmap. If mmap fails (minigzip us
error = K
file_compress b * pipe), use the normal fread loop.
file_uncompress B */
gzZ_COMmpress if (gz_compress mmap(in, out) = Z_ OK) return;
GZ_UNCOMpress I gendif
main
= for (::
> Includes D (’_{ R R _ .
' Externals Used L | len = (int)fread(buf, 1, sizeof(buf), in):
[Metrics E = if (ferror(in)) {
. Architacturss B AT T Fras AT - o
“ I 4 [I | *

Line: 87 Column: 11 | AW | C++

Understand creates a repository of the relations and structures contained within the
software project. The repository is then used to learn about the source code.

Understand 3.0 User Guide and Reference Manual

13

Chapter 1: Introduction

Understand has analysis features that help you quickly answer questions such as:

What is this entity?
Where is it changed?
Where is it referenced?
Who depends on it?
What does it depend on?

Understand has architecture features that help you create hierarchical aggregations of
source code units. You can name these units and manipulate them in various ways to
create interesting hierarchies for analysis.

Licensing Issues

To view or change the license being used, choose Help->Licensing from the menus,
select the license you want to use, and then restart Understand.

i N
Licensing _‘ &lﬂ

Product Licensing

Please zelect the license vou wish to use.

Langﬁages l Location l Quantity
Any Single Developer 1 Available
(Local)
i |
[D&I&t&hll Lic&ns&s] ’Adrd a Lic&ns&] [] Show Users "‘..;

For more information, or licensing support please visit our web site, or email support.

| ok || cance |

N —

If you have multiple licenses, you can select the one you want to use here. If you have
a new license key, click Add a License and choose to add either an evaluation or
Single Developer License (SDL) or the name of a license server.

If you are using a floating license, you can check the Show Users box to see the
currently active users. Click the double-arrow icon to refresh the license use
information.

14

Understand 3.0 User Guide and Reference Manual

Languages Supported

Languages Supported

The following list provides a brief overview of the language versions and/or compilers
that Understand supports:

Ada: Understand supports Ada83, Ada95, and Ada05 code, separately, or in
combination.

Assembly: Assembly code for Freescale Coldfire microprocessors and the
Motorola 680000 (68K) family is supported.

C/C++: Understand analyzes K&R or ANSI C source code and most constructs of
the C++ language. Understand works with any C compiler, and has been tested with
most of the popular ones. Note that C++ templates are not yet supported.

Objective C/Objective C++: Understand provides a strict analyzer option that
supports these languages.

C#: Understand supports C#.

COBOL: Understand supports the Ansi85, Micro Focus, AcuCobol, and IBM
compilers.

FORTRAN: Understand supports FORTRAN 77, FORTRAN 90, FORTRAN 95, and
FORTRAN 2003, in both free and fixed format. Extensions supported include Harris
FORTRAN and DEC FORTRAN. We often expand Understand to support common
compiler extensions. If you find that the compiler extensions you are using are not
currently supported, contact us at support@scitools.com.

Java: Understand supports most of JDK 1.3, 1.4, 5, and 6. Specifically, the generics
introduced in JDK 5 are not currently supported. Source code containing generics
may be analyzed but generics information will be ignored.

JOVIAL: JOVIAL73 and JOVIALS3 are supported.

Pascal: Understand supports all versions of Borland's Delphi language and
Borland's Turbo Pascal language. It also supports ISO 7185: 1990 (also known as
Unextended Pascal) with DEC Pascal extensions. You can also enable support for
Ingres embedded SQL statements.

PL/M: The standard version for PL/M 80/86 is supported.

Python: Understand supports both Python 2.x and 3.x.

VHDL: Versions VHDL-87, VHDL-93, and VHDL-2001 are supported.
Web: HTML, PHP, CSS, Javascript, and XML files are supported.

For information about support for a specific language syntax, search the Build Log on
the Scientific Toolworks website (http://www.scitools.com/support/buildLogs.php) and
the Forum (http://www.scitools.com/support/forum/).

Understand 3.0 User Guide and Reference Manual 15

http://www.scitools.com/support/buildLogs.php
http://www.scitools.com/support/forum/
mailto:support@scitools.com

Chapter 1: Introduction

For Those Who Don’t Like to Read Manuals

If you are like many engineers at Scientific Toolworks, you like to just dig in and get
going with software. We encourage that, or at least we are pragmatic enough to know
you will do it anyway! So feel free to use this manual as a safety net, or to find the less
obvious features. However, before you depart the manual, skim the next chapter for tips
on effectively utilizing what Understand has to offer.

Here are some places other than this manual to look for advice:

Use the links in the Getting Started display (Help > Getting Started from the
menus)

Choose Help > Help Content from the menus.
Use Help > Example Projects to play with sample code.
Choose Help > Frequently Asked Questions to see the FAQ list on our website.

Choose Help > View SciTools Blog to read the blog on our website. You can get
the latest blog topics by clicking the Refresh button.

For videos of various features, see http://www.scitools.com/support/videos.php.

For more advanced users, try these information sources:

Choose Help > About Understand to see which build you are currently running.

See http://www.scitools.com/support/buildLogs.php to search through the build logs.
Use the link on that page to “Sign up to receive via Email” new build notes and build
announcements.

See http://www.scitools.com/support/forum/ to read and ask questions in our Forum.
Choose Help > Key Bindings for keystroke help.

See http://www.scitools.com/documents/metrics.php for details about specific
metrics.

Choose Help > Perl API Documentation and Help > Python API Documentation
for help on scripting.

16

Understand 3.0 User Guide and Reference Manual

http://www.scitools.com/support/buildLogs.php
http://www.scitools.com/support/forum/
http://www.scitools.com/documents/metrics.php
http://www.scitools.com/support/videos.php

P

chapter2 Parts and Terminology

This chapter helps you put Understand to good use quickly and easily by describing the

basic windows in Understand.

This chapter contains the following sections:

Section Page
Using Understand Windows 18
Understand Terminology 19
Starting Understand 21
Context Menus Are Everywhere 23
Quickly Find Things in Your Source 25
Information Browser 28
Source Editor 29
Architecture Browser 30
Graphical Views 31
ASCIl and HTML Reports 32
APIs for Custom Reporting 32

Understand 3.0 User Guide and Reference Manual

17

Chapter 2: Parts and Terminology

Using Understand Windows

Understand has a main window and many smaller areas that open within the
Understand application window. You can arrange these areas in your workspace to
meet your needs.

Title Bar Pushpin Dock/Undock
Previous :
\a - 1 | Sync [| File Sync | Close

Next /I’l‘l{ioﬂ getoct A\ Window

Defined in: untgz.c Drop-down
Return Type: int
=l Parameters \Sliding
char *p b Frame

« Title Bar: You can drag the title bar of an area around the main window. If you move
to the edge of the main window, a docking area expands. If you drop the area there,
it “docks” to the edge of the main window.

» Pushpins and Drawers: Click the ¢ icon to move an area to a tab along the
same edge of the main window to which this area was docked. This is a “drawer”
that opens automatically if you point your mouse at the tab title. The drawer closes if
you move your mouse away from the area without clicking on it or if you click the title
tab of the currently open drawer.

Click the |<[@ icon to “pin” a drawer open. Pinned drawers have a title bar and title
bar icons like the ones shown above.

e Dock/Undock: Click the @ icon to change the area to an undocked window. Click
the icon again in an undocked window to return to a docked area.

* Close: Click the “X” icon to close the area or undocked window.

e Drop-down: Click the icon to see the context menu for this area. Right-clicking
an item within an area usually displays a context menu specific to that item.

» Sliding Frame: You can drag the frames between window areas to change their
sizes.

» Previous and Next: Each area type has different icons below the title bar. For the
Information Browser area shown, you can browse through the history of entities
viewed. For other areas, you will see other icons.

18 Understand 3.0 User Guide and Reference Manual

Understand Terminology

Understand Terminology

Before continuing with the rest of this manual, please take a moment to familiarize
yourself with Understand’s terminology. Doing so will make reading the manual more
helpful and put you on the same sheet of music as the technical support team should
you need to email or call.

Architecture: An architecture is a hierarchical aggregation of source code units
(entities). An architecture can be user created or automatically generated. Architectures
need not be complete (i.e an architecture's flattened expansion need not reference
every source entity in the database), nor unique (that is, an architecture's flattened
expansion need not maintain the set property).

Database: The database is where the results of the source code parsing, as well as
project settings, are stored. By default, this is a project’s “.udb” file.

Entity: An Understand “entity” is anything it has information about. In practice this
means anything declared or used in your source code and the files that contain the
project. Subroutines, variables, and source files are all examples of entities.

Project: The set of source code you have analyzed and the settings and parameters
chosen. A “project file” contains the list of source files and the project settings.

Relationship: A particular way that entities relate to one another. The names of
relationships come from the syntax and semantics of a programming language. For
instance, subroutine entities can have “Call” relationships and “CalledBy” relationships.

Script: Generally a Perl script. These can be run from within Understand’s GUI, or
externally via the “uperl” command. The Understand Perl API provides easy and direct
access to all information stored in an Understand database.

Understand 3.0 User Guide and Reference Manual 19

Chapter 2: Parts and Terminology

Parts The following figure shows some commonly used main parts of the Understand

graphical user interface (GUI):

Filters and

Browsers roolbar

Menu Bar

Source

Editor Graphical View

inapi.h

iowin3z.c L
iowin32.h

limits.h
malloc.h
math.h

minigzip.c

inapi.c - int main

@n C:\Program Files (xm}\Sc‘l#mmple\leb\mwnigzip.c
void file compress OF((char *file))

CF(({int argc,

iomanip.h =
* Display srror message and =xit

fprintf(stderr, H prog
exit (1) ; Find In:

Find:

File Types:

istream void -(msg)

const char *msg;

Case Sensitive Match Whole Words

Search Type: | Fixed String

[Project Files

Semantic Options
Only Show Results In:

[] comments

FFunction error

Defined in: minigzip.c

[] Strings

Return Type: void
4 Parameters
const char *meg
[» Overloads
4 Calls
exit

fprintf 4ﬁ|e_u ncompress
> Called By

4 Globals Used
prog
[» Referen

[] statements
[] Inactive Code

[» Metrics

Info

Browser Status Line

Find in Files Dialog

Document
Area

20

Understand 3.0 User Guide and Reference Manual

Starting Understand

Starting Understand

When you install Understand on Windows, a command to launch the software is added
to your Windows Start menu in the SciTools folder.

When you start Understand, you see the Getting Started tab in the Understand
window. To begin creating a new project, click New Project... and see Creating a New
Project on page 35 for details.

If you've used a project recently, it is listed in the Getting Started tab, and you can click
to open it. If the existing project you want to open isn't listed, click Open Project... and
browse for it.

K& Getting Started

Source Code Analysis &Metrics

SciToo ,Is Understand)&

Maintain your

Recent Projects MNews & Announcements

CAlUzersVvonne\Applata\Reaming\SciTocls\sample\zlib\zlib. udb . Forum Grand Opening (ag

CAUzersWvonne\AppData\Roaming\SciTools\zample\fastgrepifastgrep.udb > Build 515 available - Mon,
C\UsersVrvenne\AppData\Roaming\SciTools\sample\fdas\fdas. udb » Build 513 ready for downl
» Build 512 Awvailable - Fri,
Mew Project... > Code Refactoring - Tue, 04
Open Project... » Build 511 Awvailable - Fri, 0z

» Line and Statement Counti
» Understand 2.5 Build 510/
» 2.5 Upgrade Free if Mainte

Getting Started Get New Version! > Awesome Mew Graph - T

» Understand powers metric
What's Mew In Understand 2.57 » Support Forum temporariby
Understand Help... » Understand 2.5 - Tue, 091

Understand FAQ. » Understand on Facebook -

Understand Perl APl Help...
SciToolz Support...

Licensing... Wizt SciTools Blog...

: Visit SciToolz Website. ..
Open Sample Projecr

Sign Up For Build Motices. ..

You can also choose File > Open > Project and File > Recent Projects from the
menus to open projects.

If you are learning about Understand, use the links in the Getting Started box. You can
click Open Sample Project and choose an example project that uses a source code
language used in your own projects.

Understand 3.0 User Guide and Reference Manual 21

Chapter 2: Parts and Terminology

Other Ways to Run
Understand

If you are a more experienced Understand user, use the links in the News &
Announcements box to keep your knowledge current.

If you have closed the Getting Started tab and want to reopen it, choose Help > Getting
Started from the menus. If you don’t want to see the Getting Started tab every time you
run Understand, uncheck the Show on Startup box.

When you are finished using a project, you can open another project or choose File >
Close <project_name>.udb. You will be asked if you are sure you want to close the
project. If you have made any changes to files, you will be prompted to save or discard
the changes for each file individually.

If you want to make sure you have installed the latest version of Understand, you can
choose Help > Check for Updates from the menus. (You'll see the Get New Version
button in the Getting Started tab if a new version is available.)

For information on running Understand from the command line, see Chapter 14,
Command Line Processing.

If multiple users will run Understand from the same Windows machine, each user may
have a separate initialization file. These files store user preferences. Understand looks
for the initialization file location in the following locations, depending on the operating

system (on Windows, this location is referenced by the WINDIR environment variable):

e Windows 2000/XP: C:\Documents and Settings\USERID\Application
Data\SciTools\Understand.ini

* Windows Vista/7: C:\Users\USERID\AppData\Roaming\SciTools\Understand.ini
e Linux/Unix: ~/.config/SciTools/Understand.conf

e Mac OS X: ~/Library/Preferences/com.scitools.Understand.plist

22

Understand 3.0 User Guide and Reference Manual

Context Menus Are Everywhere

Context Menus Are Everywhere

Right-clicking gets you a long way in Understand; almost everywhere you point, you
can learn more and do more by bringing up menus with your right mouse button.

Tip: Hold down the Ctrl key while right-clicking to create new windows rather than re-using
existing ones.

Remember to right-click, anytime, anywhere, on any entity to get more information
about that entity.

Example: Right-click on an entity in the Source Editor:

Eut*l (mn=igned long wal, FILE *gout)

1 View Information
wal Graphical Views L4
val Interactive Reports
val Edit Definition
Explore k
=] Find In... 3 It_,.- blﬁli _'LI
ZH Add Favorite »
Metrics Charts L4
-=]
Cut Ctri+x
oad
-1 Copy Ctri+C
il Paste Cirls\ ', in-»name
*¥9 Select Al CtrieA
nex
Hide Inactive Lines Ctri=Adt+
Fold Al Ctri+Shift+H
=ad Soft Wrap Ctri+Alt+W |initislizs
53 Comment Selection Ctrl+. flgned long
(" Uncomment Selection Ctri+Shift+. | 19, ¢
e
o Change Caze r
0 Add Bookmark

Understand 3.0 User Guide and Reference Manual 23

Chapter 2: Parts and Terminology

Example: Right-click on an entity in the filter area:

Show: | All Entities |
Fitter:
o
altfl View Information D
altin Graphical Views #
altlg Interactive Reports *
It
A Edit Definition
altp
alts Edit Declaration

ALT| Add to Favorites #
AN

User Tools L4
AN
AN Explore +
arg Find In... k
arg Metrice Chartz 4

Example: Right-click on an entity in the Information Browser:

(RN RN Y |S}.rn|:: [File Sync |

Function
"""" Defined i View Information
Return T Graphical Views 3
4 Paramet
int arge Interactive Reports b
char * Edit Definition
[+ \ariable:
4 Calls Explore r
fputs Find In... ’
[* gzcopy
B gainit Add Favorite r
I Referend Metrics Charts ’
[Metrics
[Architect Show Linkname
Expand Right
Expand All Ciri=-Shift+Right
Collapse Left
Collapse All Cirl+Shift+Left
Copy Ctri+C
Copy All Ctri+A, Ctri+C

24 Understand 3.0 User Guide and Reference Manual

Quickly Find Things in Your Source

Quickly Find Things in Your Source

Understand provides several ways to quickly locate items of interest in your source
code. These features include the Filter Area, the Entity Locator, and the Find in Files
dialog.

Entity Filter The filter area of the Understand window helps you quickly find things in your code by
separating that database into lists of Files, Classes, Functions, Objects, Types, Macros,
Subprograms, Packages, Modules, Blocks, Methods, Interfaces, SQL Tables, and
more. The types of filters available depend on the languages you have configured your
Understand project to understand.

After clicking in the filter area, you can type a letter to move to the first entity beginning
with that letter in the current list.

By default, the Information Browser shows all known information about the selected
entity. It is a key to navigating in Understand.

» C++ Functions (551 of 5482 entities)] = & =

]
2]
. Z | Showe: | C++ Functions w

Filter Area g

o Filter:

i

2 lin ~

o

in_awail

Information G~ L~ # 1y~ | V] sync [] File Sync |
Browser Function inflate_fast

Defined in: inffast.c
Return Types: void
=} Parameters
z_streamp strm
unsigned start
= Overloads
inflate_fast(z_streampunsigned)
[|= References

For details, see Entity Filter on page 123 and Information Browser on page 125.

Understand 3.0 User Guide and Reference Manual 25

Chapter 2: Parts and Terminology

Entity Locator The filter provides a quick way to find major items that were declared and used in your
project. However, some items such as local parameters, variables, and unresolved
variables (used but not declared in the processed source) are not listed in the filters. To
search or browse the entire database for your project, use the Entity Locator.

To open the Entity Locator, choose View > Entity Locator.

. r. All Entiies (8 of 4365 entities) @ & X

Show: | All Entities (E3
Entity Kind Declared In File Date Modified -
done X [=] 3672012 £:56:29 i -
done Local Object do_flush gzio.c Friday, October 23, 2009 11:530:32 AN
finizh_done Enumerator [unnamed] deflate.c Friday, October 23, 2009 11:50:324M |
gz_header_s::done Public Object gz_header = zlib.h Friday, October 23, 2009 11:50:34 AN |=
IOriglone Local Object main testzlib.c Friday, October 23, 2009 11:50:18 AM 1
IOrigDone Local Object main testzlib.c Friday, October 23, 2009 115018 AN~

By default, this area lists all the entities in the project. You can search for entities
matching a particular text or regex string using the fields above each column.

For details, see Entity Locator on page 148.
As in any other window, the context menu is also active.

You can select multiple rows and columns and copy their contents to the clipboard.
When you paste, the contents will be pasted as tab-separated text.

Instant Search Instant Search lets you search your entire project
instantly, even if it contains millions of lines of source
code. As you type, you can see terms that match the
string you have typed so far.

. Search te X 2

A number of powerful search options are supported : Slt _‘J
with Instant Search. See Instant Search on page 141. t::tﬁle

testing N

tests =

26 Understand 3.0 User Guide and Reference Manual

Quickly Find Things in Your Source

Find in Files Similar to the UNIX command grep,

you may search files for the [T

occurrence of a string. Select Find in

Files either from the Search menu or Find: =rrer M
from a context menu. File Types: - - [
When you click Find, a list of all
occurrences matching the specified [case senstive SRl I SRS
string or regular expression is Search Type; [Fixed String v]
displayed in the Find Results window.
Double click on any result to display Find In: [Pruject Files -]
the Source View where the string . .

Semantic Options
occurs.

[T only Show Rezutts In:
The options let you set behaviors

e . . Comments

such as case-sensitivity and wildcard .
pattern matching. strings

L. . Statements
See Find in Files on page 143 for _ i
more information. nactive Code

[7] Replace
Stop [#% Find
Favorites You can place entities and code locations that you often use on your Favorites list. To

add a favorite, right-click on it and select Add to Favorites and the name of the list to
contain this item.

To see the Favorites list, choose View > Favorites and the name of the list to open.

Q}, E*_-' DB Favorites -

[f linkedlizt_datablock_internal Typedef
] * deflate.h .. Text

See Favorites on page 135 for more information.

Understand 3.0 User Guide and Reference Manual 27

Chapter 2: Parts and Terminology

Information Browser

Just about everything Understand knows about code is shown in the Information
Browser (IB). The IB is used for all types of entities.

The Information Browser shows different things depending on the type of entity

selected.

It shows different kinds of information about entities such as source files, classes,
members, functions, types, methods, packages, interfaces, and more. Information that

is hierarchical in nature (such as a call

relationship) can be expanded multiple levels.

Below are Information Browser windows for a file and a C++ function:

G~)~ # 1~ |[V] sync [] File Syn

‘File align.h

Fullname: C:\codelpixie_7_ 7 11Pixielsrcconnn
= Global
=} Macros
aligne4
ALIGH N
isAlignedad
= Includes
alobal b
inttypes.h - nackive
skdink. b mackive
= Includebys
algebra.h
containers.h
TNEMIOEY , CPp
pl.cpp
shader.cpp
Externals Used
=} References
Include algebra.h algebra.h{3?)
Include containers.h containers, hi44)
Include memory.cpp memory . cppl3z)
Include pl.opp plocppa @)
Include shader.cpp shader.cpp{44)
Metrics
Architectures

@~ 2~ # vy~ |[V] sync [] File Sync

Static Function valid
Defined in: polygons.cpp
Return Type: ink
=} Paramekters
consk CTrivertex * loop
consk CTrivertex * from
conskt CTriviertex * bo
=} Constants
consk float *¥a = loop-=xy
const Float *b = from- =y
const Floak *o = to- =y
consk float ¥s1 = sierbex- =y
consk CTrivertex * sherkex = loop
= Calls
area
= Called By
triangulatePolygon
=} References
Define palygons.cpp polygons, cppl 14590
Call triangulatePolygon polygons.cppl1754)
Call triangulatePolvygon polygons.cppl1758)
Call kriangulatePalygon polygons. cppl 1828
= Mekrics
22 (Countline)
17 (CountlineCode)
0 (CountLineCamment)
0 (CountLinelnackive)
5 (Cyclomatic)
= Architectures

For details, see Information Browser on page 125.

Understand 3.0 User Guide and Reference Manual

Source Editor

Source Editor

Understand has a source editor that not only lets you edit your source code, it colorizes
the source code and tells you about the code you are editing.

Source can be visited by double-clicking almost anywhere else in the tool. You can
move forward or backward through such “visits” by using the Next and Previous icons
in the toolbar.

'._f{*.'. zliblinftrees h* ..

43
14
15
46
47
48
19
30
51
32
23
24
29
36

[=ar

£

#define ENQUGH
#define MRXD 35

F* Type of code to build for inftaklef) #/
H typedef enum {
CODES,
LENS,
DISTS

} codetvpe:

extern int inflate table OF ((codetype type,
unsigned short FAR *lsns,
unzigned codes, code FARE * FAR *table,
unzigned FAE *bits, unsigned =short FAE *work)):

>
Line: 53 Column: 25 | B | C++ | TrackBack 1 Rev

As with any other place in Understand, a context menu is available throughout the
editor. To learn about something just right-click on it to see what information is
available.

For details, see Source Editor on page 158.

Understand 3.0 User Guide and Reference Manual 29

Chapter 2: Parts and Terminology

Architecture Browser

The Architecture Browser allows you to manage architectures. It shows a list of all the
defined architectures in the database and provides a way to navigate individual
architectures.

For example, this window shows the auto-architectures provided with Understand:
Calendar, Directory Structure, Languages. The architectures are expanded somewhat
here to show the top-level nodes for an example application.

+ Architecture Browser

Calendar
Earlier
+- Thig Year
Filesystem
+- Zlily
- Language
+- Ada
+- C#
= CIC++
=} C
+- Zlily
=} CH++
+- Zlily
+- Pag¢al

Architecture Browzer

s
0
=
i
>
=
=
L

You can use the auto-architectures, create your own architectures, import and export
architectures (as XML files), generate graphs and metrics for any level in an
architecture hierarchy, and combine architectures through filtering.

For details, see About Architectures on page 176.

30 Understand 3.0 User Guide and Reference Manual

Graphical Views

Graphical Views

Understand analyzes your software code and creates a database containing
information about the entities and the relations between entities. The database can
then be browsed using various “graphical view” windows. The graphical views are
divided into these kinds:

» Hierarchy views show relations between entities. Each view follows a relation (for
instance “Calls”) from the starting entity (that you inquired about) through its children
and successors.

e Structure views quickly show the structure of any entity that adds to the structure of
your software (for instance a package, function, procedure, or task).

Examples of each type are shown in the following figure:

Structure Hierarchy
View View

:_ Declaration File Graph : complain |Z| |§| gl

DJ l;;?_’1,|Ezﬁl'--'_j|fa-'d‘\)*-||:|ﬁeuse [] sync

= Called By Graph : complain

[& [y B9 | @& - [[IReuse []3Sync =
Includes:
F}z@z@:ﬁ e

N+

File
try.c
main buf
emor emseen
mpﬁl status
_t; lineno
;mplain | badregexp

For details, See Using Graphical Views on page 228.

Understand 3.0 User Guide and Reference Manual 31

Chapter 2: Parts and Terminology

ASCIl and HTML Reports

Views in Understand provide information about individual entities. The reports bundle
information about all entities in ASCII or HTML format.

F
vy . y Tavk L IR .
Understand Program Unit Cross Reference
Table of Contents
Index Mon- |y BlcDE|FE G H|I|I KL MHE
Alpha
Diata Dictionaty Deleg foo [Function)
Declared as: Void
File Clontents Lefine [Deleg.c, 9] Deleg.c
. Deleq Tnstance init [(Function)
Program Unit Cross REeference Declared as: Void
Define [Deleg.c, 4] Deleg.c
Chiect Cross Reference

The HTML and ASCII reports also show information not available interactively, such as
project metrics and quality reports. These reports are suitable for printing or browsing
with a web browser.

See Using Reports on page 190 for more information.

APIs for Custom Reporting

Understand data is also available directly from scripts and programs that you (or we)
write. A C API (usable from C, C++ or other languages that can call C libraries), a
Python interface, and a Perl interface are provided with Understand.

Using the API, you have exactly the same access that we have when we write the
existing GUI and report generators.

This manual doesn’t cover the APIs. Choose Help > PERL API Documentation or
Help > Python API Documentation for more information.

The Reports > Project Interactive Reports and Graphs > Project Graphs
commands display a list of user-created plugins, which can be created using the Perl
API. For information about creating plugins, please contact support@scitools.com. The
SciTools forum at http://scitools.com/support/forum and the SciTools blog at
http://scitools.com/blog also contain messages concerning plugins.

32

Understand 3.0 User Guide and Reference Manual

http://scitools.com/support/forum
http://scitools.com/blog
mailto:support@scitools.com

Chapter3

Configuring Your Project

This chapter contains the following sections:

This chapter shows how to create new Understand project files that you will use to
analyze your source code.

Section

Page

About Understand Projects
Creating a New Project
Project Configuration Dialog
Languages Category

Files Category

File Types

File Options

Scheduled Activities
Metrics

Reports

Visual Studio

Annotations

Ada Options

Assembly Options

COBOL Options

C++ Options

C++ (Strict) Options

C# Options

FORTRAN Options

Java Options

JOVIAL Options

Pascal Options

PL/M Options

Python Options

VHDL Options

Web Options

Setting General Preferences
Analyzing the Code
Converting an Understand 1.4 Project

34
35
39
41
42
48
49
50
52
54
57
59
61
65
67
69
76
79
80
83
85
87
89
91
91
92
93
114
119

Understand 3.0 User Guide and Reference Manual

33

Chapter 3: Configuring Your Project

About Understand Projects

The Understand
Project Database

Understand is like a compiler, except it creates information, not executable code.

In order for Understand to analyze your source code, it needs much of the information
your compiler needs. It needs to know:

* What source files to analyze
» The type of source code
» The standard library paths and include directories

* Where to find Java .jar files that provide classes for which you do not have source
code

» Compiler/environment specific macros that need to be defined for the pre-processor
» Application-specific macro definitions

* What implementation parameters (such as integer precision) and column truncation
settings to use

* Any namespaces

If you developed the program or have been working with it for some time, this
information is probably obvious to you. However, if you inherited this source code from
another programmer, team, or company, you will probably have to examine the project
building files (for example, a makefile) in order to come up with the information needed
for accurate parsing of the code.

The easiest way to analyze your code is to use Understand’s GUI to build and parse a
project. This chapter will walk you through that process.

The Understand project database is stored in a proprietary binary format. The file
format uses a network/object format that is optimized for storing Understand
information.

Understand databases have a file extension of .udb.

The project file permits multiple simultaneous read accesses, but it does not support
multi-user write access.

Occasionally, a new feature to Understand requires a change to the database format.
Such changes are noted in the Change Log. When you install a build that modifies the
database format, existing projects are automatically reparsed when you open them.

34

Understand 3.0 User Guide and Reference Manual

Creating a New Project

Creating a New Project

To begin analyzing code, you create a project and specify what source files to parse.
Understand parses your code and creates a database you can browse. This database
can be refreshed incrementally in the GUI or updated using command-line tools.

This section shows how to create a new project. The project will be stored in a Project
Database, which has a file extension of .udb.

To create a new project, follow these steps:

1 Click the New Project link in the Getting Started tab that you see when you start
Understand. Or, choose File > New > Project from the menus.

- By default, this opens the New Project Wizard, which is described on page 35.

- Alternately, you may have disabled the option to run this wizard, in which case,
you see the “Create new project as...” dialog. Browse to the folder where you wish
to create the project database. Type the name of the project in the File name
field. A .udb file extension will be added automatically. Click Save. You will see the
Understand Project Configuration dialog, which is described in page 39.

- Another way to create a project is to add Buildspy to your gcc/g++ build process.
This automatically generates an Understand project when you compile your
project. See Using Buildspy to Build Understand Projects on page 306.

New Project Wizard Unless you have disabled the New Project Wizard, this is the tool you use to create
projects. To open it, click the New Project link in the Getting Started tab that you see
when you start Understand. Or, choose File > New > Project from the menus.

1 Inthe Create a Project File page of the wizard, type a Name for the project and
browse for a directory to contain the Understand project files. It is often handy to
have the project file in the top-level directory of the source code, but this is not
required. If the directory does not exist, you are asked if you want it created.

Mew Project Wizard

Create a FI'I"EJ'j'ECt file Marme: MWy UnderstandProject

Browyse ta the folder you want to place your Directory: | ChDocuments and SettingsWserMame » E]
Understand project database in.

Then specify the name. Clicking "Mext" will

create the databaze and take you to the

step in project creation.

Understand 3.0 User Guide and Reference Manual 35

Chapter 3: Configuring Your Project

2 Click Next to see the Languages page of the wizard.

[] aga

] cosoL

[7] coldfire 2K Azzembhy
C/C++ (@ Fuzzy () Strict
O] c#

|:| Fortran

|:| Java

|:| Jowial

|:| Pascal

O] PLM

|:| Python

(] wHDL

[] web*

|:| Import project zettings from a MS Visual Studio Project (C/IC++/C#)

“ Strict includes support for Objective-C and Objective-C++

*Web languages include CS5, HTML, Javascript, PHP, & XML

3 Put checkmarks next to languages used in the source code for this project. See
Languages Category on page 41 for more information about specific languages and
the strict C/C++ option.

4 If you use Microsoft Visual C for your C, C++, or C# code, you can check the box to
import project settings. Then click Next.

36 Understand 3.0 User Guide and Reference Manual

Creating a New Project

5 If you checked the Import project settings from a MSVC Project box, you see the
Visual Studio File(s) page. Otherwise, skip to the next step.

New Project Wizard

Visual Studio File(s) Wisual Studio File Configuration A
Cptional estudiokecBiminizip voproj Relessel™in32
If you uze Wisual Studio, you can eynchronize your Ecdit
Understand project with Visual Studio projects by
aoding them in this dialog. Understand uses the Remove
source files, includes, macros, and other settings
from your Yisual Studio projects. As your Yisual Contsinz...
Studio projects change, Understand alzo updates
itz project zettings.

= Back H Mext =

To synchronize your Understand project with Visual Studio projects, click Add. In the
Add a new Visual Studio file dialog, click ... and browse for your Visual Studio project
file. In the Add a new Visual Studio file dialog, select the project configuration you
want used when Understand analyzes your project. Then click OK. See Visual
Studio on page 57 for more information.

You can add multiple Visual Studio projects or use the Edit button to change the
Configuration setting. Then click Next.

6 Inthe Source Files page of the wizard, you add source files to a project by clicking
Add a Directory or Add a File.

Mew Project Wizard

Source Files Files) Add & Directory [) Add & File

Add directories that contain the source files you
weant analyzed. You may choose whether or not to
automatically include subdirectaries. Files that
match languages you selected are added to the
project.

You do not need to add files included from other
libraries, since those can be added later when you
identify include directories .

o) e

To add a file, just browse for the file and add it.

When you add a directory, you can browse for a directory, modify the list of
languages used in the source files, add additional filters for file extensions not
expected by Understand, filter out any files you want to exclude (for example,

Understand 3.0 User Guide and Reference Manual 37

Chapter 3: Configuring Your Project

temp*.*), and choose whether all the subdirectories of this directory should be
added. You can also choose whether the directory will be watched for changes. See
Adding Directories on page 43 for details.

Add a Project Directory

Directory ChDocuments and Settings\UserMame w E]
Configured Fiterz | Ada, Azzembly, C, C#, C++, Delphi, Pazcal (*.5,*.ac E]
Additional Fiters A
Exclude * L
Include subdirectaries

Wstch this directory

The directory will be watched for any on disk changes. If a file is

" deleted from disk, it i removed from the project. If new sources
are added to this directory or subdirectory of sources iz added, it
iz automically added to the project. Those files and directories
muzt match above filkers and settings.

If you chose a Visual Studio project, those files are automatically listed in the Source
Files page of the New Project Wizard.

If you want to delete a file or a directory (and its subdirectories), select that item and
click the “X” icon.

Choose whether to Analyze project now or further configure the project. Choosing
Configure more settings takes you to the Project Configuration dialog, which is
described starting on page 39. In either case, you can go to the Project
Configuration dialog anytime you like.

Analyze project now

Bedin analyzing project sources. During the analysis you may be

@ prompted for optional configuration tems. They may add further
infarmation to your parsed results but are not required and can be
zately ignored.

Configure more settings

Prezert the Project Configuration Dislog to view language specific

{:} configurations. Al reguired configurations have been initialized to
mast common defaultz. Thiz can be invoked later at any time from
the Project menu

Uze the new project wizard when cresting newy prajects

= Back H Finizh

38

Understand 3.0 User Guide and Reference Manual

Project Configuration Dialog

Project Configuration Dialog

The Understand Project Configuration dialog opens when you p— _
create a new project or when you choose the Project > Understand Project
Configure Project menu item.
The categories on the left in the Project Configuration dialog Files
allow you to specify various project settings to be used during E::: Epﬁis
analygis. The Prqject Configuration dialog contains the Scheduled Activities
following categories: - Metrics
. . - Reports

. Languages. Specify the types of languages to be parsed. Visual Studio

For details, see page 41. . Ada
» Files: Specify the locations of source files to be analyzed. E‘SEET_W

For details, see page 42. . Cest
» File Types: Specify how to handle source file types and : E#rt

what file extensions are used. For details, see page 48. _ J';v;ﬂ"
 File Options: Specify the file encoding and editing mode for - Jovial

source files. For details, see page 49. : EE‘E’;":E"
e Scheduled Activities: Schedule events to take place at * Python

regular intervals. For details, see page 50. Web
» Metrics: Specify the metrics you want computed for this 1 1] r

project. For details, see page 52.

» Reports: Specify the reports you want generated for this project. For details, see
page 54.

» Visual Studio: Specify a Visual Studio project to synchronize this Understand
project with. For details, see page 57.

» Language-Specific Options: Specify options for the languages you selected in the
Languages category. For details, see:

- Ada Options, page 61

- Assembly Options, page 65
- COBOL Options, page 67

- C++ Options, page 69

- C++ Strict Options, page 76
- C# Options, page 79

- Fortran Options, page 80

- Java Options, page 83

- JOVIAL Options, page 85

- Pascal Options, page 87

- PL/M Options, page 89

- Python Options, page 91

- Web Options, page 92

Understand 3.0 User Guide and Reference Manual 39

Chapter 3: Configuring Your Project

For advice about ways to adjust the project configuration to improve the accuracy of
project analysis, see the SciTools Blog.

After you change the project configuration, click the OK button and the configuration
will be saved. Whenever you modify the files in the project configuration, including at
the time of project creation, a dialog alerting you to the change in configuration
appears.

/' Project Configuration

[Ok H Cancel]

Click OK and Understand begins parsing (that is, analyzing) the code.

If you want to close the Project Configuration dialog without saving any changes, click
Cancel, and then click Yes in the box that asks if you really want to cancel changes.

40 Understand 3.0 User Guide and Reference Manual

http://scitools.com/blog/2011/09/improving-project-accuracy-cc.html

Languages Category

Languages Category

In the Languages category of the Project Configuration dialog, you can check boxes

for the languages used in your project. A project can contain source code in one or

more languages.

il E N
Understand Project Configuration: C:\Users\\’mnne\ﬁpp[)ata\ﬁnaming".ﬁc...ﬂ

Files [Ada
File Types] coBoL
File Cpticns
Scheduled Activities || [T] Coldfire 68K Assemily
» Metrics _ _ .
- Reports CiC++ @ Fuzzy () Strict*
Vizual Studio |:| C#
» Ada
- Assembly [Fortran
» COBOL
s] Java
» CH [] Jovial
» Fortran
. Java [] Pascal
> Jovial |:| PL/K
» Pascal
- PLIM [T] Python
» Python
Web [wHDL
[C] web*
* Sfrict includes support for Objective-C and Objective-C++
4 L k “Web languages include C55, HTML, Javascript, PHP, & XML

| OK | Cancel

[

When you select a language, categories for that language are added to the list on the
left in the Project Configuration dialog. The languages you choose here not only affect
how the source files are parsed. They also affect the filter types available, the metrics
available, and the report types available.

If you select multiple languages, references between those languages are analyzed.
For example, if C code calls a Java function, that reference will be found.

If you have C or C++ code, you can decide to use either the default C/C++ parser (the
“fuzzy” analyzer) or the newer “strict analyzer”. To use the strict analyzer, check the
Strict option next to C/C++. Internally, checking this box causes a completely separate
parser to be used to analyze your C/C++ code.

The “strict analyzer” provides the following features:

» Support for Objective-C and Objective-C++ (used for Mac OS and iOS) is provided
with the strict analyzer, but not with the default C/C++ parser.

» Provides better support for Templates.

» Provides better support for Overloaded functions.

Understand 3.0 User Guide and Reference Manual 41

Chapter 3: Configuring Your Project

The default C/C++ parser aims to use fuzzy logic to handle incomplete, non-compiling
code gracefully and as accurately as possible. The new parser is more strict than the
old parser and requires a more accurate project definition—for example, by specifying
all include paths and macro definitions and including only those files in the project that
are used in the software build. For details, see the Improving Project Accuracy (C/C++)
blog post.

If you are using the strict analyzer, see C++ (Strict) Options on page 76 for how to
configure your project.

Files Category

In the Files category of the Project Configuration dialog, you can add source code
directories and/or individual files to the project. You can also delete specific files from
the analysis and modify the language-specific options for individual directories and

files.
= =
Understand Project Configuration: C:\Users\Yvonne\AppData\Roaming\SciTools\sa mpl...ﬂ
IE;:EUEQEE ofies 2 [v X < (@ % [[E Portabiity | f§ Rescan
File Types a2 -
File Options 4 () Program Files I
Scheduled Activities 4) Sciools
4 E'H”its 42 sample 3
> Reports
Visual Studio 43 fastorep o
[egrep.c
» Ada
. Assembly [regerrorc
. COBOL &b regexp.c
» G4t @ regexp.h S
s (O3 |
’ :_:.:tfn Directory: C:AProgram Files\SciTools\sample\fastgrep
> Jowial 4 Watch Properties - Watched
> Pascal Configured Fitters: Assembly, C, C++
> PLIM Additional Filters: none
> Python Exclude Fitters: *
Web Subdirectories: On
Ovwverrides - Using default project settings
1 | 1] [»

OK Cancel

You can add source files here, or you can tie the project to those specified in an MS
Visual Studio project file (MS Windows versions of Understand only). See Visual Studio
on page 57.

42 Understand 3.0 User Guide and Reference Manual

http://scitools.com/blog/2011/09/improving-project-accuracy-cc.html

Files Category

The top area shows the directories and files you have added in a tree that you can
expand. It also shows how many files are currently in the project.

The bottom area shows any option overrides you have set for the selected directory or
file.

Icons at the top of the dialog perform the following actions:

= Open the Add a Directory dialog.
[Open the Add a File dialog.

-~ Choose Add a File or import a list of files
Delete the selected directory or file from the project analysis.
Copy the override settings for the selected directory or file.

Paste the override settings to the selected directory or file.

@ 55 X

Configure override settings for the selected directory or file.
Note that your changes are not saved until you click OK.
Click Portability to set portability options for file paths. See page 47.

Click Rescan if you have added files to a directory that are not shown in the tree in this
dialog.

Adding Directories To add source directories to the project, click ;. You see the Add a Directory dialog:

Add a Project Directory

Directory Chzode'zlibontribminizip W E]
Configured Fiters | Ada, Assembly, C, C#, C++, Delphi, Pascal (*.a a0 » E]
Additional Fiters W
Exclude * w

Include subdirectaries

Wstch this directary

The directory wil be watched for any on disk changes. If a file iz

; deleted from disk, it is removed from the project. If new sources
ate added tothis directory or subdirectory of sources is added, it
iz automically added to the project. Thoze files and directaries
must match above fiters and settings.

8031 l ’ Cancel

1 Inthe Directory field, type the full directory path. Or, you can click the ... button and
use the Browse for Folder dialog to locate a directory containing source files and

click OK.

Understand 3.0 User Guide and Reference Manual 43

Chapter 3: Configuring Your Project

Tip:

2 Inthe Configured Filters field, click the ... button if you want to add or delete
languages from the list shown. In the Select Filters from Configured File Types
dialog, put a checkmark next to any languages you want to be recognized as part of
the project. Notice that additional languages are listed beyond those shown in the
Languages category. These include JavaScript, MSDos Batch, Perl, Tcl, Text, and
XML.

If this directory contains source files with extensions that are not listed, click
Configure. Also, see File Types on page 48. For example, you might add .a64 as
an assembly file type.

3 Inthe Additional Filters field, type a pattern-matching string that matches only the
files you want to keep in the analysis. For example, std*.* includes only files that
begin with “std”. You can separate filters with a comma.

4 Inthe Exclude field, type a pattern-matching string that matches files you want to
exclude from the analysis. For example, temp*.* excludes all files that begin with
“temp”. You can separate filters with a comma.

5 To select and add multiple subdirectories to a project configuration, check the
Include subdirectories box (on by default). This causes all source files matching
the filter in all subdirectories of the specified path to be added to the project.

6 If you want this directory to be watched for any new files or deleted files, check the
Watch this directory box. Whenever a source file is added to or deleted from this
directory, the change is reflected in this project. Watched directories are indicated by
the = icon in the files list. Directories excluded from being watched are indicated
by the &= icon. By default, the subdirectories of a watched directory are also
watched. See page 45 for watch setting overrides.

7 After you have set the fields, click the OK button to add the source files in that
directory to the project. You can click Cancel if the add file process is taking too
long.

You may add files from multiple directory trees.

If you are using Microsoft Windows, you may drag and drop a directory, a file, or a
selection of files, from another window into the Project Configuration dialog to add it to
the project. If you drag a folder, the Add a Project Directory dialog opens automatically.
If you drag an individual file, that file will be added to the project whether it matches the
file filter or not.

All directory paths are absolute.

Adding Files

To add individual source files to the project, click [. You see a file selection dialog,
which allows you to select one or more source files to add to the project. Browse for
and select a file or files. Then click Open. The file(s) are added to the project.

If you click the ~ down arrow next to the [icon, you can choose to import a text file
that contains a list of source files to import. For example, you might generate such a file
from a compiler application or code management system. The file should contain one
absolute file path per line. See Adding Files to a Project on page 300 for an example of
such a file.

44

Understand 3.0 User Guide and Reference Manual

Files Category

To remove a directory or file from the project, select the items you want to remove and
click % - The file itself is not deleted from the file system.

Removing
Directories and Files

You can right-click on a removed file and choose Add file to project to re-add the file
to the project.

Normally, each file in the project is processed according to the rules you specify in the
Project Configuration window for the language of the file. For example, for C++ you can
set include directories and macro definitions. However, you can override the default
settings on a directory-by-directory or file-by-file basis if you like.

Setting Overrides

Directory: To override settings for a directory, follow these steps:

1
2

3

Select a directory.

Click %& or right-click and select Configure override settings.

Directory: C:\Program Files\STsamplelzlibdexamples

Wiatched Properties
& Owverride Wiatch Settinos Watch this directary w
File Types
P :ﬂpacrn:ns Configured Fiters | &da, Azsembly, C C#, C++ Del) » E]
C+ Includes Additional Fitters v
C++ Auto Includes
C++ Macros Exclude * A
CH References
Pazcal Includes Include subdirectories

Paszcal Macros

Uze Defaults Ok] ’ Cancel

In the Watched Properties category, you can choose how files in this directory
should be watched for new files to add to the project or deleted files to remove from
the project. For Watch Settings, you can choose to watch a directory, not watch a
directory, or inherit watch settings from the parent directory. In addition to specifying
whether to watch a directory, you can set filters and exclude filters for an individual
directory that control what types of new and deleted files will be found.

In the various Override categories, you can make directory-specific language-
related settings. The list of categories depends upon the languages enabled in your
project.

The File Type category lets you override the language of this file indicated by the file
extension. The File Encoding category lets you override the encoding setting
described in File Options on page 49.

Understand 3.0 User Guide and Reference Manual 45

Chapter 3: Configuring Your Project

Scanning Watched
Directories

File: To override settings for a file, follow these steps:
1 Select afile.
2 Click 9. Of right-click and select Configure override settings.

File: C:\Program Files\STlsample\zlibdexamplesigzappend.c

=} Crverride
Languade: Project default (01w

File Encoding

C++ Includes

C++ Auto Includes
C++ Macros

Uze Defaults Ok] ’ Cancel

3 Inthe various Override categories, select a category and make changes. The
categories available are different depending on the language of the source file. See
page 61 through page 89 for details. The Watched Properties category is available
for file overrides if you are using Relative or Named Root portability.

4 Click OK to save your overrides.

Special icons in the directory tree indicate which directories are being watched =,
have overrides &, or both &=,

The various Override categories have an Ignore Parent Overrides checkbox.
Checking this box makes only the override settings you apply at this level (directory or
file) apply; settings from higher levels are not inherited.

If you set directories to be watched, you can scan those directories for new files to be
added or deleted files to be removed by choosing Project > Rescan Project
Directories.

If files are found that you don’t want to include in the project, uncheck the boxes next to
those files to exclude them from the project configuration.

Directories that you include in the project are automatically scanned for new files when
you use Analyze All Files to analyze the project.

You can schedule automatic scans of watched directories. See Scheduled Activities on
page 50 for details.

46

Understand 3.0 User Guide and Reference Manual

Files Category

Setting File You can control the portability of Understand projects by clicking the Portability button
Portability at the top of the Files page of the Project Configuration dialog. You will see the
following dialog.

~ Project File Portability

Portability Optionsz

Select a project portability mode that best suits your needs. "Absolute" mode is the least
portable, az all file pathe are stored as absoute paths. "Relstive” mode stares file paths
relative to the project directory. "Mamed Foots" mode uzes uzer-defined root path variables.

File Portahility Mode: | Absolute w

|:| IUI=e File Portabilty Mode to convert paths of all files and directories in the project

’Ed'rt Named Roots .. K] ’ Cancel

A more portable project can allow you to share the project with other users and to use
the project unchanged after moving the source code files.

The choices are as follows:

» Absolute: This option is the default. It stores full file paths for all directories. If the
source files change location, the paths will be incorrect.

» Relative: This option stores the relative path to directories from the location of the
Understand project database. If you store the project database in the source file tree
and move it along with the source files, the project can still be used.

 Named Root: This option allows you to specify “Named Roots” that are similar to
environment variables to point to a root directory. Different users may then use
different definitions for a named root. Click the Edit Named Roots button and see
page 103 for details.

Check the Use File Portability Mode to convert paths box if you want the file paths
currently stored in the project to be updated when you click OK.

For more about using Named Roots, see the SciTools Blog.

Understand 3.0 User Guide and Reference Manual 47

http://scitools.com/blog/2008/04/understand-20-making-your-projects-portable.html

Chapter 3: Configuring Your Project

File Types

In the File Types category of the Project Configuration dialog, you can control how file
extensions are interpreted by Understand.

Understand Project Configuration: C:\Program Files\STl\sampl...

Lgnguages Extenzion | Language o PlEe
File=
) a Ads Ediit
Metrics ada Adda
Reports adb Ada
Yisual Studio ads Adla
Sl hat MZDoz Batch
Aszembly s et
=} C++ B
s C
Options c
Includes ":':. i
Macros i Perl
i £pl Jovial
Fortran cpp CH+
-.!avfa. Cs C# w
Ok] ’ Cancel

The list shows all the file extensions already understood. Files with the types
understood for the languages you checked in the Languages category are analyzed as
part of the project. Other file types are not analyzed.

To modify an existing type, select the type and click Edit.

To add a file extension to the list, click New. Type a file extension and select the
language to use for the file extension. Then click OK.

Add a New File Type

Extension: | chid |

Languace: |n:++ w |

[Ok l ’ Cancel]

48 Understand 3.0 User Guide and Reference Manual

File Options

File Options

In the File Options category of the Project Configuration dialog, you can control how
files are opened and saved by Understand.

Understand Project Configuration: C:\Program Files\STsam...

Languages
Files
File Types
File Options
Scheduled Activities
Metrics
Reports

Wisual Studio
Ada

£ *

Encoding

File Encoding | System

Editing Options

|:| Open all project files as read only files

Ok] ’ Cancel

File Encoding: Select the type of encoding to use when saving source files. Many
encoding formats are supported. You should change this only if your other
applications have problems opening or displaying files saved by Understand. See
Editor Category on page 105 for more information. The default file encoding is
“System”, which means the default encoding for your computer. If you change the
setting here, new projects you create use the last setting you saved. You can
override the file encoding setting on a file-by-file or directory-by-directory basis (see
Setting Overrides on page 45).

Open all project files as read only files: Check this option if you do not want files
to be edited and saved within Understand.

Understand 3.0 User Guide and Reference Manual

49

Chapter 3: Configuring Your Project

Scheduled Activities

In the Scheduled Activities category of the Project Configuration dialog, you can
cause certain events to be performed on a regular basis. You can also open this dialog
quickly by choosing Tools > Scheduler > Scheduled Activities — <project_name>.

Process Project History

| Process At 10:3517 AN (=5

V| Mon Tue Wed Thu Fri Sat Sun

| Rescan watched directories
| Anahyze All Files
| Metric Processing

| Metric CS5V Export
Metric CSV Export Settings:

Cutput Directory: CAProgramData\zlib.csv |_|

Owverwrite existing Metric C3W Export. Do not automaticalty rename existing.

| Metric Export HTHML
Metric Export HTHL Settings:

Save output to: C:/ProgramData |_|

Owerwrite existing Metric Export HTHL. Do not automatically rename existing.

To schedule events for the project you currently have open, follow these steps:
1 Check the Process At box.
2 Select a processing time and check the boxes for one or more days of the week.

3 Check the boxes for the events you want performed. The events occur in the
sequence shown. For example, watched directories are scanned before the project
is analyzed, and the project is analyzed before metrics are processed.

Note: Understand must be running at the processing time or the events will not occur.
The following activities are available for scheduling:

» Rescan watched directories: Check this box to automatically check for files that
have been added to or deleted from project directories. See Adding Directories on
page 43 for how to specify which directories to watch. If you have watched
directories, you should always run this task before the “Analyze all files” task. To run
this action without scheduling it, choose Project > Rescan Project Directories.

50 Understand 3.0 User Guide and Reference Manual

Scheduled Activities

e Analyze all files: Check this box to automatically analyze all project files as
described in Analyzing the Code on page 114. Run this task before generating any
metrics so that the statistics will reflect the current state of the project. To run this
action without scheduling it, choose Project > Analyze All Files.

e Metric processing: Check this box to automatically calculate metrics for the
project. The metrics selected in Metrics > Selected Category on page 53 are
processed. Run this task if you plan to schedule either of the following metrics
export tasks.

» Metric CSV export: Check this box to automatically export metrics as a comma-
separated value file. If this box is checked, you can select the directory path and
output filename for the export. By default, any existing file with the same name is
renamed to provide a backup. You can check the Overwrite box if you simply want
to replace the old export file. To further configure the export, see Metrics on
page 52. To run this action without scheduling it, choose Metrics > Export Metrics
and see Exporting Metrics to a CSV File on page 218.

» Metric export HTML: Check this box to automatically export metrics as web pages.
If this box is checked, you can select the directory path for the export. By default,
any existing file with the same name is renamed to provide a backup. You can check
the Overwrite box if you simply want to replace the old export file. To run this action
without scheduling it, choose Metrics > Project Reports and see Exporting Metrics
to HTML on page 217.

When scheduled activities are about to run, you see a dialog that gives you a chance to
cancel the action:

~ understand

Petfarming scheduled actions in 22 seconds...

Ok H Cancel]

If you have scheduled any activities, you see the following message when you exit from
Understand.

~ Automated Project Processes Exist

Closing Undetrstand swill prevent existing Scheduled Activities to be
.,__IIJ/ processed. Do you want to continue to close Understand’?

|:| Don't showe this message again. (Press Shift to zee message again)

Continue H Cancel

To see a list of all projects for which you have scheduled activities, choose Tools >
Scheduler > Scheduled Activities — All Projects. To change these times, you must
open the project and then use the Project Configuration dialog for that project.

Understand 3.0 User Guide and Reference Manual 51

Chapter 3: Configuring Your Project

Metrics

In the Metrics category of the Project Configuration dialog, you can control how metrics
are generated when a CSV file is exported. These options set the defaults for both
manual updates (page 218) and scheduled automatic updates (page 50).

The Metrics category has two sub-categories: Options and Selected.

Understand Project Configuration: C:\Program FilesA\STIsampl...

Languages
Filesg ? Cutput File: \pixie_projipixie_evolvelpixie_gvalve,csy [I]
File Types
=} Metrics
Options Show File Entities Mame as | Short b
Selected
+} Reports
Wisual Studio
Ada
Assembly Wite Calumn Titles
_++
-3
Fortran
Java
Jovial
Pascal
PLIM

[] show Declared in File | Shart

|:| Shows Function Parameter Twpes

o = e B B e

You see this window when you choose the Project > Configure Project menu item
and then the Metrics category. If you attempt to generate metrics before configuring
metrics, this window opens automatically.

The Options subcategory has the following fields:

» Output file: Specify the location and name of the file you want to use for metrics
output. Understand sends its metrics output to a .csv (comma-separated values) file.
This file can be opened with Microsoft Excel and other spreadsheets.

» Show File Entities Name as: Specify whether files should be displayed with Short
names (just the filename), Full names (including the absolute path), or Relative
names (relative directory path).

» Show Declared in File: Check this box if you want the file in which each entity is
declared to be included in the output. You can specify whether you want these files
displayed with Short names, Full names, or Relative names.

» Show Function Parameter Types: Check this box if you want the type of each
function parameter listed.

* Write Column Titles: Check this box if you want column headings in the CSV file.

52 Understand 3.0 User Guide and Reference Manual

Metrics

Metrics > Selected The Selected subcategory has lists like the following:
Category

Understand Project Configuration: C:\Program FilesA\STsampl...

Il;?nguages #vailable Metrics: Selected Metrics in this arder:
F:Izsﬁrpes CountClassBase
= Mekrics CountDecllass
Options Avgling
Selected
Reports il
visual Studio AvglineCode
Ada AvalineComment
Assembly CountZlassCoupled
C4+ CountClassDerived
Ci CountDecClasstethod
Fartran CountDeclClassiariable
Tava CountDeclFile
Tovial CountDedFileCode
Pascal CountDeclFileHeader
PL{M CountDeclFunction
CountDeclInstanceMethod
CountDeclinstance\ariable
CountDeclInstance\ariabler
4 [>
I l ’ Cancel

1 Inthe Available Metrics list (left), select metrics you want to include in the output
you generate. You can hold down Shift to select a continuous group or Ctrl to select
discontinuous items.

Click Add to copy the selected metrics to the right column.

You can reorder the metrics in the right column using the Move Up and Move Down
buttons.

See www.scitools.com/documents/metrics.php for descriptions.

Understand 3.0 User Guide and Reference Manual 53

Chapter 3: Configuring Your Project

Reports
In the Reports category of the Project Configuration dialog, you can control how
reports are generated. The Reports category has the following sub-categories: Output,
Options and Selected.
— __
Understand Project Configuration: C\Users\Yvonne\AppDatatRoaming\SciToolss... ﬁ
L
F;Ten:uages i Generate Html
File Types
File Options ") Single (@ Alphabetic () Every n Entties n | 250
Scheduled Activities
> Metrics
4 Reports Title page: E]
Options Save in directory: ing\SciTools\=ample\fastgrepifastgrep_html E]
Selected £
Wisual Studio
» Ada Generate Text
» Aszembhy
(ke COBOL]]
o Ot @ Single Text File) Separate Files
- C#
+ Fortran Save zingle text output file as: Iz\=ample\fastgrep\fastgrep. b [:]
- Java
» Jovial Separate files directory: \sample\fastgrep\fastgrep_text
» Pascal
> PL/M -
« _m | r
OK Cancel
L el
This window opens if you choose the Project > Configure Project menu item and then
the Reports category. You can also reach this window by clicking Configure in the
Project Reports window.
You can control the colors and font styles in HTML reports as described in Customizing
Report Colors on page 193.
Reports > Output The Output subcategory has two main areas:
Category

e Generate HTML: This option causes the report generation to create a large group
of HTML files that are interlinked.

- You may generate Single or multiple HTML files for each report type. It is
recommended that you split up the files for large projects. Choose Alphabetic to
generate multiple HTML files per report that are split up alphabetically by the first
letter of the entity name. Choose Every n Entities to generate multiple HTML files
per report that are split up every “n” number of entities. By default, a single HTML
file is generated for each letter of the alphabet.

54 Understand 3.0 User Guide and Reference Manual

Reports

- The “home” file for the reports is index.html, but you can select an alternate Title
Page.

- The default Save in directory is the <proj_file>_html folder below the folder
where your .udb file is stored, but you can select an alternate location.

» Generate Text: This option causes the report generation to create simple text files
containing the report data.

- You may generate one text file of the specified location and name (by choosing
Single Text File). Alternately, you may generate multiple text files (by choosing
Separate Files) and specify a directory to contain all the files. The file extensions
of each text file will denote the separate reports. Depending on which option you
select, you can also select either a file or directory location for the output.

You can choose to generate either or both of the HTML and text report formats.

Reports > Options You can use the Report > Options category to control the contents and headers of
Category reports.

Dizplay full flenames
Write generation time on report
Report Header Text
Left aligned text: Report generated by Understand

Right aligned text:

The Options category has the following fields:

» Display full filenames: If this box is checked, the invocation tree and metrics
reports show full entity names. The default is to use short names.

» Write generation time on report: If this box is checked, the generation date and
time are included at the top of text report files. This is on by default.

» Left aligned text: If you check this box, the text “Report generated by Understand”
will be printed in the upper-left corner of each page of the text report.

» Right aligned text: If you check this box, the text you provide will be printed in the
upper-right corner of each page of the text report. This text can be up to 45
characters.

Understand 3.0 User Guide and Reference Manual 55

Chapter 3: Configuring Your Project

Reports > Selected The Selected subcategory lets you check the boxes for the reports you want to
Category generate. The list of reports differs depending on which languages are used in your
project. See Chapter 8 for descriptions of these report formats.

-
Understand Project Configuration: CA\Users\Yvonne\AppData\Roaming\SciToolsts... (B3

Languages
Files
File Types
File Opticnz
Scheduled Activities
[» Metrics
4 Reporis
Output
Options
Wizual Studio
[» Cas
[Java
[+ Python
Web

Data Dictionary

File Contents

Program Unit Cross Reference
Object Cross Reference
Type Cross Reference
WMacro Cross Reference
Include File Cross Reference
Declaration Tree

Extend Tree

[] Invocation Tree

Simple Invocation Tree
Import

Program Unit Complexity
Froject Metrics

Program Unit Metrics

File Metrics

File Average Metrics

Clazs Metrics

Clazs 00 Metrics
Uninitiglized tems

Unused Variables and Parameters
Unused Objects

Unused Types

Unused Program Units

| a1 | Nonme

56

Understand 3.0 User Guide and Reference Manual

Visual Studio

Visual Studio

In the Visual Studio category of the Project Configuration dialog, you can tell
Understand to use the source, macro, and include path settings from a Microsoft Studio
project file.

You see this window when you choose the Project > Configure Project menu item
and select the Visual Studio category.

Understand Project Configuration: C:\Program, Files\STI\sampl...

lL:?n';I'-'aElES visual studio File Caonfiguration Add
25

File Types

File Cptions

Scheduled Activit
Metrics
Reports

Vizual Studio
Acla
Azzembly
Tt _ontains. ..
R
Fattran
Java
Jovial
Paszcal
PLM

Edit

Remove

I,] ’ Cancel

Follow these steps:
1 Click Add.

2 Inthe Add a new Visual Studio file dialog, click the “...” button next to Visual
Studio File. Then browse to select a Visual Studio project file and click Open. MS
Visual Studio project files with extensions of .csproj (C# project), .dsp, .dsw
(workspace file), .sln, .vcp (Windows CE project), .vcproj (Visual C project), .vcxproj
(VS2010 project), .vfproj (Visual FORTRAN project), and .vcw (workbench file) are
supported.

3 Select the Configuration you want Understand to use when analyzing your project.
You can select a project configuration or a solution configuration.

4 You can type an Exclude Filter to specify file extensions to exclude when importing
a Visual Studio project.

Understand 3.0 User Guide and Reference Manual 57

Chapter 3: Configuring Your Project

5 You can expand the Unfiltered Contents list to see the includes, defines, and files

for the configuration currently selected.

B Add a new Visual Studio file

visual Studio File: |C:'|,F'ru:ugram Filest STTsamplelcontribl v studiolwodminiunz., voproj

Configuration: |DE|3'U';I|"-"'-"iI'I32

Exclude Filtet: |

Conkains. ..
=t 2. Program Files' STI'sample®, contrib' vstudio®, yc8' miniunz.¥cproj

=} Include
AT
AL minizip
=} Define
WINIZ
_CRT_MNONSTDC MO _DEPRECATE
_CRT_SECURE_NO_DEPRECATE
ZLIB_'WINAPI
_DEBUG
_CONSOLE
_MT
[=} Files
A dminizipiminiunz.

] 4 H Cancel]

Note:

6 Click OK to add this to your project.

Note: If you sync with a Visual Studio workspace file, the default target is used
because there is no mechanism for specifying targets for each .dsp project within a
.dsw file.

Once set, the source files, macros and include paths from the Visual Studio project are
used by Understand. This is in addition to any project settings you configure in the other
categories.

Settings in other categories for include path and macros take priority over the Visual
Studio project settings. This permits you to use the bulk of the Visual Studio settings
while selectively overriding as your needs require.

58

Understand 3.0 User Guide and Reference Manual

Annotations

Annotations

The Annotations category of the Project Configuration dialog lets you control how
annotations are stored and displayed. See page 168 for details on using annotations.

-
Understand Project Configuration: C\Users\Yvonne\AppData\Roa ming\SciTmlsﬁamp...@

Languages
Files
File Types
File Options
Scheduled Activities
> Metrics
» Reports
“Visual Studio
Annotations
4 Assembly

Author: Chris

Annotation Files:

Default FG

B
@ .

BG

File Name:

tgrep/Chris-fastgrep.ann

tgrep/George-fastgrep.ann

Add Files
Create File

Options
4 C++
Options
» Includes
» Macros
4 Java
Options
Class Path
4 Python
Options
Imports
Web

Display

Show inline Show in hover text Show indicator

E OK _...j Cancel

e Author: Type your name or the username you want to be associated with the
annotations you create.

» Add Files: Click this button to browse for an existing annotation file (*.ann). For
example, you might want to add files created by other developers of this project so
that you can see everyone’s annotations. (If other developers are also annotating
code using Understand, choose Annotations > Refresh Annotations from the
menus when you want to get the latest annotations they have added.)

» Create File: Click this button to create a new annotation file. The default directory is
the project directory.

 Remove File: Select a file and click this button to remove it from the list of files that
are used to display annotations. Removing a file from this list does not delete the file
from the file system.

» Default file: Select the file that should contain annotations you create.
» FG: Click on the colored block to change the text color for annotations in this file.

» BG: Click on the colored block to change the background color for annotations in
this file.

Understand 3.0 User Guide and Reference Manual 59

Chapter 3: Configuring Your Project

e Show inline: When this box is checked, annotations are shown following the place
where the associated entity is defined in the code. You can also turn this display
feature on and off by choosing Annotations > Display Inline from the menus.

e Show in hover text: When this box is checked, annotations are shown if you point
to a place where the associated entity is used in the code for 2 seconds. You can
also turn this display feature on and off by choosing Annotations > Display hover
text from the menus.

« Show indicator: When this box is checked, the entity has a squiggly line under it
whereever it is used in the code. You can also turn this display feature on and off by
choosing Annotations > Display indicator from the menus.

Annotations are stored in *.ann files, which use the SQLite database format. In addition
to viewing annotations in Understand, you can use other applications that support
SQLite to modify and search annotation files.

60

Understand 3.0 User Guide and Reference Manual

Ada Options

Ada Options

In the Ada > Options category of the Project Configuration dialog, you can tell
Understand how to analyze Ada source code. You see this window when you choose

the Project > Configure Project menu item and select the Ada category.

Compiler

Wersion [AdaBE -]

Preprocessor [Nnne v]

Standard zonfiunderstandiadaladaSs [] [Reset
Multiple Language Linkage

The case of externally inkable entities is
@ all lowercase (71 all uppercase

Metrics

|:| Count andfor operators in strict complexity

Count exception handlers in complexity

Count for-loops in complexity
Optimize

|:| Create and cross reference record object components

|:| Create relations between formal and actual parameters

|:| Less memory usage versus speed

Save comments azsociated with entities
Options

Dizplay entity names as Original e

Prompt on parse errors

Main subprograms: (main1, main2..}

Library Directories Edit

The fields in this category are as follows:

Version: Choose the version of Ada used in your project. Understand supports Ada

83, Ada 95, and Ada 05.

Preprocessor: Choose which type of preprocessor statements are used in your

Ada code. The choices are None, C, Gnatprep, and Verdix.

Understand 3.0 User Guide and Reference Manual

61

Chapter 3: Configuring Your Project

Standard: Choose a directory that contains a standard library used by this project.
Default standards are provided within <install_directory>/conf/understand/ada.

Sometimes it is helpful to parse code in context of its compilation environment rather
than the environment defined as “Standard” in the Ada Language Reference
Manual. This is most often needed when your compiler vendor offers bindings to
other languages or low level attributes of a chip or system. To do so, place all the
source files containing the Ada specifications for the new standard in one directory.
Then point to this directory in the Standard field.

Case of externally linkable entities: Choose which case should be used for
“exporting” entities in this language that can be linked to (for example, called as
functions) by other languages. For example, if an entity is declared in this language
as “MYITEM” and you choose “all lowercase” here, other languages would be
expected to call that entity as “myitem”.

Count and/or operators in strict complexity: Place a check in this box if you also
want “and” and “or” operators considered when calculating the strict complexity
metric shown in the Program Unit Complexity report. Strict complexity is like
cyclomatic complexity, except that each short-circuit operator (“and then” and “or
else”) adds 1 to the complexity.

Count exception handlers in complexity: If this box is checked (it is on by
default), exception handlers are considered when calculating the complexity metrics
shown in the Information Browser and the Program Unit Complexity report.

Count for-loops in complexity: Remove the check from this box if you do not want
FOR-loops considered when calculating the complexity metrics shown in the
Information Browser and the Program Unit Complexity report. Complexity measures
the number of independent paths through a program unit.

Create and cross-reference record object components: If this box is checked
(off by default), separate entities are created for components of all parameters and
objects of a record type. By default, all references to object components are treated
as references to the record type component.

Create relations between formal and actual parameters: Place a check in this
box if you want the analysis to create relations between formal and actual
parameters. The actual parameters linked to formal parameters include items used
in expressions passed as actual parameters. This option is off by default to speed
up analysis.

Less memory usage versus speed: Place a check in this box if you want to use

Understand in a very low memory consumption mode. In order to conserve memory,
Understand frees memory used to process a program unit if that program unit is not
needed. Using this option may slow down operation significantly. It is off by default.

Save comments associated with entities: You can choose whether source code
comments that occur before and after an entity should be associated with that entity.

Display entity names as: Choose whether entity names should be displayed in
Understand with the same case as the source code (original), all uppercase, all
lowercase, only the first letter capitalized, or mixed case.

62

Understand 3.0 User Guide and Reference Manual

Ada Options

 Prompts on parse errors: By default, you are prompted for how to handle errors
that occur when analyzing files. When prompted, you may choose to ignore that
error or all future errors. Turn this option off to disable this prompting feature. If you
turned it off during analysis, but later want to turn error prompting back on, check it
here.

e Main subprograms: Provide a comma-separated list of the names of the main
subprograms in the project.

» Library Directories: Type a directory path or click Edit to browse for the location of
a directory that contains Ada libraries. Library files are parsed as part of a project,
but are not included in reports. All subdirectories of the directory you select will also
be used to find libraries.

Ada > Macros Ada code may contain conditional compiler instructions in pragma statements. For
Category example:
PRAGMA IF DEVICE == D129

The supported pragmas are IF, IFDEF, ELSIF, ELSE, and ENDIF. These pragmas are
similar to preprocessor directives such as #ifdef in C code.

For Understand to successfully analyze your software it needs to know what macro
definitions should be set. For more about ways to configure macro definitions, see
Using the Undefined Macros Tool on page 118 and the SciTools Blog.

In the Ada > Macros category of the Project Configuration dialog, you can specify what
macros to define for use with pragmas. You see this window when you choose the
Project > Configure Project menu item and select the Ada category and the Macros
subcategory.

Understand Project Configuration: C:\Program Files\STsampl...

LAl Iyuay s
Files Matcro Definition Rl
File Types DEBLIG_LEVEL 70
File Cptions INSTRUMEMT_C... G54
Scheduled Activit
hetrics
Yizual Studio
=} Ada
Options
Macroz

K, l [Cancel

Understand 3.0 User Guide and Reference Manual 63

http://scitools.com/blog/2011/09/improving-project-accuracy-cc.html

Chapter 3: Configuring Your Project

The Macros category lists macros and their optional definitions. Each macro may be
edited or deleted. To define a macro, click New.

Macro: |DEVICE |

Definition: |D129 |

| a4 |[Cancel]

Type the name of the macro in the first field and the definition (if any) in the second
field. Then click OK.

A macro must have a name, but the definition is optional. Macros that have no definition
value are commonly used in conjunction with PRAGMA IFDEF statements to test
whether a macro is defined.

To change the definition of an existing macro without changing the name, select the
macro and click Edit.

You can import a list of macros and their optional definitions from a text file by clicking
Import and selecting the file. The file must contain one macro definition per line. A #
sign in the first column of a line in the file indicates a comment. Separate the macro
name and its definition with an equal sign (=). For example, DEBUG=true.

You can set macros on the und command line with the -define name[=value] option.

64

Understand 3.0 User Guide and Reference Manual

Assembly Options

Assembly Options

In the Assembly > Options category of the Project Configuration dialog, you can tell
Understand how to analyze assembly source code. You see this window when you
choose the Project > Configure Project menu item and select the Assembly

category.
i = ™
Understand Project Configuration: C:\Users\Yvonne\AppData\Roaming\SaT... ﬁ
Languages .
Files Options
File Types
File Oplions Azzembly Includes
Scheduled Activities Cleoftwareitest Edit
> Metrics
Visual Studio Move U
] Assembly | e
Options Move Down
s C+s
System Include Path: E]

| OK | Cancel

You can use this category to specify include directories for assembly code. You can
specify multiple directories to search for include files used in the project.

Typically only include files that are not directly related to your project, and that you do
not want to analyze fully are defined here. For project-level includes that you want to be
analyzed, add those include files as source files in the Files category.

To add a directory, click the New button and then the ... button, browse to the directory,

and click OK.
-
Add a Assembly Includes Directory . ﬁ
Directory. Chsoftwareitest - :]
Ok] [Cancel]

During analysis, the include directories will be searched in the order that they appear in
the dialog. You can click Move Up or Move Down to change the order in which
directories will be searched.

For the System Include Path, browse to select the directory that contains system
include files (include filenames surrounded by < >).

Understand 3.0 User Guide and Reference Manual 65

Chapter 3: Configuring Your Project

Include files found in regular include directories are added to the project. Include file
found in system include directories are not added.

Include paths are not recursively searched; that is, any subdirectories will not be
searched for include files unless that subdirectory is explicitly specified in the list of
include directories.

You may use environment variables in include file paths. Use the $var format on UNIX
and the %var% format on Windows. You can also use named root in include file paths
(see page 103).

You can import a list of include directories from a text file by clicking Import and
selecting the file. The file must contain one directory path per line. (In all such imported
text files, a # sign in the first column of a line in the file indicates a comment. Full or
relative paths may be used. Any relative paths are relative to the project file.)

66

Understand 3.0 User Guide and Reference Manual

COBOL Options

COBOL Options

COBOL > Copybooks
Category

In the COBOL > Options category of the Project Configuration dialog, you can tell
Understand how to analyze COBOL source code. You see this window when you
choose the Project > Configure Project menu item and select the COBOL > Options
category.

a - ™
Understand Project Configuration: C\Users\Yvonne\AppDat... Iﬁ

Languages
Files Compiler
File Types
File Options Compiler | AcuCobol -
Scheduled Activities
> Metrics Format | Fixed -
> Reporte
Visual Studio
2l COBOL |
Options
Copvbooks

o

Cancel

The field in the COBOL > Options category is as follows:

« Compiler: Select the compiler that you use. The options are Ansi85, MicroFocus,
AcuCobol, IBM, and HP OpenVMS.

* Format: Choose whether the source code is in fixed or free format.

The COBOL > Copybooks category in the Project Configuration dialog (which you
open with Project > Configure Project) allows you to specify directories that contain
files included with the COPY statement. Typically, such files have a *.cpy file extension.
You can specify multiple directories to search for such files used in the project.

Understand 3.0 User Guide and Reference Manual 67

Chapter 3: Configuring Your Project

Specify directories here if they contain files that are not directly related to your project,
and that you do not want to analyze fully. For copybooks that you want to be analyzed,
add those files as source files in the Files category.

N— N

-
Understand Project Configuration: C:‘I.Users\\’uc:nne’ihppllata...@
Languages Copybook Paths Mew
Files
File Types Czoftware\copybooks
File Opticns
Scheduled Activities
> Metrics
> Reports Move Up
Wisual Studio
4 COBOL Move Down
Options
| em=m
‘ Search for copybook files among project files
i OK Cancel

To add a directory, click the New button and then the ... button, browse to the directory,
and click OK.

During analysis, the copybook directories are searched in the order that they appear in
the dialog. You can click Move Up or Move Down to change the order in which
directories will be searched.

If you check the Search for copybook files among project files box, your project
directories will be searched along with any directories you specify here. When
searching for a copybook, the search looks in the directories specified in this dialog
first. It then searches among the project files if this box is checked.

Copybook paths are not recursively searched; that is, any subdirectories will not be
searched for copybook files unless that subdirectory is explicitly specified in the list of
copybook directories.

You may use environment variables in copybook file paths. Use the $var format on
UNIX and the %var% format on Windows. You can also use named root in copybook
file paths (see page 103).

You can import a list of copybook directories from a text file by clicking Import and
selecting the file. The file must contain one directory path per line. (In all such imported
text files, a # sign in the first column of a line in the file indicates a comment. Full or
relative paths may be used. Relative paths are relative to the project file.)

68

Understand 3.0 User Guide and Reference Manual

C++ Options

C++ Options

In the C++ > Options category of the Project Configuration dialog, you can tell
Understand how to analyze C and C++ source code. You see the following window
when you choose the Project > Configure Project menu item and select the C++

category.

Compiler

Compiler Microsoft Visual C++ b

Compiler include paths ogincjudens:

|:| Allow nested comments

Multiple Language Linkage

Prepend the names of externalty linkable entities with

Append the names of externally linkable entities with

Optimize
Maximum file size for files to be analyzed: 9 = WB
|:| Create implicit special member functions
Create references in inactive code
Create references to local objects
|:| Create references to macros during macro expansion
Create references to parameters
Create references in inline azsembhy
Save comments associated with entities
|:| Sawe duplicate references
|:| Save macro expansion text
Uze include cache

(If you selected the Strict option in the Languages category, see C++ (Strict) Options
on page 76 for how to configure your project.)

The fields in the C++ > Options category are as follows:

» Compiler: Select the compiler/platform that you use. Many different compilers are
supported. Your choice affects how the Understand parser analyzes the project.
Note that not all features of a particular compiler will necessarily be handled.

» Compiler Include Paths: Type the path the compiler uses to find include files. For
example, %include%.

» Allow nested comments: By default, this is off. If turned on it permits C style (/* */)
comments to be nested. This isn't permitted by the ANSI standard, but some
compilers do permit it.

Understand 3.0 User Guide and Reference Manual

69

Chapter 3: Configuring Your Project

Prepend the names of externally linkable entities with: You may optionally type
a string that you want used as a prefix to reference all linkable entities in other
source code languages.

Append the names of externally linkable entities with: You may optionally type a
string that you want used as a suffix to reference all linkable entities in other source
code languages.

Maximum file size for files to be analyzed: Specify the largest file size you want
to include in the analysis.

Create implicit special member functions: Check this box if you want a default
constructor and destructor to be created in the database and given implicit
declaration references, if they are not declared in the source code for class and
struct entities. This option provides entities for the parser to reference when they are
called. The default is off.

Create references in inactive code: If you wish to exclude cross-reference
information for code that is IFDEFed out by the current macro settings, turn this
option off. By default, this option is on and cross-reference information for inactive
code is included.

Create references to local objects: By default, all local object declarations are
included in the database. If you wish to exclude variables declared within functions
from the database, turn this option off. Local objects included for analysis can then
be either included or excluded from the HTML output generated. Specify whether to
include local objects in the HTML output on the main window of Understand.

Create references to macros during macro expansion: Checking this box
causes references to be stored during macro expansion. In some cases, this is
useful. Be aware that enabling this option can add many references and make the
database large and slower. The default is off.

Create references to parameters: If you wish to exclude cross-reference
information for parameters, turn this option off. By default, this option is on and all
cross-reference information for parameters is included.

Create references in inline assembly: Check this box if you want cross-
references to be created to assembly code for any #asm preprocessor macros in
your code.

Save comments associated with entities: You can choose whether source code
comments that occur before and after an entity should be associated with that entity.

Save duplicate references: By default, duplicate cross-references are condensed
to a single cross-reference. To keep duplicates, check this box.

Save macro expansion text: If you put a check in this box, you can right-click on a
macro and choose Expanded Macro Text from the context menu to see how the
macro expands.

Use include cache: By default, include files are cached during the analysis phase
as they are often referenced in multiple source files. This speeds up analysis, but
also uses more memory. If you have problems with excessive memory use during
analysis, turn this option off. Note that there are also situations where turning the
include cache on or off can affect analysis results, particularly where include actions
are dependent on where they are included.

70

Understand 3.0 User Guide and Reference Manual

C++ Options

C++ > Includes
Category

The C++ > Include category in the Project Configuration dialog (which you open with
Project > Configure Project) allows you to specify include directories. You can specify
multiple directories to search for include files used in the project.

The configuration of your include file directories is important to improving the accuracy
of project analysis. For more about ways to configure these directories, see Using the
Missing Header Files Tool on page 116 and the SciTools Blog.

Include paths are not recursively searched; that is, any subdirectories will not be
searched for include files unless that subdirectory is explicitly specified in the list of
include directories.

To add a directory, click the New button and then the ... button, browse to the directory,
and click OK.

Add a CIC++ Includes Directory

Directory: R [Z]

During analysis, the include directories will be searched in the order that they appear in
the dialog. You can click Move Up or Move Down to change the order in which
directories will be searched.

Typically only include files that are not directly related to your project (such as system-
level includes) and that you do not want to analyze fully are defined here. For project-
level includes that you want to be analyzed, add those include files as source files in the
Files category.

You may use environment variables in include file paths. Use the $var format on UNIX
and the %var% format on Windows. You can also use named root in include file paths
(see page 103).

You can import a list of include directories from a text file by clicking Import and
selecting the file. The file must contain one directory path per line. (In all such imported
text files, a # sign in the first column of a line in the file indicates a comment. Full or
relative paths may be used. Any relative paths are relative to the project file.)

The C++ > Include category provides the following options to control include handling:

» Add found include files to source list: Enabling this option causes include files
found during project analysis to be added to the project automatically. This allows
you to see more detailed information about such include files. The default is off.

» Add found system include files to source list: If you choose to add include files
that are found to the source list, you can also choose whether system include files
should be added. The default is off.

* Prompt for missing include files: If any include files cannot be found during
analysis, you will normally see the Include Paths button in the Parse Log after you
analyze the project. If you want to be prompted for how to handle missing files
during the analysis, you must choose Tools > Options and enable the Allow

Understand 3.0 User Guide and Reference Manual 71

http://scitools.com/blog/2011/09/improving-project-accuracy-cc.html

Chapter 3: Configuring Your Project

C++ > Includes > Auto
Category

C++ > Includes >
Ignore Category

prompting for missing include files on a per project basis checkbox in the
Analyze category (page 101). Then, you will see this field in the Project
Configuration dialog. If you then check the Prompt for missing include files box,
you may choose to add a directory to the include path, ignore the missing file, or
stop warning about missing files during the analysis.

» Search for include files among project files: This option directs the parser to look
among project files as a last resort for missing include files. The default is on.

e Treat system includes as user includes: This option tells the parser to look for
system includes (surrounded by < >) using the same strategies as normal includes
(surrounded by quotes). If this item is off, the parser looks for system includes only
in directories defined by the compiler configuration. The default is on.

» Ignore directories in include names: Check this option if you want to ignore any
directory specifications in #include statements and instead use the include file
wherever it is found in the project. The default is off.

» Use case-insensitive lookup for includes: This option tells the parser whether to
ignore the case of filenames in #include statements. The default is off. (Not available
on Windows; Windows lookups are always case-insensitive.)

In the C++ > Includes > Auto category you can specify include files that should be
included before each file in a project.

To add a file, click New and browse for the file(s). Then click Open.

You can import a list of auto include files from a text file by clicking Import and
selecting the text file that contains one file path per line.

Use the Move Up and Move Down buttons to change the order in which these files are
included.

In the C++ > Includes > Ignore category you can specify individual include files that
you wish to ignore during analysis.

To add a file to be ignored, click the New button and type the filename of the include
file. Then click OK. The filename can use wildcards, such as moduleZ_*.h, to match
multiple files.

i lgnore includes @E|

Ignare include file:

Ok l ’ Cancel

Any missing files you choose to ignore when prompted during analysis will be added to
this list.

You can import a list of files to ignore from a text file by clicking Import and selecting
the text file that contains one filename per line.

72

Understand 3.0 User Guide and Reference Manual

C++ Options

C++ > Includes >
Replacement Text

C++ > Macros
Category

In the C++ > Includes > Replacement Text category you can specify text that should
be replaced in include file text.

For example, you might use this feature to replace VAX/VMS include paths like
[sys$somewhere] with valid UNIX or Windows paths without modifying the source
code.

To add an item, type the string found in the actual include files in the Include String
field. Type the text you want to replace it with in the Replace With field. Then click OK.

Define a new Replace include string

Include String

Eeplace With

[8]34 l ’ Cancel

You can import a list of include strings and their replacements from a text file by clicking
Import and selecting the file. The file must contain one include string per line. The file
should separate the include string and its replacement with an equal sign (=).

Use the Move Up and Move Down buttons to change the order in which these
replacements are made.

C source code is often sprinkled with pre-processor directives providing instructions
and options to the C compiler. Directives such as the following affect what the software
does and how it should be parsed:

#define INSTRUMENT CODE
#ifdef INSTRUMENT CODE
. Statements ...
#endif
Macros are often defined with directives (#define) in include files (.h files) or are passed
in via the compiler (typically with the -D option).
For Understand to successfully analyze your software it needs to know what macro

definitions should be set. For more about ways to configure macro definitions, see
Using the Undefined Macros Tool on page 118 and the SciTools Blog.

The C++ > Macros category in the Project Configuration dialog (which you open with
Project > Configure Project) allows you to define preprocessor macros that are used
when compiling the code.

Understand 3.0 User Guide and Reference Manual 73

http://scitools.com/blog/2011/09/improving-project-accuracy-cc.html

Chapter 3: Configuring Your Project

Note:

To add a macro definition, click the New button and type the name of the macro and
optionally a definition. Then click OK.

hacro:

Drefinition:

8]] [Cancel

Note that a macro must have a name, but that the definition is optional. Macros that are
defined but have no definition value are commonly used in conjunction with #ifdef pre-
processor statements to see if macros are defined.

A number of preprocessor macros are automatically supported. In additions to the
common macros, Understand supports the following macro formats for embedded
assembly code if you are using the “fuzzy” parser. (The strict C/C++ parser does not
support these macro formats.)

#asm (<embedded assembly codes>) ;

#asm “<embedded assembly code>";

#asm
<embedded assembly code>
#endasm

You can import a list of macros and their optional definitions from a text file by clicking
Import and selecting the file. The file must contain one macro definition per line. A #
sign in the first column of a line in the file indicates a comment. The file should separate
the macro name and its definition with an equal sign (=). For example, DEBUG=true.

The priority for macro definitions is as follows, from lowest to highest priority:
Built-in language macros (__FILE__, etc.)

Compiler configuration file

Macro definitions in a synchronized Visual Studio project

Undefines of compiler defines (via the Configure Undefines button)
Project defines (Macros category)

Define on und command line using -define

N o o~ WN P

Define in source file (#define / #undefine in source)

74

Understand 3.0 User Guide and Reference Manual

C++ Options

C++ > Macros > You can list undefined macros in the C++ > Macros > Undefines category in the
Undefines Category Project Configuration dialog. Click New and type the name of a macro that is not
defined. Then click OK.

Add a Undefine Macro

Macro: | |

I [8]34 l’ Cancel]

You can import a list of undefined macros from a text file by clicking Import and
selecting the file. The file must contain one macro name per line. A # sign in the first
column of a line in the file indicates a comment.

Understand 3.0 User Guide and Reference Manual 75

Chapter 3: Configuring Your Project

C++ (Strict) Options

See Languages Category on page 41 for information about the differences between the
default C/C++ parser and the strict analyzer.

Note: If you did not select the Strict option in the Languages category next to the C/C++ box,
see C++ Options on page 69 for how to configure your project.

In the C++ (Strict) > Options category of the Project Configuration dialog, you can
control how C/C++ source code is analyzed. You see this window when you choose the
Project > Configure Project menu item and select the C++ (Strict) category.

Target
Arch |x86_64 x|
Vendor Ipn: v]
05 |win32 -
Env Iunknuwn v]

Delayed Template Parsing

Language Standard

c [esn v
C++ lu:++EiE - I
Optimize

Create references in inactive code

Save comments associated with entities

|:| Save macro expansion text

Warningz: @ HNone () Default) Al
The first three fields in the Target section of this dialog match target triplets used by the
GNU Compiler Collection (GCC). The defaults match the platform on which you are
running Understand. These fields are used to control which extensions (such as

preprocessor defines, header search paths and language syntax) are analyzed. If your
choices here do not match the code used, errors are likely to occur during the analysis.

If your code is built for multiple targets, use these options to switch between target
environments for the code analysis.

The fields in the C++ (Strict) > Options category are as follows:

» Arch: Select the architecture of the chip for which your project is written. Examples
include ARM, PowerPC64, and x86_64.

76 Understand 3.0 User Guide and Reference Manual

C++ (Strict) Options

C++ (Strict) >
Includes Category

Vendor: Select the source of the chip architecture. Options are Unknown, Apple,
PC, and SCEI (Sony PlayStation). Use the “Unknown” option to select the most
generic C/C++ code analysis.

OS: Select the operating system that this program will be used under. Examples
include iOS, Linux, and Win32.

Env: Select the build environment you use to build this project. Examples include
GNU, EABI, and Mach-O. For most projects, the default of “unknown” is fine.

Delayed Template Parsing: If your OS is Win32, you can choose whether to delay
parsing of template files. This option is required for compatibility with MSVC.
However, be aware that unreferenced template code will not be analyzed at all if you
enable delayed template parsing.

Version: If your OS is iOS or Mac OS, you should specify the version of the
operating system for which you will build the application.

C Language Standard: Select the C standard to which you want your C code to
conform.

C++ Language Standard: Select the C++ standard to which you want your C++
code to conform.

Create references in inactive code: If you wish to exclude cross-reference
information for code that is IFDEFed out by the current macro settings, turn this
option off. By default, this option is on and cross-reference information for inactive
code is included.

Save comments associated with entities: You can choose whether source code
comments that occur before and after an entity should be associated with that entity.

Save macro expansion text: If you put a check in this box, you can right-click on a
macro and choose Expanded Macro Text from the context menu to see how the
macro expands.

Warnings: Choose how many of the warnings provided by the strict analyzer you
want reported. These warnings indicate potential problems in the source code.
Choosing to see some or all warnings is likely to slow down the project analysis
somewhat.

The C++ (Strict) > Includes category in the Project Configuration dialog (which you
open with Project > Configure Project) allows you to specify include directories. You
can specify multiple directories to search for include files used in the project.

The configuration of your include file directories is important to improving the accuracy
of project analysis. For more about ways to configure these directories, see Using the
Missing Header Files Tool on page 116 and the SciTools Blog.

Include paths are not recursively searched; that is, any subdirectories will not be
searched for include files unless that subdirectory is explicitly specified in the list of
include directories.

Understand 3.0 User Guide and Reference Manual 77

http://scitools.com/blog/2011/09/improving-project-accuracy-cc.html

Chapter 3: Configuring Your Project

C++ (Strict) >
Includes >
Frameworks
Category

To add a directory, click the New button and then the ... button, browse to the directory,
and click OK.

Add a Includes Directory - ﬁ

S

Directory: | - | |

During analysis, the include directories will be searched in the order that they appear in
the dialog. You can click Move Up or Move Down to change the order in which
directories will be searched.

Typically only include files that are not directly related to your project (such as system-
level includes) and that you do not want to analyze fully are defined here. For project-
level includes that you want to be analyzed, add those include files as source files in the
Files category.

You may use environment variables in include file paths. Use the $var format on UNIX
and the %var% format on Windows. You can also use named root in include file paths
(see page 103).

You can import a list of include directories from a text file by clicking Import and
selecting the file. The file must contain one directory path per line. (In all such imported
text files, a # sign in the first column of a line in the file indicates a comment. Full or
relative paths may be used. Any relative paths are relative to the project file.)

The C++ (Strict) > Include category provides the following options to control how
includes are handled:

« Add found include files to source list: Enabling this option causes include files
found during project analysis to be added to the project automatically. This allows
you to see more detailed information about such include files. The default is off.

e Add found system include files to source list: If you choose to add include files
that are found to the source list, you can also choose whether system include files
should be added. The default is off.

e Search for include files among project files: This option directs the parser to look
among project files as a last resort for missing include files. The default is on.

There are a number of additional options for include file handling that are available only
if you are using the default parser rather than the strict analyzer.

In the C++ (Strict) > Includes > Frameworks category lets you specify Mac OS and
iOS framework paths that the project uses.

To add a location, click New and browse for the folder. Then click Select Folder and
then OK.

78

Understand 3.0 User Guide and Reference Manual

C# Options

You can import a list of framework folders from a text file by clicking Import and
selecting the text file that contains one path per line.

Use the Move Up and Move Down buttons to change the order in which these folders
are processed.

C++ (Strict) > A prefix header is a C/C++ header file that is included at the beginning of every source
Includes > Prefix file by the compiler. This is done without the use of a #include directive. It is common for
Headers Category Mac OS X programs to use prefix header files.

In the C++ (Strict) > Includes > Prefix Headers category, you can specify files that are
used as prefix header files.

To add a file, click New and browse for the file. Then click Open.

You can import a list of files from a text file by clicking Import and selecting a text file
that contains one file path per line.

Use the Move Up and Move Down buttons to change the order in which these files are
processed.

C++ (Strict) > Macros For information about the C++ (Strict) > Macros category, see C++ > Macros Category
Category on page 73.

For information about the C++ (Strict) > Macros > Undefines category, see C++ >
Macros > Undefines Category on page 75.

C# Options

In the C# > References category, click New. Click ... and browse for a .dll file. Type the
alias for that file used in the code and click OK.

Define a new Reference

Alias

(8] 58 l’ Cancel]

You can import a list of reference files and their aliases from a text file by clicking
Import and selecting a file that contains one reference and its alias per line. The file
should separate the reference file and its alias with an equal sign (=).

By default, reference files are analyzed as part of the project. If you do not want them to
be analyzed, uncheck the Analyze found reference files box in this category. If this
box is unchecked, methods in reference libraries are not counted for the purpose of
computing metrics.

Understand 3.0 User Guide and Reference Manual 79

Chapter 3: Configuring Your Project

FORTRAN Options

In the Fortran > Options category of the Project Configuration dialog, you can specify
how to analyze FORTRAN source code. You see this window when you choose the
Project > Configure Project menu item and select the Fortran category.

Compiler

WBFEION |Fortran?? s
Eormat | auto w

Truncate column (72 Columr: |72

[] Al C-style comments

[] &lowy colonz in names

|:| Allowy function declaration withowt parertheses

[] &lowy guote in octal constants

[[] Ca=e gensttive idertifiers

Use preprocessaor

Intrinsics File |C:Program Files\STheonfunderstandiiortramintringics77 ey (-]

Multiple Language Linkage

The caze of externally inkable ertities iz

®) all lowercase () all uppercase () preserved

Prepend the names of externally linkable ertities with

Anpend the mnames of externally linkable entities with

COptions

Prompt on parse errars

Cizplay entity names a= | Criginal |+

The fields in the Fortran > Options category are as follows:

e Version: Select the variant of FORTRAN used by the source code in this project. If
you change the version after creating a project, the project will be reanalyzed when
you click OK. The choices are Fortran77, Fortran90, Fortran95, and
FORTRANZ2003. If you have a mix of code, choose the newest language variant.
That is, if you have F77 and F95 code, choose F95. The default is Fortran95.

» Format: Some older FORTRAN variants and all new variants permit free form
statements, which may cross lines). Fixed form statements are terminated by a line
end or column number. The default is “auto format,” which automatically detects the
parsing format (fixed or free) on a file-by-file basis. This allows you to mix free and
fixed format. Auto format also determines the correct truncation point for fixed

80

Understand 3.0 User Guide and Reference Manual

FORTRAN Options

format files. Choose “fixed” or “free” only if all your source files have the same
format. Blocks of freeform code can be used within a fixed format file if you bracket
the blocks with !dec$freeform and !dec$nofreeform.

e Truncate column: If you choose fixed form, you may choose what column
terminates statements. Common columns 72 and 132 are available or you may
specify a column or no truncation.

» Allow C-style comments: Check this option if your FORTRAN code contains
comments of the form /* ... */.

« Allow colons in names: Check this box to allow colons (:) to be used in identifiers
in F77 code. Enabling this option could cause problems in F77 code that does not
use this extension, so the default is off.

» Allow function declaration without parentheses: Check this box if you want to
allow functions to be declared without the use of parentheses. By default,
parentheses are required.

» Allow quote in octal constants: Check this box if a double quote mark (") should
be treated as the start of a DEC-style octal constant. For example, "100000. If this
box is not checked (the default), a double quote mark begins a string literal.

» Case sensitive identifiers: Check this box if you want identifier names to be
treated case-sensitively. By default, case is ignored.

» Use preprocessor: Use this option to disable or enable preprocessor support.

» Intrinsics file: Type or browse for a file that contains intrinsic functions you want to
be parsed. Default intrinsics files are provided in the
<install_directory>/conf/understand/fortran directory: intrinsics77.txt, intrinsics90.txt,
and intrinsics95.txt.

» Case of externally linkable entities: Choose which case should be used for
“exporting” entities in this language that can be linked to (for example, called as
functions) by other languages. For example, if an entity is declared in this language
as “MYITEM” and you choose “all lowercase” here, other languages would be
expected to call that entity as “myitem”.

* Prepend the names of externally linkable entities with: You may optionally type
a string that you want used as a prefix to reference all linkable entities in other
source code languages.

» Append the names of externally linkable entities with: You may optionally type a
string that you want used as a suffix to reference all linkable entities in other source
code languages.

e Prompt on parse errors: By default, parsing errors cause a prompt asking how to
handle that error. When prompted during analysis, you may choose to ignore that
error or all future errors. Turn this option off to disable this prompting feature. If you
turned it off during analysis, but later want to turn error prompting back on, check it
here.

» Display entity names as: Choose whether entity names should be displayed in
Understand with the same case as the source code (original), all uppercase, all
lowercase, only the first letter capitalized, or mixed case.

Understand 3.0 User Guide and Reference Manual 81

Chapter 3: Configuring Your Project

Fortran>Includes
Category

Other Fortran
Categories

The Fortran > Includes category in the Project Configuration dialog (which you open
with Project > Configure Project) allows you to specify include directories. You can
specify multiple directories to search for include files used in the project.

The configuration of your include file directories is important to improving the accuracy
of project analysis. For more about ways to configure these directories, see Using the
Missing Header Files Tool on page 116 and the SciTools Blog.

Include paths are not recursively searched; that is, any subdirectories will not be
searched for include files unless that subdirectory is explicitly specified in the list of
include directories.

To add a directory, click the New button and then the ... button, browse to the directory,
and click OK.

During analysis, the include directories will be searched in the order that they appear in
the dialog. You can click Move Up or Move Down to change the order in which
directories will be searched.

Typically only include files that are not directly related to your project (such as system-
level includes) and that you do not want to analyze fully are defined here. For project-
level includes you want analyzed, add those include files as source files in the Files
category.

You can import a list of include directories from a text file by clicking Import and
selecting the file. The file must contain one directory path per line. (In all such imported
text files, a # sign in the first column of a line in the file indicates a comment. Full or
relative paths may be used. Any relative paths are relative to the project file.)

For more information, see C++ > Includes Category on page 71.

For information about the Fortran > Includes > Replacement Text category, see C++
> Includes > Replacement Text on page 73.

For information about the Fortran > Macros category, see C++ > Macros Category on
page 73.

82

Understand 3.0 User Guide and Reference Manual

http://scitools.com/blog/2011/09/improving-project-accuracy-cc.html

Java Options

]
Java Options

In the Java > Options category of the Project Configuration dialog, you can specify

how to analyze Java source code. You see this window when you choose the Project >

Configure Project menu item and select the Java category.

Compiler
Version | jgyas -
Multiple Language Linkage
Prepend the names of JNIVKNI external entities with Java_
| Include package name
Optimize
¥| Save comments associated with entities

The Java > Options category contains the following fields:

» Version: Select the version of Java used by the source code in this project. If you
change the version after creating a project, the project will be reanalyzed when you
click OK. The choices are Java 1.3, 1.4, 5, and 6.

* Prepend the names of JNI/KNI external entities with: You can specify a prefix
used by Java to call functions in other languages. A Java call to a function “func”
would match the C function prepend_pkg_class_func, where prepend is the string
you specify here, pkg is the Java package name, and class is the Java class. This
follows the Java Native Interface (JNI) and the Kaffe Native Interface (KNI).

» Include package name: By default, the package name is included in the prefix
used to call functions in other languages. Uncheck this box to remove the package
name from the names of external functions.

* Save comments associated with entities: You can choose whether source code
comments that occur before and after an entity should be associated with that entity.

Java > Class Paths The Java > Class Paths category allows you to identify Java .jar and .class files that
Category provide classes for which you do not have source code.

Both .jar files and .class files are supported. Jar files contain compressed .java (source)
files. Class files contain compiled sources. By default, the src.jar (or src.zip) file
provided by the Java Developers Kit is located. You can add other .jar files as needed.

To add a directory with .class and .java files, follow these steps:
1 Click New Path.
2 Locate and select the directory containing .class files. You can provide a relative

path to a directory by typing the path directly in the Class Path field rather than
browsing for a directory.

Understand 3.0 User Guide and Reference Manual 83

Chapter 3: Configuring Your Project

3 Click OK.
Add a Class path
Class path | Cimycode v E]

[(8] 58 l’ Cancel]

To add a .jar file to the list, follow these steps:
1 Click New Jar.

2 Locate and select the .jar or .zip file. You can select multiple .jar files while holding
down the Ctrl key. You can provide a relative path to a file by typing the path directly
in the Jar File field rather than browsing for a file.

3 Click Open.

If a class is found in both a .java and .class file in the class path, the class in the .java
file is used.

You can import a list of class paths and/or jar files from a text file by clicking Import and
selecting the file. The file must contain one directory or file path per line. (In all such
imported text files, a # sign in the first column of a line in the file indicates a comment.
Full or relative paths may be used. Any relative paths are relative to the project file.)

84

Understand 3.0 User Guide and Reference Manual

JOVIAL Options

JOVIAL Options

In the Jovial > Options category of the Project Configuration dialog, you can specify
how to analyze JOVIAL source code. You see this window when you choose the
Project > Configure Project menu item and select the Jovial category.

Compiler
WiErsion Jowial?d
Truncate column Maone s || Column: |72

Avtamatic compool file

Implementation
Bit= In Byte g
Bits In Pointer 16
Bitz InWyiord 16
Fixed Precizion |15
Flozt Exp Bits g
Float Precizion |23

Irt Precision 15

Options

Dizplay ertity names as Criginal | s

The Jovial > Options category contains the following fields:

Version: Select the JOVIAL version you use. JOVIAL73 and JOVIAL3 are
supported.

Truncate column: By default, statements are not truncated by column location.
You may choose to truncate statements at column 72 or at some other user-defined
column.

Automatic compool file: Click ... and browse to the compool file you want to use.
The file extension can be .txt, .cpl, or .jov. The selected file is automatically imported
into all other files in the project.

Implementation fields: The fields in this section allow you to specify the sizes and
precision of various datatypes. These sizes vary with different implementations of
JOVIAL. The sizes are used to determine data overlay. You can specify the number
of bits in a byte, number of bits in a pointer, number of bits in a word, precision for
fixed datatypes, number of bits in a floating exponent, precision for floating
datatypes, and the precision for an integer.

Display entity names as: Choose whether entity names should be displayed in
Understand with the same case as the source code (original), all uppercase, all
lowercase, only the first letter capitalized, or mixed case.

Understand 3.0 User Guide and Reference Manual 85

Chapter 3: Configuring Your Project

Jovial > !Copy

The Jovial > !Copy category in the Project Configuration dialog (which you open with

Category Project > Configure Project) lets you select directories to be searched for files named
in ICOPY directives.
To add a directory to the list, follow these steps:
1 Click the New.
Add a !Copy Directory
Directory. | C\zodetesthed v| (]
[8]] [Cancel]
2 Click the ... button and browse to the directory you want to add.
3 Click OK.
When a ICOPY directive is analyzed, the directories are searched in the order listed. To
change the search order, select a directory and click Move Up or Move Down.
You can import a list of directories to be searched for files named in !COPY directives
from a text file by clicking Import and selecting the file. The file must contain one
directory path per line. (In all such imported text files, a # sign in the first column of a
line in the file indicates a comment. Full or relative paths may be used. Any relative
paths are relative to the project file.)
86 Understand 3.0 User Guide and Reference Manual

Pascal Options

Pascal Options

In the Pascal > Options category of the Project Configuration dialog, you can specify
how to analyze Pascal source code. You see this window when you choose the Project
> Configure Project menu item and select the Pascal category.

Compiler

“ersion |D&Ip-hi - |

V| Allow embedded SQL

Predeclared entities file C:\Program Files\SciTools\confunderstandipascahpredeclaredelphi.tt

dfm converter exe

Multiple Language Linkage

The caze of externally linkable entities is

Preserve -
Options

Dizplay entity names as | Original -

The Pascal > Options category contains the following fields:

« Version: Select the version of Pascal used by the source code in this project. The
choices are Compagq, Delphi, and Turbo. Select Compagq for legacy DEC Pascal
projects.

» Allow embedded SQL: Check this box to enable parsing of embedded SQL
statements in your source code.

» Predeclared entities file: Click ... to select a text file (*.txt) that contains
predeclared routines, types, constants, and parameters used in your source code.
Two versions of this file are provided in the
<install_directory>/conf/understand/pascal directory: predeclared.txt and
predeclareddelphi.txt. The default is set according to your choice in the Version
field.

« dfm converter exe: Browse for and select the executable to be used to convert
binary Delphi Form (DFM) files in the project to text files. The text files will then be
parsed as part of the project. A number of third-party converters are available;
Understand does not provide a converter.

Understand 3.0 User Guide and Reference Manual 87

Chapter 3: Configuring Your Project

Pascal > Macros
Category

Pascal > Namespaces
Category

Pascal > Standard

e Case of externally linkable entities: Choose which case should be used for
“exporting” entities in this language that can be linked to (for example, called as
functions) by other languages. For example, if an entity is declared in this language
as “MYITEM” and you choose “Lowercase” here, other languages would be
expected to call that entity as “myitem”.

» Display entity names as: Choose whether entity names should be displayed in
Understand with the same case as the source code (original), all uppercase, all
lowercase, only the first letter capitalized, or mixed case.

The Pascal > Macros category allows you to add support for preprocessor macros in
source code. For example, the $IF, $IFDEF, and $ELSE directives are supported.

The CPU386 and MSWINDOWS macros are predefined for some types of
Pascal/Delphi sources to avoid generating syntax errors with the standard library.

For more information about the Pascal > Macros category, see C++ > Macros
Category on page 73.

The Pascal > Namespaces category allows you to add a directory of namespaces to

use when locating a unit specified in a USES statement. A USES statement may refer
to a unit without specifying a namespace. So, directories you add in this category are

searched in the order provided to find units with unspecified namespaces.

For example, in the following statement, Unitl has a namespace specified, so only the
namespace CompanyName.ProjectName is searched for Unitl. Since Unit2 has no
namespace specified, the namespaces in the Namespaces category will be searched
for Unit2.

uses CompanyName.ProjectName.Unitl, Unit2;
To add a namespace directory, follow these steps:
1 Click the New button.
2 Click the ... button and browse to a directory. Then click OK.

3 You can click Move Up or Move Down to change the precedence order in which the
standard libraries are checked.

You can import a list of directories to use when locating units from a text file by clicking
Import and selecting the file. The file must contain one directory path per line. (In all
such imported text files, a # sign in the first column of a line in the file indicates a
comment. Full or relative paths may be used. Any relative paths are relative to the
project file.)

The Pascal > Standard Library Paths category allows you to specify directories that

Library Paths should be searched for standard libraries.

Category Standard library paths are used to find units that are not found in the project files. Only
files that contain the required units are processed. For example, the following statement
causes the standard libraries to be searched for a unit names System:

Uses System;
The standard libraries are not used when computing project metrics.
88 Understand 3.0 User Guide and Reference Manual

PL/M Options

To add a directory, follow these steps:
1 Click the New button.
2 Click the ... button and browse to a directory. Then click OK.

3 You can click Move Up or Move Down to change the precedence order in which the
standard libraries are checked.

You can import a list of directories that should be searched for standard libraries from a
text file by clicking Import and selecting the file. The file must contain one directory
path per line.

Pascal > Search Paths The Pascal > Search Paths category allows you to specify directories to search for
Category include files. To add a directory, follow these steps:

1 Click the New button.
2 Click the ... button and browse to a directory. Then click OK.

3 You can click Move Up or Move Down to change the precedence order in which the
standard libraries are checked.

You can type a list of directory paths separated by semicolons.

You can import a list of directories to search from a text file by clicking Import and
selecting the file. The file must contain one directory path per line.

PL/M Options

In the PL/M > Options category of the Project Configuration dialog, you can specify how
to analyze PL/M source code. You see this window when you choose the Project > Con-
figure Project menu item and select the PL/M category.

Compiler

“ersion |PLMW-S0

Options

Dizplay ertity names as |Original »

The PL/M > Options category contains the following fields:

e Compiler Version: Choose the version of PL/M your compiler uses. The choices
are PL/M-80 and PL/M-86.

» Display entity names as: Choose whether entity names should be displayed in
Understand with the same case as the source code (original), all uppercase, all
lowercase, only the first letter capitalized, or mixed case.

Understand 3.0 User Guide and Reference Manual 89

Chapter 3: Configuring Your Project

PL/M>Includes
Category

The PL/M > Includes category in the Project Configuration dialog (which you open with
Project > Configure Project) allows you to specify include directories. You can specify
multiple directories to search for include files used in the project.

The configuration of your include file directories is important to improving the accuracy
of project analysis. For more about ways to configure these directories, see Using the
Missing Header Files Tool on page 116 and the SciTools Blog.

Include paths are not recursively searched; that is, any subdirectories will not be
searched for include files unless that subdirectory is explicitly specified in the list of
include directories.

To add a directory, click the New button and then the ... button, browse to the directory,
and click OK.

During analysis, the include directories will be searched in the order that they appear in
the dialog. You can click Move Up or Move Down to change the order in which
directories will be searched.

Typically only include files that are not directly related to your project (such as system-
level includes) and that you do not want to analyze fully are defined here. For project-
level includes you want analyzed, add those include files as source files in the Files
category.

You can import a list of include directories from a text file by clicking Import and
selecting the file. The file must contain one directory path per line. (In all such imported
text files, a # sign in the first column of a line in the file indicates a comment. Full or
relative paths may be used. Any relative paths are relative to the project file.)

For more information, see C++ > Includes Category on page 71.

For information about the PL/M > Includes > Replacement Text category, see C++ >
Includes > Replacement Text on page 73.

90

Understand 3.0 User Guide and Reference Manual

http://scitools.com/blog/2011/09/improving-project-accuracy-cc.html

VHDL Options

Python Options

Python > Imports
Category

In the Python > Options category of the Project Configuration dialog, you can specify
how to analyze Python source code. You see this window when you choose the
Project > Configure Project menu item and select the Python > Options category.

The Python > Options category contains the following field:

» Version: Choose the version of Python you are using. The choices are Python2 and
Python3.

The Python > Imports category in the Project Configuration dialog (which you open
with Project > Configure Project) allows you to specify import directories. You can
specify multiple directories to search for import files used in the project.

Import paths are not recursively searched; that is, any subdirectories will not be
searched for import files unless that subdirectory is explicitly specified in the list of
import directories.

To add a directory, click the New button and then the ... button, browse to the directory,
and click OK.

During analysis, the import directories will be searched in the order that they appear in
the dialog. You can click Move Up or Move Down to change the order in which
directories will be searched.

Typically only import files that are not directly related to your project and that you do not
want to analyze fully are defined here. For project-level imports you want analyzed, add
those files as source files in the Files category.

You can import a list of directories from a text file by clicking Import and selecting the
file. The file must contain one directory path per line. (In all such imported text files, a #
sign in the first column of a line in the file indicates a comment. Full or relative paths
may be used. Any relative paths are relative to the project file.)

For more information, see C++ > Includes Category on page 71.

VHDL Options

There is currently no Project Configuration category for VHDL.

If you are new to Understand, you should be aware that the following terms have
different meanings in Understand than they do in VHDL:

» Entity. Any source construct such as a file, function, or variable. This also includes,
but is not limited to, VHDL entities.

» Architecture. An arbitrary collection of Understand entities organized in a hierarchy.
This collection may contain, but is not limited to, VHDL architectures.

Understand 3.0 User Guide and Reference Manual 91

Chapter 3: Configuring Your Project

Web Options

In the Web category of the Project Configuration dialog, you can specify what types of
tags to allow in PHP files that are part of the project. You see this window when you
choose the Project > Configure Project menu item and select the Web category.

PHP Options

W | Allow ASP Style Tags

| Allow Short Tags

Web languages included in the analysis include CSS, HTML, Javascript, PHP, and
XML. For some file types, such as XML, only line count metrics are generated.

The Web category contains the following fields:

e Allow ASP Style Tags: Check this box if your PHP: Hypertext Preprocessor (PHP)
code ever uses Active Server Pages (ASP) style tags.

» Allow Short Tags: Check this box if your PHP code ever uses the short form of
PHP tags.

92

Understand 3.0 User Guide and Reference Manual

Setting General Preferences

Setting General Preferences

Understand allows you to control a number of aspects of its

. G |
operation using the Understand Options dialog. To open this U::;Elr:terface
dialog, choose Tools > Options. This dialog provides options List

[43] 1313

to set in the categories shown to the left:

The subsections that follow describe each of the categories:

General Category on page 94

User Interface Category on page 96

User Interface > Lists Category on page 97
User Interface > Alerts Category on page 98
User Interface > Windows Category on page 99
Key Bindings Category on page 100

Analyze Category on page 101

Configure Category on page 102

Command Window Category on page 102
Portability Category on page 103
Dependency Category on page 104

Editor Category on page 105

Editor > Advanced Category on page 107
Editor > Styles Category on page 110

Editor > Navigation Category on page 111
Editor > External Editor Category on page 112
Graphs Category on page 113

Alerts
Windows
- & Key Bindings
Analyze
E Configure
Command Window
[E Portabilty
=» Dependency
4 & Editor
Advanced
Styles
Mavigation
External Editor

& Graphs

Understand 3.0 User Guide and Reference Manual

93

Chapter 3: Configuring Your Project

General Category

The following options can be controlled from the General category of the Tools >
Options dialog:

Application Font

Font: Arial Size: 8 Change Font ...

Show on Startup

Show the Splash-Screen on startup Show the Getting Started Dialog on startup

Auto Leading/Saving Options
|:| Save all modified editor windows when application loses focus.

|:| Open last project on startup (currenthy: Cisample\fastgrep\fastgrep.ud

|:| Use Default Working Directory

7]
o
(=]
[
D

C:/U=zersvonne/Applata/Roaming'SciTools/zsample/zlib

Performance

|:| Enable permissions checking for NTFS filesystems
|:| Auto-detect network proxy settings
Allow interactivity during intensive processing

-

Allow events processing every 100 w1 milizeconds.

Application Data

Location: Ci/Users/vonne/AppData/Foaming

Re=tart the application for th

i
W

etting to take effect

Application font: To change the font used in dialogs and lists in Understand, click
Change Font and select the font, font style, and font size you want to use and click
OK.

Show the Splash-Screen on startup: If checked (on by default), the logo is shown
while Understand is starting.

Show the Getting Started dialog on startup: If checked (on by default), the
Getting Started tab (see page 21) is shown in the document area when you start
Understand.

Save all modified editor windows when application loses focus: If checked (off
by default), then whenever you move to another application, any editor windows in
which you have made changes have their contents saved automatically.

Open last project on startup: If checked (off by default), the most recently opened
project is automatically opened when you start Understand with no other project
specified. This is a useful option if you typically work with only one project.

94

Understand 3.0 User Guide and Reference Manual

Setting General Preferences

» Use default working directory: If checked (off by default), you can select an
alternate default directory. This will be the starting place when you are browsing for
other directories and the directory to which relative directory specifications relate.
The default is the directory where your project is saved.

e Enable permissions checking for NTFS filesystems: If you check this box, file
permissions are checked on NTFS filesystems when you use the editor to modify
files. This option is off by default, since this checking can significantly degrade
performance in some cases.

» Auto-detect network proxy settings: If the Getting Started tab does not show the
Scientific Toolworks blog feed, you can check this option to have your system’s
proxy settings checked so that the feed can be loaded. However, scanning for proxy
settings takes some time and slows down the Understand startup process. This
option is disabled by default.

» Allow interactivity during intensive processing: If checked (on by default), you
can interact with Understand while it is performing background processing. Your
interactive events are processed at the interval you specify in milliseconds.

» Allow events processing every n milliseconds: Specify how often interactive
events are processed. By default, such events are processed every 100
milliseconds (0.1 seconds). You can improved background processing performance
by reducing this value.

» Application Data Location: This field shows where files used internally by
Understand but not associated with a specific project are stored. You can browse to
change this location. You will need to restart Understand to have changes to this
directory location take effect.

Understand 3.0 User Guide and Reference Manual 95

Chapter 3: Configuring Your Project

User Interface The following options can be set from the User Interface category of the Tools >
Category Options dialog:

Tree, Table, and List Options

Tree Row Indentation 12 =

Use alternating row colors in tables and lists

+| Dim highlight color on selected tems when the view is inactive

| Animate Windows/Drawers
Spead - D +

Document Area
| Show tabs

Use "Most Recently Used™ order for next tab activation when documents close

Dock Window Layouts

Dock windows auto-hide to give maximum space for

Tight Layout working in the Document Area
@ Clagsic Layvout Docks are laid out as in Understand 1.4

Multi-monitor Layout Docks are laid out on a separate screen

Title Formats

Window Titles: |Long - Tab Titles: |Short -
Selector Files: | Short b

» Tree Row Indentation: You can change the amount of indentation in hierarchical
tree displays.

» Use alternating row colors in tables and lists: If checked (off by default), lists and
tables have shading for alternate rows.

» Dim highlight color on selected items when the view is inactive. The default on
Windows is to dim the highlighting for the selected object when a windows loses
focus. If this makes it difficult for you to read the selected object, you can change the
behavior by unchecking this box.

* Animate Windows/Drawers: If checked (on by default), opening and closing
windows and tabbed areas (drawers) is animated. You can choose a faster or
slower speed than the default.

» Show tabs: If checked (the default), tabs are shown at the top of the document area
for each of the windows open in that area. This includes the source editor windows,
graphical views, and other windows.

96 Understand 3.0 User Guide and Reference Manual

Setting General Preferences

» Use “Most Recently Used” order for next tab activation when documents
close: If this box is checked, the most recently used window becomes the current
window when you close another. If this box is unchecked (the default), the tab to the
left becomes the current window.

e Dock Window Layouts: Choose which window layout you would like to use as the
default. The Tight Layout is useful if you will be opening several source files and
want plenty of screen space for that. The Classic Layout is similar to earlier
versions. The Multi-monitor Layout allows you to take advantage of multiple
screens if you have them.

« Title Formats: Choose whether you want filenames in the title areas of windows,
tabs, and selector files to be short names, long (full path) name, or relative to the
project database.

User Interface > Lists The following options can be set from the User Interface > Lists category of the Tools
Category > Options dialog:

Dizplay 5 +{ items in the "Recent Files’ list.

th

Display +| ttems in the 'Recent Projects’ list.

* Recent files list: The default is to show five items in a list of recently used files. You
can change that default here.

» Recent projects list: The default is to show five items in a list of recently used
projects. You can change that default here.

Understand 3.0 User Guide and Reference Manual 97

Chapter 3: Configuring Your Project

The following options can be set from the User Interface > Alerts category of the

User Interface >

Alerts Category Tools > Options dialog:
Sawe On Parse
@ Always Prompt
Save modified files before parsing
Don't save modified files before parsing
Sawe On Command
@ Always Prompt
Save modified files before running a command
Don't save modified files before running a command
Project Cloze
| Prompt before closing the current project
CodeCheck
| Prompt when Violation count exceeds 300,000
Entity Fitter Window
Sound beep when entity fiter entry does not match

These options can be used to re-enable warnings that you have disabled in a warning

dialog box.

» Save on parse: Choose what you want done with changed but unsaved source files
when the database is to be analyzed. The default is to always prompt you to choose
whether to save files. Alternately, you can choose to automatically save changed
files or to not save changed files.

» Save on command: Choose what you want done with changed but unsaved source
files when a command is to be run. The default is to always prompt you to choose
whether to save files. Alternately, you can choose to automatically save changed
files or to not save changed files.

» Prompt before closing the current project: If checked (the default), you are
asked whether you want to close the current project and all associated windows
when you attempt to open a different project.

* Prompt when Violation count exceeds 300,000: If checked (the default), you are
asked if you want to continue the CodeCheck when 300,000 violations have been
detected.

* Sound beep when entity filter entry does not match: By default, the computer
beeps if you type a filter in the Entity Filter that does not match any of the entities of
the selected type. You can uncheck this option to turn off these beeps.

98 Understand 3.0 User Guide and Reference Manual

Setting General Preferences

User Interface > The following options can be set from the User Interface > Windows category of the
Windows Category Tools > Options dialog:

Editor Windows
Open az: @ MDI Sl

Graph Windows
Cpen as: @ MDI SDl

| Reuse window when requesting a similar type of graph from within the window

Find in Files Result Window

| Restore Default Position

. Selection Color
| ExpandiCollapse code snippet when result double clicked.
Wisit result in editor when result double clicked.

| Use alternating row colors.

CodeCheck Result Windows

. Selection Color

| Use aternating row colors.

You can choose whether to open source code files and graphical views in multiple
document interface (MDI) or single document interface (SDI) windows. MDI windows
are all contained within the document area of the main Understand window. SDI
windows are separate windows that you can move anywhere on your desktop. The
default is MDI.

For graphical views, you can also choose to reuse a window when you open the same
type of graph, but for a different entity. The default is to open a separate window for
each graphical view.

* Reuse window when requesting a similar type of graph from within window: If
checked (on by default), new graphs open in the same window from which they
were opened. This occurs if you choose to view a similar graph for an item listed in a
graph window.

e Find in Files Result Window: Click Restore Default Position if you want to re-
dock the results for the Find in Files dialog to the bottom of the Understand window.

» Selection Color: Click the colored square to choose a different color for the
selected result in the Find in Files and CodeCheck results.

» Expand/Collapse code snippet when result double-clicked: By default, code
found in the Find in Files results is expanded to show surrounding lines of code
when you double-click. Uncheck this box if you don’t want this behavior to occur.

Understand 3.0 User Guide and Reference Manual 99

Chapter 3: Configuring Your Project

Visit result in editor when result double-clicked: If you check this box, the code
is shown in the Source Editor when you double-click on a result.

Use alternating row colors: By default, the results for Find in Files and
CodeCheck have a slightly darker background for every second row. You can turn
off this shading by unchecking this box.

Key Bindings The functions of keys in Understand can be customized. The Key Bindings category of
Category the Tools > Options dialog lets you choose how keys will work in Understand:

i " N
nderstand Ophions o

K
[

, General

. 1) User Interface Keyboard Scheme: [Und&rstand v] [Save As.. l [Delete]
4 @ Key Bindings Search: By Name co By Key Binding j

= Application

= Comparison View Name Primary Seguence Alternate Component -

(== Editor Autocomplste Esc Editor

=8 Find In Files

[Find Resuttz Code Check Application

= Information Browiser)

. Collapse Left - Information Browser

= Project Browser

= Replace Preview Collapse Al Ctrl+Shift+Left Information Browser |

= User Tools

Analyze Comment Selection Ctrl+. Editor

Keyboard Scheme: This field allows you to choose groups of keyboard settings
that are similar to other applications. The default settings are those native to
Understand. Other choices are Visual Studio .NET key bindings and the Emacs
editor key bindings. If you choose a scheme and click OK, that scheme will be used.
If you make a change to one of the provided schemes, that becomes a “Custom”
scheme. You can click Save As to name and save your key binding scheme.

Search By Name: Type part of a command name and click the @ Find icon. All
commands that contain that string will be shown.

Search By Key Binding: Click on the field and press the key sequence you want to
search for. Then click the @ Find icon. for example, press F3 to find all the key
bindings that contain the F3 key.

Component: Different portions of Understand have different key behaviors. The
“Component” column in the table indicates where a particular command is available.
You can see the key bindings for a particular component by selecting a sub-
category under the main Key Bindings category in the left side of the dialog. (The
Application component applies to dialogs and items not otherwise listed.)

To see a full list of all the current key bindings, choose Help > Key Bindings.

To change the key sequence for an action, follow these steps:

1 Use the Component categories or the Search fields to find a command whose key

binding you want to change.

100

Understand 3.0 User Guide and Reference Manual

Setting General Preferences

Put your cursor in the Primary Sequence or Alternate column for the command
you want to modify.

Press the key combination you want to use to perform that action.

You can't use normal editing keys like Backspace or Delete to edit the keys shown
in these fields. To delete the key combination you have entered, click the X in the
red circle.

When you move focus away from a key binding you changed, you may see a
warning message if the key combination you chose is already used. For example:

Keyboard Shortcut Conflict @

The key sequence Cirl+T is already being used by:

Editor : Transpose Line

Would vou like to override that sequence?

Click Yes to make the change or No to cancel the change. Use the Restore
Defaults or Cancel button if you make changes you don’t want to save. Or, you can
choose one of the provided Keyboard Schemes to go back to a default set of key
bindings.

Analyze Category The Analyze category of the Tools > Options dialog allows you to specify options for
how the project is analyzed.

Project Parse Log options

Sound beep on parse completion

[] Show =tandard library files

|:| Rescan project before parsing changed files

|:| Allow prompting for migsing include files on a per project basis.

Sound beep on parse completion: By default, a beep notifies you when the
analysis is complete.

Show standard library files: For languages whose standard libraries are parsed
by Understand (such as Ada), if you check this box the standard library files are
shown in the parse log. By default, this box is not checked, and the parse log is
shorter.

Rescan project before parsing changed files: If you check this box, Understand
scans for files that have been added to project directories and to any Visual Studio
projects referenced by this Understand project before analyzing the files currently in

Understand 3.0 User Guide and Reference Manual 101

Chapter 3: Configuring Your Project

Configure Category

Command Window
Category

the project. This has the same effect as using the Project > Rescan Project
Directories menu command before analyzing the project. By default, this option is
off.

» Allow prompting for missing include files on a per project basis: If you check
this box, the Prompt for missing include files box becomes visible in the C++ >
Includes category of the Project Configuration dialog. See C++ > Includes Category
on page 71.

The following options can be set from the Configure category of the Tools > Options
dialog:

Project Configuration Options
Uze the Mew Project Wizard when creating new projects

» Use the New Project Wizard when creating new projects: The check in this box
causes the New Project Wizard (page 35) to be used when you choose File > New
> Project. If you uncheck this box, you can specify a project database location and
filename and then use the full Project Configuration dialog.

The following option can be set from the Command Window category of the Tools >
Options dialog:

Captured output font

Font: Courier New Size:l0 Change Fort...

This setting controls the font used in the Run a Command dialog to display output from
the commands you issue.

102

Understand 3.0 User Guide and Reference Manual

Setting General Preferences

Portability Category The Portability category of the Tools > Options dialog lets you specify names to use as
substitutes for file paths. Named roots are similar to environment variables.

MNamed Footz

Mamed roots defined here will be use to resolve file paths in projects that use named roots. A
natmed roct iz simply & mapping of & name to & directory path. Mamed roots facilitate project
potakility by allowing directory paths to vary between application users.

W | Hame Path

HOME: | coimycode

Addd Mamed Root

After you have defined a named root, you can use that name in other Understand
dialogs, such as the Project Configuration, and in “und” command lines (see page 298).
This is useful, for example, if you want to share projects with people who reference
project files over a network using different paths.

To add a named root, click the Add Named Root button. This adds a new row where
you can type a name and a path (or click the folder icon to browse for the location).

You can uncheck one or more named roots if you want to temporarily deactivate certain
names.

If you change a named root, the project will most likely need to be re-analyzed.

You can define operating system environment variables that will be used as named
roots in Understand. At the operating system level, define environment variable that
have a prefix of “UND_NAMED_ROOT_". The prefix is not used when you reference a
named root within Understand. For example, suppose you define a system
environment variable as follows:

UND_NAMED_ ROOT_ SOURCEDIR=c:\my\project\dir
The named root the you use within Understand is “SOURCEDIR”.

To use a named root, see Setting File Portability on page 47.

Understand 3.0 User Guide and Reference Manual 103

Chapter 3: Configuring Your Project

The Dependency category of the Tools > Options dialog lets you set options related to
the Dependency Browser, dependency graphs, and dependency exports.

Dependency
Category

Dependency Analysis

"Include” and "lmport” references indicate a build-time dependency
but don't alvways indicate a logical dependency (2.9, unused include files).

uze Includedmpart references

Cytoscape

Cytoscape Application Location:

Broweze

Use Include/Import References. By default, “includes” and “imports” are treated as
dependencies. However, you may want to omit such relationships from dependency
lists if they are required for building but are not logically dependent.

Cytoscape Application Location. You can browse for the location where you
installed Cytoscape (www.cytoscape.org), a free open-source program for analysis
and visualization. Specifying this location allows Understand to open Cytoscape for
viewing the dependency XML files exported as described in Exporting
Dependencies to Cytoscape on page 227.

104

Understand 3.0 User Guide and Reference Manual

http://www.cytoscape.org

Setting General Preferences

Editor Category The following options can be set from the Editor category of the Tools > Options
dialog:
Default Style Indent
Font: Courier Mew - Show Indent Cuide
Size: 10 [5
Inzert Spaces Instead of Tabs
| Antialiaz
Indent Width: 4 %
File Mode
. Tab Width: 4 |2
Encoding: |51_.r5tem - |
Line Endings: |EF'.LF (Windows) - | Page Guide
On Save:)
Show Page Guide
Convert existing line endings
Convert tabs to spaces o —
7| Add newline at end of file if absent Whitespace
Remove trailing whitezspace @ Invisible
Caret Line Always Visible
7] Highlight Caret Line Visible After Indent
. Show End-of-Line
Color: |:|

Externalty Modified Files Margins

@ Always Prompt | Line HNumber

Automatically Reload | Bookmark

Automatically Ignore | Fold

Default style: Use the Font pull-down list to select a font for Source Editor
windows. The fonts shown are the fixed-width fonts available on your system. Select
a Size for the Source Editor text. If you check the Antialias box, the font is
smoothed. The fields in this area set the default size. You can change it on a per-file
basis by choosing one of the View > Zoom menu options.

File Mode: Select the type of Encoding to use when saving source files and the
Line Endings character you want used. Many encoding formats are supported. The
“System” encoding uses the same encoding format defined for your operating
system. You should change these settings only if your other applications have
problems opening or displaying files created by Understand. By default, these
settings apply only to new files you create, including text and CSV files. The
previous format is preserved for existing files. However, if you check the Convert
existing line endings box, files you save are converted to the format chosen here.

Understand 3.0 User Guide and Reference Manual

105

Chapter 3: Configuring Your Project

- Windows line-endings are terminated with a combination of a carriage return (\r)
and a newline (\n), also called CR/LF.

- UNIX line-endings are terminated with a newline (\n), also referred to as a linefeed
(LF).

- Classic Macintosh line-endings are terminated with a single carriage return
(CR).

If you check the Convert tabs to spaces box, tabs are changed to the number of
spaces specified in the Width field when you save the file. Also, if you check the
Add newline at end of file if absent box, a new line character is added to a file that
doesn’t have one when you save the file (checked by default). If you check the
Remove trailing whitespace box, any spaces or tabs at the end of lines is deleted
automatically when a file is saved.

Caret Line: Check the Highlight Caret Line box if you want the full line on which
your cursor is located to be highlighted. The default Color is light gray, but you can
change that by clicking the color box and using the Select Color dialog.

Externally Modified Files: If an open file is changed in some other program,
Understand detects this. Choose Always Prompt if you want to be notified and
asked to load that changed version. Automatically Reload does this without
prompting. Automatically Ignore is dangerous and not recommended.

Indent: Check the Show Indent Guide box if you want a dotted line to show to
column to which lines should be indented.

Indent Guide

85 E]class CTranamiasaionBundle @ public CRavBundle {

ge publicy

87 : int postTracelction() :

g8 vold poatShade (int ,,CRay *% float
a9 woid postShade (int , CRay #®%)

By default, the Insert Spaces Instead of Tabs box is off; turning it on adds spaces
to a source file when you press <Tab>.

For Indent Width, specify the number of columns in an indentation level. For Tab
Width, specify the number of columns for each tab stop. For example, if you set the
Tab Width to 4, each <Tab> moves 4 columns to the right. If you set Indent Width to
6 and Tab Width to 4, each automatic indentation level is made up of one <Tab>
and 2 spaces. See Editor > Advanced Category on page 107 for advanced
indentation options.

Show Page Guide: Check the Page Guide box to display a line similar to the
Indent Guide at a defined line width (that is, at the right edge of the code). Set the
Column to the character width you want to see indicated.

Whitespace: Select whether you want to see indicators about whitespace
characters. A dot indicates a space, and an arrow indicates a tab. You can choose
Invisible (the default), Always Visible, or Visible after Indent. Check the Show End-
of-Line box to see the characters that force a line break.

106

Understand 3.0 User Guide and Reference Manual

Setting General Preferences

Margins: Check Line Number (on by default) to turn on line numbering in the
source view. Check Bookmark (on by default) if you want bookmarks (red arrows)
shown in the margin next to line numbers. Check Fold (on by default) to turn on the

ability to “fold” source code entity blocks out of the way.

4
L= #define
7 [o] #ifndef
a8 #ifndef

#define

negsted
config
std include

P L ycnaif

Editor > Advanced
Category

You can further customize the code
editor’s behavior in the Options dialog.
To open this dialog, choose Tools >
Options. Expand the Editor category,
and select the Advanced category.

The following options control how
source code looks when you print it
from an editor window:

» Font Size: Choose the size of the
source code you want to use for
printing. To zoom in and out in an
individual source code window, see
page 167.

» Color Mode: Choose a color mode
for printing. The choices are as
follows. Note that colors other than
black and white are printed only if
you are using a color printer and
the printer driver is set to print in
color.

- “Normal” matches the current
display appearance.

- “Invert Light” prints black as
white and white as black. This is
useful if you set the background
to a dark color and the text to
light colors for your display.

- “Black on White” prints black
code on a white background
regardless of the current display
appearance.

negted
Print
Font Size: 10 =
Color Mode: |N|:|rmal b |
Wrap Mode: |Wrap Word - |

Copy-and-paste

| Include line numbers in rich text

Auto-complete

Enable Auto-complete

Auto-indent

| Enable auto-indent

| Indent after newline

(ra)

Tab auto-indents: Mewer

Trigger characters: #{}

Indent Braces ndent Block:

Vertical Caret Policy

+| Even [¥| Jumps Strict

Slop Value |4
Unused Entities

Highlight Unused Entities

Color:

Slop

Understand 3.0 User Guide and Reference Manual

107

Chapter 3: Configuring Your Project

- “Color on White” prints colored code on a white background regardless of the
current display appearance.

* Wrap Mode: Choose the wrap mode you want to use for printing. The default is to
wrap words to the next line, but you can choose to truncate lines or wrap at the
character level, which breaks words across lines. The line breaks displayed are for
printing only; no actual line breaks are added to your source file. See Line Wrapping
on page 165 to change the wrap mode for screen display.

The Include line numbers in rich text option in the Copy-and-paste area lets you
paste line numbers (in bold) when copying and pasting code into a word processor. The
word processor must be able to handle Rich Text Format (RTF), which was developed
by Microsoft. This option is off by default.

The Auto-complete options provide for auto-completion of keyword and entities you
type in the editor. As you type, words are shown below your text. You can arrow down
through the list and press Enter to choose a suggestion.

=

struct

» Enable Auto-complete: This box is unchecked by default. If you want to enable
auto-completion, check this box.

e Automatically suggest matches: If this box is checked, suggestions automatically
appear below your typing. If you uncheck this box, you can still see and choose from
a list of auto-completion options by pressing Esc while typing.

» Ignore case: If this box is checked, suggestions include upper and lowercase
versions of the text you are typing.

The Auto-indent options allow you to control how tab characters are automatically
added to code. If you check the Enable auto-indent box, automatic indentation
happens as you type in the Source Editor. This smart indenting is currently
implemented for C/C++, C#, Java, Javascript, and Perl code.

» Indent after newline: If this box is checked, when you start a new line, tabs are
added so that you begin typing directly below the first character in the previous line.
If you uncheck this box, the cursor is always in the first column when you start new
lines.

» Tab indents: If this field is set to Never (the default), the <Tab> key always inserts
tab or space characters. If it is set to Always, the <Tab> key always adjusts
indentation to the “correct” level. If it is set to Leading Whitespace, the <Tab> key
causes the appropriate amount to indenting in leading whitespace and inserts tabs
or spaces everywhere else.

» Trigger characters: If you type one of the specified characters, the indentation
level for the current line is modified to the correct level based on parsing of the code.
For example, a “{* increases the indentation level, and a “}" decreases the
indentation level. You can press Ctrl+Z to undo an automatic indentation that just
occurred. The default trigger characters are # : { }

108

Understand 3.0 User Guide and Reference Manual

Setting General Preferences

» Indent bare braces: If you set this value to greater than zero, the automatic
indenting knows how to format code as in the following example, where the Indent
bare braces value has been set to 2 and the Indent width is 4:

if (foo)

{

do foo();

}

The Vertical Caret Policy fields let you control how the Source Editor scrolls as the
text cursor or current location highlight moves up and down. You can use these fields to
optimize the amount of context you see when the Source Editor jumps to a new
location. Most users will not need to modify these settings. If you are curious, you can
see the descriptions of interactions between these fields at
http:/imww.scintilla.org/ScintillaDoc.htmi#SCI_SETYCARETPOLICY.

» Even: Checking this box causes the source code to scroll the same way both up
and down.

» Jumps: Checking this box causes code to scroll multiple lines as needed to show
some context for the current line of code.

» Strict: Checking this box specifies that you don’t want the text cursor to go into the
zone defined by the Slop Value. If Slop is unchecked, code scrolls to keep the
current line in the middle of the window.

» Slop: Checking this box lets you define the number of lines at the top and bottom of
the Source Editor which you do not want the text cursor to enter.

» Slop Value: This field lets you set a hnumber of lines at the top and bottom of the
Source Editor that the text cursor should avoid.

The Unused Entities fields let you choose whether to display entities that are never
used with a colored background. By default, this feature is off. If you turn this feature
on, the default background is gray for code that defines an unused entity. For example,
if a function is never called, all the code in that function is highlighted when you enable
this feature.

Understand 3.0 User Guide and Reference Manual 109

http://www.scintilla.org/ScintillaDoc.html#SCI_SETYCARETPOLICY

Chapter 3: Configuring Your Project

Editor > Styles You can customize the colors used in the Source Code Editor in the Options dialog. To
Category open this dialog, choose Tools > Options. Expand the Editor category, and select the
Styles category.

To change a color, click a color square next to an item in the list. Use the Select Color
dialog to choose a new color for that item.

ditor Style settings @&
= 1 Mainkain
] Lists Style FG BG B f U EOL %
S:::I:: Default . O0O00
i %Ezijnd“' Thitespace . OO0O0O0
DM e B OOOCO
string B 0oOOO
Character [| OO0O0
Identifier B O0O0O0n
% Comment . IF] FIRF]
Keyword B ©oOoo
Operator . OO0
Preprocessor . OO0 |
Label B COoOo0Oo
Tnclosed 3tring . F P F Mew
Unclosed Character B OO0 Edit
. - BOOO® 9| fewee
e M ol

You can change the text foreground (FG) and background (BG) colors for any item.
You can also make the text bold (B), italic (1), or underlined (U) for any item. To
highlight the whole line for an item, check the EOL box.

By default, the following color codes are used for the source code:
» Dark blue text: Used for language keywords

» Red text: Used for characters and character strings

+ ltalic blue text: Used for comments

* Green text: Used for preprocessor statements

» Black text: Used for all other source text and for line numbers
* White background: Used for most source text

» Pink background: Used for inactive lines of code

110 Understand 3.0 User Guide and Reference Manual

Setting General Preferences

Editor > Navigation
Category

e Gray background: Used for line numbers
» Yellow background: Used to highlight text in Find Results for Find in Files

Additional items are available for customization depending on your source code
language. For Delphi, you can customize the colors of module, routine, and type
names. For FORTRAN, you can customize the colors of block, module, subprogram,
and type names. For Ada, you can customize the colors of package names,
subprogram names, and type names.

To create additional categories, click New. In the User Style dialog, type a name for the
style, select the language to which this style applies, and type keywords to be
highlighted in this style. Separate the keywords with spaces, line breaks, or tabs. Then
click Save. You can then set the formatting for your new style.

You can control the behavior of Browse Mode (see page 160) in the Source Editor. To
see this dialog, choose Tools > Options. Expand the Editor category, and select the
Navigation category.

Browse Mode

| Activate when Control is pressed

On Click:
Action Modifier
| Edit Source |N|:|ne - |
| Update Information Browser |N|:|n& - |

| Enable Editor Tooltips

» Activate when Control is pressed: If this box is checked (on by default), Source
Editor windows use Browse Mode if you are holding down the Ctrl key when pointing
at an entity.

» Edit Source: If this box is checked (on by default), clicking an entity while in Browse
Mode causes focus to jump to the declaration of that entity. You can choose a key
(none, Alt, or Shift) that must be pressed along with the click to have this action
occur. By default, you must press the Alt key when clicking to jump to the
declaration of an entity.

» Update Information Browser: If this box is checked (on by default), clicking an
entity while in Browse Mode causes the Information Browser to show information
about an entity when you click on it. You can choose a key that must be pressed
along with the click to have this action occur. The default is that no key is required
along with the click.

« Enable Editor Tooltips: Check this box if you want to see brief information when
the mouse cursor hovers over and entity name in source code. The information may
include the full name, the type for a variable, and parameters and return values for a
function. These tooltips are on by default.

Understand 3.0 User Guide and Reference Manual 111

Chapter 3: Configuring Your Project

Editor > External
Editor Category

You can use an editor other than the one provided with Understand for viewing and
editing your source code. The editor you select is used whenever you open source
code. This provides convenient source navigation while using a familiar editor. For
example, you can use Microsoft Visual C++ or Emacs as your editor.

You should choose an editor that accepts command line parameters that specify the file
to open, and a line and column number to go to.

To change the editor, follow these steps:

1 Choose choose Tools > Options. Expand the Editor category, and select the
External Editor category.

2 Inthe Select an External Editor dialog, check the Use External Editor box if you do
not want to use Understand for editing.

Ll=g External Editor

Editar:

Parameters:

U=se Ffile $line ool for converted parameters.

(0124 l [Cancel

3 In the Editor field, click the folder icon and select the executable file for the editor
you want to use.

4 Inthe Parameters field, type the command line parameters you want to use when
opening the editor. Use the $File, $Line, and $Col variables to allow Understand to
open source files to the correct location.

For example, for the GVIM editor on UNIX, the Editor is “gvim”, and the Parameters
should be as follows (for GVIM 6.0 or later):

--gervername UND --remote +$line S$file

For the TextPad editor on Windows, the Editor is most likely c:\Program
Files\textpad4\textpad.exe, and the Parameters should be as follows:

$file($line, Scol)

The Understand context menus (also called right-click menus) can be made usable in
external editors. Steps for doing this are provided in the SciTools blog. For EMACS, vi,
and Visual Studio, see http://scitools.com/blog/2008/08/understand-context-menu-in-
ema.html. For SlickEdit, see http://scitools.com/blog/2008/05/using-understand-with-an-
exter-2.html.

112

Understand 3.0 User Guide and Reference Manual

http://scitools.com/blog/2008/08/understand-context-menu-in-ema.html
http://scitools.com/blog/2008/08/understand-context-menu-in-ema.html
http://scitools.com/blog/2008/05/using-understand-with-an-exter-2.html
http://scitools.com/blog/2008/05/using-understand-with-an-exter-2.html

Setting General Preferences

Graphs Category

The Graphs category of the Tools > Options dialog lets you control options related to
how graphs are displayed. These options apply only to certain types of graphs, such as
the Cluster Call and Cluster Call Butterfly graphs.

Cluster Graphs

Highlight edges on hover.

On nodefcluster doubleclick: Expand/Collapse Clusters -

Highlight edges on hover: Select this option if you want relationships within a
graph to be highlighted when your mouse cursor hovers over a relationship. This
makes it easier to distinguish between overlapping relationships.

On node/cluster double-click: Controls what happens when you double-click on a
node in a graph. By default, clusters are expanded or contracted. You can change
this setting to show/hide relationships in one direction or the other. More options let
you both expand/contract clusters and show/hide relationships at the same time.

Understand 3.0 User Guide and Reference Manual 113

Chapter 3: Configuring Your Project

Analyzing the Code

Once you configure a project, Understand can parse (that is, analyze) the project.
During analysis, the source files are examined and data is stored in the Understand
database. After parsing, the Understand database contains lots of data to browse.

When you save or modify the project configuration, a prompt to analyze the project
appears automatically. You can also analyze the project in the following ways:

Project > Analyze Changed Files: This menu command analyzes all files that have
been changed and all files that depend on those changed since the last analysis. This
is also referred to as “incremental analysis.” To analyze changed files, you can also left-
click the toolbar icon shown here. (Ctrl+R)

Project > Analyze All Files: This menu command forces a full analysis of all project
files, whether they have changed since the last analysis or not. (Ctrl+Alt+R)

As a shortcut for these commands, you can use
the drop-down menu next to the toolbar icon. E' ' i

For either command, the Parse Log window | [Analyze Changed Files Ctri+R E
appears with a log of the results. E &nalyze Al Files Crl+Att+R

Rescan Yatched Project Directories

) N
pase Log Compietet) [| ==l

4 C++
F-Y
B

F]

k]
kS
*
*
k]

nalyze
CAProgram Files\SciTools\sample\fastgrep\egrep.c
C:\Program Files\SciTools\=ample\fastgrepiregerror.c
i, Unable to include file "stdio.h"
CAProgram Files\=ciTools\zampleifastgrepiregexp.c
CAProgram Files\SciTools\sample\fastgrepiregsub.c
C:AProgram Files\SciToolz\=ample\fastgrepistrpbrk.c
C:\Program Files\SciToolz\sample\fastgrepitimer.c
C\Program Files\=ciToolz\sampleifastgrepitry.c

4 Summary

9

of 9 Project files parsed

Unparsed Files: 0
Errors: 0
> Warnings: 11
Parse elapsed time: 00:00:01.150
Completed at: Thursday, March 15, 2012 3:.07:32 PM

One o

R |
r more header files are missing. Would you like to improve vour parse results Include Paths

by specifying include paths?

One or more Macros are undefined. Would you like to improve vour parse results by [Undefined Macros]

specifying undefined Macros?

Parse Completed - Errors: 0 Warnings: 11 [CodeCheck][CH}S&] [.8 Shrink]

114

Understand 3.0 User Guide and Reference Manual

Analyzing the Code

Analyzing a large project can take some time. If you click Cancel while the project is
being analyzed you will see a message that says this action will leave the project in an
incomplete state. You will need to analyze the project in order to explore it.

The parse log lists unparsed files, errors, and warnings.

If your project results in errors or warning that you did not expect, you should revisit the
categories of the Project Configuration Dialog on page 39 to make sure your project is
configured correctly. The cause of multiple similar errors is often something like not
specifying an include file directory.

If some include files could not be found, click the Include Paths button. See page 116
for how to use the Missing Header Files tool.

If some macros were undefined, click the Undefined Macros button. See page 118 for
how to use the Undefined Macros tool.

When the analysis is complete, the source code for any errors or warnings may be
examined by double-clicking on the message in the Parse Log window.

To save the Parse Log to a text file, right-click on the white background of the Parse
Log and choose Save As. Specify the location and name of the file you want to save.
Or, you can use Copy to Clipboard to paste the parse log into another application.

If you have parsed the project during this session, you can choose View > Last Parse
Log command to reopen the log.

The CodeCheck button opens the CodeCheck window. See Chapter 11, “Using
CodeCheck for Standards Verification” for details.

Tip: A configured project may be analyzed in batch mode using the command line program
“und”. Refer to Using the und Command Line on page 298 for details on using “und”.

See Analyze Category on page 101 for options that affect the project analysis.

You can schedule automatic project analysis. See Scheduled Activities on page 50 for
details.

Understand 3.0 User Guide and Reference Manual 115

Chapter 3: Configuring Your Project

Using the Missing An Include Paths button is shown in the Parse Log if any header files are not found.
Header Files Tool

¥

One or more header fies are missing. Would you like to improve your parse results Include Paths
by specifying include paths?

The configuration of your include file directories is important to improving the accuracy
of project analysis.

To use the Missing Header Files tool, follow these steps:
1 Click the Include Paths button to open the Missing Header Files dialog.

The following header files are referenced but not found in the project:

4 G ctype.h
| C:AProgram Files\SciTools\sample\ fastgrep\egrep. c 46

v @ stdio.h

@ string.h
[@ sya/stat.h

[G sysitypes.h

[+

& timerth

CAProgram Files\SciTools\sample\fastgrep\egrep.c

o

#include <=2tdio.h>

-~
ginclude <ctype.h> (H
#include <sys/types.h>
#include <svys/stat.h> -
F T | b

Save Save & Re-Analyze Save & Analyze All Files | | Cancel

2 Expand the list for a missing header file and select the path to a source file. You will
see the code that includes this missing file.

116 Understand 3.0 User Guide and Reference Manual

Analyzing the Code

3 Click the Search button and browse to find the location of the file.

o N

Select Directory

Sawed Directories Size Type Date =

4 || compiler File Fo... 314

4 || c2000 File Fo... 314

> |y bin File Fo... 3/14
y b | docs File Fo... 3114 |

Recent Directories i B | . include File Fo... 2414
[| lib File Fo... 314 _

CMi_ccsS 2ccsviccs_base\cZ000 . | o | -

Search this directory | CMi_cesb_2Accsvhitools\compilerc200Minclude
[LRRRRTRNI
Miz=ging header fies found: Miz=ing header files:

o ctvpe.h o ctvpe.h
@) stdioh @) stdio.h

9 string.h o string.h
@ sysistat.h
@ sysitypes.h

& timerth

[Add Directory] [Cancel]

4 If you do not know the specific directory, you can browse a directory that you think
contains the include files and click Search this directory.

Once you have found the directory, click Add Directory.

In the Missing Header Files dialog, either click Search to find more directories or
click one of the Save or Save & Analyze buttons.

Understand 3.0 User Guide and Reference Manual 117

Chapter 3: Configuring Your Project

Using the Undefined An Undefined Macros button is shown in the Parse Log if any macros are not defined
Macros Tool in the code or project configuration.

One or more Macros are undefined. Would yvou like to improve your parse results by [Undefined Macros]
specifying undefined Macros?

The configuration of your include file directories is important to improving the accuracy
of project analysis.

To use the Undefined Macros tool, follow these steps:
1 Click the Undefined Macros button to open this dialog:

—
Bowmer T =

Undefined Macros:

-

T
4

Files £ Global Value

e [

Language

4
4

Macro

ERRAMAIL 5 3 C++
STRCSPN 2 1 C++
CHARBITS 2 2 C++
(I) read 1 1 C++

Global Macro Definition

DEBUG

| Detail View: Directories/Files for DEBUG | [¥] () Show Inactive References

2 Select a macro. You can use the headings and fields at the top to sort and filter the
list and the Show Inactive References box to show or hide such macros. See
Filtering the List on page 149 for more about using these filter fields.

Type a value for the macro in the Global Macro Definition area, and click Save.

You can click the Detail View button to see the code where the selected macro is
used. In this view, you can define a macro value for a specific file or folder instead of
project-wide.

118 Understand 3.0 User Guide and Reference Manual

Converting an Understand 1.4 Project

Converting an Understand 1.4 Project

You can open and convert an Understand 1.4 project to an Understand project. To do
so, choose File > Open > Understand 1.4 Project from the menus.

#~ Project Conversion

Understand 1 .4 Project Conversion
Understand 1.4 Project; | legacy.udf
Mewy Praject Mame: | nesvlegacy Mtk
Create In; | < Program Files\SThoodeneswlegacy L3
| Convert | ’ Cancel]

In the Understand 1.4 Project field, click the folder icon to browse for the database file
for your Understand 1.4 project. This file will have a file extension of .uda, .udc, .udf,
.udj, .udv, or .udp, depending on the programming language used in the project.

In the New Project Name field, type a name for your new project. The file extension of
.udb will be added automatically. This may be the same name as the old project, but
need not be.

In the Create In field, click the folder icon to browse for the directory in which you want
the new project stored. The default is the directory that contains the Understand 1.4
project.

When you click Convert, you see the Parse Log window for the project being
converted.

Understand 3.0 User Guide and Reference Manual 119

chapter4 Exploring Your Codebase

This chapter covers the basic windows in Understand and their options in detalil. It also
covers operations within the Filter Area and the Information Browser.

Details on the use and operation of the Entity Locator and Find in Files for searching for
and locating entities are provided in the chapter Searching Your Source on page 139.

Details on the use and operation of the Source Editor is contained in the chapter
Editing Your Source on page 157.

This chapter contains the following sections:

Section Page
PLEASE RIGHT CLICK 121
Various Windows Explained... 122
Entity Filter 123
Information Browser 125
Project Browser 130
Exploring a Hierarchy 132
Dependency Browser 133
Favorites 135

120 Understand 3.0 User Guide and Reference Manual

PLEASE RIGHT CLICK

PLEASE RIGHT CLICK

Sorry for shouting (by using all caps above). In order to make the Understand interface
as quick, tight and elegant as possible, we have hidden a lot of power beneath your
mouse buttons.

The general rule is that anywhere you look you can right-click to do or learn something.

A second general rule is that right-click reuses windows where it can and Ctrl + right-
click brings up new windows.

So please right-click. There will be no more reminders.

Show: | All Entities -
Fitter:
-
> View Information | Check out all the stuff
18 o — you can learn or do
attin Graphical Views ¥ right—clicking!
altlg Interactive Reports
altm 4t Defintion Right-click almost
altp anywhere to bring up
| atts Edit Declaration amenu.
ALT] Add to Favorites # . .
Al Ctrl + right-click
an User Tools » brings up the same menu
Explore 3 but actions happen
AN _ in a new window.
arg Find In... k
arg Metrics Charts +
arg Fiter By Selection
args

Understand 3.0 User Guide and Reference Manual 121

Chapter 4: Exploring Your Codebase

Various Windows Explained...

Understand’s GUI has a number of tools for locating and examining entities. This
chapter provides a brief list of all these tools and describes the Entity Filter, Information
Browser, and Favorites in detail.

The tools available for finding and exploring entities are:

Entity Filter: Provides an alphabetic list of entities of the selected type. See
page 123.

Information Browser: Provides an explorer for entity characteristics and
connections. See page 125.

Project Browser: Lets you browse a hierarchical file list. See page 130.

Exploring View: Lets you browse a relationship hierarchy. See page 132.
Dependency Browser: Lets you browse dependency relationships. See page 133.
Favorites: Lets you provide quick links to frequently-used entities. See page 135.

Entity Locator: Lets you filter all entities in a project in complex ways. See
page 148.

Find in Files: Searches multiple files. See page 143.
Source Editor: Shows source code. See page 157.

Contextual Information Sidebar: Show context information about the current
source editor file. See page 156.

Scope list: Lists the functions or similar constructs in a file. See page 159.
Architectures: Defines named regions and views of the project. See Chapter 7.
Graphical Views: Shows connections and structures of entities. See Chapter 10.
Reports: Generate reports about entities. See Chapter 8.

Metrics: Generate statistics about entities. See page 209.

122

Understand 3.0 User Guide and Reference Manual

Entity Filter

Entity Filter

The Entity Filter provides a quick list of the selected entity type. You can filter this list to
match a text string.

The options in the Show list depend upon the languages you have enabled for your
project and the types of entities and relationships found in your project. If your project
uses multiple languages, the language is listed along with the type.

All Enkities (1 af 20

| 1114

Shaws: | All Entities [+
Filer: -

Files i
CAck Functions

Tvpes

C++ Classes =
Z++ Code Files

C++ Enumerators

Z++ Files
4+ Functions
Projecl C++ Global Functions bl W8
Note: For especially large projects, the All Entities option may be disabled to prevent memory

errors.

For each of the entity types, you can quickly find any entity that has been declared (or
used) in the source code.

w C++ Functions (551 of 5452 entities) o« & =

Shove: |C++ Functions =

Filter: | |

in A
Ain_arvail

inf

inflate B

- inflate_fast

By default, the entities are sorted in ascending (A to Z) order. You can reverse the order
by clicking the drop-down icon = and choosing Sort Descending.

You can only have one Entity Filter open. If you close the Entity Filters window, reopen
it by choosing View > Entity Filter.

Understand 3.0 User Guide and Reference Manual 123

Chapter 4: Exploring Your Codebase

Using the Filter Field

Customizing the
Display

Root Filters

In the Filter field, you can type a string to match a set of entities. Entity names match if
the string is contained anywhere in the name. So, for example, you can type “y” to list
only entities that contain a Y or y anywhere in the name.

By default, filtering is case-insensitive. You can make it case sensitive by clicking the
drop-down icon = and choosing Filter Case Sensitivity > Case Sensitive.

If you want to quickly jump to the point in the list where entities begin with a particular
letter, just click in the list of entities and type a letter.

You can select other ways for the Filter field to work. Click the drop-down icon = and
choose Filter Pattern Syntax. The options are:

» Fixed String: This is the default behavior.

» WildCard: With this option selected, you can use * (any characters) and ? (any
single character) wildcards for pattern matching. See page 149 for examples.

» Regular Expression: With this option selected, you can use UNIX-style regular
expressions. See page 149 for an overview.

When you are finished using a filter and want to see all the entities for the selected
type, click the drop-down icon and choose Clear Filter.

If you change the type of entity in the Show field, any filter you have typed is cleared if
the Clear Filter Text on Filter Type Changes option is selected in the menu available
from the drop-down icon

You can modify how the Entity Filter lists entities as follows:

By default, the full entity name is shown in the Entity Filters list and entities are
alphabetized by their full name. This name may include a class prefix or other
language-specific prefix type. To list entities by their “short”, unprefixed names, click the
drop-down icon and choose Entity Name as > Short Name.

By default, only the name of the file is shown in a Files list in the Entity Filter. This name
does not include the file location. To list files including their locations, click the drop-
down icon and choose File Name as > Relative Name or File Name as > Long Name.

Notice that there are the filter type names that contain “Root”, as in Root Calls, Root
Callbys, and Root IncludeBys. These “Root” types show only the top of a given tree.
The tops (or bottoms) of relationship trees are often helpful points to begin exploring
code that is new to you.

» Root Calls: Lists only entities that call others, but are not called themselves. These
are either high-level code (mains), code called by hardware (interrupt handlers), or
dead (unused) code.

* Root CallBys: Lists only entities that are called by others, but that do not call
anybody else. These are low-level routines.

» Root IncludeBys: Lists only files included by others, but not included themselves.
These are “lower” level include files.

124

Understand 3.0 User Guide and Reference Manual

Information Browser

* Root Classes: Lists only classes not derived from other classes. These are
candidates for lower level classes, or library classes.

* Root Decls: Lists only the highest level declaring routines. (Ada)

» Root Withs: Lists only program units (packages, tasks, subprograms) that With
other program units, but are not withed by anybody else. (Ada)

Information Browser
When you click on an item in the Entity Filter
or in a number of other windows, the addstr O T X
Information Browser updates to show Q- # | [7] Sync [] File Sync »

everything that Understand knows about that
entity. The Information Browser shows this
data as a tree whose branches can be
expanded individually or all at once.

Function addstr
Defined in: ppd .c
Return Type: char *

=l Parameters
If the Information Browser isn’t open, you chiar *old
can open it by either clicking on an item in char *limit

. . . *
the Entity Filter or Project Browser. You can char *m=g
. . . chiar *new

also right-click on an item anywhere and -

=1 Variables

choose View Information. Or, choose View

] register char *n
> Information Browser from the menus.

register char *o
Everything Understand knows about an char *origmsg =0

entity can be learned using the Information = s
. .) . + non_fatal
Browser. The information is shown in a tree. <trlon
The tree can be expanded selectively or in - Called By
bulk. Each terminating item (leaf) of a tree 5 docal
provides some information about that entity. + docall
All information in an Information Browser # dodefine
. . . + match
window can be saved to a text file, or copied 5 readexpling
and pasted via standard Windows or X11 = reading
copying functions. © References
=l Metrics

33 (CountlLine)

29 [(CountLineCode)

4 [(CourtLineComment)

0 (Courtlinelnactive)

4 [(Cyclomatic)
Architectures hone

Understand 3.0 User Guide and Reference Manual 125

Chapter 4: Exploring Your Codebase

Drilling Down A
Relationship

Displaying More or
Less Information

As you drill down you can change which entity you are learning about. Each time you
change the entity, it is remembered in the Information Browser history for quick
backtracking.

acddstr G

-5 M | Sync [] File Sync
Kind and name of entity — g | Function add=tr
LOC&IIOI’] or path S Defined in: ppq,c
Return Type: char *
Relationshiptree ———— p» |- Parameters

char *old

char *limit

char *mag

char *new
Variables

register char *n

register char *o

char *origmsg =0

= Calls
+ non_fatal
— - ztrlen
Where used P |5 called By

o _ . + References
Statistics for this entity ——® M Metrics

Architectures hope

Drilling down the tree works as expected (mostly). To expand a tree, click on the + sign.
To close the tree click on the - sign.

Right-clicking brings up a menu that D ;
includes expand/collapse options. Expand Expand Right
All provides a shortcut to expand all levels o

of the selected branch. Expand &1 Ctri+Shift+Right

To open or close the entire tree, right-click “ollapse Lett

on the top item and choose Expand All or Collapse Al Ctrh+Shift+_ et
Collapse All. Copy CHplar

See Saving and Printing Information Copy Al el &, CHrl+C
Browser Text on page 129 for details on the

other options in this context menu.

If you click the icon next to a bold heading such as Calls, Called By or

References in the Information Browser (or right-click on the heading), you'll see
options that let you modify how that entity is listed. These options include:

« Fullname: If checked, the fully-qualified name of the entity is shown.
e Parameter: Lists the parameters.

» Reference: Choose “Full” to include the file and line location of the reference.

126

Understand 3.0 User Guide and Reference Manual

Information Browser

Searching the
Information Browser

Syncing the
Information Browser

» Return Type: Lists the return type.
» Sort: Controls the sort order of the list.
« Type: If checked, the datatype is shown.

» Filename: Controls whether the reference format is short, long, or relative to the
project database.

e Group by: For C++ classes, you can choose whether to sort class members by the
type of access available (public or private) or the kind of member (function or
object).

If you click the binocular icon at the top of the Information Browser (or click in the
Information Browser and press Ctrl+F), a Find bar appears at the bottom of the
Information Browser.

Type text in the box and click a forward or backward arrow to find an occurrence of the
string in the Information Browser text. All text is searched, including node names and
items that are currently hidden by collapsed nodes. If you type a string that does not
appear anywhere in the Information Browser text, the field turns red.

X reg GO -

Casze Zenzitive

Whole Words

To make the search Case Sensitive or to match only Whole Words, use the drop-
down arrow to select those commands.

You can have multiple Information Browser windows open if you uncheck the Sync box.
Selecting an entity or choosing View Information updates the Information Browser that
has its Sync box checked.

The File Sync box synchronizes the Information Browser with the file in the active
Source Editor.

&3 - - # | [¥]Syne [File Sync

Function absf HS
Defined in: algebra h

Understand 3.0 User Guide and Reference Manual 127

Chapter 4: Exploring Your Codebase

In general, if you double-click on an entity in an informational window (Information

Visiting Source Code

Browser or Entity Filter) the declaration of that entity will be loaded into the Document

Area.

addBox o = xj
Q- 2 |[¥]sync

Function addBox
Defined in: mathSpec.h
Return Type: void

Parameters

Variables

Called By

References

Metrics
Architectures nope

433 ¢ Expand the r (bmin,kbmax) so that poll
-13-1E|inline vold addBox (SCALAR TYPE *bmin,!:
435 int i:

436

2437 [H] for (i=0:;i<3:i++) {

43§ if (v[i] < bmin[i]) bmin[i] = w
4139 if (v[i] > bmax[i]) bmax[i] = ki
44p 1

441 Ly

Another way to visit source from any entity you see in Understand, is the context menu.
Where appropriate, an entity’s context menu contains an Edit Source (Ctrl+Shift+S)
menu item. In some cases, there are separate menus items for Edit Definition and
Edit Declaration (Ctrol+Shift+D) or separate menus for other language-specific
locations. If you have a .c or .h file selected, the Edit Companion File command opens
the other file if one exists for that filename.

The portion of the Information Browser labeled “References” lists everywhere the entity

Visiting References

is referred to in the analyzed source code:

=} References

Kind of use

-¢—— List of each place
the entity is referred
to in the source code

Call docall pp2.c(740)
Call docall pp2.c(7E61)
Define pp2.c pp2.c(754)
Dgclare ppext.h ppext h(22) <€—— Line number of reference

File containing reference
(right click for its context menu)

Left-click on any reference to visit that location in the source code.

128

Understand 3.0 User Guide and Reference Manual

Information Browser

Viewing Metrics

Saving and Printing
Information Browser
Text

Right-click on the “References” title for the node or the down-arrow next to the node to
choose how to organize the references. Your choices are the default flat list, and all of
your architectures.

=iReferences [zl i5e |
Define CStaf] ~ viewBy » Flat List)t
Declare C5t
2 Metrics Fullname Functional Decomposition 1
27 (Countl| Parameter Filesystem t
19 [(CountL 5) . L
3 (CountLi Reference Staff Review Assignments
0 (CountLi Sort k Requirements i,
1 (Cyeclam) . 5
- Ar{:hitectures Inactive This Week 12
Filename 3 Staff -
Calendar 1
=
Alternate Reguirements

The last node on the Information Browser tree is Metrics. This branch shows the
metrics available for the current entity.

By default, when you switch to another entity in the Information Browser, the Metrics
node is closed automatically. This is because it can take a long time to update the
metrics for each entity in a large project.

If your project is small enough that updating metrics as you switch between entities
does not take a long time, you can right-click on the Metrics node and choose Allow
Pre-expansion. The Metrics node will then stay open when you change entities. You
see the following warning about the time required for metric updates.

~ Allowing Pre-expansion of Metrics Fields @g|

. Expanszion of Metrics fields can be a relatively expensive
\12 operation in some cazes. Alowing these fields to pre-expand
wwhen nese information iz loaded may cause lls in interactivity,
patticularly it the Information Browser iz set to "aync” to entity
zelections

|:| Don't showy this meszage again. (Press Shift to zee meszage again)

See Metrics Reports on page 209 for details on metrics.

All text shown in the Information Browser can be copied to the clipboard for pasting into
another application as unformatted text. Only the currently expanded branches are
pasted. When saving or pasting in text format, the branches of the tree are represented
by indents in the text.

The context menu offers choices to Copy (only the selected line) and Copy All.

Understand 3.0 User Guide and Reference Manual 129

Chapter 4: Exploring Your Codebase

Entity History As you explore your code, you can go many places quickly. Often you want to backtrack
to explore a new path. To help you do this, the Information Browser contains a full
history of what is has displayed. The Information Browser history can be found in the
upper-left corner:

Click small arrows to see a full history list
Choose from menu to jump to that point in your exploration.

History arrows. Q- @ - #&|[¥]Smc [FieSyne |

Click to move

back and forth Function absf HPN
in history. Defined in: algebrah

Use the right and left arrows to move back and forward in the history list. The down-
arrows show the whole list.

Project Browser

To open the Project Browser, choose View > Project Browser from the menus.

» Project Browser - pixie_projudh o &/ X

W H | |4 i | M []Fiesync
[config windowes h A

[1 config xcode h
i

Project Broweser

d=zotest
[:I dzotest cpp
[file
= [0 framebuffer
[:I Tl cpp
[fowh
[1 flxcpp
[l fhxh
[1 framebutfer cpp
[1 framebutferh
O ooui
[T openexr
[precomp w

X @ Q v

Entity Fitte

Architecture Broveser

By default, the Project Browser is in the same area as the Entity Filter (and the
Architecture Browser). Use the tabs on the left to switch between browser tools in this
area.

130 Understand 3.0 User Guide and Reference Manual

Project Browser

The Project Browser shows the project files in their directory hierarchy. You can expand
and collapse the tree as needed.

Press Ctrl+F to display a search line at the bottom of the Project Browser.

The File Sync box synchronizes the Project Browser with the file in the active Source
Editor.

The context menus for this view offer a number of options. The options with icons are
also available in the toolbar for the Project Browser.

Show in Information Browser “iewy Information
Use with Find in Files Find in C:\codetpixie_2 2 1
Open tree all the way Expand Al
Close tree all the way Collapse &
Copy full text to clipboard Copy Al
Copy selected item text to clipboard Copy

Add a file to the project | i | Acd Existing File

Remove selected item from project | = Remove
Open item in Source Editor A Eclit
Open item with default OS tool i Open Externally
Search for text in Project Browser | @ Incremertal Find
Search in reverse direction Incremertal Fincd Presvious

For a file, the context menu includes additional commands, including commands to
open graphical views, rename the file, parse (analyze) this file only, find uses of the
filename in project files, and add the file to the Favorites list.

The Add Existing File command lets you browse for and add source code files to the
project.

To use the Remove command, select one or more files and folders and choose this
command. The Confirm Project Modification dialog lists files that will be deleted from
the project if you click Yes.

The Open Externally command opens an operating system dependent tool for the
directory or file. For example, on Windows it opens a directory using the Windows
Explorer. For a file it opens the default tool for the file extension.

The Incremental Find command opens a Find bar at the bottom of the Information
Browser. Type text in the box and click an arrow to find an occurrence of the string in
the Project Browser text. All text is searched, including files in folders that are currently
closed. If you type a string that does not appear anywhere in the Project Browser, the
field turns red. See page 127 for details on search options.

Understand 3.0 User Guide and Reference Manual 131

Chapter 4: Exploring Your Codebase

Exploring a Hierarchy

The Exploring view lets you browse up and down a relationship hierarchy within your
project.

main aszert » | | deflatelnit?_ deflateEnd _tr_init init_block
C_Fwrite al deflateReset adler32 tr_static_
deflateEnd . zalloc crc32
deflatelnit_ zcalioc Im_init
deflateReset r zcfree
€[— T 3
References: _fr_init cals init_block Mavigation Actions

init_block trees.ci405)

[| Generate Syncs

[| Jump to First Reference

The context menu in the Information Browser, Entity Filter, and Project Browser offers
commands to Explore certain types of entities. The command will be similar to Explore

> Explore Called By/Calls or Explore > Explore Includes.

If you click on an item in one column, you see its relationships in the columns on either
side. As you choose items to the left or right, columns resize to show more of the
hierarchy. Calls and Includes go from left to right. Callbys and Includebys go from right

to left.

If you double-click an item, a Source Editor window shows the entity’s definition.

The References area shows the line number of the currently highlighted relationship.
Double-click to visit that code.

If you check the Generate Syncs box, then the Information Browser automatically
displays information about any entity you select in the Exploring window. Holding the
Shift key down temporarily activates this behavior.

If you check the Jump to First Reference box, then the Source Editor automatically
displays the initial reference to any entity you select in the Exploring window. Holding
the Ctrl key down temporarily activates this behavior.

132

Understand 3.0 User Guide and Reference Manual

Dependency Browser

Dependency Browser

The Dependency Browser lets you examine which items are dependent on others. You
can use the Dependency Browser with architecture nodes, files, classes, packages,

and interfaces.

- WaES

Dependency Kind; Depended On By

- Group Results By: Language

~ [J] Files [V] Classes

4 ﬁ arch: Program Files (x85WSciToolsi/zample/zlib (22

- inffasth (1

a f inflate.h (11

ﬂ arch: Program Files (x85ySciToolz/zample/zlib/contrib (2

» B arch: CjC++ (2

» 44 Struct: inflate_state (10
4 inflate.h (1 g

To open the Dependency Browser, right-click on an architecture node, filename, class
name, or package name anywhere in Understand, for example in the Entity Filter,
Information Browser, or a graphical view. Choose View Dependencies from the
context menu.

The left panel shows the item you selected and the items it contains. The right panel
shows items that either depend on the item selected in the left panel or are dependent
on that item, depending on your selection in the Dependency Kind field. For example,
an item depends on another if it includes, calls, sets, uses, casts, or otherwise refers to
that item.

You can expand hierarchies in the left and right panels. For example, when you view
dependencies for an architecture node, you can expand it to see lower-level
architecture nodes, then files, then the entities in the files. Letters next to items identify
whether they are architecture nodes (“a”), files (“f"), classes (“c”) or entities in files (“e”).

F q arch: Program Files (%86} SciTools/zampled/zlib (22 "
> q arch: Program Files (x88WSciToolz/zample/zlibdcontrib (2
- 4 inffasth (1
4 4 inflate.h (11 =
F Struct: inflate_state (10
g Object: bits (1
g Object: distbits (1
g Object: distcode 1

You can use the Group Results By field to select an architecture to control how the
items in the right panel are organized.

If the Files box is checked, the results in the right panel are also organized according to
the files that contain the dependencies. Files are listed below the lowest-level
architecture node that applies.

If the Classes box is checked, the results in the right panel are also organized
according to any classes that contain the dependencies. Classes are listed below the
file level if both boxes are checked.

Understand 3.0 User Guide and Reference Manual

133

Chapter 4: Exploring Your Codebase

If the Entities box is checked, the results in the right panel are also organized
according to the entities that contain the dependencies (for example, functions or
objects). Entities are listed below the class level if both boxes are checked.

Click the é. icon to create a graphical view of the dependencies currently shown in the
Dependency Browser. While the Dependency Browser shows one level of dependency,
graphical views can show multiple levels. See Viewing Architecture Dependency
Graphs on page 179 for details.

Click the %] icon to export a comma-separated values (CSV) report of dependencies
for the top item in the left panel of the Dependency Browser.

You can also use the mouse to select items in the right panel of the Dependency
Browser. Then right-click on a letter icon and choose Copy to place the currently
selected text on your clipboard for pasting into other applications.

If the Reuse box is unchecked, a new Dependency Browser is opened when View
Dependencies is selected for another entity or node. The Reuse box is checked by
default.

If the Sync box is checked, the Dependency Browser automatically displays
information about any architecture node, file, class, or package you select in the Project
Browser, Entity Filter, Architecture Browser, or similar window. This box is unchecked
by default.

Click the drop-down icon = if you want to change any of the following display options:

» Architecture Name. The default is to show the relative name, but you can select
short name or long name instead.

» Entity Name. The default is the short name, but you can select the long name
instead.

» File Name. The default is the short name, but you can select the relative name or
long name instead.

See Dependency Category on page 104 for information about controlling what types of
relationships are treated as dependencies.

See Exporting Dependency Metrics on page 225 for other ways to export information
about dependencies.

134

Understand 3.0 User Guide and Reference Manual

Favorites

L]

Favorites
You can mark all kinds of things in Understand as “Favorites” so that you can quickly
access them as you would web pages in a browser’s Favorites group. Your favorites
can include entities, code locations, graphs, Information Browser displays, and
dependencies. You can also store multiple plain text strings in your favorites, so that
you can quickly copy one of your saved strings to the clipboard.
Favorites are saved as part of a project.

Creating a Favorite To mark an entity as a favorite, follow these steps:

Entity

1 Select an entity name and right-click in source code, the Entity Filters area, the

Information Browser, a graphical view, or anywhere else entities occur.

local void init linkedlist (11)
linkedlist data% 11:

Add To New Favorites

{ Wiew Information
1l->first_blog Graphical Views 3
} Interactive Reports
local wvoid free 14 Edit Definition
linkedlist_daj Add to Favorites 3
! free datablocl Add Selection to Favorites 3
11->first blof Add Location to Favorites 3
} User Tools 3

2 Choose Add to Favorites > Add To New Favorites (or an existing favorites group).
This adds a link to the entity itself, even if the line number changes later. If you've
already created a favorites group, you can select it from the submenu instead of

using Add To New Favorites.

3 Alternately, if you right-click on a source file, you can choose Add Location to
Favorites to add the line number in the file to a favorites group.

See Creating a Plain Text Favorite on page 138 for information about the Add
Selection to Favorites command, which stores text for pasting from the clipboard.

Understand 3.0 User Guide and Reference Manual

135

Chapter 4: Exploring Your Codebase

4 If you choose to create a new favorites group, you see the New Favorite dialog.
Type a name for the new group and click OK.

i N
Mew Favorite @lﬂj

Mew Favorites Group Mame

Please zpecify the name of the new Favorites group to save.

Parser Favorites

Creating a Favorite Besides entities and code locations, favorites can include graphical views, Information
View Browser views, and Dependency Browser views.

To add a favorite for any of these items, click the §% = Favorites icon in the toolbar for
the view. By default, the view is added to the last favorites group you used. If you want
to place it in a different group, choose a group from the drop-down menu.

Using a Favorites To open a Favorites group, choose View > Favorites and choose a group name from
Group the menus. You see the favorites saved to that group.

* Parser Favorites g x

.

n .
A |F'E|FSEFFE'.‘EIFi‘tES |v|

[€) linkedlist_datablock_internal_s Struct
& inflate.c 11239 c:15

[D Ziplocal_getZhort Static Function
@ __be o= Unknown Macro

@ ncode Public Object

(i) crypth File

ﬁ inflateCopy Text

ﬁ transitions Text

& inffaz25.c Butterfly Graph

= inffas@8.c Dependency

oom

In the Favorites view, you can use the drop-down list to switch to a different Favorites
list.

Click on a link in the favorites group to jump to that location. You can open all the
favorites in the current list by clicking the % Open Favorites icon.

136 Understand 3.0 User Guide and Reference Manual

Favorites

You can add all the currently open files and graphical views to a Favorites list by
clicking the small dimple icon in the upper-right corner of the document area and
selecting the Add Open Editors/Graphs to Favorites command.

Draggable Tabs

Sort Alphabetically

| Add Open Editors/Graphs to Favorites

Cascade

Tile

Cloze All

As with just about every place in Understand, you can right-click on a favorite to see a
context menu that includes commands such as View Information, Graphical Views, and
Find In.

An icon to the left of each favorite (and the text after the name of the favorite) identifies
each favorite’s type. For example, in the previous figure the first five favorites link to
various types of entities or line numbers in the code.

Favorites with a & icon link to a file.

Favorites with a @ icon link to an Information Browser view.
Favorites with a :zw icon link to a Dependency Browser view.
Favorites with a .&. icon link to a graphical view.

Favorites with a ﬁ icon store text that you can paste into source code. See Creating a
Plain Text Favorite on page 138 to store text as a favorite. When you click on a text
favorite, the text is placed in your clipboard and you can paste it into Source Editor
windows or other applications.

If you click the . Configure wrench icon at the top of a Favorites group, additional
toolbar icons are displayed. These let you manage favorites you have already created
as follows:

. ¥ The arrow icons move the selected favorite up or down in the group.

*. Click this icon to create a header that you can use to organize your Favorites.

ﬂ Click this icon to create a text favorite. See Creating a Plain Text Favorite on
page 138 for details.

X Delete the selected favorite from the group.
17 Rename the current favorites group.

[i Delete the current group of favorites.

Understand 3.0 User Guide and Reference Manual 137

Chapter 4: Exploring Your Codebase

Creating a Plain Text
Favorite

You can store multiple plain text strings in your favorites, so that you can quickly copy a
saved string to your clipboard and paste it as needed into your code. For example, you
might use a standard comment at the beginning of files or elsewhere in your code.

To save text as a favorite, follow these steps:

1 Selecttext in a Source Editor and right-click.

1 [F] #* deflate.h -- internal compression state

2 * Copyright (C) 1985-2004 Jean-loup Gailly

& * For f User Thols p juse, see copyright

4 = &)

s Find In... k

& []./* warmwi Add Selection to Favorites » DB Favorites tior
B pari? Add Location to Favorites » Parzer Favorites '?ry

8 subjq tb.}
a L o+ Cut CtrlX

2 Choose Add Selection to Favorites and select a favorites group from the
submenu.

3 When you create a favorite, the Favorites group opens.

You can also create a text favorite by clicking the ﬁ icon in the Favorites area (which
you can see if you select the S Configure icon at the top of the Favorites area). You
see the New Text Favorite dialog.

|

Mew Text Favorite Mame:

Please specify the name of the new Text Favorite item to save.

this

Add any text that vou would like to =ave with this Favorite item.

ThizlzARealyLongClazssMame

|:| All Text Favorites copy to Understand Editor alzo. [0K J [Cancel

In the first field, type a short name to be shown in the Favorites list.
In the second field, type the full text of the favorite.

To use a text favorite, double-click on the name of the favorite in your Favorites list. This
copies the longer text from the second field to your clipboard, so that you can paste it
into a Source Editor.

If you check the All Text Favorites copy to Understand Editor also box, then when
you click on a Text Favorite, the text you typed in the second field is automatically
pasted into your current Source Editor window at the text cursor position.

138

Understand 3.0 User Guide and Reference Manual

P

chapter5 Searching Your Source

This chapter covers how to use Understand’s Find in Files and Entity Locator features
to locate thing in your source code.

This chapter contains the following sections:

Section Page
Searching: An Overview 140
Instant Search 141
Find in Files 143
Entity Locator 148
Finding Windows 152
Searching in a File 155

Understand 3.0 User Guide and Reference Manual 139

Chapter 5: Searching Your Source

Searching: An Overview

Finding things in large bodies of source code can be difficult, tedious, and error prone.

Understand offers a number of ways to search for strings in your source code or to
locate particular lines. The commands for these options are located in the Search
menu. These commands are described in the locations listed in the following table:

Search Command See Comments

Entity Locator page 148 project-wide, entity-based
Find in Files page 143 project-wide, text-based
Replace in Files page 146 project-wide text-based
Instant Search page 141 project-wide text-based
Find Next and Previous page 155 single file

Find & Replace page 155 single file

History page 153 project-wide

Bracket Matching page 163 single file

Favorites page 135 project-wide

Contextual Information Sidebar page 156 single file

Bookmarks page 166 project-wide

Each of these searching methods has advantages and disadvantages. Together they
provide powerful ways to easily find what you need to find to better understand and
modify your code.

See page 122 for a more complete list of the code exploration tools in Understand.

140 Understand 3.0 User Guide and Reference Manual

Instant Search

Instant Search

Instant Search lets you search your entire project instantly, even if it contains millions of
lines of source code. As you type, you can see terms that match the string you have
typed so far.

The search box for Instant Search is in the upper- M
right corner of the Understand window. mh

If you don'’t see this field, choose View > Toolbars > =& =
Search from the menus. Search tes] X 2
To begin searching, click in the Search field and type = test -
a string you want to find. You can also press testfile |
Ctrl+Alt+S or choose Search > Instant Search from testing n
the menus to move your cursor to the Search field. tests — !

The easiest way to use Instant Search is to type a
string that you want to match in your code. Press Enter after typing a search string to
see a list of files that match your search in the Search Results area.

Right-click in this area to Expand or Collapse the results tree. Choose Find to use the
Previous and Next icons to move through the results one-by-one. You can double-click
on a file to open the file and see the line of code in the Search Results area.

+ Search Results for ‘bufsiz’ (2} [

4 CA\Program Files\SciTools\sampleifastgrepitimer.c
130 char dbuf[BUFSIZ];
» CAProgram Files\SciTools\sample\fastgrepitry.c

A number of more powerful search options are supported with Instant Search. The
syntax used by this field is based on the syntax used by Apache Lucene, an open-
source text search engine library. See
http://lucene.apache.org/java/2_3_2/queryparsersyntax.html for syntax details.

The following list explains some of the syntax options available:
» Searching is case insensitive. A search for test also matches “Test” and “TEST".

» Unless you use wildcards, searching matches whole words. A search for test does
not match occurrences of “testfile”.

» The wildcards available are * (any number of letters and digits), ? (any single letter
or digit). You cannot use a wildcard as the first character in a search string.

Understand 3.0 User Guide and Reference Manual 141

http://lucene.apache.org/java/2_3_2/queryparsersyntax.html

Chapter 5: Searching Your Source

* When indexing the code (which happens in the background), Instant Search breaks
code into searchable strings by splitting the code at white space and punctuation
(and syntax conventions for C/C++, Java, and Ada). So, the searchable strings in
the following line of code are “foreach”, 1, and 10:

foreach (i=1, 1i<10, i++)

* You cannot use Instant Search to find strings that cross punctuation boundaries or
to search for punctuation itself. For example, you cannot search for “i=1". You can
search for strings that contain spaces (such as text in comments) by surrounding
them with quotes.

* You can narrow the search to look within strings, identifiers, and comments. By
default, it searches for all three types of matches. For example, the following search
finds “test” only in quoted strings:

string:test

The following search finds “test” only in identifiers such as variable and function
names:

identifier:test
The following search finds “test” only in comments:
comment : test

* You can use Boolean searches. The default is that multiple search terms are ORed.
So, a search of “for delta” is the same as a search of “for OR delta”. Both match files
that contain either “for” or “delta”. Remember that the search string is used to match
terms in the entire file, not just in a single statement.

« If you want to AND the terms, use a search like “for AND delta”. This matches files
that contain both “for” and “delta”.

» You can use the + operator to require that a search term exists in all documents
found. For example, the following search finds documents that all contain “delta”
and may contain “for”;

+delta for

* You can use the NOT (or -) operator to remove any documents that contain a
particular search term from the results. For example, the following searches find
documents that contain “delta” or “delta0” but not “delta2”:

delta delta0 NOT delta2
delta deltal0 -delta2

* You can use parenthesis to define the order of Boolean operators in searches. For
example:

(delta0 OR deltal) AND change

* You can perform a “fuzzy” search by placing a tilde (~) at the end of a search term.
For example boo~ matches foo, too, and book.

142 Understand 3.0 User Guide and Reference Manual

Find in Files

Find in Files

You may search all project files or another selection of files for the occurrence of a text
string or regular expression. Matches are shown in the Find Results window and can be
visited in the source code by double-clicking on any line in the results. You can switch
between the Find in Files and Replace in Files (see page 146) dialogs by checking the
Replace box.

To open the Find in Files tool, choose Search > Find in Files from the menu bar,
choose Find in... from any context menu, or press F5.

Find:

error -

TD!

Match Whole Words

File: Types: =E

|:| Case Sensitive

Search Type: [Fb-cad String v]
s — FindIn: | Project Files ~ | |
X M | O O Criteria [| Display Files As: @ Semantic Options -
23 4 Search for error: 28 results found in 7 files of 9 files search |:| Only Show Results In: -
1 [eqgrep.c: 104 int nsuccess: Comments |E|
egrep.c: 314 oops([Shedeks Strings i
312 if (patstat.st_size I= Ctatements
313 fread{pat, sizeof(cC .
= Inactive Code
314 cops{"error reading
315 {(void) fclose(pf):;
316 |:| Replace
! » regerror.c: 4 regerror({s})
Stop [# Find |
1 regerror.c: 8 error{"regexp:
| » Treaerror.c: 14 retnrn: l* 1et =mbd. earen handle srrvors =/ X
1 | 1] [F

The Find in Files area allows you to search multiple files for the occurrence of a string.
In previous versions, this feature was called Hyper Grep for its similarity to the UNIX
command grep. Specify a search as follows:

» Find: Type the string for which you want to search. The other fields control how this
search is performed. The drop-down list lets you select from recent Find strings.

» File Types: You can select file extensions for various languages to narrow the
search. Or, type your own file extension pattern. Leave this field blank to search all
files. You cannot use this field if you have the Find In field set to “Open Files”.
Check the “I"” box to the right of the File Types field to exclude the selected file
types from the search and search all other files in the project.

Understand 3.0 User Guide and Reference Manual

143

Chapter 5: Searching Your Source

» Case Sensitive: Check this box for case-sensitive searching. The default is to
ignore case.

* Match Whole Words: Check this box to match whole words only in regular
expressions (“test” matches “test” but not “testing”). For fixed string and wildcard
searches, word boundaries are ignored.

e Search Type: Choose whether to use Fixed String, Wildcard, or Regular
Expression matching. See page 150 for details.

* Find In: Choose whether to search project
files (either all files or just the open files), e
files in architecture nodes you select, files in = Semantic okt

Fired Ir: Project Files A

: : - Architecture
directories you select, or files you select.
y y L] only She pivectary List
If you select “Architecture” here, you can File List
click + to browse for an architecture node. If Open Files

=r

you select “Directory List” or “File List”, you
can click + to browse for directories or files and can sort the list with up and down
arrows. If you select “Open Files”, all files that are currently open are searched.

When you right-click on an entity in source code or elsewhere, the Find In
command lets you choose one of these options for the selected text string. The Find
and Find In fields are filled in for you automatically.

* Semantic Options: If you choose to Find In “Project Files” or “Architecture”, you
can check the Only Show Results In box to be able to control which matches are
reported. Then you can check any combination of the Comments, Strings,
Statements, and Inactive Code boxes to include those types of lines in the results.
You must check at least one of these boxes if you check the Only Show Results In
box.

* Replace: Switch to the Replace in Files (see page 146) dialog by checking this box.

Click Find after specifying the search criteria. A list of all matching instances will be
displayed in the Find Results window. If the search is taking a long time and you want to
change the criteria, you can click Stop.

144 Understand 3.0 User Guide and Reference Manual

Find in Files

Find Results

The Find Results window lists the matches found. Each line where the string occurs is
listed in the Results list.

jiiiEﬁﬁiiiIIlllllllllllllllllllﬂﬁii

X X | O O criteria [| Display Files As: | Short Names v | Organize Resutts By: [Ftat List - ‘
25 I F S&arcﬁ fl:lr ern:lr:r 25 Iresurts. found in 7 files of & ’rlllels searched. (Less than a secunld } -
1 [egrep.c: 104 int nsuccess; A* 1 for match, 2 for error */ |Ew
egrep.c: 314 oops([Shedsks i
312 if (patstat.st size I=
313 fread{pat,_sizeof{char}, patstat.st size + 1, pif))
314 cops{"error reading pattern fiie“}:_
315 {(void) fclose(pf):
316
! » regerror.c: 4 regerror({s})
1 p regerror.c: 8 error{"regexp: 3™, 8):
i » Teaerror.c: 14 retnrn: f* 1ek shd. earen handle arrnrs */ T

m [3

You can view the source code for a match by double-clicking on a result. This opens
the Source Editor and highlights the match. See User Interface > Windows Category on
page 99 for ways to customize the Find Results display.

Multiple searches are shown in the results list. Right-click on the background of the
window and choose Expand All to expand all search nodes in the window. Or, choose
Collapse All to compress the list to just the top-level search listing.

The toolbar (and context menu) for the results provides the following controls:

e @ Search within the currently selected set of results (using the same search bar
described in Searching the Information Browser on page 127).

¢ Delete the current set of results.
[Delete all the results.

« i Open the selected match in the Source Editor.
* & & Move to the previous or next match.
e Check the Criteria box to show the settings used to perform the search.

» By default, only the name of files is shown. To show full file paths, select “Long
Names” from the Display Files As drop-down.

« Change the organization of the most recent results by using the Organize Results
By drop-down. The choices are a flat list (the default), a file-based list, and
hierarchies using the architectures.

From the context menu, you can choose Copy or Copy All to copy the contents of the
window as text for pasting elsewhere.

You can reopen the Find Results window by choosing Search > Show Find Results.
All the results from the current session are shown unless you have used the toolbar in
the Find Results window to delete some results.

Understand 3.0 User Guide and Reference Manual 145

Chapter 5: Searching Your Source

Replace in Files

You can use the Replace in Files tool
by choosing Search > Replace in
Files from the menu bar or by
checking the Replace box in the Find
in Files tool.

The fields in this tool are the same as
those in the Find in Files tool with the
following. exceptions:

e Thereis aReplace field where you
type the text you want to replace
the matched string.

» Inthe Search Type field, you can
select “Regular Expression -
Multiline,” which lets your regular
expressions match strings that
cross line boundaries.

Understand checks for any unsaved
source files. If there are unsaved files,
you must click Yes to save all
unsaved changes before making or
previewing the changes.

If you click Replace All, you are
asked if you want to replace all results
automatically. The changes will be

In Files

Find: interpilate

Replace: interpolate

T

File Types:

Casze Sensitive Match Whole W

Search Type: [Fixad String

Findin: | Project Files

Semantic Options
Only Show Results In:
Comments
Strings
|:| Statements
[7] Inactive Code

Replace

Stop [

#4 Find]
][#h Preview Replace]

[#%h Replace Al

saved automatically, so you should be sure you want to make all the changes.

If you click Preview Replace, you see the Preview Replace Changes window. You can
use this window to accept or reject replacements on a change-by-change basis, file-by-

file basis, or all at once.

16 [J#if defined(VMS) || define @ 16 [| #if defined(VMS3) || def: »
- L2 define TESTFILE "foo-gz # define REALFILE "t£{J][
18 [H] #el=e 18 [| #el=e
_# define TESTFILE "fm:n.gz# define REALFILE "f£{.]
20 gendif 20 #endif
21 21
22 E#define CHECE_EREER (err, m=sc a3 E| #define CHECE_ERR(err, 1
23 =1 if (evr 1= 7 OEY { 23 =1 if f(evrr I= 7 OV § ° 7
1| i 3
=]
T
{7} Previous File < Previous X Reject X Reject/Next [X RejectFile [}| RejectAll ¢4 Cancel
[Next File Lb Next v Accept o Accept/Next I AcceptFie [Acceptan @ commit
File I Status: 0 of 3 replacements accepted in 1 files l Unresolved Changes

..mplg\zlibvexample.c 0 of 3 changes accepted

3 of 3 changes unresolved

146

Understand 3.0 User Guide and Reference Manual

Find in Files

The top area shows the pre-change code on the left and the post-change code on the

right. Replacements are in pink and the currently selected replacement is highlighted in
blue. The left side has the Hide Common Lines option set so that most lines that will

not be affected by the replacement are hidden.

The middle area shows the replacements in patch file format. Such patch files can be
used with the Unix patch tool and other similar programs. You can hide this area by
clicking the small | fold icon above the area.

The lower area lists the files where replacements will be made and the number of
replacements accepted and unresolved.

The navigation icons let you move to the next and previous file and the next and
previous replacement.

The accept and reject icons let you accept or reject replacements on a change-by-
change basis, file-by-file basis, or all at once.

{5t Previous File Previous J& Reject 3 Reject/Next [4 RejectFie [RejectAl ¢ cancal
[l Next File 4L Next v Accept o Accept/Next W Acceptfie [Acceptan @ commi

Replacements that you have accepted are marked in the source display
with green circles. Replacements that you have rejected are marked with
red circles. Unresolved replacements are marked with question marks. You
can click on a green circle to change it to red, and vice versa.

When you have finished resolving differences by either accepting them or
rejecting them, click Commit. You are asked whether you are sure you want
to make the replacement. The message shows how many replacements will be made.

If you decide not to make changes, you can click Cancel at any time. If you have
accepted any replacements, you see a message that asks if you are sure you want to
cancel without making replacements.

Understand 3.0 User Guide and Reference Manual 147

Chapter 5: Searching Your Source

Entity Locator

Not all entities fall into one of the tab categories shown in the Entity Filter. You can find
and learn more about any entity by using the Entity Locator, which provides a filterable
list of entities in the database. You can filter by name, by entity type, by where the entity
is declared, within what container the entity is declared, or when the entity was last
modified. You can also use architecture hierarchies to sort entities.

To open the Entity Locator, choose Search > Find Entity or View > Entity Locator
from the main menu bar.

TLucatm:MErﬂjesiﬁufdﬁﬁﬁaﬂjast o 5 X
Show: | AllEntities - []
Entity Kind Declared In File Date Modified =

done x [=] 3672012 &:56:28 pu v
done Local Object do_flush gzio.c Friday, Qctober 23, 2009 11:50:32 AM
finizh_done Enumerator [unnamed] deflate.c Friday, October 23, 2009 11:50:32 AM
gz_header_s:done Public Object gz_header_ = zlib.h Friday, October 23, 2005 11:50:34 AN | =
CrigDone Local Object main testzlib.c Friday, October 23, 2009 11:50:18 AM
IQrigDone Local Object main testzlib.c Friday, October 23, 2009 11.50:18AM -

Resizing Columns

Long versus Short
Names

As in other windows in Understand, when you right-click on an entity anywhere in the
Entity Locator, a menu of commands available for the item appears.

Column widths can be sized to adjust how much of each column is visible. You can
drag the column header divider between two columns to resize the column to the left.
Or, double-click on the column header divider while the double-headed arrow is
displayed and the field to the left of the divider will be expanded or shrunk to the
maximum size needed to view all items in that column.

In the Entity, Declared In and File columns, you can right-click the column header or
click the drop-down icon = to specify the display format for entity names and
filenames. For entities, you can choose the short or full name (which includes the name
of the compilation unit). For filenames, you can choose the short, full, or relative path.

148

Understand 3.0 User Guide and Reference Manual

Entity Locator

Column Headers

Choosing Columns

Filtering the List

Column headers are tools in the Entity Locator. Left-click them to sort according to that
column. Right-click a column or click the drop-down icon to see a menu that lets you
control how entities are listed, sorted, and filtered.

Ertity
Entity Marne az L
File Mame az L
APPLE Sort Azcending
_ APPLE_CC_)
Sort Descending
__cpluzplus
_dest Fiter Case Sensitivity #
_ dest Fitter Pattern Syrtax b

The entity list may be sorted by any column. Left-click on the column header to toggle
between sorting in ascending order and descending order. The default sorting order is
in ascending order of entity names.

Click the large + icon in the upper-right of the Entity Locator to see the Locator Column
Chooser.

Locator Column Chooser Elg|

Columnz

Entity Kind
Declared In [] Declared In Kind
File Date Mocified

Metrics Columns

[] CountLineCaode [] Cyclomatic
[] RatioComment ToCode

[O,] ’ Cancel

The Entity column must always be displayed. You can enable or disable the other
columns.

The field below each column heading lets you filter the entities shown by the Entity
Locator. The filter can be entered manually or automatically based on what was right-
clicked on.

For example, you may filter by the Kind column by right-clicking on any item listed in the
Kind column and selecting Filter By Selection from the menu. This filters the list of
entities to contain only entities of the kind you selected. The title bar shows how many
entities match the filter.

Understand 3.0 User Guide and Reference Manual 149

Chapter 5: Searching Your Source

Or, you can simply type a filter in one of the fields. To clear a filter, just delete the text
from the field in the column heading.

The following example shows Filter By Selection for an entity Kind:

Al Ertiti
Show: | Al Entities v| &
Eritity Z | Kind = Declared In Z | File Z &8
attributes Local Object CRendererCortext:RiSkew rendererContext.cpp
dz _ _ et Riskew rendererContext.cpp
oy Pars s e e textRiSkew rendererContext cpp
tmp Loc | Fitter By Selection ||text::RiSkew rendererContext cpp
oyl Parameter CRendererContext: RiSkew rendererContext.cpp s J
Entity = Declared In = | File E &
dz1 Parameter Rizkew ri.cpp
dzi Parameter CRendererContext::RiSkews rendererContext.cpp
dz2 Parameter Cxfarm:skew xfarm.cpp
dz2? Parameter RiSkew ri.cpp
dz2 Parameter CRilnterface: RiSkew rirterface cpp W

To filter the Date Modified column, the left drop-down lets you select a comparison
operator (<, <=, =, >=, >), and the right drop-down lets you select a date from a
calendar. You can modify the time by typing. You must select a comparison operator in
addition to a date in order to filter the entities.

Similarly, the metrics columns allow you to filter with a comparison operator. For
example, you can filter the entities to show only those with a Cyclomatic complexity
greater than some value or a Comment-to-Code ratio less than some value.

Right-click a column or click the drop-down icon to see the context menu for that
column. You can choose for the filter case sensitivity to be Case Sensitive or Case
Insensitive (the default). You can also choose for the filter pattern matching syntax to
use fixed strings (the default), wildcards, or regular expressions.

» Fixed string: The string you type matches if that exact string is found anywhere in
the column value.

* Wildcard: These are * or ?, where * matches any string of any length and ?
matches a single character. For example, ??ext_io matches any hame having 8
letters and ending in ext_io.

* Regular expression: A powerful and precise way to filter and manipulate text. You
cannot use the Case Sensitive option if you are using regular expressions.

150

Understand 3.0 User Guide and Reference Manual

Entity Locator

The following table lists some special characters used in regular expressions.

Symbol Description Example

A Match at the beginning of a line only. ~word
Finds lines with word starting in the first
column.

$ Match at end of a line only. word$
Finds lines that end with “word” (no white
space follows word).

\< Match at beginning of word only. \<word
Finds wordless and wordly but not fullword
or awordinthemiddle.

\> Match at end of word only. \<word

A period matches any single
character.

* Asterisk matches zero or more
occurrences of the previous
character or expression.

+ Match one or more occurrences of
the previous character or expression.

? Match zero or one occurrences of the
previous character or expression.

[1 Match any one of the characters in
brackets but no others.

] Match any character except those
inside the brackets.

[-] Match a range of characters.

A vertical bar acts as an OR to
combine two alternatives into a single
expression.

\ Make a regular-expression symbol a
literal character.

Finds keyword and sword but not wordless
or awordinthemiddle.

w.rd

Finds lines containing word, ward, w3rd,
forward, and so on, anywhere on the line.
word*

Finds word, wor, work, and so on.

wor+d

Finds word, worrd, worrrd, and so on.
wor?d

Finds word and wod.

[AZ]

Finds any line that contains A or Z.
[KK][eE]INN]

Finds any variation of case when spelling
"Ken" or "KEn" or "keN".

["AZ]

Finds any line that does not contain the
letters A or Z.

[A..Z]

Finds any line containing letters A through
Z on them but not lower case letters
word | let+er

Finds word, leter, letter, lettter, and so on.

*/$
Allows searching for *. This example finds
all lines ending in */

Understand 3.0 User Guide and Reference Manual

151

Chapter 5: Searching Your Source

A full explanation of regular expressions is beyond the scope of this manual. UNIX
users may refer to the manual page for regex using the command “man -k regex”. For a
comprehensive explanation of regex expressions we refer you to the book “Mastering
Regular Expressions”, published by O’'Reilly and Associates
(www.ora.com/catalog/regex).

Finding Windows

If you have a number of windows open, you can :
. . . . Window | Hel
use the options in the Window and View menus °

to organize or find particular windows. Cloze deflate.c Ctrl+F4
You can close the current document window by Close All Document Windows
choosing Window > Close <current_window>. Releasze Window
You can close all source files, graphical views,])

. . L Split Vertically
and other document windows by choosing
Window > Close All Document Windows. If f=|| Split Horizontally
you have many wmdpws open in the document | Unspit
area, you can right-click on the tab for the window

Tile

you are using and choose Close All, Close All
But This, Close All Tabs to the Left, or Close Cascade
All Tabs to the Right.

Predefined Windows Layouts #

If you choose Window > Release Window, the

. 1 deflate.c
tabbed area changes to a separate window that
can be moved around your screen. Z compress.c
The Window menu also lets you use Window > Windows... Ctr+Tab

Split Vertically or Window > Split Horizontally

to split the document area. When the document area is split, new areas open in the half
that has its box checked. You can drag tabs from one half of the document area to the
other as needed. Choose Window > Unsplit to remove the split. You can use Window
> Tile or Window > Cascade to arrange the open windows.

The Window > Predefined Window Layouts command lets you choose from several
standard layouts for common tools. The layouts include the “Tight” layout, “Classic”
layout, and “Multi-monitor” layout.

152 Understand 3.0 User Guide and Reference Manual

Finding Windows

Source Visiting
History

View Menu
Commands

The Window > Windows command (Ctrl+Tab) opens a temporary list of currently open
windows. When you double-click on an item in this list, the list goes away and focus is
given to the item you chose. You can dismiss this area without choosing a window by
pressing Esc.

Show: | All Windows -
Dock Windows Document Windows

ﬁ Search Results for test’ (4) s egrep.c

ﬁ All Entities (463 of 4583 entities) L tryv.c

ﬁ Architecture Browser 'Lfg«_-. regexp.c

ﬁ Scheduler Results [strpbrk.c

B8] information Browser B8] Getting Started

E Project Browser - fastgrep.udb

Type-Ahead Fiter: Type to Fitter [] Alphabetic Sort

You can reduce the number of windows listed here by choosing a window type from the
Show list. Or, you can check the Type-Ahead Filter box and begin typing some
characters in the name of the window you are looking for. Checking the Alphabetic
Sort box sorts both the docked windows and the document windows. The list of
windows is filtered to match the string you type after checking the box.

You can move forward or backward through the history of your source
code visiting locations using Previous and Next icons in the toolbar. MERN R
This history is stored even between Understand sessions.

You can click the down-arrows to see the full list of source locations in the history.

The source locations are stored as line numbers, not by entity name. If you want to
save locations by entity rather than line number, see Favorites on page 135.

If you have parsed the project during this session, you can use the View > Last Parse
Log command to reopen the log.

The View > Window Selector command opens an area that lists currently open
windows. By default, this area lists only document windows, but you can use the Show
drop-down to change the type of window listed.

Understand 3.0 User Guide and Reference Manual 153

Chapter 5: Searching Your Source

Click a window name to make it active. By default, the Selector lists all windows, but
you can choose to show only Editor windows or various other window types. The icons
indicate the type of window, including whether the source file is unsaved.

d

Showe: | AlNMIndovws W

B Architecture Browser

Fg] dsatest.cpp

F8] Find Resutts

E Functions (2998 of 22001 ertities)
B8] Getting Started

harmanics b

opengl-fitk h

pl.cpp

precomp.cpp

Project Broweser - pixie_proj.udb
subdivizionCreator.cpp

r.‘m & | | 7

You can use the drop-down icon = to change the order from alphabetic to most
recently used. Click an item in this list to give that item focus.

When the Selector area is active, you can type a filter to quickly narrow the list. The
current filter is shown at the bottom of the Selector area. Press Backspace to erase the
filter.

Using the Selector is a convenient way to perform actions—such as Close—on multiple
windows by selecting multiple windows from the list, right-clicking, and choosing Close
Selected Window(s) or Close Unselected Window(s).

If you have created bookmarks in your source code (page 166), you can use the
Bookmarks command in the View menu to open the list of bookmarks.

Displaying Toolbars You can hide or display categories of toolbar icons by right- _
clicking on the toolbar or menu bar and choosing a category. STEEE »
The toolbar is separated into the following categories: Project, File
File, Edit, Analyze, Editor History, Graphs, User Tools, Browse, Edit
Split Workspace, Scopes, and Search. T
W nafze
You can also hide and display toolbar sections by choosing Editor Hist
View > Toolbars from the menus. e
Graphs
User Tools
Browse
Split Workspace
Scopes
Search
154 Understand 3.0 User Guide and Reference Manual

Searching in a File

Searching in a File

Find Next and
Previous

Find & Replace

The search techniques described in this section are used to search a single source file.

To search quickly within the current file, press Ctrl+F (or choose Search > Find). The
status bar of the Source Editor changes to a search bar.

x 2 & [] CaseSensitive [| WholeWwords [| Hide

You can type a string in the field. As you type, matches for that string are highlighted in
the Source Editor. Click Previous or Next to move from match to match. You can also
check the Match Case and Match Whole Words boxes to modify how the search is
performed.

If you check the Hide box, then as soon as you click on the code, the incremental
search bar is hidden. When you press Ctrl+F again, your last search is shown. Use
Ctrl+Shift+F to find the previous occurrence.

If you want to use Search-and-Replace or regular expressions for searching, you can
use the Find dialog. To open this dialog, choose the Search > Find & Replace menu
item or press Ctrl+Alt+F.

Find: |test w
Replace: | Test W

[] Regular expression Match caze [] Match whole words

| Replace &l | ’ Replace] ’Heplace&Find] ’ Previous] ’ Mt

In the Find field, type the string you want to find.

You can check the Regular expression, Match case, and Match whole words boxes
to modify how the search is performed. If you check the Regular expression box, you
can use UNIX-style pattern matching. For a list of some of the capabilities of regular
expressions, see page 149.

If you want to replace the string you are finding, type that in the Replace field.

Click Previous or Next to search in either direction. Click Replace All, Replace, or
Replace & Find if you want to replace the string that was found.

The Find dialog searches only individual files. To search multiple files, see Find in Files
on page 143.

Understand 3.0 User Guide and Reference Manual 155

Chapter 5: Searching Your Source

Contextual
Information Sidebar

The Contextual Information Sidebar (CIS) is similar to the Scope List (see page 159),
but more powerful. You can open the CIS by choosing View > Contextual Information

from the menus or clicking the || icon in the toolbar.

» Contextual Information Sidebar
File Context deflate.c

Scope Context deflatelnit_

[4

Structure Browser File Information |§H Scope Information Context Browser |
(@ configuration_table T‘ Function deflatelnit_ -
EQUAL Defined in: deflate.c
4[C) =tatic_tree_desc s Return Type: int

(@ dummy - Parameters -
UPDATE_HASH | » Overloads 1
INSERT_STRING bl 4 Calls
CLEAR_HASH » deflatelnit?_ R
[#) deflatelnit_ » Called By
¥ deflateinit?_ - - References -

The CIS shows the structure and information for the currently active Source Editor. The
tabs in the CIS provide the following information:

e Structure Browser: This is an expanded scope list for the current file. It lists the
names of structures in the file. In addition to functions, it lists includes, macros,
classes, and more. The icon next to the name indicates the type of entity. If you
point your mouse cursor at an item, the hover text shows the entity type and name.
Press Ctrl+F to search within this tab.

« File Information: This tab provides an Information Browser for the current file.

e Scope Information: This tab provides an Information Browser for the current
entity—that is, the one highlighted in the Structure Browser tab.

» Context Browser: This tab shows the current entity’s location in the hierarchy on
the left and the entities it contains on the right.

The *7 switch icon (Ctrl+,) to the right of the File Information tab changes the current
file in the Source Editor and the CIS to a file in the same directory with the same name
but a different file extension (the “companion file” if such a file exists). For example, the
switch icon can toggle from a .c or .cpp file to a .h file with the same name.

As always, right-clicking in any of these tabs provides links to more information about
each entity.

156

Understand 3.0 User Guide and Reference Manual

P

chapter6 Editing Your Source

This chapter covers Understand’s source and text file editor.

This chapter contains the following sections:

Section Page
Source Editor 158
Saving Source Code 162
Other Editing Features 163
Annotations 168
Printing Source Views 174

Understand 3.0 User Guide and Reference Manual 157

Chapter 6: Editing Your Source

Source Editor

The Source Editor offers a full featured source code editor, with syntax coloring and
right-click access to information most entities in your code.

[PixiglsrcicommonimathSpec b ..

433
4134
4135
136
437
4138
4139
140
4471
142
143
444
345
146
147
148
449

4

{ Expand the kox (kmin,kmax) =0 that polint v 15 inside
|E| inline woid addBox (SCALAR TYPE *bmin, SCATAH TYPE +*bm
int i:

F

- for (i=0:;i<3;i++) {
if (w[i] < bmin[i]) bmin[i]
if (v[1i] = bmax[i]) bmax[i]

w[i] s

v[i]:
B }
— 1

A4 True 1f two given boxes intersect
inline int intersectbox (const SCRLAR TYPE *bminl,co
int i:

if ((bminl[i] > bmax2[i]) || (bmaxl[i] < bmin2[i

} w
>
Line: 434 Column: 23 | BW | C++ | TrackBack 1 Rew

j]
= for (i=0C:;i<3;i++) |

The line numbers and “fold” markings to expand/collapse blocks of code can be turned
on and off in the Editor category of the Understand Options dialog you can open with
the Tools > Options command (see page 105). The display font and a number of other
items can also be changed in the Editor category. You can also enable bookmarks,
indent guide marking, and a right margin marker (page guide) in that category of the
dialog.

You can zoom in or out to make the text larger or smaller by choosing one of the View >
Zoom menu options.

The Editor > Styles category of the Understand Options dialog (see page 110) lets you
change the colors used for different types of source code. The Key Bindings category
(see page 100) shows a list (and lets you modify the list) of keystrokes you can use in
the Editor.

158

Understand 3.0 User Guide and Reference Manual

Source Editor

Scope List

Status Icons

Status Line

You can jump to a particular function, procedure, or

other language-specific construct in the current source | o I—ILL

file by selecting from the scope drop-down list in the float 2rahe

toolbar. The drop-down list shows all such constructs in rgsezﬂ':'at

the file the last time the project was analyzed. rae_error
rgbe_error_codes

You can click the + icon to move the list to a Scope tab RGBE_ResdHeader

in the area where the Entity Filter is shown. This tab RGBE_ReadPixels

RGBE_ReadPixelz_RLE
RGBE_\WriteBytes_RLE

lists constructs in the current source file. This tab is .
RGEE_WriteHeader

useful for jumping around in large files.

You can right-click on the Scope List area to choose a LI TY|RGBE_writePixels
sort order from the context menu. The ascending and =~ THE |RGHE_WritePixels_RLE
descending orders sort alphabetically or reverse ’

alphabetically. The default is file order.

Sort Azcending
Zort Descending

Sort By File

If you choose View > Scope List, you see an area that lists the functions, procedures,
and other language-specific constructs in the current source file. The numbers next to
each name are the line numbers where the entity is declared in the file. Singe-click on
an item to view information about it in the Information Browser. Double-click on an item
to jump to the location where that item is declared or created and to highlight all
occurrences of that name in the current source file.

For more power than the scope list, use the Contextual Information Sidebar on
page 156.

Each file in a Source Editor has a status icon in its upper-left title bar. The letter in the
icon indicates the type of file. The icon color indicates whether the file has been
modified but not yet analyzed. An asterisk by the filename means the file has unsaved
changes.

Y Yellow icon = parsed project file (has not been modified)

E Red icon = modified project file (needs to be parsed)

E White icon = file not in the project

When a Source Editor is the active window, the status bar at the bottom of the
Understand window shows the current line number and column number, whether the
file is in read-write or read-only mode, and the source language at a quick glance.

Line: 436 Column: 31 | RW | C++

Understand 3.0 User Guide and Reference Manual 159

Chapter 6: Editing Your Source

Selecting and
Copying Text

Browse Mode

If you click the line number in the status bar (or choose Search > Go to Line from the
menus), you can use the Go To Line dialog.

B Go To Line @E|

o Ta Line

15

4

I Ok,] ’ Cancel

If you click the RW (read-write) indicator, it changes the mode to RO (read-only).

If you click the language, you can choose which language Understand should treat this
file as.

Text can be selected (marked) then cut or copied into the Windows (or X11) clipboard.
Selecting text works as standard for the operating system in use. On Windows,
dragging while holding down the left mouse selects text. Alternately you can hold down
the Shift key and move the cursor (via arrows or the mouse). Choose the Select All
command in the Edit menu or the context menu to select the entire file.

If you hold down the Alt key (Ctrl key on X Windows), you can select a rectangular area
of source code—for example, to exclude tabs in the left margin from the copied text.
You can also paste rectangular areas of code within the Source Editor.

Once you select text, you can use the Cut and Copy commands in the Edit menu or
the context menu. You may then paste the text into other applications as needed.

You can switch a Source Editor to “Browse” mode by clicking the Browse button in the
main toolbar or choosing View > Browse Mode from the menus. When you are in
Browse mode, the icon is highlighted.

-

When you are in Browse Mode, entities in the code act as links. An underline is shown
when your mouse cursor moves to a link. Clicking a link moves you to the declaration of
that entity and updates the Information Browser to show details about that entity.

If the declaration of an entity you click on is not found, a message is shown in the status
bar and your computer beeps.

When you are in Browse Mode, you can still edit the file and the keyboard and right-
click function the same as in regular mode. Only left-clicking the mouse is different.

You can temporarily enter Browse Mode by holding down the Ctrl key while using a
Source Editor window. You can toggle Browse mode by pressing Ctrl+Alt+B.

See page 111 for settings to control the behavior of Browse Mode.

160

Understand 3.0 User Guide and Reference Manual

Source Editor

Context Menu The context menu in the Source Editor provides access to a number of exploration and
editing features. Many of them let you find specific information about the entity you
right-click on.

The following exploration features are typically included in the context menu
(depending on where you click):

* View Information (see page 125)

» Graphical Views (see Chapter 10)

+ Edit Source/Definition

» User Tools (see page 291)

» Explore (see page 132)

e Findin... (see page 143)

» Add Favorite (see page 135)

» Metrics Charts (see page 220)

The following editing features are also typically included in the context menu:
* Undo/Redo

» Cut/ Copy/ Paste (see page 160)

» Select All (see page 160)

« Jump to Matching Brace (see page 163)

» Select Block (see page 163)

» Hide/Show Inactive Lines (see page 163)

» Fold All (see page 163)

» Soft Wrap (see page 165)

» Comment Selection / Uncomment Selection (see page 164)
e Change Case (see page 164)

* Revert (see page 162)

* Add Bookmark (see page 166)

Hover Menu If you point the mouse cursor at an entity in source code, you see a message that
shows declaration information about that entity. For example, pointing to a variable
shows the variable’s type, pointing to a constant shows the constant’s value, and
pointing to a function call shows the parameters and return value.

if (len <«) error (gzerror{in, &err)):

if (len ==) break:
Mame: QZerrar
parameters: (gzFile file int *errmur) Q
1 |

if ((int) fwrite(buf, 1, |iaturnz const char*
error("failed fwrite™J s

Understand 3.0 User Guide and Reference Manual 161

Chapter 6: Editing Your Source

Notice the drop-down menu icon on the message. It is circled in the previous figure. If
you click this icon, you see the “hover menu”, which contains some of the same
commands in the context menu for the same entity.

rerror{in, &err)):

MAME. gZerrar
parameters: (QzFile fileint *errnum)
"M returns: const char *

e

len) {

Yiewy Infarmation

Graphical Wiews L4
tiled fcloae™):;
o . Edit Source
trror{"failed gzolose™):
=er Toals L4

Compare with Snapshots. .

Explore L4
B Find In... |
reate a corresponding .gE
Add Favaorite L4
Graph Metrics L4

Copy Hover Text

An additional item in the hover menu is Copy Hover Text. When you choose this item,
the declaration information shown in the hover message is copied to your clipboard, so
that you can paste it as needed.

Saving Source Code

If you have edited a source file, you can click L_J press Ctrl+S, or choose File > Save
to save your changes.

You can choose File > Save As to save to a different file. If you save a project file to
another filename, you will be asked whether you want to add the new file to the project.

If you have edited multiple source files, you can click &4 or choose File > Save All to
save changes to all modified files.

If you want to ignore changes you have made choose since the last save, right-click in
a file and choose Revert.

You can close the current source file by choosing Window > Close <current_file>
from the menus. You can also middle-click on the tab above the source file area to
close that tab (if your mouse has a middle button).

You can close all source files by choosing Window > Close All Document Windows.
You can also right-click on the tab for the source file area and choose Close, Close All,
Close All But This, or Close All Tabs to the Right/Left.

162

Understand 3.0 User Guide and Reference Manual

Other Editing Features

Other Editing Features

The Source Editor also provides several other options for displaying and editing files.

Bracket Matching A handy feature of the Understand editor is syntax bracket matching. Use this feature to
find the matching ending character for a brace, parenthesis or bracket. Symbols
matched are (), { }, and []. Matching isn’'t done inside comments.

Pressing Ctrl+j (or right-click and Jump to Matching Brace) jumps the editor to the
matching end or beginning brace. Ctrl+j isn’'t active unless your editing cursor is by a
symbol that it can match. Another Ctrl+j takes you back where you started. You can
also choose Search > Go to Matching Brace from the menus.

Pressing Ctrl+Shift+J (or right-click and Select Block) selects all the text from the
bracket to its matching bracket.

Brackets without a match are highlighted in red when you move your cursor to them.
Brackets with a match are highlighted in green.

When your cursor is on a preprocessor directive that has a match (for example, #ifdef
and #endif), you can use Ctrl+j (or right-click and Jump to Matching Directive) to
move your editing cursor to the match.

Folding and Hiding The - and + markings next to the line numbers allow you to “fold” the code to hide
blocks such as functions, if statements, and other statements that have a beginning
and end.

% [#ifndef std include
&8 #ifndef nested
15 L senair

If you right-click on the code, you can choose Fold All to close all the open blocks. You
can also fold and unfold source code by choosing View > Fold All from the menus.

You can add explicit fold markers to code in languages where // is treated as the
beginning of a comment. For example:

/7{{
/* code to hide when folded */

//}}

You can also choose Hide Inactive Lines to hide preprocessor lines that are not active
because a preprocessor macro is not defined. Choose Show Inactive Lines to view all
lines again. You can also toggle this setting by choosing View > Hide Inactive Lines
from the menus.

Understand 3.0 User Guide and Reference Manual 163

Chapter 6: Editing Your Source

You can click the Split icon (circled below) to divide the source editor into two or more
separately scrollable panes. Click one of the Join icons to merge two panes.

Splitting the Editor
Window

—

]

;] » o]

] -

Lo
45
46
AT
48

G
&0

BQrep.cy
#Finclude
#Finclude
#include
#inclnude
#includes

char *

<ztdio.h>
<ctype.h>
<sys/types.h>
<szys/stat.h>
"regexp.h"

I

submatch(file, pat, str, =strend, k,
char file[], pat[]., =tr[]l:
register char ¥*zatrend, *k:

int altindex;

register char *=;

char *t, o7

I

Om
™

altindex)

v LI

You can comment code that you have selected by right-clicking and choosing
Comment Selection. To remove the comment characters, right-click and choose
Uncomment Selection. You can do the same thing using the Edit > Comment
Selection and Edit > Uncomment Selection commands in the menus.

Commenting and
Uncommenting

Note that nested comments within the selection are not parsed.

You can make the indentation of selected code match standard usage by selecting the
code, right-clicking, and choosing Reindent Selection. See Editor > Advanced
Category on page 107 to configure the indentation settings.

You can change the case of selected text in the Source Editor. Follow these steps:

Changing Case

1 Select a word or words in the source code.

2 Choose Edit > Change Case from the menus, or right-click and choose Change
Case from the context menu.

3 Choose the type of case you want to apply to the selection. The choices are as
follows:

Choice Default Keystroke Original

Result

Lowercase Ctrl+U Test_me please
Uppercase Ctrl+Shift+U Test_me please
Invert Case Ctrl+Shift+l Test_me please
Capitalize Ctrl+Alt+U Test_me pleaSe

test_me please
TEST_ME PLEASE
tEST_ME PLEASE
Test_me PleaSe

164

Understand 3.0 User Guide and Reference Manual

Other Editing Features

Line Wrapping

Insert and Overtype
Modes

Sorting Lines
Alphabetically

Keyboard Commands

Recording and
Replaying Macros

Creating and
Opening Files

Normally, lines are cut off on the right if your Source Editor window is not wide enough
to display the full line length. You can make the Source Editor wrap long lines to the
next line if you like. To do this, right-click in the Source Editor and choose Soft Wrap.
You can also change the wrapping mode by choosing View > Soft Wrap from the
menus.

The line breaks displayed are for display only; no actual line breaks are added to your
source file.

See Editor > Advanced Category on page 107 to change the wrap mode for source
code printing.

Normally, text to the right of your typing cursor is shifted as you type. This is called
Insert mode. To switch between Insert mode and Overtype mode, in which text to the
right of the cursor is replaced character-by-character as you type, press the Insert key
or choose Edit > Toggle Overtype from the menus.

To sort a group of lines into alphabetical order, select the lines, right-click and choose
Sort Selection.

To see a list of keystrokes that work in the Source Editor, choose Tools > Options and
go to the Key Bindings category. For example, Ctrl+Alt+K cuts the text from the cursor
position to the end of the line. And, Ctrl+T transposes the line at the cursor position with
the line above it.

Another way to see a list of key bindings is to choose Help > Key Bindings. Search for
the line that says “Editor” (around line 110) to get to the beginning of the keystrokes for
the Source Editor windows.

You can record and replay a set of editing changes that you want to be able to repeat.
These are called macros.

To record a macro, follow these steps:

1 Choose Tools > Editor Macros > Record Macro from the menus or press
Ctrl+Alt+M.

2 Perform the steps you want to be able to repeat.
3 Choose Tools > Editor Macros > Record Macro again or press Ctrl+Alt+M.

To replay a macro, move your cursor to the desired start location and choose Tools >
Editor Macros > Replay Macro from the menus or press Ctrl+M.

You can use the Source Editor to create an untitled blank file by choosing File > New >
File from the menus. You can open files, whether they are in your project or not, by
choosing File > Open > File.

When you right-click on a filename, the context menu provides options to Edit File and
to Edit Companion File. For example, the companion file of encrypt.c is encrypt.h.

Understand 3.0 User Guide and Reference Manual 165

Chapter 6: Editing Your Source

Bookmarking

You can create “bookmarks” in your code by right-clicking on a line and choosing Add
Bookmark from the context menu. Or choose Edit > Bookmarks > Toggle Bookmark
from the menus. Lines with a bookmark have a red arrow next to them.

5 } #define __nes te-::'._

In a file with multiple bookmarks, you can right-click and choose Previous Bookmark
or Next Bookmark to quickly move between places in a file. These commands are also
available under Edit > Bookmarks in the menus.

You can open a Bookmarks area to view a list of all your bookmarks in all your files by
choosing View > Bookmarks from the menus.

vewdy: [J [C][4 =8 E ¥

4 [T Mo Category

[+ testzlib.c: 152 (Function: main}

4 zlib-thin.adb: 3% (Package: Thin}

function Deflate_Init
[Fixes
» Zip.c: 203

4 M ToDo
gzjoin.c: 106 (Static Function: bopen)
.

function Avail_Out (Strm : in £_Stream) return Ulnt is |

= §

Double-click on a bookmark to move to that location in the Source Editor. If you create
a bookmark inside an entity, the Bookmarks area shows the name and type of entity
that contains the bookmark. For example, the function name is shown if you create the
bookmark on the first line of code inside a function.

The toolbar for this area lets you manage your bookmarks in the following ways:

Wiew by | | You can use the View by icons to switch between a file-based and a
category-based view. The file-base view lets you expand filenames to see the
bookmarks in that file. The category-based view lets you assign bookmarks to
categories you create.

Q Select a bookmark and click this icon to change the category the bookmark is in.
To create a new category, type the name and click OK. To use an existing category,
select it from the list.

== Select a bookmark and click this icon to delete that bookmark.

~ Select afile in the file-based view and click this icon to delete all the bookmarks in
this file. You can also select a bookmark and click this icon to delete all the bookmarks
in the file that contains the selected bookmark.

\= Select a category in the category-based view and click this icon to delete all the
bookmarks in the category. The category itself is not deleted.

[@ Click this icon to delete all your bookmarks.

166

Understand 3.0 User Guide and Reference Manual

Other Editing Features

Managing Source
Editor Tabs

Changing the Source
Code Font Size

When you right-click on the tab at the top of a Source Editor, some of the commands
allow you to control the behavior of the tab.

& eqpa=s
o »
468 File: egrep.c
4/9 Edit File in a Mew Window count - j -
470 : 1
Show Tab Title as Pl v | Short
471 L]
473 Show Window Title as L4 Relative
473 Copy Filename 4 Long
474 Release Window
a7c

If you choose Show Tab Title as, you can shorten or lengthen the filename in Source
Editor tabs. Likewise, if you choose Show Window Title as, you can shorten or
lengthen the filename in the Understand title bar and any separate Source Editor
windows. The Copy Filename command lets you copy the long, relative, or short
filename to the clipboard.

If you choose Release Window, the tabbed area changes to a separate window that
can be moved around your screen. Click & to change a tab to a window within the
Understand window.

You can change the default display font and font size in the Editor category of the
Options dialog that you open with the Tools > Options command (see page 105).

In addition, you can change the display size of the font for an individual source code
window by choosing options from the View > Zoom submenu. View > Zoom > Zoom
In makes the font size larger. View > Zoom > Zoom Out makes the font size smaller.
View > Zoom > Reset Zoom changes the font size back to the default.

Understand 3.0 User Guide and Reference Manual 167

Chapter 6: Editing Your Source

Annotations

Annotations let you add comments or notes about entities without changing the source
code directly. You can view the annotations inline, following the definition of the entity to
which they are attached. They can also be seen in hover text whereever the annotated

entity is used.

295 FILE #*pf;

298 s=truct stat patskak:

Me - Tueszday,

August 21,

$issue:CQO034567 Enhance to provide more statistics
2012 11:40:06 AM

298

297 2tatic char *pat:

Each annotation can be “tagged” with a key value pair. Such tagging is useful for
organizing your notes using keywords, author names, or any other identifier you want to

use.

To add an annotation, follow these steps:

Adding an
Annotation

w o -1 & Ln b Ld

10
11
12
13
14
15
1a
17

1 Highlight an entity, such as a variable or function name, anywhere in Understand.
For example, you can select an entity in source code, in the Information Browser, or

in the Entity Filter.

2 Right-click on the entity and choose Annotate and the entity you want to annotate

from the context menu.

char * strpbrk(patl, patl)

regi=ster char *patl;
char *pat2:

register char *cpl,

cpl = pat2;

“View Information
Graphical Views

Interactive Reports

Edit Definition

Add to Favorites
Add Selection to Favorites

Add Location to Favorites

while (%cpl != "“0'")
if ((cp2 = index(

Annotate

return (cpd)
cpli+:;
}

Remove Annotations

User Tools

Explore

k

4

Annotate pat?
Annotate strpbrk
Annotate strpbrk.c

If this is the first time you are adding an annotation, you will see the Annotations

Setup dialog. Type your name in the Author name field. The annotations are stored
in a *.ann file within the project. The Default Annotations File is stored in the
project directory. The filename includes your name and the name of the project.

168

Understand 3.0 User Guide and Reference Manual

Annotations

(See page 170 to learn about managing annotation files.)

— B
'-_f_:.ji'_- Annotaticns Setu‘ &Iﬂ

To annotate, vou must have an author name, and pick a default
annotations file where new annotations wil be saved.

Author name: Me

|| DefaultAnnotations File: Jfastgrep/Me-fastgrep.ann
|
| [oK][Cancel] |

4 In the Add/Edit Annotations dialog, click the “+” icon. The current date and time are
added to the left box. You can select annotations using this timestamp when you
want to edit annotations.

s — il
gl prvotstons ferpaisat | e

Add or select an annetation to edit. “You can tag
+ = an annotation using #key:value or #key. Tags may
not contain whitespace or quotes. Use ## for the
zvymbol.

Tuesday, August 21, 2012 1.

#Hizgue CQM3I4567 Enhance to provide more
statistics

[Save J [Cancel

5 Type your annotation comment in the right box. If you want to tag your comment so
that it will be easy to search for, begin the text with a #key or #key:value tag. For
example, you can use #reminder:CodeReview to flag items that should be reviewed.
Or, you could use #errorchecks to flag items that need to have their status tested.
The author name you entered is automatically associated with your annotations, so
you don't need to include your name in a #key:value pair. You can type multiple
keys in a single annotation, and keys can occur anywhere within the annotation text.
If you want to use a # sign in the annotation text without having it treated as a key,
type ##.

6 Click Save. Your annotation appears in the source code where the selected entity is
defined. (See page 170 to control how annotations are displayed.)

You can also add an annotation by clicking on an entity and choosing Annotations >
Annotate > Annotate <entity> from the menus. Options are shown to annotate the
current file, the current entity, and any entities that contain the current entity (such as a
function that contains the selected variable).

Understand 3.0 User Guide and Reference Manual 169

Chapter 6: Editing Your Source

Editing an
Annotation

Deleting an
Annotation

Managing
Annotation Files and
Display

To edit an existing annotation, follow these steps:
1 Highlight an entity that has an annotation anywhere in Understand.

2 Right-click on the entity and choose Annotate and the entity you want to annotate
from the context menu.

3 Inthe left box, select the timestamp for the annotation you want to edit.
4 Modify the annotation text in the right box.
5 Click Save to store your changes.

If you edit an annotation that was originally created by someone else, that other person
remains the author of the annotation. The timestamp for the annotation is updated to
the last time it was edited.

To delete an existing annotation, follow these steps:
1 Highlight an entity that has an annotation anywhere in Understand.

2 Right-click on the entity and choose Annotate and the entity whose annotation you
want to delete from the context menu.

In the left box, select the timestamp for the annotation you want to edit.
Click the “-" (minus) icon above the list of timestamps.

Click Save to finish deleting the annotation.

You can choose Annotations > Annotation Options from the menus, and then set the
following options:

* Your name or username to identify the original author of your annotations.

» The annotation files to look in for this project, and which file is the default for
annotations you add. For example, you can have Understand display annotations
from separate files for everyone working on this project.

» The foreground and background colors to use when displaying annotations from
each of the files.

* How to display annotations: inline, as hover text, and with an indicator.
See Annotations on page 59 for details about setting these options.

If other developers are also annotating code using Understand, choose Annotations >
Refresh Annotations from the menus when you want to get the latest annotations they
have added.

170

Understand 3.0 User Guide and Reference Manual

Annotations

Searching
Annotations

You can search for annotations based on the key:value pairs, the author, and the
timestamp. To search annotations, follow these steps:

1 Choose Annotations > Search Annotations from the menus.

2 Specify any of the following search parameters you want to use.

)

Project Filters Search Annotations | Manage Orphans |

|:| Show annotations with date later than: | 12M1/2012 12:00:00 AM

Shnw annotations with date earlier than: 1211202 120000 A -

Include Qrphans Search Only Fittered Annotations
¥ P \

Fitter values should be a comma seperated list of allowed values. "no value”
refers to tage without a value such as #ag.

Al - Add Filter Add Filter Grou
[J | g
’ b 4] [authnr v] [ha,s'.ralues v] Chris
[X][issue "][hE,S-‘JEIIJE'-S v] 42
[Close] [Search

Date range: Check one or both date range boxes if you want to find annotations
edited after a certain date and time and/or annotations last edited before a certain
date and time.

Include Orphans: Check this box if you want the search to also find annotations
that are linked to entities that have been deleted. See page 173 for more about
orphaned annotations.

Search Only Filtered Annotations: Check this box if you want to limit the search
to annotations that match the current filters. See page 172 for more about filtering
annotations.

Filter values: You can set up one or more filters for the search based on the
author and any #key:value pairs in the annotations. The “has values” and “doesn’t
have value” options let you type a value to match or exclude for a #key:value pair.
Exact matches for the author name and key values must be used; partial matches
and wildcards are not supported. The “any value” option matches any annotation
that has that #key, no matter what the value. The “no value” option matches
annotations that have that #key, but no #key:value pair. Use Add Filter to create
another filter, and choose All or Any to determine how matching is performed.

Understand 3.0 User Guide and Reference Manual 171

Chapter 6: Editing Your Source

Filtering Annotations

You can even use Add Filter Group to create nested levels of filters that have
different settings for All and Any.

3 Click Search. The results are shown in the Annotation Search Results area in the
main Understand window.

4 Expand the search results, and double-click on an item to go to the location where
that annotation appears in the code. (That is, the location where the entity
associated with the annotation is defined.)

Annotations are stored in *.ann files, which use the SQLite database format. In addition
to viewing annotations in Understand, you can use other applications that support
SQLite to modify and search annotation files.

If other developers are also annotating code using Understand, choose Annotations >
Refresh Annotations from the menus when you want to get the latest annotations they
have added.

You can filter annotations based on the key:value pairs, the author, and the timestamp.
To filter annotations, follow these steps:

1 Choose Annotations > Filter Annotations from the menus.
2 Specify any of the following filters you want to use.

,

Project Fitters. | Search Annotations | Manage Orphans |

|:| Show annotations with date later than: | 1/1/2000 12:00:00 AK

Show annotations with date earlier than: 8M1/2012 12:00:00 AM -

Fiter values should be a comma seperated list of allowed values. "no value®
refers to tags without a value such as #ag.

Al T [Add Filter][Add Filter Group

[ﬂ][i&sue T]Enuvalue vi

’x] [authnr v] [dnesn‘thavevalu&s v] Chriz

[OK J[Cancel H Apphy

- Date range: Check one or both date range boxes if you want to find annotations
edited after a certain date and time and/or annotations last edited before a certain
date and time.

172

Understand 3.0 User Guide and Reference Manual

Annotations

- Filter values: You can set up one or more filters for the search based on the
author and any #key:value pairs in the annotations. See page 171 for details on
using these fields.

3 Click OK or Apply. The filters you specify are applied to the annotations shown
throughout Understand.

Managing Orphaned If you create an annotation, and later delete the entity with which it was associated, that

Annotations annotation becomes an “orphan” when you re-analyze the project. Orphan annotations
aren’t shown in the code anywhere. You can manage orphan annotations by choosing
whether to delete or re-attach them. To manage orphan annotations, follow these
steps:

1 Choose Annotations > Manage Annotations from the menus.

|

| |

s

| Project Filters I Search Annotations | Manage Orphans |

Select an orphan on the left and an entity on the right. If you attach an orphan entity to an
entity on the right, all the annotations for that entity will be attached. If yvou select a single
annotation, onhy that annotation will be attached.

4

Orphans Show: | Functions -

-k Filter:
4 |ed_connectHandler
Chris#enhance:.configure device

Led_connectDevice

Led_connectHandler
Led_dizconnectHandler
Led_ledState_fetch

Led_ledState_store Al
Delete Orphan] [Attach Orphan To Entity
[OK] [Cancel Apphy

Expand an orphan in the list on the left to see the annotation text.

If you want to delete the selected annotation, click Delete Orphan.

If you want to attach the selected annotation to a different entity, select an entity
from the list on the right. (You can shorten the list by selecting a type of entity from
the Show drop-down.)

5 Click Attach Orphan To Entity to connect the selected orphan to the selected
entity. The annotation will be shown in the code where the new entity is defined.

6 Click OK.

Understand 3.0 User Guide and Reference Manual 173

Chapter 6: Editing Your Source

Printing Source Views

The menu option File > Print opens the standard print dialog for your operating system
to send the currently viewed source file to the printer. The printout will use 66 lines per

page.

By default, files are printed in the font and color shown on the screen when you choose
the File > Print menu option.

You can customize code printing in the Options dialog. To open this dialog, choose
Tools > Options. Expand the Editor category, and select the Advanced category. See
Editor > Advanced Category on page 107 for details about these fields.

10 =
Color Mode: [Nnrmal v]
Wrap Mode: [Wraqurﬁ T]

To change the print output without changing the online display, choose the File > Page
Setup from the menus. This dialog offers printing options similar to the following; they
may differ depending on your operating system:

Page Setup E| PX|

" Landscape

Auto Selection ﬂ

targing (inchesz)

Left: 0.z Right: |0.2
Top: 0.2 Bottom; |02

| k. | Cancel | Frirter... |

174

Understand 3.0 User Guide and Reference Manual

Chapter 7

Architecting Your Codebase

This chapter explains the architecture features provided by Understand and explains

how you can use them to analyze your code.

This chapter contains the following sections:

Section Page
About Architectures 176
Using the Architecture Browser 177
Viewing Architecture Dependency Graphs 179
Viewing Architecture Metrics 183
Managing Architectures 184
Creating an Architecture 185
Building an Architecture 187
Using XML to Manage Architectures 189

175

Understand 3.0 User Guide and Reference Manual

Chapter 7: Architecting Your Codebase

About Architectures

An architecture is an abstract hierarchy layered onto a body of source code. For
example, a staff architecture could have nodes for each engineer working on a
particular project. The nodes would contain a list of source code files belonging to or to
be modified by that engineer. Dependencies and interactions could then be derived
from that architecture.

Architectures allow you to name regions of a software project or ways of looking at
software hierarchically. An architecture creates a hierarchy of source code units
(entities). You can use the provided architectures or create your own.

Architectures need not reference every source entity in the database; that is, they can
define a subset of the entities. Also, architectures can contain a particular entity more
than once. (Technically, that is, the architecture's flattened expansion need not maintain
the set property.)

You can combine architectures successively to create novel filters for your entities.

From a more technical perspective, simple set algebra is used to combine and
transform architecture hierarchies. The result of the filter is a list of entities. This result
list can be viewed as a flat list or in terms of another architecture. The filter definition
can be saved as a dynamic architecture. A dynamic filter architecture is updated as the
contents of the database change and it can be used to reconstitute the filter at a later
date.

176

Understand 3.0 User Guide and Reference Manual

Using the Architecture Browser

Using the Architecture Browser

To open the Architecture Browser, choose Project > Architectures > Browse
Architectures from the main menubar.

+ Architecture Brow

= Directory Structure
=} Pixie
+- sre
+- config windowes h (File)
+- config.xcode b (File)
= Calendar
+- Earlier
=} This Year
—|- This Guarter
—}- This Month
+- This Week

Praoject Broweser

—

T
=
[

>
=
=
im|

0 + mathSpec h (File)
% +- expression.h (Filg)
& +- randarm.h (File)
g +- rghe.cpp (File)
E Language
E |- CiC++
+- C++

You see an expandable list of the architectures currently defined for your project.

This Architectures area is similar to the Filters area. When you click on an item,
information about it is automatically shown in the Information Browser (as long as the
“Sync” box is checked in the Information Browser).

Exploring To explore the existing architectures, click the “+” signs to expand the hierarchy.
Architectures Entities, such as files, functions, and variables are shown in the hierarchies.

Understand provides some “auto-architectures” that are built in:

» Directory Structure: Lists the project files in their normal file hierarchy—showing
directories and their subdirectories.

» Calendar: Lists files in the project according to their last change date. A hierarchy of
dates is shown that progresses from This Year, This Quarter, This Month, and This
Week to Yesterday and Today.

» Language: Lists files first by their source code language and then by their location
in the directory structure. (This architecture exists only if your project contains
multiple languages.)

The auto-architectures are updated only when the project is analyzed. So, if your
source code is actively being modified and you have not analyzed it recently,
architectures—especially the Calendar architecture—could be out-of-date.

Understand 3.0 User Guide and Reference Manual 177

Chapter 7: Architecting Your Codebase

Right-click on file in Architecture

= Calendar
e

= This “fear
L

= Earlier
=

+

+

+

+

o ey B

As always, you can right-click on any item in the Architecture Browser to get a list of
information you can view about that item.

Right-click on Architecture node

- 7 Calendar
L !

n m YWiew Information

1 & araph
Wigwy Information é. Dependency Graph
Gréphical Wiews g {8 Metrics Summary
Edit File 5 Metrics Export
Femove from Project rD %ML Export
COmpare ...

Parze algebra cpp

Find "Calendar)This Year" In Files

Compatre ..

Explore Includes

|_:f Edit Architecture

,)’ Rename Architecture

Fimd "algebra.cpp” In Files ['J_,

Duplicate Architeckure

Acddd Favarite + %

Manage Architectures

T COrvE = T

Notice that the context menu for an architecture node (such as a filesystem directory or
“This Quarter” contains some extra items not available in other context menus:

Graphical Views > Graph Architecture: Creates a graph of the architecture
hierarchy from this point down. You are asked whether you want to include entities
in the graph or just the architecture nodes. See page 179.

Graphical Views > Dependency Graphs: Shows the dependencies between
architecture nodes. See page 179.

Metrics Summary: Provides metrics for the entities within the selected node. The
metrics are based on entities in the current node, but not those in sub-nodes lower
in the hierarchy. See page 183.

Metrics Export: Creates a CSV output of the metrics from the Metrics Summary.
See page 183.

XML Export: Creates an XML export listing the architecture nodes and entities from
the selected point down in the hierarchy. See page 189.

Edit Architecture: Opens the Architecture Builder for the selected architecture if it
is one you created. You cannot edit the auto-architectures provided with
Understand. See page 187.

Rename Architecture: Opens a Rename Architecture window that lets you rename
the selected architecture or node if it is one you created. You cannot rename the
auto-architectures provided with Understand. See page 185.

Duplicate Architecture: Opens a Duplicate Architecture window that lets you type
a name for a duplicate copy of the selected architecture. See page 185.

Manage Architectures: Opens the Architect Manager window. See page 184.

178

Understand 3.0 User Guide and Reference Manual

Viewing Architecture Dependency Graphs

Viewing Architecture Dependency Graphs

You can generate graphs that show the hierarchy of an architecture. You can save
these graphs as PNG, JPEG, SVG, Visio XML, and DOT files.

Note: Dependency graphs are also available for classes and packages.
To create a graph, follow these steps:

1 Select the highest-level architecture node you want to graph. You can graph the
entire hierarchy or just a sub-hierarchy.

2 Right-click on the node and choose Graphical Views from the context menu.
Depending on the node you select, the submenu allows you to choose from Graph
Architecture, Depends On, Depended On By, Butterfly-Dependency Graph,
and Internal Dependencies. When you have selected an architecture node, the
same list of graphical views is available by choosing Graphs > Graphs for
<current_entity> from the menus.

To open the Internal Dependencies graph for an entire architecture, choose from the
Graphs > Dependency Graphs menu.

Architecture dependency graphs have the same toolbar as other types of graphical
views. See page 233 for details about using the icons in the graphical view toolbar.

& = [[S]] & R | #4 |] Reuse [sync

To save a graph as a JPG, PNG, or SVG file, see page 255. To save a graph to a Visio
file, see page 256.

[Hoa=h

In all dependency graphs except the Graph Architecture view, there is a Graph
Customizer pane that you can use to modify the graph display. This pane lets you
control expansion, highlighting, and arrows on a per-node basis. It also lets you undo
and redo your changes, and save and load graph customizations. For example, this is
the default Depended On By graph for the C|C++ node in the multi-language zlib
sample project.

C#

>~

Ada ——= (C|C++

/’

Pascal

Nodes that are drawn as 3D boxes (like those in the previous figure) can be expanded
to shown the nodes they contain by double-clicking on them. You can keep expanding
nodes until you get to the file level.

You can right-click on a dependency graph to control whether long, short, or relative
names are displayed for architecture node names and filenames. In addition, you can
enable or disable the reference count numbers that show how many times a particular
dependency occurs.

For a video that shows how to use the Graph Customizer, see
http://www.scitools.com/support/videos.php.

Understand 3.0 User Guide and Reference Manual 179

http://www.scitools.com/support/videos.php

Chapter 7: Architecting Your Codebase

The toolbar icons in the Graph Customizer pane perform the

Graph Customizer
Toolbar

following actions: |,_ g," | =

Save icon. Prompts you for a name for the current settings. Settings that you can
apply only to the specific graph type and root node in this view. If you have already
saved settings for this graph type/root node combination, you can select a set you
want to update from the drop-down menu. Otherwise, type a name for your current
settings and click Save.

Load icon. Prompts you to select a named group of graph settings that you want to
open in the current window. The list shows only settings saved for this graph
type/root node combination. To see the full list of saved settings, choose Graphs >
Dependency Graphs > Load Saved Dependency Graph.

Undo icon. Click this icon to undo your last change.

Redo icon. Click this icon to redo the last change you undid.

Graph Customizer
Fields

The first group of fields below the toolbar in the

Graph Customizer

Graph Customizer pane performs actions that
apply to all nodes in the view. Hide Unhighlighted Edges

. . . - . Hide Nodes With Mo Highlighted Ed
Hide Unhighlighted Edges. This field is B Hodes o nigighied Bages

available only for Internal Dependency graphs,
and you can use it only if you have turned on

|C.I&arAII Highlighted Edges|

highlighting of “edges,” which are the | Show All Hidden Nodes |
connections between nodes. If you check this
box, all arrows that are not highlighted are | Restore Defaults |

hidden, and the graph is reorganized as
needed to omit those non-highlighted relationships.

Hide Nodes With No Highlighted Edges. This field is available only for Internal
Dependency graphs, and you can use it only if you have turned on highlighting of
“edges.” If you check this box, all nodes that do not have a highlighted arrow
pointing to it or away from it are hidden, and the graph is reorganized as needed to
omit those nodes.

Clear All Highlighted Edges. This button is available only for Internal Dependency
graphs. If you click this button, all node and “edge” highlighting is removed.

Show All Hidden Nodes. If you click this button, any nodes that have been hidden
using the “Hide Selected Nodes” button are restored. This button does not expand
any nodes that have been contracted to hide child nodes.

Restore Defaults. If you click this button, the graph is restored to the settings it
originally had when you opened it.

You can select one or more nodes in a dependency graph by using your mouse to drag
a rectangle over the nodes you want to select. Or, hold down the Ctrl key while clicking
on multiple nodes you want to select.

180

Understand 3.0 User Guide and Reference Manual

Viewing Architecture Dependency Graphs

The fields in the Selected Node(s) area perform
actions that apply only to the selected nodes. Selected Node(s): CIC++

» Hide Selected Node(s). Checking this box Hide Selected Node(s)
removes all the nodes that are currently
selected from the graph and reorganized the
graph as needed. (You can later restore the Show Edges Going Out
hidden nodes by clicking the Show All Hidden
Nodes button.)

» Show/Highlight Edges Going Out. Checking
this box for a node causes that node to be | Highlight Edges Coming In
highlighted in yellow. Any arrows that point
from this node to other nodes become darker, Selected Nodes Children
and nodes to which they point are highlighted
in light blue. Internal Dependency graphs let Show Selected Node Children
you highlight such edges; other dependency %] Show Edges Eetween Children
graphs let you show or hide such edges.

Selected Nodes Edges

| Show Edges Coming In

Highlight Edges Going Out

+'| Aggregate Child Edges Going Cut

Ezlibfu:c-ntribfic-streami Zlib'contribfiostream3 | Aggregate Child Edges Coming In

» Show/Highlight Edges Coming In. Checking this box for a node causes that node
to be highlighted in yellow. Any arrows that point to this node from other nodes
become darker, and nodes which point to this node are highlighted in light blue.
Internal Dependency graphs let you highlight such edges; other dependency graphs
let you show or hide such edges.

Zlib'contriviostream = Ezlibfcuntribfiustreamai

e Show Selected Node Children. Checking this box for a node causes any child
nodes to be displayed. This is the same as double-clicking on a node to expand it.

» Show Edges Between Children. Checking this box for a child node causes arrows
to be drawn between this child node and any other child nodes as appropriate. If you
remove the display of arrows, the graph is reorganized to hide these relationships.

e Aggregate Child Edges Going Out. If a node’s children are shown and this box is
checked, the arrows coming from the node’s children are drawn as coming from the
node, and arrows with the same target from multiple children are not repeated.
Unchecking this box causes separate arrows to be drawn from the individual child
nodes.

e Aggregate Child Edges Coming In. If a node’s children are shown and this box is
checked, the arrows going to the node’s children are drawn as going to the node,
and arrows to multiple children are not repeated. Unchecking this box causes
separate arrows to be drawn too the individual child nodes.

Understand 3.0 User Guide and Reference Manual 181

Chapter 7: Architecting Your Codebase

The Graph Architecture view does not provide a Graph Customizer panel, but you can
right-click on any dependency graph to modify the display. For example, in the following
Architecture Graph, Include Entity Lists was off by default but was turned on by right-

clicking.
Pixie/src/gui
intarface.h
GUI Changes EEE:E::EPP

opengl-fitk.h
opengl-gt.h
statView.cpp

Memory Use Issues statView.h

: brickmap.cpp Pixie/src/framebuffer
Requirements fileResource.cpp
fileRe=ource.h fow.cpp
memaory.cpp — fbwh
memory.h fox.cpp
foeh
framebuffer.cpp
Performance framebuffer.h

config.windows.h

config.xcode.h

raytracer.cpp

raytracerh

182 Understand 3.0 User Guide and Reference Manual

Viewing Architecture M

etrics

Viewing Architecture Metrics

You can generate metrics information about an architecture or a subset of an
architecture. The metrics information can be either a text summary or a comma-

separated list for use in spreadsheets.

To create a metrics summary, follow these steps:

1 Select the highest-level node of the architecture for which you want metrics.

2 Right-click on the node and choose Metrics Summary from the context menu.

3 You see an Architecture Metrics Summary window. For example, the following two
summaries use the Complexity architecture to compare metrics for “Low
Complexity” and “High Complexity” functions.

& Architecture Metrics Summary*
1

by

Coun

o -1 o n B L

(S
(S]

FALis 1

B L T B S e = = T S Sy =Y
L e N Vo T = N T, R S VI)

ECDuntLineCDdeExe
gCyoclomatic3trict
| Count3tmtExe
CountLine
: CountPath
tLinePreprocessor
Count3emicolon
: Count3tme
voelomaticModified

: Count Input
CountLineComment

: CountOutput
HMaxEssentialKnots
: LvgCyelomatic
CountLineCodeDecl
! CountLineBlank

CDuntLineInactive
{ | MaxNesting
Count3tmtlhecl
CountLineCode

Z245.
1.
.oooooo
Tl4.
96.
Looooao
Looooao
.oooooo
.315065
100.
o1.
Looooao
.oooooo
.315065
. 0ooooo
100,
Looooao
.oooooo
39.
. 0ooooo

253

3
27a
292

13z

112

523

Complexity::Low — Architecture Metrics Sumnar: A

oooooo
315065

oooooa
oooooa

oooooo
oooooo

oooooo

oooooa

AER)

e Metrics Swmnary

66.000000
15.000000
59.000000
11a.000000
153a6.000000
O.ooooao
57.000000
TO0.000000
14.000000
6. 000000
19.000000
S.ooo0ao
11.000000
14.000000
12.000000
12.000000
O.ooooao
Z.00000a0
11.000000
Q0. 000000

¥

4 When you close the window, you are asked whether you want to save the file. If you
click Save, you can save the summary as text.

Understand 3.0 User Guide and Reference Manual

183

Chapter 7: Architecting Your Codebase

To create a metrics export file, follow these steps:
1 Select the highest-level node of the architecture for which you want metrics.
2 Right-click on the node and choose Metrics Export from the context menu.

3 You see a comma-separated values file. The heading label for each column is in the
first row. Each node in the architecture hierarchy has a separate row with metrics for
that node’s contents.

& Complexity_MetricsExport.csv* r._| [’E| [g|
MName, CountLineCodeExe, bvgCyolomaticStrict, Cou
Cowplexitcy, 593 ,2.45055,599,1535,2016,9,597, 2.
Complexity::Low,245,1.31507,253,714,96,3,272,
Complexity: :Mediwmn, 279, 6.585824,287,705,384,06,.
Cowplexicy: :High,66,15,59,116,1556,0,57,14,70

L S A [T - R S

4 When you close the window, you are asked whether you want to save the file. If you
click Save, you can save the data as a .CSV file.

Managing Architectures

To open the Architect Manager window, choose Project > Architectures > Manage
Architectures from the main menubar in Understand. The window lists the auto-
architectures on the right and custom architectures you have created on the left.

+ Architect Manager
B -
0 (4 7/ [@ | %5
Custom Architectures Status Date Last Modified Auto Architectures Status
Functional Decomposition Showe Mon Moy 24 2205116 2. Calendar Enable
Requirements Zhawe Mon Moy 24 22080039 2 Directory Structure Enakle
Language Enahle

The checkboxes allow you to control whether custom and auto architectures are shown
in the Architectures area. Removing the checkmark next to an architecture can improve
performance, especially for large projects. So, you might want to disable/hide
architectures you never or rarely use.

184 Understand 3.0 User Guide and Reference Manual

Creating an Architecture

You can use the icons at the top of this area or right-click on an architecture to perform
the following actions:

« [l Create anew architecture: See page 185.
. |j Edit architecture: Predefined and custom architectures only. See page 187.

« / Rename architecture: Predefined and custom architectures only. See
page 185.

* [J Duplicate architecture: See page 185.

. [i Delete architecture: Predefined and custom architectures only.
« ™] Import architecture from XML: See page 189.

« [] Exportarchitecture to XML: See page 189.

Creating an Architecture

There are several ways to create a new architecture:

» To create an architecture from scratch, choose Project > Architectures > New
Architecture from the menus or click the [] icon in the Architect Manager. Use the
Architecture Wizard to create the architecture as described in Using the Architecture
Wizard on page 186.

» To duplicate an existing architecture (which you can then modify), select an
architecture and click the [|l icon in the Architect Manager window. Or, right-click
an existing architecture node in the Architecture Browser and choose Duplicate
Architecture from the context menu to create an architecture from that node and
lower in the hierarchy.

B Duplicate Architecture EE'

Please enter a name for the architecture

0] 4 H Cancel]

You can rename an architecture you have created by selecting an architecture and
clicking the # icon in the Architect Manager window. Or, right-click on an existing
custom architecture and choose Rename Architecture from the context menu.

Understand 3.0 User Guide and Reference Manual 185

Chapter 7: Architecting Your Codebase

Using the When you open the Architecture Wizard by choosing Project > Architectures > New
Architecture Wizard Architecture from the menus or clicking the [] icon in the Architect Manager window,
you see a page that asks for the name of your architecture.

Type a name for the architecture. This name should be fairly short so it can be shown in
architecture trees.

~ Architecture Wizard

Create An Architecture
An architecture iz an abstract hierarchy layered onto & body of source code.
Far example, a staff architecture could list swhich endineers warked on a paricular project and each

engineer would contain a list of source code belonging to them. Dependencies and other useful
information can then be derived from the architecture. First, vou need to give the architecture a name.

Enter & name for the architecture:

Then click Next to see the page that lets you add and edit architecture nodes. This is
the hierarchy to which entities will be assigned in a later page of the wizard

2 Architecture Wizard

Create An Architecture

An architecture consistz of hierarchical nodes or sub-architectures that contain =ource code ar other
sub-architectures. You can add sub-architectures to thiz architecture or edit i later.

Engineets Architecturs Acdd & Mode
Engineets Edit Mode

Femove Mode

= Back H Mext = l

186 Understand 3.0 User Guide and Reference Manual

Building an Architecture

Click Add a Node and type the Name of the node you want to add. The default location
is within the node you had selected in the Architecture Wizard, but you can select
another location in the Create In field. Then click OK.

' Add A Node

[Matme:

Create Inc | Engineers W

Ok l ’ Cancel

You can modify nodes you have created by selecting a node and clicking Edit Node.
You can delete the selected node by clicking Remove Node.

The next window presents an animation that shows how to use the Architecture Builder
to add entities to the nodes you have created. When you have finished watching the
animation, click Finish. This opens the Architecture Builder shown in the animation.
Your architecture nodes are shown on the right. See Building an Architecture on

page 187 for details on adding entities to each node.

Building an Architecture

To edit an existing custom architecture, select that architecture and click the |_:f icon in
the Architect Manager window. Or, right-click on an existing architecture and choose
Edit Architecture from the context menu. Both actions open the Architecture Builder.

You cannot edit the Auto Architectures provided with Understand. However, you can
use the [|| icon in the Architect Manager window to create a duplicate architecture of
one of the Auto Architectures. Then, you can edit the duplicate architecture.

Understand 3.0 User Guide and Reference Manual 187

Chapter 7: Architecting Your Codebase

This dialog allows you to add nodes to architectures. You create an architecture
structure on the right-hand side and map entities into the architecture from the left-hand
side.

|E Getting Started x\|E Architecture Builder: Requirementz* .

Architecture Builder

Architectures Architecture: Reguirements

Filesystem aw —|- Requirements

(®) Show Al Ertties (O Show Unmapped Entities Memory Use Issues

=I- Directory Structure
=t Pixie

GUI Changes

Performance
Licensing

+- sre Remove

config.swindowes b (File)
config.xcode b (File)

XMW RUE

Some tips for using the architecture builder;

* Multiple items may be zelected and mapped taffrom both trees.

* Drag and drop can be used to add tems from the left to the right or to re-arrange nodes inthe right tree.

® [z the radio buttons to togale between the full architecture and the architecture cortaining only nodes
that are unmapped.

To create and edit nodes in the Architecture Builder, follow these steps:

Double-click the name of any node on the right side of the Architecture Builder, and
rename that node by typing. (Or you can select a node and press Enter.)

Move one or more nodes by dragging them to the node you want to be the parent
node. Within a node, the children are sorted alphabetically.

Click the +i] icon to create a new node at the same level as the selected node.
Click the [1;_] icon to create a new node as the child of the selected node.

Click the [E icon to delete the selected node.

Click the [Z)] icon to undo your last change. Click the icon to redo you last
undo.

To map files to nodes in the Architecture Builder, follow these steps:

1

On the left side of the Architecture Builder, select an existing architecture from the
drop-down list that will allow you to easily find the files you want. The default is the
Directory Structure architecture.

You can choose whether to show all entries in the architecture or just the unmapped
entries. For example, if you want to map all the entries into your new architecture,
you might want to select Show Unmapped Entries so that you can see which files
you haven’t mapped yet.

In the left architecture hierarchy, select one or more files or architecture nodes.

188

Understand 3.0 User Guide and Reference Manual

Using XML to Manage Architectures

4 In the right architecture hierarchy, select the node you want to contain your
selection.

5 Click the Add button or drag your selection to the right side.
6 When you finish editing your custom architecture, click Save.

You can use the Remove button to delete files and nodes from the architecture you are
editing.

As always, you can right-click on any node or file to use its context menu to get
information.

You can save your edits to the architecture at any point by clicking the ﬂ._] icon. Then,
you can continue editing. If you close the Architecture Builder without saving changes,
you will be asked if you want to save your changes.

Using XML to Manage Architectures

Exporting
Architectures to XML

Importing XML
Architectures

You can use XML as a way to share architectures between one Understand database
and another.

In addition to using XML to share architectures, you can use XML export/import to
quickly create architectures that are a simple subset of another architecture by
selecting a lower node in the hierarchy.

To create an XML file for an architecture, follow these steps:

1 Select the highest-level node of the architecture that you want to export. All of the
hierarchy below the node you select will be represented in the XML file.

2 Click the £ icon in the Architect Manager window. Or, right-click on the node you
selected and choose XML Export from the context menu.

You see an XML file that contains <arch> and <set> tags for architecture nodes.

4 When you close the XML window, you are asked if you want to save the file. If you
click Save, the default filename is the name of the node you selected.

To import an XML file for an architecture, follow these steps:
Click the 7] icon in the Architect Manager window.

2 Inthe Choose XML File to Import Architecture dialog, select an XML file that
matches the tag format used by Understand to describe architectures. For example,
you can choose XML files created by Understand. Click Open.

3 The architecture described by the XML file is added to your list of architectures.

Understand 3.0 User Guide and Reference Manual 189

P

chapters Using Reports

This chapter describes how to create and view reports and the types of reports

available.

This chapter contains the following sections:

Section Page
Configuring Reports 191
Generating Reports 193
Viewing Reports 194
An Overview of Report Categories 195
Cross-Reference Reports 197
Structure Reports 202
Quality Reports 205
Metrics Reports 209

Understand 3.0 User Guide and Reference Manual

190

Configuring Reports

Configuring Reports

Understand provides a large number of reports you can generate about your code.
These can be generated in HTML or text format. You can choose which reports and
how to format them.

To configure how reports will be generated, choose Reports > Configure Reports.
This opens the Project Configuration dialog with the Reports > Output category
selected. From there, you can also configure the Reports > Options and Reports >
Selected categories.

See page 54 for details on the Reports > Output category. In general, you can
configure the following:

e« HTML reports: The “home” file for the reports is index.html, but you can select an
alternate title page. You may generate single or multiple HTML files for each report
type. It is recommended that you split up the files for large projects. Choose
Alphabetic to generate multiple HTML files per report that are split up alphabetically
by the first letter of the entity name. Choose Every n Entities to generate multiple
HTML files per report that are split up every “n” number of entities. By default, a
single HTML file is generated for each letter of the alphabet.

» Text reports: You may generate one text file of the specified name (by choosing
File). This one file will contain all the selected reports. Alternately, you may generate
multiple text files (by choosing Separate Files) and specify a common filename
prefix. The filenames of each text file identify the report.

For details on the Reports > Options category, see page 55.

Understand 3.0 User Guide and Reference Manual 191

Chapter 8: Using Reports

The Reports > Selected category lets you select from the available reports for the
languages used by your project. This list shows all the reports for all languages:

Data Dictionary

File Contents

Program Unit Cross Reference
Object Cross Reference
Type Cross Reference
Macro Cross Reference
Include File Cross Reference
Declaration Tree

Extend Tree

Invocation Tree

Simple Invocation Tree
Import

With Tree

Simple With Tree

Generic Instantiation
Exception Cross Reference
Renames

Program Unit Complexity
Project Metrics

Program Unit Metrics

File Metrics

File Average Metrics
Fortran Extension Usage
Class Metrics

Class 00 Metrics

Implicitly Declared Objects
Uninitialized ftems

Unused Variables and Parameters
Unused Objects

Unused Types

Unused Program Units
Uses Mot Needed

Withs Not Needed

| an || done

The specific reports available depend upon the source languages used in your project.

See An Overview of Report Categories on page 195 for descriptions of the types of
reports you can generate.

192 Understand 3.0 User Guide and Reference Manual

Generating Reports

Customizing Report
Colors

HTML reports use Cascading Style Sheets (CSS) to set colors and font styles used for
keywords, comments, strings, numbers, and more. The colors and styles used are
defined in the sourcestyles.css file, which is created the first time you generate HTML
reports in a particular location.

You can customize the sourcestyles.css file using a text editor. Any colors and font
styles normally supported by CSS can be used in this file. For example:

span.comment {color:DarkSeaGreen; font-style:italic}

If you modify the stylesheet and want to use if for other reports you generate, you can
copy the modified sourcestyles.css file to the locations of other HTML reports.

Generating Reports

Note:

Note:

Once you have specified formatting options and the types of reports to be generated,
choose Reports > Generate Reports from the menus to begin generating the selected
reports. You see a dialog that shows the progress of the report generation.

On Windows, the ASCII text follows the DOS text file format (carriage return and line
feed at the end of each line). On UNIX, text files are created according to the UNIX
convention (lines end with a carriage return).

HTML reports are generated as HTML 3.0 format files. The generated HTML is not
complex, the only HTML 3.0 (versus HTML 2.0) feature used is frames. Netscape 2.0
and higher, and Internet Explorer 3.0 and higher can display the files.

You can view the reports as described in Viewing Reports on page 194.

For large projects, reports can take a long time to generate. You can click Cancel to
halt report generation. Clicking Cancel leaves the reports in a partially generated state.

You may want to temporarily toggle off anti-virus protection programs while reports are
being generated. This may speed the process of creating reports. If you do this, be sure
to turn on virus checking after report generation is finished.

HTML, text, and project metrics reports may also be generated with the “und” command
line program. Refer to Chapter 14 for details.

Understand 3.0 User Guide and Reference Manual 193

Chapter 8: Using Reports

Viewing Reports

To view generated reports, choose Reports > View Reports. Then choose the HTML
or Text option.

File names of reports generated vary based on the type and format of the report
generated.

» For text files, a single text file containing all selected reports may be generated or
separate files for each type of report may be generated. A single text file is named
<project_name>.txt. For separate text files, the file name is the type of report.

» For HTML reports, you can generate either a single HTML files for each report type,
or smaller files divided either alphabetically by entity name or in groups of N number
of entities. An index file is also generated that contains links to all the other HTML
reports generated. The main window page is named index.html.

For HTML reports, a single index file contains an alphabetic list of all entities found in all
other generated HTML reports. The entities listed in the index have hyperlinks to the
Data Dictionary report for that entity. The entity index file is named entity _index.html
and can be accessed from the “index” link on the main HTML page.

The following figure shows an example of the entity index.

A WIHDOWRS A
Understand

Table of Contents

Inidesr

g e

=
:

Creciise

Diata Dictionaty A atack

ah
ahottom

absz
Program Unit Cross Eeference ahaf

File Contenta

ahzolute
Chiect Cross Referetice ahaolutel] athe

accept

194 Understand 3.0 User Guide and Reference Manual

An Overview of Report Categories

An Overview of Report Categories

Understand generates a wide variety of reports. The reports fall into these categories:

» Cross-Reference reports show information similar to that in the Information
Browser, except that all entities are shown together in alphabetic order. See Cross-
Reference Reports on page 197.

e Structure reports show the structure of the analyzed program. See Structure
Reports on page 202.

* Quality reports show areas where code might need to be examined. See Quality
Reports on page 205.

» Metrics reports show basic metrics such as the number of lines of code and
comments. See Metrics Reports on page 209.

The following table shows the type and page number for each report.

Report Type

Report Name and Page

Cross-Reference
Cross-Reference
Cross-Reference
Cross-Reference
Cross-Reference
Cross-Reference
Cross-Reference
Cross-Reference
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure

Quality

Quality

Quality

Quality

Quality

Quality

Quality

Quality

Quality

Data Dictionary Report on page 197

File Contents Report on page 198

Program Unit Cross-Reference Report on page 198
Object Cross-Reference Report on page 199
Type Cross-Reference Report on page 199
Macro Cross-Reference on page 200

Include File Cross-Reference on page 200
Exception Cross-Reference Report on page 201
Declaration Tree on page 202

Class Extend Tree on page 203

Invocation Tree Report on page 203

Simple Invocation Tree Report on page 203
Import Report on page 204

With Tree Report on page 204

Simple With Tree Report on page 204

Generic Instantiation Report on page 204
Renames Report on page 204

Program Unit Complexity Report on page 205
Uninitialized Items on page 207

Unused Variables and Parameters on page 207
Unused Objects Report on page 207

Unused Types Report on page 207

Unused Program Units Report on page 208
Uses Not Needed Report on page 208

Withs Not Needed Report on page 208
Implicitly Declared Objects Report on page 207

Understand 3.0 User Guide and Reference Manual 195

Chapter 8: Using Reports

Report Type Report Name and Page
Quality FORTRAN Extension Usage Report on page 206
Metrics Project Metrics Report on page 209
Metrics Program Unit Metrics Report on page 210
Metrics File Metrics Report on page 211
Metrics File Average Metrics Report on page 212
Metrics Class Metrics Report on page 210
Metrics Class OO Metrics Report on page 210
Augment with the The reports included with Understand have evolved over many years to accommodate
PERL or CAPI common customer requests. However, we recognize that not all needs can be covered.
To help you develop custom reports we include both PERL and C interfaces to
Understand databases.
For details on the PERL interface choose Help > PERL API Documentation. Also visit
the blog and forum on our website.
The Reports > Project Interactive Reports and Graphs > Project Graphs
commands display a list of user-created plugins, which can be created using the Perl
API. For information about creating plugins, please contact support@scitools.com. The
SciTools forum at http://scitools.com/support/forum and the SciTools blog at
http://scitools.com/blog also contain messages concerning plugins.
196 Understand 3.0 User Guide and Reference Manual

http://scitools.com/support/forum
http://scitools.com/blog
mailto:support@scitools.com

Cross-Reference Reports

Cross-Reference Reports

Cross-Reference reports show information similar to that in the References section of
the Information Browser, except that all entities are shown together in alphabetic order.
The following table shows the page that describes each type of cross-reference report.

Report Name

Data Dictionary Report on page 197

Program Unit Cross-Reference Report on page 198
File Contents Report on page 198

Object Cross-Reference Report on page 199

Type Cross-Reference Report on page 199

Class and Interface Cross-Reference on page 199
Macro Cross-Reference on page 200

Include File Cross-Reference on page 200
Exception Cross-Reference Report on page 201

Data Dictionary The Data Dictionary Report lists all entities alphabetically. Each listing shows the entity

Report name, what kind of entity it is (for example, macro, type, variable, function, include, file,
or procedure), along with links to the location where each is declared in the source
code.

Moo W pleplEFldHIT K LM HNOEEOQRZSEST

echo [Procedure) [xref
[lexlib.pas, 284]

ET) [Variahle)[xref
[dept empl.pas, 15

employee [5gl Tabhle)
[dept_empl.pas, 3]

employee. age [Sgl Col
[dept_empl. 11]

Optionally break up report alphabetically
Quick link to cross-reference of this entity
What kind of entity it is

What file/line it was declared in.

Name

Understand 3.0 User Guide and Reference Manual 197

Chapter 8: Using Reports

Program Unit Cross-
Reference Report

File Contents Report

The Program Unit Cross-Reference Report lists all program units (such as procedures
and functions) analyzed in alphabetic order along with information about what they
return (if anything), what parameters are used, and where they are used by other
program units.

The HTML version offers hyperlinks to the Data Dictionary report entry and to the
source code where each reference occurs.

blankitr [FPunction)
Declared as: string string
Declare [lexbhase.pas, 252] lexhasze
Define [lexbase.pas, 978] lexhase
Call [lexmagz.pas, 100] position
Name and Call [dlex.dpr, 578] rules

entity type /

Type of reference Link to containing uni

What file/line it occurs in in data dictionary

You can create an additional Program Unit Index report to list all the program units in
the project and show the file and line where each is declared. For text reports, this is
stored in a *.pcn file.

Lists functions declared within a source file and the line numbers where they are
declared. HTML versions of this report permit hyperlinked jumping to the function in the
source as well as viewing of the entire source file.

FEeferror.c
Global Functions
IEUErEor

re .C
Local Variabhles

reghol
regcode
reqdunny
regendp

reginput
re ar

regpatrse
regsize
regstartp

198

Understand 3.0 User Guide and Reference Manual

Cross-Reference Reports

Object Cross-
Reference Report

Type Cross-Reference
Report

Class and Interface
Cross-Reference

The Object Cross-Reference Report lists all objects (FORTRAN variables, parameters,
macros) in alphabetic order along with declaration and usage references.

TMINTS [Const)
Declared as: 259
Define [expr.dpr, 19] EXPr
undefined = ol [Const)
Declared azs: 'Z202: undefined symbol'
Define [lexmsgs.pas, &67] lexmsos
Tse [lexrules.pas, 173] push macro
Tze [lexrules.pas, 259] add =start state

The HTML version of this report includes hyperlinks to the Data Dictionary Report and
the source code where the reference occurs.

The Type Cross-Reference Report lists all declared types in alphabetic order, along
with their declaration and usage information. The HTML version of the report offers

hyperlinks to the Types data dictionary report entry, as well as the source code where
the reference occurs.

final [(Field)
Declared as: EBoolean

Define [lextabhle.pas, 99] atateTabhleEntry
FirstPosTahle [Typel
Declared as: array[0..Z%*max_start states] of IntietPtr
Define [lextahle.pas, 89] lextahle
Typed [lextahle.paz, 129] first poz _table

The Class and Interface Cross-Reference Report lists all declared classes and
interfaces in alphabetic order, along with their declaration and usage information. The
HTML version of the report includes hyperlinks to the data dictionary report entries, as
well as the source code where the reference occurs.

Error [Tnknowm Class)
Declared as:
Create [BEMatch.jawa, 62] FEMatch.clone
Create [GEep.java, 273] Grep.procezzitream
Ewvent [Unknown Class)

Declared as:
Typed [BEApplet.jawa, 195]

o

Exception IUnknown Class)
Declared as:
Extend [BEException.java, 38] redexp.BEException
Typed [Grep.jawva, 236] [=4

Understand 3.0 User Guide and Reference Manual 199

Chapter 8: Using Reports

Macro Cross- The Macro Cross-Reference Report lists all macros analyzed in the source code in

Reference alphabetic order along with information about where they are declared and where they
are used. The HTML version offers hyperlinks to the macro’s Data Dictionary report
entry and to the source code where each reference occurs.

EXP
Declared az: CONSTL
Define [define tezst.jov, 5] define_ test.jov
Tze [define test.jow, 36] SOMEPEOC
Include File Cross- The Include File Cross-Reference Report lists all include files analyzed in the source
Reference code in alphabetic order with information about which files include them. The HTML

version offers hyperlinks to the source code where each reference occurs.

Include File Cross Reference Report

ot [[o2 [o 1 s e [a0 ¢

stdio.h
Include [egrep.c, 45] egrep. o
Include [try.c, 32] Lry.o
Include [timer.c, 31] timer.o
Include [Fegsub.c, 21] regsub.c
Include [Fegexp.c, 25] regexp.c
Include [regerror.c, 1] regerror.c
string.h
Include [strpbrk.c, 1] strphrk.c

200 Understand 3.0 User Guide and Reference Manual

Cross-Reference Reports

Exception Cross- The Exception Cross-Reference Report documents the declaration and usage of all

Reference Report exceptions. Each declaration and any raises or handles are documented. In the HTML
version each raise or handle may be visited in the source, as well as the declaration
point of the Exception (if visible).

EXCEPTION CROSS REFERENCE REPORT

queue empty
Declared In: gueus package
FILE: gqueue pa.adh LINE:Z1
Referenced In:

RALISE FILE: queus pa.adbh LINE:113

RALISE FILE: queus pa.adbh LINE:123

RAIZE FILE: gueue pa.adb LINE:133
quene full

Declared In: gueus_package
FILE: gqueus pa.adh LINE:ZZ
Referenced In:
RALTZE FILE: gqueue pa.adbh LINE:93
RAIZE FILE: gueue pa.adb LINE:162

stack empty
Declared In: stack_package
FILE: stack pa.adbh LINE:Z1
Referenced In:
RAIZE FILE: stack pa.adb LINE:114
RATSE FILE: stack pa.adbh LINE:124

Understand 3.0 User Guide and Reference Manual 201

Chapter 8: Using Reports

Structure Reports

Structure reports are designed to help you understand the relationships between
various entities. The following table shows the page in this chapter that describes each
type of structure report.

Report Name and Page

Declaration Tree on page 202

Class Extend Tree on page 203

Invocation Tree Report on page 203
Simple Invocation Tree Report on page 203
With Tree Report on page 204

Simple With Tree Report on page 204
Generic Instantiation Report on page 204
Renames Report on page 204

Import Report on page 204

Declaration Tree The Declaration Tree shows the declaration nesting of each program unit analyzed.
Each nesting level is indicated by an indent with a vertical bar used to help align your
eyes when viewing. Each nesting level is read as “declares”. In the HTML version of the
report each program unit name is a hyperlink to its entry in the Program Unit Cross-
Reference Report.

Package Body Occupants
Procedure Put View
Procedure Look
Procedure Get

Function May I Get

|

|

|

|

| Procedure Drop
| Function May I Drop
| Procedure Inventory
| Procedure Go

|

| Block

In the above example, Package Body Occupants is the top level program unit. It has
declared within it, Put_View, Look, Get, May_| Get, Drop, May_|_Drop, Inventory, and
Go. Nested within Go is an unnamed declare block.

202 Understand 3.0 User Guide and Reference Manual

Structure Reports

The Declaration Tree report shows a textual representation of an declaration tree for
each FORTRAN file.

Declaration Tree Report

| Hon-Lilpha II IE |E |E |E I? |E Subroutines/blocks

declared in file allocate.f

allocate_ £ (File)

allocate (Bubroutine)
get0l (Subroutine)
daopen (Subroutine)

| lenchr (Subroutine)
get01lZ (Subroutine)
daopnf (Subroutine)

| propfl (Subroutine)
| getyno (Subroutine)
opntdd (Subroutine)

| opnrdr [(Subroutine)

| dsrctl (Subroutine)

Class Extend Tree The Class Extend Tree report shows the nesting of class declarations in the files
analyzed. Each nesting level is indicated by an indent with a vertical bar to help align
your eyes when viewing. Each nesting level is read as “extends”. In the HTML version
of the report each class name is a hyperlink to its entry in the Data Dictionary and
Interface Cross-Reference Report.

Invocation Tree The Invocation Tree Report shows a textual representation of the invocation tree for

Report each program unit analyzed. The report shows who each program unit calls. Levels are
indicated by tabs and are lined up with vertical bars. Each nesting level is read as
“calls”.

The HTML version offers hyperlinks to the corresponding Data Dictionary report entries.

definedEey
| hash
| | length
[| Ord
[| Inc
| exit
| newPos
[| Inc

Simple Invocation The Simple Invocation Tree Report shows the invocation tree to only one level for each
Tree Report program unit that has been analyzed.

Understand 3.0 User Guide and Reference Manual 203

Chapter 8: Using Reports

With Tree Report

Simple With Tree
Report

Generic Instantiation
Report

Renames Report

Import Report

The invocation level is indicated by an indent and a vertical bar and is read as “calls”.

definediey
| hash

| exit

| newFos

Structured identically to the other hierarchy reports, the With Tree report shows a
textual version of the With Tree for each program unit that is not Withed by another.

As with the other textual hierarchy reports, indents show level with a vertical bar helping
align your eye. For this report, each line is read as “Withs”.

Package Body Occupants

| Package Rename Text IO

| | Package Text IO

| | | Package IO Exceptions

| | | Package System

| | | Package Parameters
In the above example, the package body Occupants Withs package Text_IO, which in
turn Withs 10_Exceptions, System, and Parameters.

The Simple With Tree report is similar to the With Tree report. It shows a textual
representation of the With Tree for each program unit that is not Withed by another.
However, it shows only one level of withs. For example:

Package Body Occupants

| Package Rename Text IO

This report lists each package that was created through instantiation.

In the HTML version, the source where it was instantiated and its Data Dictionary
Report entry may be visited from hyperlinks.
My Int IO Package Instantiation
FILE: board.adb LINE:12
Instantiated From => INTEGER_IO Generic Package

The Renames Report cross-references the use of the Ada command “renames”, as in:
function Rouge return Color renames Red;

This report lists program units that have been renamed in alphabetic order. Each
rename shows the program unit it renames, and in the HTML report a hyperlink to the
rename instance in the source is provided.

The Information Browser also identifies packages and program units that rename
others or are renamed.

The Import report lists all source files that import other files and the files they import.
The HTML version offers hyperlinks to the data dictionary entry for each imported file.

204

Understand 3.0 User Guide and Reference Manual

Quality Reports

Quality Reports

Understand’s quality reports are designed to provide information about areas of the
analyzed source that might not meet standards or that hold the potential for trouble.
They also identify areas where extra programming has been done but not needed. This
sometimes identifies areas that aren’t yet complete, or that haven’t been maintained
completely.

The following table shows the page in this chapter that describes each type of quality
report.

Report Name and Page

Program Unit Complexity Report on page 205
FORTRAN Extension Usage Report on page 206
Implicitly Declared Objects Report on page 207
Uninitialized Items on page 207

Unused Variables and Parameters on page 207
Unused Objects Report on page 207

Unused Types Report on page 207

Unused Program Units Report on page 208
Uses Not Needed Report on page 208

Withs Not Needed Report on page 208

The complete list of quality metrics available in Understand changes frequently - more
frequently than this manual is reprinted. A complete and accurate list is always
available on our web site: http://www.scitools.com/documents/metrics.php.

Program Unit The Program Unit Complexity Report lists every procedure and function or similar
Complexity Report program unit in alphabetic order along with the McCabe (Cyclomatic) complexity value
for the code implementing that program unit.

The Cyclomatic complexity is the number of independent paths through a module. The
higher this metric the more likely a program unit is to be difficult to test and maintain
without error.

The Modified column shows the cyclomatic complexity except that each case statement
is not counted; the entire switch counts as 1.

The Strict column shows the cyclomatic complexity except && and || also count as 1.

Understand 3.0 User Guide and Reference Manual 205

http://www.scitools.com/documents/metrics.php

Chapter 8: Using Reports

The Nesting column shows the maximum nesting level of control constructs in this
program unit.

Program Unit Complexity Report

Click column

header for
explanation \ _ _ . .
Cryeolomatic | Wodified | Strict | HMesting

of each metric

&t 1 1 1 0
act_char 3 3 3 2
act_char 7 7 7 3
add action 2 2 2 1
add et 2 2 2 1
add lit 3 3 3 1

FORTRAN Extension This report lists anywhere your source code has non-standard FORTRAN extensions.
Usage Report The report factors in what variant (F77, F90, F95) you chose on your project
configuration.

The following is a snippet from a sample FORTRAN Extension Usage report:

Fortran Extension Usage Report

ATTTOMATEIC:
CEXTEEMAT:

CLOSE Statement Mo-Parens:
DATAPOOL.

Declaration fclist! mitialization:
EXIT DO Staternent:

EXIT IF Staternent:

EXIT FOE. Statement:

EXIT LOOF Statement:
EXIT WHILE Statement:
FOE Statement:

TF block without THEN:
IWMPLICTT UNDEFTNED:
LOOCP Statement:

Lo T o T o T o o D o D o T o T o T o T e N]

206 Understand 3.0 User Guide and Reference Manual

Quality Reports

Implicitly Declared
Objects Report

Uninitialized Items

Unused Variables
and Parameters

Unused Objects
Report

Unused Types Report

The Implicitly Declared Objects Report lists any variables or parameters that were
implicitly declared using FORTRAN's implicit declaration mode. Using implicitly
declared variables is considered a risky practice, and this report helps you weed out
where the practice is occurring in your code.

The HTML version offers hyperlinks to the function’s Data Dictionary report entry.

The Uninitialized Items report lists items such as variables that are not initialized in the
code. The report is organized by file. Each uninitialized item within the file is listed by
name along with the line number on which the item is declared. The HTML version
offers hyperlinks to the location where the item is declared.

The Unused Variables and Parameters report lists items that are declared (and perhaps
initialized) but never referenced other than that. The report is organized by file. Each
unused item is listed by name along with the type of item and the line number on which
the item is declared. The function or similar container is shown after the list of unused
items within it. Types of items may include functions, parameters, variables, and
objects. The HTML version offers hyperlinks to the location where each unused item is
declared.

The Unused Objects Report lists objects (for example, variables, parameters,
constants) that are declared but never used. The HTML version has links to the
function’s Data Dictionary report entry and to the source line where the object is
declared.

dyacc . dpr

Fymaxtoken 518
expr . dpr

THINTS 19

Fmax token 129
lexmsg=s . pas

ithwalid charnum]

men overflonw

The Unused Types Report lists types that are declared but never used. The HTML
version has links to the function’s Data Dictionary report entry and the source where the
type is declared.

dlib.pas

TLexerParzerBase 33
exprlex.pas

[+ 42

Understand 3.0 User Guide and Reference Manual 207

Chapter 8: Using Reports

Unused Program

The Unused Program Units Report identifies program units that are declared but never

Units Report used.
Note that this listing in this report doesn’t mean the system doesn’t need this program
unit. For instance, interrupt handlers that are called by system interrupts are often
never “used” within the other source of the program.
dlib.pas
parse 35
dyacc r
yycharsym 2011
BXPY . r
yycharsym 168
Uses Not Needed The Uses Not Needed Report identifies any unneeded “use” statements that provide
Report access to a module’s public specifications and definitions. To remove unneeded
access, you may add only clauses to use statements.
Withs Not Needed This report lists, any With statements a program unit has but does not need (by not
Report using items made public by the With statement).
Note that this covers only direct usage in the program unit and doesn’t account for side
effects that may be needed by the program to operate correctly. For instance,
sometimes a package can be Withed just to start a task or to execute code in its
begin/end block.
208

Understand 3.0 User Guide and Reference Manual

Metrics Reports

Metrics Reports

Project Metrics
Report

Metrics provide statistical information about your project and entities, such as the
number of lines of code and the complexity of various entities.

Understand provides a number of ways to gather metrics information. This section
describes reports that provide metrics. See page 214 for other ways to gather metrics.

The following table shows the page in this chapter that describes each type of metrics
report.

Report Name and Page

Project Metrics Report on page 209
Class Metrics Report on page 210

Class OO Metrics Report on page 210
Program Unit Metrics Report on page 210
File Metrics Report on page 211

File Average Metrics Report on page 212

The complete list of metrics available in Understand changes frequently—more
frequently than this manual is reprinted.

A complete and accurate list is always available on our web site:
http://www.scitools.com/documents/metrics.php.

The Project Metrics Report provides metric information about the entire project. The
metrics reported include: the total number of files, the total number of program units,
and the total number of lines of source code.

Project Metrics Report

Files: 23
Subroutines: 314
Lites: 12097
Blank Lines: 1351
Code Lines: 2605
Comtnent Lines: 3607

Declarative 3tatements: 1190
Executable Statements: 3373
Ratio Comtent/Code: 041

These metrics are also reported on the title page of the HTML report.

Understand 3.0 User Guide and Reference Manual 209

http://www.scitools.com/documents/metrics.php

Chapter 8: Using Reports

The Class Metrics Report provides the following metrics for each class that has been
analyzed:

Class Metrics Report

Class

TLexer

TLexer

Total number of lines

Total number of blank lines

Total number of lines of code

Total number of lines that contain comments
Average number of lines per class

Average number of comment lines per class
Average complexity per class

Maximum complexity within class

Ratio of comment lines to code lines

Lines |Lines |Lines Average ﬁerage Average Maximuam | Eatio

Lines : g5 . .
Blank |Code |Comment |Lines Comment Complexity | Complexity | Comment/Code
4 0 4 o 0 o o 0 0.00
30s n| 287 12 im 12 9 9 0.0

The Class OO Metrics Report provides the following object-oriented metrics for each
class that has been analyzed:

Class 00 Metrics
Report

LCOM (Percent Lack of Cohesion): 100% minus the average cohesion for class
data members. A method is cohesive when it performs a single task.

DIT (Max Inheritance Tree): Maximum depth of the class in the inheritance tree.
IFANIN (Count of Base Classes): Number of immediate base classes.

CBO (Count of Coupled Classes): Number of other classes coupled to this class.
NOC (Count of Derived Classes): Number of immediate subclasses this class has.

RFC (Count of All Methods): Number of methods this class has, including
inherited methods.

NIM (Count of Instance Methods): Number of instance methods this class has.
NIV (Count of Instance Variables): Number of instance variables this class has.
WMC (Count of Methods): Number of local methods this class has.

The Program Unit Metrics Report provides information on various metrics for each
program unit that has been analyzed.

Program Unit Metrics
Report

Blank | Code |Lines- |Lines- | Comment Ratio

Lines Lines |Lines | exe dec Lines CommentCode
act char 10] 10 7 3 1 0.10
act char 24 1 T2] la 10 01z

210

Understand 3.0 User Guide and Reference Manual

Metrics Reports

The following metrics are provided for each program unit:

Lines: Total number of lines in the function.

Comment: Number of comment lines in the function.

Blank: Number of blank lines in the function.

Code: Number of lines in the function that contain any code.
Lines-exe: Lines of code in the function that contain no declaration.

Lines-decl: Lines of code in the function that contain a declaration or part of a
declaration.

Stmt-exe: Number of executable statements in the function.

Stmt-decl: Number of declarative statements in the function. This includes
statements that declare classes, structs, unions, typedefs, and enums.

Ratio Comment/Code: Ratio of comment lines to code lines.
(comment_lines/code_lines)

Note: code+comment+blank = lines
Some lines may contain both code and comments.

File Metrics Report The File Metrics Report provides information similar to that in the Program Unit Metrics
Report. However, it is organized by file rather than by program unit.

Click on each metric column to get a detailed description of it.

Note: code+comment+blank != lines
Some lines may contain both code and comments.

Blank |Code |Lihes- |Lines- | Cotinent | Execution
Litiez |Lines | exe der Lihes Statements

3

T 26 | 634 402 112 104 387
42 13 9 1] 9 20 0

Declatation | Iiains f A= AVE Ratin

Statements | 3ubroutines | Comgplexitsy %@ CommentiCode

da 21 &] 0.14
3 0 0 1] 222

Understand 3.0 User Guide and Reference Manual 211

Chapter 8: Using Reports

The File Average Metrics Report provides averages for the functions within a file. All
lines outside any function are ignored when calculating the averages. The following
metrics are provided for each function:

File Average Metrics
Report

Cyclomatic: The average number of independent paths through the functions in
this file. The higher this metric the more likely a program unit is to be difficult to test
and maintain without error.

Modified: Same as Cyclomatic complexity except that each case statement is not
counted; the entire switch statement counts as 1.

Strict: Same as Cyclomatic complexity except that && and || also count as 1.
Essential: Measures the amount of unstructured code in a function.

Lines: Average number of lines in the functions in this file.

Code: Average number of lines that contain any code in the functions in this file.
Comment: Average number of comment lines in the functions in this file.

Blank: Average number of blank lines in the functions in this file.

212

Understand 3.0 User Guide and Reference Manual

P

Chapter 9 Using Metrics

This chapter describes how to create and view metrics and the types of metrics
available.

This chapter contains the following sections:

Section Page
About Metrics 214
Metrics Summary 215
Metrics Browser 216
Exporting Metrics to HTML 217
Exporting Metrics to a CSV File 218
Configuring Metric Charts 220
Using the Metrics Treemap 223
Exporting Dependency Metrics 225

213 Understand 3.0 User Guide and Reference Manual

Chapter 9: Using Metrics

About Metrics

Understand provides a number of ways to gather metrics information:

Information Browser: The Information Browser tree has a Metrics node. You can
expand this branch to show a few metrics for the current entity. See page 129.

Metrics Summary: You can choose Metrics > Metrics Summary from the menus
to see a short list of metrics for the entire project. See page 215.

Metrics Browser: You can choose Metrics > Browse Metrics from the menus to
see a browser that lets you choose any architecture node, file, or entity to see all the
metrics available for that item. See page 216.

Export to HTML: You can click this button in the Project Metrics Browser to export
the full list of metrics for all architecture nodes and files. See page 217.

Export to CSV: You can choose Metrics > Export Metrics from the menus to
create a text file of all the project metrics in comma-delimited format. See page 218.
(You can schedule this export to occur regularly; see page 50.)

Configure Metric Charts: You can choose Metrics > Configure Metric Charts
from the menus to open a dialog that lets you display graphs of volume and
complexity metrics on an architecture basis. See page 220.

Reports: When you create reports by choosing Project > Project Reports, some of
the reports provide metrics. See page 209.

PERL/C API: A more advanced way to get existing metrics and calculate new
metrics is with the PERL and C API. These provide full access to the Understand
database. Choose Help > PERL API Documentation for more information. See
page 196.

Understand provides a large number of metrics you can generate about your code. The
complete list of metrics available in Understand changes frequently—more frequently
than this manual is reprinted.

A complete and accurate list of metrics is always available on our web site at
http://www.scitools.com/documents/metrics.php. The “What do the metric names
mean?” buttons in metrics dialogs links to this page.

214

Understand 3.0 User Guide and Reference Manual

http://www.scitools.com/documents/metrics.php

Metrics Summary

Metrics Summary

Choose Metrics > Metrics Summary from the menus to see a short list of metrics for

the entire project.

Metrics Summary

Copy All

il %
Metrics Summary - &Iﬂ

Metric
Blank Lines

Classes

Code Lines

Comment Lines

Comment to Code Ratio

Declarative Statements

Executable Statements

Files

Functions

Inactive Lines

Lines

Value

233
0
1,636

674
0.41
258

172
2,669

What do the metric names mean?

A complete and accurate list of metrics is always available on our web site at
http://www.scitools.com/documents/metrics.php. The “What do the metric names
mean?” buttons in metrics dialogs link to this page.

Understand 3.0 User Guide and Reference Manual

215

http://www.scitools.com/documents/metrics.php

Chapter 9: Using Metrics

Metrics Browser

To open the Project Metrics Browser, choose Metrics > Browse Metrics from the
menus.

In this window, you can browse the architectures in your project and select any
architecture node, file, or entity. The list on the right shows code size and complexity
metrics for the selected item.

» Praoject Metrics Bro

Project metrics for, COProgram Files S Theample\pixie_prajpixie_proj udb

Snapshots: | Current Databaze w What do the metric names mean?
Functional Decomposition || = Summary
+}- Filesystem —}-File Types
Staff Review Assignments C Heacder File 3
—}- Requirements C Code File 1
+- GUI Changes —|- Ertity Kinds
+- Memory Use Issues Mo Entity Kinds
: = Metrics
+- config windows b (File) CourtDeclClass 3
+- config.xcade b (File) CountDeclFile 4
=} raytracer.cpp (File) CountDeclFunction 16
~CPrimaryBundle (Public Function) CourtLine 11638
~CRaytracer (Public “irtual Function) CountLineBlank 251
+- compute=amples (Protected Function) CountLineCode 418
=t CPrimaryBundle (Public Function) W CountLineComment V3
Generate Detailed Metrics...| |Export To HTML Cony Selected| | Copy Al

Double-click a file or entity to open the Source Editor for that item. Right-click to see the
standard informational menu choices.

You can select rows on the right and click Copy Selected or press Ctrl+C to copy those
lines to the clipboard. Click Copy All to copy the full list of metrics for the selected
directory or file.

Click Export to HTML to generate reports as described on page 217. You can choose
to Export All Architectures and all of their nodes or to Export Selected
Architectures and nodes that you have selected using the Ctrl or Shift key while
clicking on the nodes you want in the metrics export. Click Generate Detailed Metrics
to open the Export Metrics dialog and generate a text file in comma-delimited format as
described on page 218.

Generate Detailed Metrin::s...] [Expn:lr‘t To HTML ~

Export &Il Architectures

Export Selected Architectures

216 Understand 3.0 User Guide and Reference Manual

Exporting Metrics to HTML

Exporting Metrics to HTML

You can click the Export to HTML button in the Project Metrics Browser (page 216) to
export the full list of metrics for all entities and architecture nodes. When you click this
button, you see a Browse for Folder dialog appropriate to your operating system.

Choose or create the folder where you want the metrics files to be created. The files are
actually stored in a folder called “pixie_proj_Metrics” below the folder you select.

If the directory already exists, you are asked if the files should be overwritten. If you
answer “No”, a number is appended to the old directory name to it to save it as a

backup.

If the report is generated successfully, you are asked if you want to view the report.
Click Yes to open the top-level page, index.html.

Architecture: Filesystem
File: mathSpec.cpp

Metrics

Summary

File Types
Z Header File
Z Code File

Entity Kinds

MNone

Metrics

CountLineCormment

CountLinelnactive

RatioComrmentToCode

CountDeclFile
CountLineBlanlk
CountStrntDecl
CountDeclFunction
Countline
CountstmtExe
CountlineCode
CountDeclClass

114
100

22,583
14,313
0.05
214
18,505
15,555
z,139
475,512
38,370
413,228
244

MaxCyclomaticModified
CountLineZodeExe
AvgCyclomaticstrict
SumCyclomaticstrict
CountstrntExe
SumCyclomatic
AvglLineCommment
Awvagline

CountLine
CountDeclClass
RatioCommentToCode
CountLinePreprocessar
CountSernicolon
SumCyclomaticModified
SurnEssential
AvaCyeclarmaticMadified
Countstrnt

145

15
1a0
15

13
319

04z

172
15
1z
1
157

The HTML-based report lets you select any architecture node, file, function, or other
entity type that has metrics in the left pane. The right pane shows metrics available for

that item.

Understand 3.0 User Guide and Reference Manual

217

Chapter 9: Using Metrics

Exporting Metrics to a CSV File

You can save metric information to a comma-delimited text file by choosing Metrics >
Export Metrics from the menus or clicking the Generate Detailed Metrics button in
the Project Metrics Browser. You can use the generated file in Excel and other
spreadsheet programs. The Export Metrics dialog looks like this:

i

Export Metrics

Avyailable Metrics etrics To Export
[FSELECT ALL S AvgCyclomatic i
AnvgCyclomatic AvgCyclomatichoditied Y
AvgCy clomatichodified AyvgCyclomaticStrict
AvgCyclomaticStrict AvgEzzential
AvpEszentisl Avgline
Avgline AvglineBlank
AvoLineBlank AvglineCode
AvglineCode AvglineComment
AvglineComment CountClazsBase
CountClassBaze bl CountClazsCoupled bl
Output Settings:
Save output to: [CPragram FilesSTheamplepixie_praipidie_jara) ooy ,t#;
Showy File Entity Mames A= [Short w Wiite Column Tiles
[] Show Declared in File: | Short (¥ [] Show Function Parameter Types
|:| Wiewy File After Export I Expiort l ’ Close]

The defaults in this dialog come from the Project Configuration dialog in the Metrics >
Options category (page 52) and the Metrics > Selected category (page 53).

You can override the defaults using the following fields:

Available Metrics: Check the boxes next to metrics you want to include in the
output. Check the “SELECT ALL” box to select all metrics. Uncheck the “SELECT
ALL” box to unselect all metrics.

Metrics to Export: Click the single arrow to move the selected metric up or down
one in the list. Click the double arrow to move the selected metric to the top or
bottom of the list.

Save output to: Specify the location and name of the file you want to use for
metrics output. Understand sends its metrics output to a .csv (comma-separated
values) file.

Show File Entity Name as: Specify whether files should be displayed with Short
names (just the filename), Full names (including the absolute path), or Relative
names (relative directory path).

218

Understand 3.0 User Guide and Reference Manual

Exporting Metrics to a CSV File

» Show Declared in File: Check this box if you want the file in which each entity is
declared to be included in the output. You can specify whether you want these files
displayed with Short names, Full names, or Relative names.

e Write Column Titles: Check this box if you want column headings in the CSV file.

e Show Function Parameter Types: Check this box if you want the type of each
function parameter listed.

After setting options, click Export to export the .CSV file. If you check the View File
After Export box before exporting the file, the CSV file is opened with the default
application for working with CSV files. This is likely to be a spreadsheet application.

If the output file already exists, you are asked if the files should be overwritten. If you
answer “No”, you can change the output flename and click Export again.

You can schedule this metrics to be automatically exported to a CSV file on a regular
basis. See page 50 for details.

See Exporting Dependency Metrics on page 225 for more types of metrics you can
export to a CSV file.

A complete and accurate list of the available metrics is available at:
http://www.scitools.com/documents/metrics.php.

Understand 3.0 User Guide and Reference Manual 219

http://www.scitools.com/documents/metrics.php

Chapter 9: Using Metrics

Configuring Metric Charts

Commands in the Metrics menu provide fast access to metrics charts for the current
version of the entire project. These commands are:

You can choose Metrics > Configure g

Metrics > Project Metric Charts > Code Volume
Metrics > Project Metric Charts > File Volume
Metrics > Project Metric Charts > Average Complexity

Metrics > Project Metric Charts > Sum Complexity

Metric Charts from the menus to open Metric Browser = | -
the Metric Browser, which lets you
display graphs of various metrics on an colsl i
architecture basis. > [C] calendar
.) > [Directory Structure
In this browser, select the following: 4[] Language
« Architectures: Check boxes next 4 [7] cjc+=
to one or more architecture nodes, 4 [c
files, and/or entities. The graph will + [C] fastgrep
provide a set of vertical bars for 4[] c++
each of the items you select. | 4[] fastgrep
] . regexp.h (File)
» Metrics: Select the type of metrics [regmagich (Fi)
you want to graph from the drop-
down list. Metic Graph Type
- Code Volume: Provides a @ Code Volume
stacked vertical bar chart
showing the count of lines that _) File Volume
are blank, contain declarations °) Average Complexity
and executable code, and
contain comments. _ 3um Complexity
- File Volume: Rrovides a vertical [7] Open in a new tab.
bar chart showing the number of
files in the selected architecture [Wiew Chart] [View Table J [Close

node that are code files vs.

header files (or the number of
files for languages that do not have header files).

- Average Complexity: Provides a vertical bar chart of the average and maximum
cyclomatic complexity for all nested functions or methods in the architecture node,
along with the maximum nesting level of control constructs in the node’s files.

- Sum Complexity: Provides a vertical bar chart showing the number of possible
paths through the code and the sum of the cyclomatic complexity and the
essential complexity of all nested functions or methods.

Click the View Chart button to display a chart for your selections or View Table to see
the values in a table. If you have already selected a graph for this type of metrics, that
tab will be reused unless you check the Open in a new tab box.

220

Understand 3.0 User Guide and Reference Manual

Configuring Metric Charts

You can open metrics charts for various entities, including files and functions, from the
context menus throughout Understand.

Show: | C++ Functions -

Filter:

_tr_flush_Block -
h__v B

iew Information —

1k

e

o

[

2

&

(i

o

a

]

§ r] Graphical Views *

EEIJ _vs Interactive Reports

5] 2% Edit Definition

B | adg] _

E= Edit Declaration

ﬁ adl

< | adl Add to Favoritezs »

_ |2l User Tools 3

o

= allo Explore »

2z | asq

i 3
E ato Find In...
1 bail Metrics Charts » Code Volume
bas Fitter By Selection Awverage Complexity B
belose Sum Complexity i

BeginCountPerfCounter

A typical metrics chart looks similar to the following:

Code Volume Distribution

Volume Metrics
B CountLineBlank
@ CountLineCodeDecl
B CountlineCodeExe

O CountLineComment

Distribution
:

Memory Use |ssues Performance

Understand 3.0 User Guide and Reference Manual 221

Chapter 9: Using Metrics

In a graph, you can choose the Graph View or the Table View. Both views have a
toolbar that lets you save the graph or data.

In the Graph View, you can use the toolbar to:
R

e Save the image as a PNG, JPEG, or BMP image.

« Copy the image to the clipboard.

» Print the image using the standard Print dialog.

In the Table View, the numeric values for each pie slice or vertical bar is shown in a
table. You can use the toolbar to copy the data to the clipboard in comma-separated
(CSV), tab-separated, or table format (spaces used so columns align with headings if a
font such as Courier is used).

Copy Table Data to Cliphoard in CSW Format
Copy Table Data to Cliphoard in Tab Farmat

Copy Table Data to Cliphoard in Table Format

If you are viewing data for several architecture nodes, you can change the number in
the lower-right corner to the number of vertical bars you want to view on each page and
click the checkmark icon. Then use the arrows in the corners to move from page to
page. The text shows which vertical bars are currently shown out of the total number.
For example, the figure below indicates that bars 3 and 4 out of a total of 5 are currently
shown.

Q) 3-40f5 2 |« (@)

222 Understand 3.0 User Guide and Reference Manual

Using the Metrics Treemap

Using the Metrics Treemap

Treemaps show metrics graphically by varying the size of node blocks and the color
gradient. Each node block represents a code file. Different metrics can be tied to size
and color to help you visualize aspects of the code.

For example, the following treemap ties the number of lines in each file to the size of
the block and the MaxCyclomatic complexity metric to the darkness of the blue. This
allows you to learn which files are large and complex vs. files that are large and
relatively non-complex.

Metrics Treemap : Countline : MaxC}rclu-matic;]

4

7 5
£2F
- = .l

=
-
——

1

L
L]

a
Il

k-

So we learn that unzip.c is large, but not particularly complex, while inflate.c is large
and highly complex.

By default the maps are nested by directory structure. If you have built other
architectures, you can use those as well.

Understand 3.0 User Guide and Reference Manual 223

Chapter 9: Using Metrics

To open the treemap for your project, follow these steps:

1 Choose Metrics > Metrics Treemap from the menus. You will see the Metrics

Treemap Options dialog.

i ™
I:] Metrics Treemap Dpticn‘ [ﬂ' ﬂ
Map metrics for: [File -]
Group by: [Dire-:tur'_.r Structure -]
Size Options
I Map Size to: [CnuntLine v]

-

Limit the gize of large nodes to 100 ={ % of the available space

Color Options

Map Color to: [MaxCyclomatic -]

Min Color: Max Color:

|:| U=ze Logarithmic Scale

Cushion Restore Colors

Generate Tr&&map] [Cancel

In the Map metrics for field, choose whether you want to select from metrics for
Files, Classes/Interfaces/Structs, or Functions/Methods.

In the Group by field, choose how to group blocks in the treemap. The default is to
group by the project’s directory structure. Alternately, you can choose to group
according to any other defined architecture or no architecture (flat).

In the Size Options area, choose a metric to control the size of the blocks. You can
also limit the size of the largest blocks to some percentage of the treemap. You
might want to use this if one node is taking up so much of the map that you can't see
differences between the smaller nodes.

In the Color Options area, choose a metric to control block colors. You can click
the left color square to set a color for blocks with the lowest value for this metric;
click the right color square to set a color for blocks with the highest value for this
metric.

Check the Use Logarithmic Scale box if you want the color scaled by powers of 10
of the selected metric value. This is useful for treemaps with extreme value ranges.

Uncheck the Cushion box if you want to see solid colors in the blocks. By default,
the blocks have a gradient fill.

Click Generate Treemap to display the treemap. You can return to the Options
dialog by clicking Options in the upper-right corner of the treemap.

224

Understand 3.0 User Guide and Reference Manual

Exporting Dependency Metrics

Within the treemap, when your mouse cursor hovers over a block, the two metric values
chosen for the size and color are shown.

You can double-click on an architecture node (shown as a gray border around a set of
colored blocks) to display only the contents of that node. You can also zoom in by right-
clicking on a node and choosing Drill down from the context menu.

After drilling down in the architecture, you can use the g % icons to Pop up one
level or Pop up all levels the treemap. You can also right-click to use the Pop up one
level and Pop up all levels commands in the context menu.

The Print icon lets you print the treemap.

Exporting Dependency Metrics

The Reports > Dependency menu lets you export several types of files that provide
metrics about dependencies between architectures, files, and classes/packages.

The output is for most of these commands is in CSV (comma-separated values) format,
which can be opened with most spreadsheet programs. When you create a CSV file
with Understand, it is automatically opened in a text file window.

The options available are as follows:
» Architecture Dependencies >

- Export CSV: This output lists pairs of architecture nodes for which the node in
column A is dependent upon the node in column B. The number of dependencies
for each pair is listed in column C. (See page 226.)

- Export Matrix CSV: This output lists all architecture nodes that are dependent
upon others in column A. Row 1 lists all architecture nodes that are depended
upon. The number of dependencies for each pair is listed at the appropriate
row/column intersection. (See page 227.)

- Export Cytoscape XML: This output format can be opened in Cytoscape
(www.cytoscape.org), a free open-source program for analysis and visualization.
It draws large diagrams very quickly, and can be useful if you want an overview
picture of dependencies in a very large project. (See page 227.)

» File Dependencies >

- Export CSV: This output lists pairs of files for which the file in column A is
dependent upon the file in column B. The number of dependencies for each pair is
listed in column C. (See page 226.)

- Export Matrix CSV: This output lists all files that are dependent upon others in
column A. Row 1 lists all files that are depended upon. The number of
dependencies for each pair is listed at the appropriate row/column intersection.
(See page 227.)

- Export Cytoscape XML: See the description of the Cytoscape XML export for
architecture dependencies. (See page 227.)

Understand 3.0 User Guide and Reference Manual 225

Chapter 9: Using Metrics

Class Dependencies >

- Export CSV: This output lists pairs of classes and packages for which the entity in
column A is dependent upon the entity in column B. The number of dependencies
for each pair is listed in column C. (See page 226.)

- Export Matrix CSV: This output lists all classes and packages that are dependent
upon others in column A. Row 1 lists all classes and packages that are depended
upon. The number of dependencies for each pair is listed at the appropriate
row/column intersection. (See page 227.)

- Export Cytoscape XML: See the description of the Cytoscape XML export for
architecture dependencies. (See page 227.)

When you choose to export a CSV file, you can also set the following options. (This
figure shows the dialog for exporting File Dependencies; the other two CSV Export
dialogs are very similar.)

Exporting
Dependencies to a
CSV File

il I
File Dependencies Export Options _ - &lﬂ

Output CSW File Path

Output File: C.UsersMvonne\fastgrep_FileDependencies. 05'.-1 -

Columnz Sort
From File From Entities @ Sorton “From File” column
To File To Entities (™) Sort on "To File” column
+| References
Dependency Aggregation
File Mames @ Show individual dependency pairs

() Short Name

(71 Relative Name

() Show sum dependencies for each "From File”

_ () Show sum dependencies for each "To File”
@ Long Name

Ok] [Cancel

In this dialog, you can set the following options:

Select an architecture to analyze: This option is available only when you are
exporting architecture dependencies.

Output File: Browse for the location to save the CSV file.

Columns: Check the boxes for columns you want to include in the output. The
“From” and “To” columns for the type of entity you are exporting are required, and
cannot be deselected.

Names: Choose a length for entity names. For example, all types can have a short
or long name. Files can also have a relative name.

226

Understand 3.0 User Guide and Reference Manual

Exporting Dependency Metrics

Exporting
Dependencies to a
CSV Matrix File

Exporting
Dependencies to
Cytoscape

e Sort: Choose how you want dependencies sorted. You can sort based on the
“From” column or the “To” column.

» Dependency Aggregation: Choose how you want to summarize dependency pairs
that occur multiple times. You can show each pair individually or sum pairs for the
“From” or “To” column for the type of entity you are exporting.

When you choose to export a CSV matrix file, you can also set the following options.
(This figure shows the dialog for exporting File Dependencies; the other two CSV
Export dialogs are very similar.)

COutput CSV File Path

Cutput File: C:/UsersMvonne\fastgrep_FileDependencyMatric.cev 1

File Names

() Short Name

() Relative Name

@ Long Mame

OK] [Cancel

In this dialog, you can set the following options:

» Select an architecture to analyze: This option is available only when you are
exporting architecture dependencies.

« OQutput File: Browse for the location to save the CSV matrix file.

 Names: Choose a length for entity names. For example, all types can have a short
or long name. Files can also have a relative name.

Cytoscape (www.cytoscape.org) is an open source software tool for visualizing
complex networks.

When you choose to export a Cytoscape file, you can Browse to select the location and
filename for the output file. If you are exporting architecture dependencies, you can
also select an architecture to analyze.

Once you have exported the *.xml file, you are asked if you want to open the file in
Cytoscape. Note that you can only open Cytoscape if it is installed on your computer.
See Dependency Category on page 104 for how to configure the location of the
Cytoscape installation.

Understand 3.0 User Guide and Reference Manual 227

http://www.cytoscape.org

[] [] []
chapter10 Using Graphical Views
This chapter covers the graphical views in Understand and their options.
This chapter contains the following sections:
Section Page
Project Overview Graphics 229
Graphical View Browsers 231
Types of Views 237
Graphical Notation 245
Controlling Graphical View Layout 245
Controlling Cluster Graph Layout 254
Saving Graphical Views 255
Printing Graphical Views 257
228 Understand 3.0 User Guide and Reference Manual

Project Overview Graphics

Project Overview Graphics

You can create graphics that provide an overview of your entire project by choosing
Project > Project Overview Charts from the menus. This opens a tab in the document
area that contains a number of pie charts and vertical bar charts. For example:

Code Breakdown

& Graph view |f Tahle Wiew

bk [&
Largest Non-File En g

& Graph View | T=
[[&
=000
- B Source Code
- O Comments
flae] B Blank Lines
- O Inactive
: [PrePracessor
£l
o0 -
1oon -
|:| -

The graphs provided are code breakdown (line types), function breakdown, class
breakdown, most complex functions, largest non-file entities, largest files, largest
functions, best comment-to-code ratio entities, and most complex files.

In each area, you can choose the Graph View or the Table View. Both views have a
toolbar that lets you save the graph or data.

In the Graph View, you can use the toolbar to:

) [& M
* Save the image as a PNG, JPEG, or BMP image.
» Copy the image to the clipboard.

Understand 3.0 User Guide and Reference Manual 229

Chapter 10: Using Graphical Views

» Print the image using the standard Print dialog.
e Zoom in on the graph in a new tab.

In the Table view, the numeric values for each pie slice or vertical bar is shown in a
table. You can use the toolbar to copy the data to the clipboard in comma-separated
(CSV), tab-separated, or table format (spaces used so columns align with headings if a
font such as Courier is used).

Copy Table Data to Cliphoard in CSW Format
Copy Table Data to Cliphoard in Tab Farmat
Copy Table Data to Cliphoard in Table Format

In addition to the Project Overview Charts, you can display metrics graphs that provide
additional statistical information about your project or portions of your project. For
details, see page 220.

230 Understand 3.0 User Guide and Reference Manual

Graphical View Browsers

Graphical View Browsers

The context menu of an entity that has a structure or hierarchy offers a choice called
Graphical Views:

errar{=, ""):
T}
“iew Information
El #ifndef ERE] Graphical Views 3 Butterfly
e=mmy (51, = Interactive Reports Called By
char *sl1;
char *s2: Edit Defintion Calls
14 Add to Favorites » Control Flow
fprintt Add Selection to Favorites 3 Declaration
fprintf _ _
fprintf Add Location to Favorites 3 Declaration File
exit (1) User Tools 3 Cluster Call
1l Explore 3 Cluster Callby
- gendif
Find In... 3 Cluster Call Butterfhy
Metrice Chartz b

You can also use the Graphs drop-down menu in the toolbar to select from the types of
graphs available for the entity at the current cursor position in a Source Editor tab. The
same list of graphical views is available by choosing Graphs > Graphs for
<current_entity> from the menus.

| & timer.c Fl

Butterfly

=l I

Declaration
Depended On By
Depends On
Include

UKL Class Diagram

Cluster Call Internal
Cluster Call

Cluster Callby
Cluster Call Butterfly

The Graphical Views menu adapts based on the kind of entity right-clicked. An item is
greyed-out if information is normally available for this kind of entity but is not applicable
to this particular entity (for instance a package that could be WITHed but isn’t).

There are two main types of graphical views: hierarchy views and structure views.

Understand 3.0 User Guide and Reference Manual 231

Chapter 10: Using Graphical Views

Hierarchy Views A hierarchy view shows multiple level relationships between entities. All relationships
are multi-level and are shown to the top or bottom of their respective tree unless a level
option is set in the preferences. The following is a Call By graph for a function.

|§, Called By Graph : cumplainxl

[& | P @ - &% M| # o - [[] Reuse [sync
. —
f— .4@.

See Hierarchy View Types on page 237 and Hierarchy View Examples on page 238.

Cluster views are a special type of hierarchy view. They provide a more interactive view
of call relationships. The Call, Callby, Butterfly and Internal Call variants are available,
and can be accessed from the function, class, file, or architecture level. See Controlling
Cluster Graph Layout on page 254.

regexp.ci —-—'—__‘____:___‘—‘—-—-—-._.\\w

egrep.c |———————= timer.c
strchr
/’i-"
e / % —
main multiple —————— |
regerror try —— _
complain
--_'___._,_,_.-r
% ‘\ S

S
Q regsub.c

232 Understand 3.0 User Guide and Reference Manual

Graphical View Browsers

Structure Views Structure views offer a one glance way to see important structure and relational
information about a given entity. The following is an example of a Declaration structure
view:

& Declaration Graph : irtersect ..
BB | @ - | M | []Reuse [

Parameters:

[l G

CShadingContext * context
CRay * cRay

Calls:

-|-:33L<:nck

-| processDelayadinstance

: -|ﬂsL.'nIﬂn:k

See Structure View Types on page 240 and Structure View Examples on page 241.

General Commands There are some general commands that can be used for browsing graphical views.
for Using Graphical Note that some of these tools are not available in all types of graphs.
Browsers

Entity info: Anywhere you see an entity, you can right-click on it to see a menu that
offers many ways to learn more about that entity. Single-clicking shows information
about the entity in the Information Browser. If you are in Screen Drag mode or Zoom
mode, click the icon to be able to select entities.

Searching: Click the # search icon at the top of a graphical view or press Ctrl+F
to display the incremental search bar. You can use this bar that same way you use it
in the Source Editor to find entities by name or other text in the current graphical
view. As you type search text, all instances of the string are highlighted in the
graphical view. See page 155 for details.

X 2 & [CaseSensitive [] Whole Words

Opening source: Right-click on an entity in a graphical view and choose Edit
Definition to open the source location where the entity is declared.

Listing open views: You can choose Window > Windows from the menus or look
at the tabs across the top of the document area to see a list of all the separate
graphical views you have open.

Scrolling: You can scroll around a graphical view by dragging your cursor within the
view when you have selected Screen Drag Mode by clicking the icon.

Understand 3.0 User Guide and Reference Manual 233

Chapter 10: Using Graphical Views

« Expanding hierarchy: You can expand and contract tree views by clicking the red
circle to the right of a node. Right-click on the background of a view and choose
Open All Nodes or Close All Nodes to expand or contract all nodes at once.

+~C0p1:ions
qupﬁons(}etSearchPaﬂl
*RiOpﬁonV

« Path highlighting: To highlight the path for a particular entity in a tree view (such as
a Callby view), select the entity and right-click. In the context menu, choose
Highlight Path.

Nodes to expand
or contract tree

optionsDeleteSearchPath

intersect

:

create Hn’ianglﬂatepolygon Hoﬂentaﬁon(lheck

;

drawObject

» Add to favorites: You can add graphs you may want to reopen to a favorites list by
clicking the €% = Favorites icon in the toolbar.

e Zooming: You can zoom in or out using the toolbar.

& Parent Declaration Graph : attrs ..

[l & | H F |?|-|<Eﬂ? R | # vy v [Reuse [| sync

10%

25%
50%
75%

| 100%

125%
150%
200%
250%
300%

Other...

» Printing and saving: Everything you see can be printed or saved. Printing may be
done to one page (squeezing the picture) or across multiple pages (poster style).
See Printing Graphical Views on page 257 for details on printing. Graphical views
can be saved as BMP, JPEG, PNG, Visio XML, and DOT files. See Saving
Graphical Views on page 255 for details on saving to a graph file.

234 Understand 3.0 User Guide and Reference Manual

Graphical View Browsers

« Layout control: Layout is done automatically, there is no need to move lines or
boxes around for a better view. Options are available for changing the layout. For
example, you can control whether entities are sorted according to their order in the
code or alphabetically. See Controlling Graphical View Layout on page 245.

Filtering Out Entities You can apply filters to hide certain entities in some graphical views. To create such a
filter, follow these steps:

1 Right-click on the background of a graphical view and choose Edit Graphic Filters
from the context menu. (Note that this option is not available for some types of
graphs. For example, it is available for Call graphs and Declaration graphs.)

.. Graphic Filter Dialog

Enable Project Fiters
Project Fitters:

Filter Hame Criteria Action ey

1 |temp* Long Mame Hide Mode Edlit

Remove

Il

Remove 4l

oK ” Cancel ” Apply]

2 In the Graphic Filter dialog, put a checkmark in the Enable Project Filters box.
3 Click New. This opens the Graphic Filter Editor dialog.

. Graphic Filter Editor

Fitter Text: | |
Fitter Criteria: |L|:|ng MName v|
Fiter Action: |Hide Mode v|

4 Type afilter in the Filter Text field. For example, use gr* to match entity names
beginning with gr. Filters are case-sensitive.

5 Inthe Filter Criteria field, select whether to compare the filter to long names,
definition files, or the type text of entities. For example, if you choose long names, a
filter of print* does not match SomeProc::printWide. Instead, you can type *print*.

6 In the Action field, select one of the following options:

Understand 3.0 User Guide and Reference Manual 235

Chapter 10: Using Graphical Views

Reuse Checkbox

Sync Checkbox

Graph Options

- Hide Node: Items that match the filter are not included in the output.

- Hide Sub Nodes: The item that matches the filter is shown, but any subnodes of
these items are removed from the output.

- Collapse Sub Nodes: Any subnodes of items that match the filter are collapsed
in the output. An icon is shown after the node to indicate that there are subnodes.
Items that match the filter are shown.

7 Click OK to add the filter to the project.

You can also create filters by right-clicking on an entity in a graphical view and choosing
one of the filtering options. The options allow you to quickly filter out entities with that
name or in that file.

You can remove filters you have created by clickihng Remove or Remove All.

The filters you create apply to all graphical views that support filtering. You can
temporarily disable filtering in the Graphical Settings dialog or by right-clicking on any
graphical view and choosing Disable Graphic Filters from the context menu.

The Reuse checkbox controls whether a view is reused or a new window is opened
when another graphical view is requested. The Reuse box is unchecked by default. At
most one graphical view can have the Reuse box checked at any time.

You can cause views to be reused if a similar type of graphical view is opened from
within a graphical view, no matter whether the Reuse box is checked. Change this
behavior in the User Interface > Windows category of the Tools > Options dialog
(page 94).

The Sync checkbox controls whether this graphical view changes when a different
entity is selected in the Project Browser, Entity Filter, and other windows that let you
select an entity. For example, if you check the Sync box in a Declaration graph window
and then select a different entity in the Entity Filter, the graph shows declaration
information for the newly selected entity.

See page 113 for information about the Graphs category in the Tools > Options
dialog. You can control how the display of relationships between graph nodes changes
when you hover the mouse over a graph or double-click on a node.

236

Understand 3.0 User Guide and Reference Manual

Types of Views

Types of Views

There are two main types of graphical views: hierarchy views and structure views.

Hierarchy View Types Hierarchical views show multi-level relationships between entities. Understand offers
hierarchy graphs of the following types of relationships. Some types apply to specific
source languages.

Butterfly: Shows both calls and called by.
Calls: Shows who this entity calls.

Called By: Shows who calls a given entity.
Include: Shows who this file includes.

IncludeBy: Shows who includes this file.

Depends On Graph, Depended On By Graph, and Butterfly Graph: Available for
classes, packages, and architectures only. See page 179 for architecture graphs.

Derived Classes: Shows classes derived from a given class.
Base Classes: Show what classes are the base for a class.

Extends: Shows which classes extend this class.
Extended By: Shows which classes are extended by this class.
Class Inheritance: Shows who inherits from a given class.

Child Lib Units: Shows Child Library Units of a compilation unit. (Ada 95 only)
Declared In: Shows the declaration tree from where this program unit is declared.
Declaration Tree: Shows declaration nesting of program units in a compilation unit.
Instantiated From: Shows instantiation tree of a generic type or compilation unit.
Instantiations: Shows who instantiates a given generic unit.

Invocation: Shows what compilation units a unit invokes.

Parent Lib Unit: Shows the parent lib units of a given entity.

Type Derived From: Shows tree of types a type is derived from.

Type Tree: Shows types that derive new types from an entity.

With: Shows what compilation unit an entity “Withs” into scope.

WithBy: Shows what compilation units “Withs” a given entity.

Uses: Shows which modules use this item.

Used By: Shows which modules are used by this item.
Cluster Call Internal: Shows call relationships within a file.
Cluster Call: Shows who this entity calls.

Cluster Callby: Shows who calls this entity.

Cluster Butterfly: Shows both calls and called by.

Understand 3.0 User Guide and Reference Manual 237

Chapter 10: Using Graphical Views

Hierarchy View Hierarchy views show multi-level relationships between entities. Here are examples of
Examples the types of hierarchy views that Understand offers.

» Butterfly: Shows both calls and called by relationships if they exist. The selected
entity is outlined in red.

absf
instantiate
™
CSphere sin
| [1
RiSphereVf computedbjeciBound
|1 T
CSphere cos
initw

» Calls: Shows the entire chain of calls emanating from this function. Each line
between entities is read as “x calls y”.

Initialize |.
lookaheads .
i | C size

propagate
g E-tunicm|0— fatal

» Called By: Shows what calls an entity. Each line connecting an entity is read as “x is
called by y”. In this example, error is called by code (and others), which is called by
rules (and others). Note that this view is read from the bottom up or right to left.

*
definitions | |mles

L * * *
mark_error| || dlex code||define_macro||define_start state||definition| [rules
error

238 Understand 3.0 User Guide and Reference Manual

Types of Views

» Include: Shows the include hierarchy of an entity, such as a file. A connecting line is
read as “Xx includes y.” In this example, align.h includes global.h.

I & Include Graph © align b . & Includeby Graph : alignh

OB 8 | & o L Reuse [ISme 2 (9 O | 58 €9 | @ - | [Reuse [

| ofsean)
ofeonana1]

* Include By: Shows the include tree in the other direction. In the previous example,
align.h is included by several files such as algebra.h.

0114 1114

» Base Classes: For classes, shows the base classes from which this class is
derived from. In this example, class CLInearCurve is derived from class CCurve,
which is derived from class CSurface and so on.

CRefCounter }# CObject | ' CCurve }
» Derived Classes: Shows the classes that are derived from this class. In this

example, class CTexture3d is a base class for classes ClrradianceCache and
others.

ChrradianceCache)

CBrickMap

» Extends: Shows which classes extend other classes. In this example, the
regexp.UncheckedRE class extends the regexp.RE class, which extends the
regexp.REToken class.

“{e gexp RET DkenHe gexp.RE}ﬂ—{re gexp Trchecke dRE}

Understand 3.0 User Guide and Reference Manual 239

Chapter 10: Using Graphical Views

Extended By: Shows which classes are extended by other classes. A line is read
as “class is extended by class.” In this example, the regexp.REToken class is
extended by a number of classes, including the regexp.RE class, which in turn is
extended by the regexp.UncheckedRE class.

=—’.,':re gexp Unchecke dRE)

egexp RET u:ulccnan.EncElSu‘r:u)1

egexp FET okenl ookdhe ad}

egexp FET u:uken@ne@f}

egexp RET okenPOSIX)

egexp RET DkenRange}

egexp RET okenRepeate d}
egexp BET Dk&tﬂtﬂﬂ}
egexp FET oken'WordE Dunda.tj.r}

Structure views offer a one glance way to see important structure and relational
information about a given entity. Understand structure views include the following:

Structure View Types

Architecture Graph: Shows the hierarchy of an architecture node. See page 179.

Declaration: Shows what a structure is composed of. For example, shows the
parameters, return type, and callbys of a function. For classes, shows what
members are provided, who inherits this class, and who it is based on.

Parent Declaration: Shows what a structure is composed of. Shows Calls instead
of the Called Bys shown by a Declaration graph.

Declaration File: Shows what entities (such as functions, types, macros, and
variables) are defined within a given file.

Declaration Type: Shows what a type is composed of.
Class Declaration: Shows the members defining the class and the parent class

Data Members: Shows what components a class, struct, or type contains.

Control Flow: Shows a flow chart of the function or similar entity type. Clicking on a
node in the graphs jumps to the line of code referenced.

UML Class Diagram: Shows the classes defined in the project or a file and related
classes. Adheres to the Unified Modeling Language (UML) structure diagram
format.

Package: Shows what entities are declared in a given package (body or spec).

240

Understand 3.0 User Guide and Reference Manual

Types of Views

» Task: Shows the parameters, invocations, and what entities/entry points are
declared in a task. Also shows what the task Withs.

 Rename Declaration: Shows what entities are renamed in the entity.

Structure View Structure views quickly show structure and relations.

Examples Understand structure views are designed to present essential information about an

entity in a small and concise manner. The structure diagram is derived from the graphs
presented by Booch and Buhr in their respective books “Software Engineering with
Ada” and “System Design in Ada.” Where needed, symbols and annotations have been
extended or altered to represent new kinds of information available from Understand.

» Declaration: Shows the structure of the entity. For example, shows the parameters,
return type, and callbys of a function.

Parameters:

const float * bminl

const float * bmax1
const float * bmin2

const float * bmax2

intersectBox

refins:
int

Called By:

intersect

Understand 3.0 User Guide and Reference Manual 241

Chapter 10: Using Graphical Views

« Parent Declaration: Similar to a Declaration graph but shows what the entity calls.

" Parameters:
CShadingContext * context
CRay * ray

intersect

teturtis:
void
Calls:
— dotvv
—# intersectBox
—#fabs
o absf

 UML Class Diagram: Shows the classes defined in the project or a file and related
classes. Right-click to show or hide class details, related classes, and solo classes.

gzfilestream_common i0s

+~gzfilestream_commaon

+attach

+close rapp

——#= +hadbit

gzofstream +open)

#gzfilestream_commaon +b|.nalr5r
+~gzofstream |_—% - +failbit

-rdbuf .
+gzofstream +in
+gzofstream -buffer +out
+gzofstream \

ostream

242 Understand 3.0 User Guide and Reference Manual

Types of Views

» Declaration File: Shows the entities declared in the file. Also shows files included
by the file and classes imported by the file.

Includes:

File
ppd.c
addstr

getnstoken

gettoken

TNETTNoY
e

» Declaration Type: Shows information about a type declaration.

Public Emmm: [unnamed]

PX

NX

PY

NY

PZ

NZ

Understand 3.0 User Guide and Reference Manual 243

Chapter 10: Using Graphical Views

e Class Declaration: Shows the members defining the class and the parent class
from which it is derived.

Base Classes:
CExpression

Class: CBuiltinExpression

defined as:

CBuiltinExpression [CList * arguments

~CBuiltinExpression [CFunctionPrototype * function]

void getCode | char * replacementPrototype I

e Control Flow: Shows a flow chart of the function or similar entity type. As the
following figure shows, a number of specialized options can be set when you right-
click on this type of graph.

siar
Cluster By Decizion g
Colapse L4 Colapse

inti Dizplay Assembhy 4 Collapse By Block
Dizplay Entity Name L Mone

Dizplay Preceding Commentz »
Macro Expansion g

Overview Mode g

resultfl] -= =[] Kend

244 Understand 3.0 User Guide and Reference Manual

Controlling Graphical View Layout

Graphical Notation

The following symbols are used by Understand to represent various language
constructs. The symbols vary somewhat depending upon the type of view.

Entities such as functions and other program units are shown in rectangles.
Files and system-level entities are usually shown in parallelograms.
Classes and types are shown in flattened hexagons.

Macros are usually shown in flattened octagons.

Objects such as variables are usually shown in slightly rounded rectangles.
Unknown or unresolved entities are drawn with dashed outlines or in gray.

Other shapes are language-specific.

In Control Flow views, standard flow chart symbols, such as diamonds for decision
points, are used.

Controlling Graphical View Layout

The two main types of graphical view windows, Hierarchy and Structure, have a

variety of configuration options. You can set them by right-clicking on the background of
a graphical view and choosing the option you want to modify from the context menu.

/ Duplicate Suktrees
Filzname

Function Poirter

appendLayer

Layout
Lewvel

Mame

Parameters
Sort
Spacing
Text

\ Unresolsed

4

k

N

Dizakle Graphic Fiters
Edit Graphic Filters

Open &l Modes
Close All Modes

Understand 3.0 User Guide and Reference Manual

245

Chapter 10: Using Graphical Views

These options control the layout and drawing of the graphic views and vary based on
the current type of view. The following subsections describe a number of these options.

Note that the options for Cluster graphs are different, and are described in Controlling
Cluster Graph Layout on page 254.

Called by Menu The Called by menu controls whether program units that call the current entity are
shown in declaration views.
View with Called By set to On View with Called By set to Off
claration: LongOpt_getMame _ II:IIEI hod De... - II:IIEI
i -~ -
LongOypt. getMame| [T LongOpt. gethl atne |
returns: tetutg:
String String
Called By
|Getnpt.checkLnngDptiDn|—
|Get-:upt.Demu:u.majn|— —
¥ Feuse 4| IP "’I ¥ Reuse 1| Ib -

Duplicate Subtrees
Menu

The Constants menu controls whether to show constants in Declaration views. The
default is On.

The Default Members menu controls whether declaration views show default
members of the class.

The Dependent Of menu controls whether files a C file is dependent on are drawn in
the C File Declaration view. The Default is On.

If Dependents is on (the default) then files dependent on the current C file are shown in
a File Declaration view.

Sets the number of levels to which a dependency graph is expanded. The default is 1
level.

The Duplicate Subtrees menu controls whether multiple occurrences of the same sub-
tree are shown in hierarchy views. The options are to Hide or Show such subtrees. The
default is to show duplicate subtrees. In some applications, hiding duplicate subtrees
can dramatically simplify hierarchy views. Duplicate subtrees are not shown if a view
has over 1000 nodes.

246

Understand 3.0 User Guide and Reference Manual

Controlling Graphical View Layout

Expand Recursive
Notes

Expand Repeated
Notes

External Functions
Menu

Filename Menu

Function Pointer
Menu

Implements Menu

Controls whether recursive nodes in a dependency graph are shown as separate items.
The default is to show the expansion for recursive nodes. If you turn this setting off, a
particular item is expanded only at the highest level where it occurs in the architecture,
class, or package hierarchy. Unexpanded nodes that are recursive at lower levels
display “(recursive)” as part of their text.

Controls whether repeated nodes in a dependency graph are shown as separate items.
The default is to show the expansion for repeated nodes. If you turn this setting off, a
particular item is expanded only at the highest level where it occurs in the architecture,
class, or package hierarchy. Unexpanded nodes that are repeated at lower levels
display “(repeated)” as part of their text.

The Extended By menu controls whether declaration views show classes by which the
selected class is extended.

The Extends menu controls whether declaration views show classes that the selected
class extends.

If External Functions is on then functions defined in a header file or in a file included
by a header file are shown in the Declaration View for a header file. Default is On.

The Filename menu controls how filenames are displayed in views. It is available for
both declaration and hierarchy views. The options are Off and On.:

* None: Filenames are not shown in the view.

» Shortname: Where filenames are relevant, only the name of the file is shown in
square brackets.

* Fullname: Where filenames are relevant, the full file path and filename are shown in
square brackets.

The Function Pointer menu controls whether function pointers are displayed as
invocations in the Call and CallBy trees.

Function Pointer
rresalved
Called by 3

The Globals menu controls whether to show globals in Declaration views. The default
is On.

The Implements menu controls whether declaration views show entities that the
selected entity implements.

Understand 3.0 User Guide and Reference Manual 247

Chapter 10: Using Graphical Views

Implemented By The Implemented By menu controls whether declaration views show entities by which
Menu the selected entity is implemented.
Imports Menu The Imports menu controls whether declaration views show entities imported by the
current entity.
View with Imports set to On View with Imports set to Off
laration: GetoptDem... - II:IIiI aration: GetoptDem._. _ |I:I|£|
Imports: = CetoptDemn java =

zetopt.LongOpt GetoptDemo

GetoptDero java -
CretoptDemoy
¥ Reuse 4| [v|~]| ™ Reuse «] [v |~
Included By Menu If IncludeBy is on (default) then files that include the Header File being drawn in a

Header File Declaration view are shown.

Includes Menu The Includes menu controls if include files are drawn on file declaration diagrams (C
file, Header file). Default is On.

Inherits Menu The Inherits menu controls whether declaration views show entities that the selected
entity inherits.

Inherited By Menu The Inherited By menu controls whether declaration views show entities inherited by
the selected entity.

Intrinsic Menu The Intrinsic menu controls whether intrinsic functions (for example, cos and sin) are
displayed or hidden.

M“l
v [n

rresalved b

248 Understand 3.0 User Guide and Reference Manual

Controlling Graphical View Layout

Invocations Menu The Invocations menu controls whether procedures and functions called by the
current procedure or function are shown in Declaration views.

View shows Invocations View without Invocations shown

—

Z#z Subroutine Declaration: arange £7 Subroutine Declaration: arange

Subroutine arange] Subroutine arange

Called By: Called By

#cos
s Usnaned M)
#loat)
s

Layout Menu The Layout menu controls the layout algorithm for a hierarchical chart. It is available
only in hierarchy views (calls, callby, etc.). The options are:

e Crossing: A left-to-right view, minimizing space used but sacrificing some
readability by permitting lines between entities to cross.

ZEtera o

» Horizontal Non-Crossing: A left-to-right layout, using more space in some
situations but enhancing readability by having no crossing lines.

Yyerror

parse

yyact

: yyaccept
}}'actmn|0—(

yyerrok
yygoto

parse

Understand 3.0 User Guide and Reference Manual 249

Chapter 10: Using Graphical Views

e Vertical Non-Crossing: A top-to-bottom layout similar to Horizontal Non-Crossing.

yyerror| |parse | [yyact yyaction| [yygoto

yyaccept | |yyerrok

Level Menu The Level menu controls the number of levels to be traversed when laying out a
hierarchical view. The default value is “All Levels”. Values of 1 to 5 may be set. It is
available only in hierarchy views.

#7 Invocations: genera - [O] x|
-

¥ Feuse 4| [r]~]
One Level
Locals Menu The Locals menu controls whether local items are shown in Declaration views. The
default is On.
Members Menu The Members menu controls whether members and operators are shown in the Type

Tree and Type Derived From views. The choices are to show None, Components,
Operators, or Operators and Components.

Name Menu The Name menu controls whether or not fullnames are used in views. It is available for
both declaration and hierarchy views.

Scale r
Text 3

2 Sl e

Lapout ¥ Fullhame
Level b

A fullname includes its parent compilation units. For example:
» Text_lo.Putis the fully specified name.
* Putis the Short Name

Longer versus shorter names can alter the layout of pictures substantially.

250 Understand 3.0 User Guide and Reference Manual

Controlling Graphical View Layout

Parameters Menu

The Objects menu controls whether to show objects in Declaration views. The default
is On.

The Operators menu controls whether entities that are operators are shown in the
Callby, Declaration, Declaration Tree, and Invocation views.

The Parameters menu controls whether parameters are shown in hierarchical views.
Available on any hierarchical graphical view (invocation and callby). The default is Off,
turning this On can make hierarchical pictures much bigger.

el INVOCALION: SCan_comment

E"ITDI'I‘

Parameters Off (the default)

sCan_comiment I‘

intStr
pusitinnl’-{
blankStr

nvocation: scan_comment

position intStr
error f: Text i:integer
scnn_mmmentl‘— . lineNo : integer
msg . strin . .
& £ line : string blankStr
pos : integer str : string

Private Members
Menu

Protected Members
Menu

Routines Menu

Parameters On

The Private Members menu controls whether declaration views show private members
of the entity.

The Protected Members menu controls whether declaration views show protected
members of the entity.

The Public Members menu controls whether declaration views show public members
of the entity.

The Renames menu controls whether declarations that are renames are shown in
Declaration views. The default is to show rename declarations.

The Routines menu controls whether to show routines (procedures, functions, ...) in
Declaration views. The default is On.

Understand 3.0 User Guide and Reference Manual 251

Chapter 10: Using Graphical Views

Scale Menu The Scale menu allows you to choose the size of the text used. It is available for both
declaration and hierarchy views. All picture sizes and layouts vary with text point size.
The currently selected size is indicated by a check mark.

12pt
v 10pt
apt
Spt
2pt

Other point sizes can be added by customizing configuration files found in the
Understand installation directory. Contact support@scitools.com for information on how
to do this.

Sort Menu The Sort menu lets you specify whether entity names in tree views should be sorted
alphabetically. If this option is off (the default), entities are sorted in the order they are
encountered in the project.

Spacing Menu The Spacing menu lets you choose to change the space between boxes. You can
choose compact, small, normal, wide, or extra wide.

Sql Menu The Sql menu lets you specify whether SQL entities should be shown in graphical
views. This option is on by default.

Static Menu The Static menu controls if static functions are drawn in function, C File and Header
File declaration views. Static functions are those declared using the “static” keyword.
They are visible only within the file they are declared in. If enabled static functions are
drawn with the edge of their box inside the edge of the outer declaration box for their
enclosing unit (C file). Default is On.

Text Menu The Text menu sets the way entity
names are trimmed or altered to il Mo Truncate
accommodate the layout of graphics. It Truncate Shart
is available for both declaration and Truncate ediunn
hierarchy views. Names may be Truncate Long
truncated to a certain length or wrapped Wirap Short
at a certain length. "wirap Medium
* No Truncation: Uses the name as gailbono

defined in the source code. The
default.

e Truncate Short: Cuts off names at 10 characters.
* Truncate Medium: Cuts off names at 20 characters.

» Truncate Long: Cuts off names at 30 characters.

252 Understand 3.0 User Guide and Reference Manual

mailto:support@scitools.com

Controlling Graphical View Layout

Unresolved Menu

With Bys Menu

* No Wrap: Never wraps text to the next line.

* Wrap Short: Wraps the name between 8 and 10 characters. Location in that range
depends on if a natural wrapping character is found. Natural wrapping characters
are. -and:

* Wrap Medium: Similar to Wrap Short except wrapping range is 15-20 characters.

Wrap Long: Similar to Wrap Short except wrapping range is 20-30 characters.

The Types menu controls whether to show types in Program Declaration views. The
default is On.

The Typetext menu tells declaration views (Function Declaration, C File Declaration,
Header File Declaration) to include types on the view. Default is On.

The Unknown menu controls whether entities that are used, but for which no
declaration was found should be drawn. Unknown methods and entities are those used
in the analyzed source without a definition in the same source.

The Unresolved menu controls whether entities that have been used but no
declaration was found should be drawn. This option is available on hierarchy and
structure views. Unresolved functions and entities are those used in the analyzed
source without a definition in the same source. Unresolved include files are those
included but not found along a declared include path (either a compiler or project
include path).

Unresolved entities are drawn as normal but with a dashed border:

The Uses menu tells Uses views whether to show only items that are used directly, or
to also show items that are used by nested subprograms. The default is to show both.

The Variables menu controls whether to show globals in Declaration views. The default
is On.

The Withs menu controls on Declaration views of compilation units (packages, tasks,
separate procedures, etc...) if Withs are drawn. The default is On.

Controls if With Bys (who Withs a given compilation unit) are shown on Declaration
views. The default is On.

Understand 3.0 User Guide and Reference Manual 253

Chapter 10: Using Graphical Views

Controlling Cluster Graph Layout

Cluster graphs are a special type of hierarchy view. They provide a more interactive
view of call relationships than other hierarchy views. The Call, Callby, Butterfly and
Internal Call variants are available, and can be accessed from the function, class, file,
or architecture level.

For example, if you open a Cluster Call Butterfly graph for a file, you see a graph similar
to the following:

é. Cluster Call Butterfty Graph : try.c,.

(&[5 2119 - &[R4 o - | Reuse [syne

regexp.c |+ + ggrep.c ————= timerc
’-\-\-""\-\.._

- __'_'_,_,.:-"""
""\-—..___‘ '_'__,_,-
try.c -—

—

"'\-\.___.‘
regsub.c

If you then double-click on some of the file boxes, you can see call relationships for
functions within the files that you expand.

regexp.cigT
Tegexp.c: .

>< egrep.c |=——————= timer.c
) d_,'-""f_ P strchr
~ L

multiple —————— |
-

''_'_'__,_,_.-r
S
u regsub.c

The toolbar for cluster graphs is the same as for other graphs, and the context menu for
entities in the graph is similar to elsewhere.

regerror try ——

AN

complain

The context menu when you click on the background of a cluster graph offers the
following options:

» Edges Shown: Choose which relationships to the originally selected entity you want
shown. “Forward” is call relationships. “Reverse” is callby relationships. “Butterfly” is
both call and callby relationships.

254 Understand 3.0 User Guide and Reference Manual

Saving Graphical Views

» Aggregate Nodes by: Choose an architecture you want to organize entity nodes.

« Entity Name Format as: Choose whether you want to display short or long names
for entities.

e Show Edge Labels: Check this item if you want the number of occurrences of this
relation to be shown in the graph. For bi-directional call relationships, the two
numbers in the label show calls in each direction.

The Graph Customizer to the right of a cluster graph offers the same settings as those
described for Dependency Graphs in Graph Customizer Toolbar on page 180 and
Graph Customizer Fields on page 180.

Saving Graphical Views

Saving Views to Files

Understand offers a number of ways to export your graphical views and use them in
other ways. The toolbar for each graphical view provides the following icons for copying
and printing graphs.

|_'_, Copy Image To Cliphoard

&5 Print Graph

In addition to printing, you can save graphical views as JPEG, PNG, SVG files
(page 255), Visio XML files (page 256), and DOT files (page 256). The first three
formats are common graphics formats.

To save a graphical view in one of the following formats, use the Export drop-down the
graphical view toolbar to choose the Export to Image File option. Or choose File >
Export to Image File from the menus. In the Export dialog, choose a location,
filename, and file type for the view.

| Export Ilv
|-__'ﬂ Export To Image File

Export To Visio XML
& Export to Dot

» JPEG files are compressed bitmaps. They can be viewed with most web browsers,
document editors, and graphics programs. This format is “lossy”; some data is lost in
the compression.

* PNG files store compressed bitmaps similar to GIF files. They can be viewed with
most web browsers, document editors, and graphics programs. They use a non-
patented compression method.

e SVG files are Scalable Vector Graphics files. This file type uses XML to describe a
2-dimensional vector-based image.

Understand 3.0 User Guide and Reference Manual 255

Chapter 10: Using Graphical Views

Saving Views as Visio
Files

Saving Views as DOT
Files

You can also copy a graphical view to the clipboard and paste it as a bitmap into the
image program or word processor of your choice. To do this, click the [|| Copy icon on
the graphical view toolbar or choose Edit > Copy Image to Clipboard from the menus.
Then, paste the image into another program.

Note that if the graph would result in an image larger than 200 MB, the graph will be
resized to a smaller size.

Microsoft Visio is a vector-based graphics program used for drawing flowcharts and
similar graphics. That is, it deals with shapes and objects rather than pixels. Visio XML
is an Extended Markup Language that is supported by Visio and a number of other
graphics applications.

You do not need to have Visio installed in order to save a graphical view as a Visio XML
file.

To save a Visio XML file, use the Export drop-down the graphical view toolbar to
choose the Export to Image File option. In the Export dialog, choose a location and
filename for the view. The file extension for Visio XML files is *.vdx.

| Export F]
'-__-'ﬂ Export To Image File

| Export To visio XML
a. Export to .Dot

DOT is a language used to describe graphs in plain text. This format can be imported
and edited by a number of external tools. You can export many (but not all) types of
graphs produced by Understand to a DOT file.

To save a DOT file, use the Export drop-down the graphical view toolbar to choose the
Export to .Dot option. In the Export dialog, choose a location and filename for the view.
The file extension is *.dot.

| Expart F]
'-_;'ﬂ Export To Image File

Export To Visio XML

L:_E Export to Dot

If this option is not shown in the Export drop-down, the current graph cannot be
exported to the DOT format.

256

Understand 3.0 User Guide and Reference Manual

Printing Graphical Views

Printing Graphical Views

Understand has these printing modes:

» Source File printing sends a text file to the printer using 66 lines of source per page.
See Printing Source Views on page 174.

» Graphical view printing provides options for how to fit the image to a page. See
Graphical View Printing on page 257.

Graphical View To print the current graphical view, you can click &% Print icon on the graphical view
Printing toolbar. Or, choose File > Print Entity Graph from the menus.

When you choose to print a graphical view, you see the Graphic Print Options dialog.

-
& Graphic Print Cptions ‘ &Iﬂ

Printing options

@ Fullzsize (1x2 : 2 pages totaly

I Fit to single page (1page total)

™) Scale by: [100 5% (1x2 : 2 pages total

ave to ile : prCallButterflyGraph-credz-c.pd
|:|5 to pdf fil CallB fiyGraph 32 f
Print page number identifiers

|:| Print page numbers in margin area

Print page border markers

Printer Settings

Printer: Epson Stylus NXS10{Metwork)
Settings: Portrait, Letter (8.5 x 11 inches, 216 =x 275 mm)

Printer...] [F'ag& S&tup...]

[0K] [Cancel

You can choose to print the image at one of the following sizes:

e Full size uses the default scaling of 100%. The dialog shows the number of pages
in width x height format. The page size selected with Page Setup is used.

» Fit to a single page scales the image to fit on the selected page size.

» Scale by lets you choose the sizing percentage and shows the number of pages
that will be printed.

Understand 3.0 User Guide and Reference Manual 257

Chapter 10: Using Graphical Views

Note:

Check the Save to PDF file box if you want the image saved to an Adobe Acrobat file
rather than being sent to a printer. This PDF printing feature does not require that you
have third-party PDF generating software installed on your computer.

Check the Print page number identifiers box if you want page numbers
on each page in the upper-left and lower-right corners. The page numbers (1 ,3)
are in “(column, row)” format. For example, (1,3) indicates that the page

goes in the leftmost (first) column of the third row when you piece the pages

together. The page number is not printed if the view fits on a single page.

Check the Print page numbers in margin area to place the page numbers outside the
borders of the graph. If this box is unchecked, page number indicators are printed just
inside the border markers.

Check the Print page border markers box to place corner markers in each corner of
each page.

Click the Printer button to open the standard Print dialog for your operating system.
When you click Print or OK in that dialog, you return to the Graphic Print Options
dialog.

Click the Page Setup button to open a Page Setup dialog, which allows you to choose
the paper size, paper source (if applicable), page orientation, and margin width. Click
OK to return to the Graphic Print Options dialog.

Click the OK button in the Graphic Print Options dialog to send the graphical view to the
printer (or a PDF file).

The File > Page Setup menu option applies only to printing source code and other text
files. The Page Setup button on the Graphic Print Options dialog saves its settings
separately.

258

Understand 3.0 User Guide and Reference Manual

chapter11 Using CodeCheck for Standards

Verification

This chapter is explains how to use CodeCheck to find places where your code does

not conform standards you select.

This chapter contains the following sections:

Section Page
About CodeCheck 260
Running a CodeCheck 261
Viewing CodeCheck Results 264
Using CodeCheck Configurations 271
Writing CodeCheck Scripts 272

Understand 3.0 User Guide and Reference Manual

259

Chapter 11: Using CodeCheck for Standards Verification

About CodeCheck

Understand provides a tool called CodeCheck to make sure your code conforms to
published coding standards or your own custom standards. These checks can be used
to verify naming guidelines, metric requirements, published best practices, or any other
rules or conventions that are important for your team.

O Understand Codecheck..

Results by File: [#]Show Violation Counts [C]Show lgnored Violations [¥]Fiatten Files List & ¥ @

K

22

Results Entity Line Column Check -
> Cizample\fastgrepiregexp.h
4 Cizample\fastigrepiregmagic.h
» & Octal Constants not allowed: MAGIC 5 16 Do not use Octal constants... =
» i@ #Hdefine used MAGIC 5 0 Do not use #define to speci...
- & Missing wrapper in header file. regm... Ifndef Wrappers
> C\zample\fastgrep\regsub.c -

The string FILENAME_H or FILENAKME_HPP iz in the symbol following the first #fndef in all header files.

[Result Log] [Results by Check] [Result Locator] [Result Tr&&map]

Checks are available to make sure your code conforms to several published coding
standards. You can select a subset of individual checks to test for from these standards.
For example, you can check to make sure that all if...elseif constructs contain a final
else clause.

For all languages, checks are provided to let you verify that various entity types
conform to your naming conventions and to confirm that your code meets metric
requirements you set for complexity, function length, and nesting depth.

If you want to perform custom checks, you can create your own checks using Perl. For
example, you can create a check to find lines longer than 80 characters or filenames
that begin with a number.

CodeCheck validation suites are available from the SciTools Blog.

260

Understand 3.0 User Guide and Reference Manual

http://scitools.com/blog/2012/01/codecheck-validation.html

Running a CodeCheck

Running a CodeCheck

To open the CodeCheck tool, choose CodeCheck > Open CodeCheck from the
menus.

Files Tab In the Files tab, choose whether to check all files in the project, only files that have
changed since you last ran CodeCheck, only files that have changed since a specific
date, or the files you select.

|e Understand Cudech&ck};'l

Select files to analyze:
“) AllFiles B ™
) Files that have changed since the last run: Monday, March 19, 2012 10:57:30 AM
| Files that have changed since: | 37201261317 PM

@ 1choose which files to use

4 F fastgrep
egrep.c
regerror.c

‘ regexp.c
regexp.h

B regmagic.h
regsub.c
strpbrk.c
timer.c
try.c

If no files have been changed since the date you select or since the last time you ran
CodeCheck, you will see a message that says no files meet the criteria.

If your project contains many files, you can more easily select specific files by following
these steps:

1 Export the entire list of currently selected files (with full file paths) to a text file by
clicking the %] Export Selected Files icon.

2 Edit the file with a text editor. Delete the lines for files you do not want to analyze,
and save the file as plain text.

3 Click the] Import File List icon and import the file you edited. This will select
only the files listed in the file.

Once you have finished selecting the files to analyze, click Next.

Understand 3.0 User Guide and Reference Manual 261

Chapter 11: Using CodeCheck for Standards Verification

Checks Tab

In the Checks tab, the default configuration is New and all the SciTools’
Recommended Checks that apply to your programming languages are selected.

If you want to use a different CodeCheck configuration or save the configuration you
are creating for later use, see Using CodeCheck Configurations on page 271.

Configuration: [N&w v] - = 2)
Check Name Description

» |1.'_5i SciTools’ Recommended Checks Universal standards agreed upon by most exp

4 Dl’j—ﬁ Published Standards Published standards from recognized experts
» gctive C++ (3r ion}) Scott Meyers From the boo ective C++ Thir ion” by

@ Effective C++ (3rd Edition) Scott M From the book "Effective C++ Third Edition™ b

» Dﬁ MIZRA-C 2004 MISRA C++:2008 - Guidelines for the use of th

» Dﬁ MISRA-C++ 2008 Published standards from recognized experts

a4 [7|[& AlChecks

4 [7](& Language Specific
> [O[@ Ada
> [C1[& candc++
» [cx
» [7][%/ Fortran
4 [][& Java

> [7][% Naming Conventions

» [7][& Python

4 [7][& Wetrics

|:| & Program Unit Cyclomatic Complexity Program Units which have a Cyclomatic Comp
|:| & Program Unit Max Length Program units should not have more than the
|:| & Program Unit Max Nesting Depth Program Units which have a nesting depth gre

1 [1 b

Choose the checks you want to perform. The following types of options are provided:

e SciTools’ Recommended Checks: This category lists recommended checks for
your source code languages. These are standards violations that we feel are most
serious.

» Published Standards: Collections of checks are provided to see if your code
conforms to the following standards or recommendations:

- Effective C++ (3rd Edition) Scott Meyers
- MISRA-C 2004
- MISRA-C++ 2008

e Custom Checks: Any custom checks you have installed are listed in the Checks
tab. See Writing CodeCheck Scripts on page 272.

» Language Specific Checks: All checks that Understand can perform are listed
here. They are organized first by programming language, then by category, and
finally by check. Currently, most checks apply to C/C++ code, but some checks are
available for other languages. You can confirm that your naming conventions are
met for various entity types in most supported languages. You should check specific
languages under the All Checks node; if you check the All Checks box, some of the
checks may conflict with others, and errors are likely to occur.

262

Understand 3.0 User Guide and Reference Manual

Running a CodeCheck

e Metrics Checks: You can perform checks based on the values of complexity,
function length, and nesting depth metrics, which are described in Chapter 9 and the
list at http://www.scitools.com/documents/metrics.php.

Press Ctrl+F to be able to search for a check.

When you select a check, information about that check is shown in the Detailed
Description area. You can copy the text in the description if you want to paste it into a
report or email message. You can hide the description by clicking the arrowhead above
the description.

For a number of checks, options are shown below the description. For example, if you
select a metrics check, you can set a value that needs to be met. If you select a Naming
Conventions check, you can specify a minimum and maximum length for acceptable
names, any required prefix or suffix, and the types of characters and capitalization rules
that names need to follow. The description provides details about the options.

Options:

Test All Const names
Minimum Length: 1
Maximum Length; 0
Reguired Prefox:

Reguired Suffix:

Character Set IAII Characters - I

Capitalization: I ignore - I

Consecutive Capitals | Allowed -

Check the Use Verbose Logging box if you want the Result Log to include a separate
line for each violation found. Otherwise, the Result Log will present a summary and you
can use the other tabs to sort through and view specific violations.

If you want to edit the list of checks being performed using a text file, you can do the
following:

1 Export the entire list currently selected check (with full file paths) to a text file by
clicking the %] Export Configuration to File icon.

2 Edit the file with a text editor. Delete the lines for checks you do not want to apply,
and save the file as plain text.

3 Click the 7] Import Configuration from File icon and import the file you edited.
This will select only the checks listed in the file.

Once you have finished selecting the checks to perform, click Analyze.

Exporting the configuration to a file is also required if you want to be able to perform a
CodeCheck analysis from the command line.

If you have made changes to the checks being performed, you are asked if you want to
save the configuration before performing the analysis. Click Yes if you might want to
perform this same set of checks in the future. If you were using the “New” configuration,

Understand 3.0 User Guide and Reference Manual 263

http://www.scitools.com/documents/metrics.php

Chapter 11: Using CodeCheck for Standards Verification

you are then prompted to type a name for this configuration. Type a name and click OK.
See Using CodeCheck Configurations on page 271 for more information.

If more than 300,000 violations are detected, you are asked if you want to continue the
check.

Viewing CodeCheck Results

Using the Result Log

After you perform a CodeCheck analysis, you can view the results in the Results Log
(page 264), Results by File tab (page 265), Results by Check tab (page 266), Result
Locator tab (page 267), and Result Treemap (page 268). You can also print or export
the results (page 269).

You can hide results by ignoring particular checks and violations (page 270).

When you run a CodeCheck analysis, you automatically see the Result Log tab, which
provides a summary of the results.

The Result Log includes the number of files checked, how many checks were
performed, and the number of violations found.

B Getting Started,{ T try.c (@) Understand Codecheck® .

Result Log End Analysis: Monday, March 19, 2012 2:25:07 PM

Result Log: [" "_:I

Begin Analyzis: Monday, March 158, 2012 3:25:05 PM
File: egrep.c: Violations found

File: regerror.c: Violations found

File: regexp.h: Violations found

File: regzub.c: Violations found

File: strpbrk.c: Violations found

File: timer.c: Violations found

File: try.c: Vielations found

Anahyziz Summary:

Files: &

Checks: 15

“iolationz Found: 257
“iclationz Ignored: 0
“iclations Remaining: 257

[Reconfigure] [Results by File] [Results by Check] [Result Locator] [Result Treemap]

If you checked the Use Verbose Logging box in the Checks tab, the Result Log also
includes a separate line for each violation found.

You can copy the log to your clipboard for pasting by clicking the E’ Copy icon. To

save the log to a file, click the 5] Export icon.

264

Understand 3.0 User Guide and Reference Manual

Viewing CodeCheck Results

Using the Results by
File Tab

Choose the Results by File tab to list the problems in each file of your project.

The table lists the number of violations in each file and full file paths. Uncheck the
Show Violation Counts box above the table to hide the number of violations. Uncheck
the Flatten Files List box to organize files in a folder hierarchy that you can expand as
needed.

Click the arrow next to a filename to expand the list of violations found in that file. The
line for a violation shows the problem, the name of the entity, the line number on which
the problem occurs, the number of the column (0 indexed) where the problem began,
and a short description of the check performed.

Results by File: Show YVielation Counts |:| Show Ignored Vielations Flatten Files Lis ““ j (%

Results Entity Line Column Check

4 4 MNumber of Resulis: 4
1 b C:AProgram Files\SciTools\sample\fastgrep\egrep.c

1 [C:AProgram Files\SciTools\sample\fastgrepiregerror.c
2 a4 C:A\Program Files\SciTools\sample\fastgrepitimer.c
» &@ Violation: regerror defined but not called. regerror 29 0 Unused Functions
- & Unused Local Variable dummmy 4 13 Unused Local Var
52 int ncomp, nexec, nsub;
53 gstruct try one;
54 char dummy[S12] !
55
56 if (argc < 4) {

Click the arrow next to a violation to see the 5 lines of code surrounding the problem.
You can double-click on the code to open the source file.

When you select a violation, the description of that check and any exceptions to the
check are shown below the table. You can select text in this area and press Ctrl+C to
copy it to your clipboard for pasting into other applications.

Click the &% Print icon to print the list or the %] Export icon to send the full list of
violations to HTML files in a directory you select, your clipboard, or a text file.

Check the Show Ignored Violations box if you want to see the full list of violations by
overriding any ignored checks and violations. See page 270 for details.

Understand 3.0 User Guide and Reference Manual 265

Chapter 11: Using CodeCheck for Standards Verification

Using the Results by The Results by Check tab is similar to the Results by File tab (page 265). However, all

Check Tab violations of a particular type are listed together. The organization under each violation
is either a list of files if the Flatten Files List box is checked or a folder hierarchy if the
Flatten Files List box is unchecked.

Reszultz by Check: Show Violation Counts Show Ignored Violations |:| Flatten Files List -‘}_"3 'Tj L]

Resultz

4 & MNumber of Results: 4

4 4 [Tﬁ SciTools’ Recommended Checks
1 4 % Qverly Complex Functions

1 4 C fastgrep

1 F ggrep.c

_ & Program overly complex (Complexity: 30}

139 char *¥args:

140

141 main(argec, argv)

142 int argec:

143 char %argv[]:
2 > @ Unused Functions
1 > ¥ Unused Local Variables

[i | ™

If many violations of a particular type are detected, you might want to look at the
individual checks in the Checks tab to see if you can set options to control the
sensitivity of the checks. For example, for the “Magic Numbers” check, you can specify
that bitfields can be set to fixed values and you call allow exceptions for values like 0
and 1. Another example is that for the “Functions Too Long” check, you can set the
length that is considered too long and choose to ignore comment lines and blank lines.

266 Understand 3.0 User Guide and Reference Manual

Viewing CodeCheck Results

The Results by Check tab lets you search for violations using pattern matching and
Locator sorting on the file, violation name, line number, and column number.

Using the Result

Rezult Locator: |:| Show Ignored Violations % ':-j [
File I Violation Z Line Z Column
X e b @&

. regexp.h

Fixed Value(1) used inco...

regsub.c @ Fixed Value(0) used inco... 73 35

regsub.c @ Fixed Value(0) used inco... 60 29

regsub.c @ Fixed Value(1) usedinco... G4 30

regsub.c & Fixed Value(0) used inco... 85 25
' i | P

e |

Rationale -
Uzing fixed values(Magic Number}) in code makes it difficult to know why the engineer chose that |J

number in choeosing that number and makes it hard to adapt and extend the program. Magic numbers
should be replaced with name constants to make them more usable.

LFxrentfinne —
13 char *regmust: A* Internal use only. */ il
14 int regmlen: A* Internal use only. */ i
15 char program[1] ! /% Unwarranted chumminess w |

16 } regexp:

You can type values to match filenames and violations. Right-click a column header or
click the small drop-down icon to see the context menu for that column. You can choose
for the filter to be case sensitive or not. You can also choose for the filter pattern
matching syntax to use fixed strings (the default), wildcards, or regular expressions.

For details about using the locator fields, see Filtering the List on page 149.

Five lines of code surrounding the violation are shown at the bottom of the window. You
can double-click this code to open the file.

Understand 3.0 User Guide and Reference Manual

267

Chapter 11: Using CodeCheck for Standards Verification

Using the Result Treemaps show metrics graphically by varying the size of node blocks and the color
Treemap gradient. Each node block represents a code file. Different metrics can be tied to size
and color to help you visualize aspects of the code.

CodeCheck lets you create treemaps that show the total number or density of check
violations and the number of types of violations. For example, in this treemap larger
block sizes indicate more violations in that file and darker blue indicates more types of
violations in that file. So, while egrep.c has the most violations, timer.c has more types
of violations. Notice that the text above the treemap indicates the settings used.

Result Treemap: number of violations : distinct violation types ey % % Options...

[Resutt Log | [Resutts by File | [Results by Check | [Resutt Locator |

If you double-click on a file block, you see the Results by File listing with the list of
violations for that file expanded.

By default, the treemap is organized using the file structure of the project as
architecture nodes. Within the treemap, you can double-click on an architecture node
(shown as a gray border around a set of colored blocks) to display only the contents of
that node. You can also zoom in by right-clicking on a node and choosing Drill down
from the context menu.

After drilling down in the architecture, you can use the g _ﬂ’\a. icons to Pop up one
level or Pop up all levels the treemap. You can also right-click to use the Pop up one
level and Pop up all levels commands in the context menu.

268 Understand 3.0 User Guide and Reference Manual

Viewing CodeCheck Results

Click the Options button to modify which metrics are assigned to size and color:

)
Codecheck Results Tre:m [

Group by: [Directnr'_r Structure -] I
Size Options
Map Size to: [number of viclations -

.

Limit the =ize of large nodes to 100 & % of the available space

Color Options

Map Color to: |distinct violation types x|

Min Color: Max Color:

|:| Use Logrithmic Scale

Cu=zhion Restore Colors

[GenerateTreernapJ [Cancel

For information about using these fields, see Using the Metrics Treemap on page 223.

Printing and In the Result Log tab, you can copy the log to your clipboard for pasting by clicking the
Exporting Results 4 copy icon. To save the log to a text file, click the “] Export icon.

In the Results by File, Results by Check, and Result Locator tabs, you can click the &%
Print icon to print the currently displayed results. You can click the 57 Export icon to
export the detailed results to an HTML directory, your clipboard, or a text file.

In the Result Treemap tab, you can click the % Print icon to print the currently
displayed treemap diagram.

See page 257 for details about the Print Options dialog.

Understand 3.0 User Guide and Reference Manual 269

Chapter 11: Using CodeCheck for Standards Verification

Ignoring Checksand A number of options let you ignore some CodeCheck violations in all or part of your
Violations project. For example, you might want to ignore violations in third-party code used by
your project.

Wherever you see a violation listed in the results, you can right-click and choose to
ignore the specific violation, violations of this check for the specified entity, or violations
of this check for the current file or a selected directory level within the project. You can
also choose to ignore all violations in a specific file or directory. If you select a directory,
violations in all of its subdirectories will be ignored.

2 4 & Unused Functions

1 > C:AProgram Files\SciTools\=ample\fastgrepiregerror.c

1 4 C:AProgram Files\SciToolz\sample\fastgrepitimer.c

DT @ iolation: "SI 54 1anore This Violation Ctri+Alt=]

! > @ Unu-sed Local Variables # | Ignore Violation for Entity: regnpar Ctri+=Al+0

102 » % “ariables should be com
Ignore Violation for File/Directory: L4
H Ignore All Violations for File/Directory: L4

Entity: regnpar L4

& Gotolgnores List Ctri+Al+]
% Remove Check i

You can also click the & Ignore icon above the results to access the Ignores menu.

Violations that you choose to ignore are not listed in the Results by File or Result
Locator tabs. They are highlighted with a pink background in the Results by Check tab.
The violation totals in the Results by File tab do not include the ignored violations.
Totals in the Results by Check tab do include ignored violations.

If you have chosen to ignore any violations, you can use the Ignores List tab to find
and sort ignored violations. Only one item is listed if you have ignored multiple
violations in a file or directory. You can search this list as you would the Result Locator
list. See Filtering the List on page 149 for detalils.

To stop ignoring a violation, right-click on the item and choose Remove from Ignores
List.

If many violations are detected, you might want to look at the individual checks in the
Checks tab to see if you can set options to control the sensitivity of the checks. For
example, for the “Magic Numbers” check, you can specify that bitfields can be set to
fixed values and you call allow exceptions for values like 0 and 1.

270 Understand 3.0 User Guide and Reference Manual

Using CodeCheck Configurations

Using CodeCheck Configurations

If you have a set of checks you want to use, you can save that list of checks as a
“configuration”. Such configurations are stored outside of the project, so that you can
use the same CodeCheck configuration with multiple projects.

Note that the set of files to be analyzed is not saved as part of a CodeCheck
configuration. The most recent set of files used is the default.

To save a configuration, follow these steps:

1 Inthe Checks tab, select the boxes for all the checks you want performed when this
configuration is used.

2 Click the Save icon next to the Configuration drop-down list.

Configuration: | New v| [.. -, x

3 Type a name for your configuration in the dialog, and click OK.

Code Check Save [

Mews Configuration Name

Please specify the name of the configuration to save.

My checks

L E——— o

You can use a configuration you have saved by selecting it in the Configuration drop-
down list at the top of the Checks tab.

Another way to run a configuration is from the CodeCheck > Saved Configurations
menu item, which you can use even if the CodeCheck window is not open. Or, choose
CodeCheck > Rerun Previous Checks to rerun the most recent CodeCheck analysis.

Understand 3.0 User Guide and Reference Manual 271

Chapter 11: Using CodeCheck for Standards Verification

Writing CodeCheck Scripts

CodeCheck scripts are special Perl scripts that let you provide custom checks for
verifying your team's coding standards. They can be used to verify naming guidelines,
metric requirements, published best practices, or any other rules or conventions that
are important for your team.

You can develop these scripts using the Understand Perl API along with a set of special
functions designed to interact with the Understand CodeCheck interface.

CodeCheck script files have a .upl extension.

To begin writing your own check, follow these steps:

1
2

Choose CodeCheck > Implement Your Corporate Standard from the menus.

In the web page this command takes you to, save the codecheck_template.upl to a
file with the same name on your computer.

Edit this template file (with a text editor).

Modify the name, description, and detailed_description to match what you plan for
this check to do. For example, you could use the following descriptions for a check
to make sure lines do not exceed a specified length:

Required - Return the short name of the check

sub name { return "Characters per line";}

Required - Return the short description of the check

sub description { return "Lines should not exceed a set number of characters";}

Required - Return the long description of the check

sub detailed description { return "For readability, lines should be limited to a certain
number of characters. The default is 80 characters per line.";}

5 Modify the test_language subroutine to test for the desired languages. For example,

the following test makes the check apply to C++, Java, and Python. You can look at
other scripts in the \confiplugin\SciTools\Codecheck subdirectory of your installation
for more examples.
sub test language ({

my S$language = shift;

return $language =~ /C++|Java|Python/;

return 1;
}

If your check should be run on a per-entity basis, return 1 for the test_entity
subroutine. If the check should be run only once per file, return O for the test_entity
subroutine. For example:

sub test entity { return 1;}

If your check should be run only once per project, return 1 for the test_global
subroutine. Otherwise, return 0 for the test_global subroutine. For example:

sub test global { return 0;}

272

Understand 3.0 User Guide and Reference Manual

Writing CodeCheck Scripts

8 If your check requires the user to set options, modify the define_options subroutine.
For example:

sub define options({
my S$check = shift;

Scheck->option->integer ("charPerLine", "Max Characters per line", 80) ;

Modify the check subroutine to include the check and to signal a CodeCheck
violation reporting the problem. The following example reports filenames that do not
begin with a letter character:

if ($file->name =~ /*["a-zA-2]1/){

$check->violation(0,$file,-1,-1,"File name does not begin with a letter");

The following example reports lines longer than the specified maximum number;

sub check ({
my S$check = shift;
my $file = shift;

return unless $file->kind->check("file") ;

my $maxChar = S$check->option->lookup ("charPerLine") ;

my $lineNum 1;

foreach my $line (split('\n',$file—>contents)){
my S$Slength = length($line) ;
if ($length > $maxChar) {
Scheck->violation($file, $file, $1ineNum, -1,

"$length characters on line(Max: $maxChar)");

}

$1lineNum++;

9 Verify that your Perl syntax is correct. The easiest way to do this is to open a
command line and run the Perl application that ships with Understand: uperl -c
mysample.upl.

To learn more, you may want to read about Understand's Perl API. Browsing the
CodeCheck scripts that are shipped with Understand can also be very beneficial. If you
have questions about CodeCheck scripts, the SciTools Forum can be a great place to
ask them.

Installing Custom You can install one in Understand by dragging and dropping the script file into the
Scripts Understand window. You will be asked if you want to install the plugin. Click Install.

When you install a custom check, you will see a message that identifies the directory
where the check was installed. For example,
C:\Users\YourName\AppData\Roaming\SciTools\plugin\Codecheck. You can install
future checks by copying files directly to this directory.

Understand 3.0 User Guide and Reference Manual 273

http://www.scitools.com/support/forum/viewforum.php?f=4
http://www.scitools.com/documents/manuals/html/perl/

P

chapter12 Comparing Source Code

This chapter is explains the source-code comparison features provided by Understand.

This chapter contains the following sections:

Section Page
Comparing Files and Folders 275
Comparing Entities 277
Comparing Text 278
Exploring Differences 279

274 Understand 3.0 User Guide and Reference Manual

Comparing Files and Folders

Comparing Files and Folders

Understand provides a tool for comparing files and folders. To open this tool, choose
Tools > Compare > Compare Files/Folders from the menus.

/# Choose files or folders to compare @§|

Left: || Ciproject_6_00_00_13 v
Right: |__J | C:iproject_6_00_00_21 v

Campare H Cancel]

In this dialog, select a file or folder for the left and right comparison. Both sides should
be similar files or similar folders. Click the file button to browse for a file; click the folder
button to browse for a directory.

Subdirectories of the directories you choose are also compared.

When you click Compare, the comparison begins. The status bar at the bottom of the
Understand window shows what is being compared.

The lower sections of the comparison results window are described on page 279. If you
are comparing folders, there is an additional top section that lets you see the folder-
level and file-level differences and select individual files whose contents you want to
compare.

The comparison uses the following folder and file icons.

[~ Same in both versions

[Onlyin left version

; .+ Only in right version
5 [Different in left and right

—

By default, all files and folders are listed. You can use the

|t "
Show drop-down to choose whether to restrict the list to show: | 4o Left Only J)F

showing only: Al :
g y Different
» Different: Show files and folders that either exist in only
one version or are different in the two versions. L > Right Cnly
= Same

» Left Only: Show files that are contained in the left version
only. All different folders are shown because some may
contain files that are only in the left version.

» Right Only: Show files that are contained in the right version only. All different
folders are shown because some may contain files that are only in the right version.

» Same: Show files that are the same in both versions. All folders are shown because
some that are different may contain files that are the same.

Understand 3.0 User Guide and Reference Manual 275

Chapter 12: Comparing Source Code

The Filter field lets you type characters you want to match in the directory path or
filename. For example, “sim” matches any folders or files with “sim” in their names. All
files within folder that match the Filter (and the Show drop-down setting) are shown.
Filtering occurs as you type. Wildcards and regular expressions are not recognized.

You can change the colors use for folder and file names by choosing a color from the
Colors menu and selecting a new color in the color picker.

Colars
. Lett Color

B Fight Color
. Different Color

You can highlight all items that exist in only the left or right [—‘]
version. To do this, first right-click on the file list and choose Select
Expand All. Then click the Select button and choose either Orphans left

Orphans left or Orphans right. You will see a warning that
some items may have been skipped; this applies only if you did
not use Expand All.

Orphans right

You can copy folders and files from one side to the other. The copied items overwrite
any items with the same names. To copy, first select the items you want to copy. (To
copy a folder and its contents, select the folder and all the folders and files it contains.)
Then click the Copy/Merge button and choose either to the right or to the left. This
opens the Copy Files dialog, which lists the files or folders to be copied. If the list is
correct, click OK.

CopyMerge | 2 tems selected
Ly totheright... L
4 tothe lett...

You can save changes you make to files in the file and folder comparison. If you have
modified a file on the right, you can click the Save icon to save that file to its
existing location. You can use the ['-_] Save As icon on either the left or right to save a
file to a different location.

If you have modified a file in the comparison area and then use the folder and file list to
switch to another file, you are asked whether you want to save the file.

By default, the file on the left is in read-only mode, and the file on the right is in read-
write mode. You can change the mode for either file by clicking in the file and then
clicking “RO” or “RW” in the status bar to toggle the mode.

Line: 436 Column: 31 | RW | C++

276

Understand 3.0 User Guide and Reference Manual

Comparing Entities

Comparing Entities

You can compare two entities by choosing Tools > Compare > Compare Entities from
the menus. You see the Comparison window.

|E Comparison ::-r..|

4

Showy: |Files w

Fitter: | |Firter: |

gzlog.h | gzlogh e

inflack.c || infhack o =

?nfbackEl.u: " ?nfbackg.c "

< | > £ | >

— LN —

i [Opticunsv][Refresh] Save Patch | infheacks.cinfhackd.c £ s inflack cinfhack.c Cu = |I L=
~

vindowBits 1s in tjEBD
vindow znd output bui

*

int ZEEKFPORT

un=zigned char FAE *windg int windowBitaz:

const char *version: unzigned char FAR *winds

int stream size;
=l 1 B int stream size;

< | | *
Q‘jah Merge Sele - Unmerge S -’-_|\ Prew {;— Mext B of 80 tatal diffe L‘} herge All Q Lnimeroe &

*wrwr |

const char *veraion:

hd

3 Changed 3 lines onthe left ta 3 lines on the right line 14; #¥include "inftrees K" ~
4: Changed 1 line on the left to 2 lines on the right line 18 #* function prototypes *f —
5. Changed 1 line on the left to 2 lines on the right line 25 windowBits iz inthe range .15, and win...

E: Changed 2 linez on the left ta 3 lines on the right line 28 int ZEXPORT inflateBackint_{strm, winda...
The middle and lower parts of this comparison behave similarly to other comparisons.
At the top of the comparison is an entity filter (page 123). Select a type of entity in the
Show drop-down. Then use the lists to select two entities you want to compare.

The Filter fields let you type characters you want to match anywhere in the entity
name. Filtering occurs as you type. Wildcards and regular expressions are not
recognized.

If you are comparing an entity other than a file (such as a function), merging changes

and saving files in the comparison is not permitted. You can still use the
button to create a patch file in “unified format”.

If you are comparing a file, you can merge changes and use the @] Save and [m
Save As buttons for the version of the file on the right.

Understand 3.0 User Guide and Reference Manual 277

Chapter 12: Comparing Source Code

Comparing Text

You can compare text that you paste into a window by choosing Tools > Compare >
Compare Arbitrary Text from the menus. You see a window like this:

~ Text Comparison

Paszte the text to compatre into the editors belovw:
This is a test This is a text
Line 2 Line 2
Line 3
Line 4
0.4 l ’ Cancel

Paste the before and after text you want to compare into the left and right sides. Then,
click OK to see the comparison.

- Cnmnartsnnx[ﬂ Comparison | (- defiate.c,c| = deflate. hqﬂ fastgrep - fastgrep - Copy |8 ¢« »

Options || Refres [Save Patch]

4

T4
L]

||. e

U4l Merge Selec 7 Unmerge Se 4 Prev - Next 2of2totaldiffere 1 Merge Al 4 Unmerge Al
Thi=s i= a test. Thi=s i= a te=xt. . -
Line 2 Line 2
Line 3 EB
Line 2
q 3
“*'l
1: Changed 1 line on the left to 1 line on the right line 1: This iz a text.

2: Changed 1 line on the left to 2 lines on the right line 4: Line 4
The text comparison is similar to the comparison between two entities. You can merge
and unmerge differences, but cannot save files.

Click the _ & & & | fold icon to hide or view the patch file syntax and/or the list of
differences.

278 Understand 3.0 User Guide and Reference Manual

Exploring Differences

Exploring Differences

When you compare items, you see a comparison window. Depending on what you are
comparing, you see several of the following area that help you navigate the differences:

» Changed Entities: This area lets you select files or entities to compare. It differs
depending on what you are comparing.

» Code Comparison: This area allows you to examine the differences in the code.
See page 279.

» Patch File: The patch area shows the patch file syntax to convert from the left
version to the right version. See page 282.

» Difference List: This list allows you to select individual differences between two
versions. See page 282.

The small | fold icon between the areas allows you to close and reopen
areas to make more space for the other areas. If you point your mouse to the right
or left of either fold icon, you see the pane resize mouse cursor, which allows you

to resize the areas as needed. %
Code Comparison The Code Comparison area shows individual differences between versions of an entity.
The display is similar to that of common differencing tools.

— _ —
MI Options “ Refresh “ Save Patch [C:\Program Files\SciTools CAlzers\vvonne\Docum: M
S Merge Selec Unmerge Se Pre {5 Next 10f2totaldiffere O3 Merge Al <1 Unmerge A

#define NSUBEXP 10 I #define NSUBEXP 16 B -

8 [] typedef struct regexp { g [H |1:.1rpedef struct regexp {

] char ¥startp[HNSUBEXFP] g char *=startp[NSUBEXF] !
10 char *endp [NSUBEXFE] : 10 char *endp[NSUBEXE] !
11 char regstart; A+ AL char regstart; A*
iz char reganch;: K*J 1z char reganch: i
13 char *regmust: S+ I1E char *regmust: i*
14 int regmlen: A+ 114 int regmlen: i*
15 char program[1]: A+ |15 char program[l]: A*
16 — } regexp; 1 int =s=tatus; D
17 17 =~ } regexp;
18 Artarn vamawrn wramooamed o 18 o
4 e .

The left side shows the code from the first item you are comparing; the right side shows
the code from the second item. The entity path is shown just above the code.

Understand 3.0 User Guide and Reference Manual 279

Chapter 12: Comparing Source Code

Scrolling of the two versions is synchronized horizontally and vertically. The V.
scrollbar shows the location and size of changed sections of code using the
comparison colors.

For certain languages that Understand understands—such as C code—you can
click the + and - signs in the code to expand and compress code constructs such
as if and else statements, functions, extended comments, and so on.

The currently selected difference is highlighted in blue (or bluish purple on some =
screens) by default. Other differences are highlighted in pink by default. w

1431 [H¢

| return busy == NOTEU3Y:

e R

iy

1435 vold OTrackBackipp::showTotall)

1436 [H¢

ﬂ I if{ lmPopup—->=isVisible{}) && mE
1438 [H#ifder wIns2

You can use the small fold icon (like the one shown here) between the two code
versions to hide the left version of the code temporarily. Or, click the E right
arrow next to a code change to do the same thing. J

You can edit the source code if you like in the right version of the files. You cannot
save code directly to a file. Instead, you can use the | save Patch | button to save a
patch file or you can copy and paste code with merged differences and edits into
another application.

You can select text and copy it to the clipboard. To select text, use the mouse or your
keyboard. To select all, press Ctrl+A or right-click and choose Select All. To copy text
to the clipboard, press Ctrl+C or right-click and choose Copy.

As always, right-click on any entity name or other text in the code to see lots of item-
specific options in the context menu.

The status bar at the bottom of the window shows your line location in the source code
where you last clicked.

280 Understand 3.0 User Guide and Reference Manual

Exploring Differences

The toolbar at the top of the Code Comparison area contains the following controls:

Options button: Use the Options drop-down ﬁ
Options

to set the following options:

» Options->Case Insensitive: By default, changing Case Insensitive

the case of a letter is not treated as a difference. Skipy YWhitespace
For example, if you change “a” to “A”, the Difference
List shows “No Differences” if that was the only
change.

Files are Unicode
Hicde Common Lines

Patch lines of context: 3

» Options->Skip Whitespace: By default, changing
the number of spaces or tabs is not treated as a Highlight Ditferent Words
difference. The Difference List shows “No

. . . Different Word Color
Differences” if only whitespace was changed. You
can change this behavior by toggling this option off. Highlickt Ciolar
» Options->Skip Blank Lines: By default, a different Merged Highlight Color
number of blank lines is treated as a difference. You Selected Highlight Calor

can change this behavior by toggling this option on.

Daukle Click Merging

» Options->Files are Unicode: By default, =
differences are reported only for ASCII files. If
Understand says “File is Binary”, use this command to turn on Unicode file handling.

» Options->Hide Common Lines: By default, all lines in both files are shown. If you
check this option, most lines that are the same in both versions are hidden in the left
(older) version.

» Options->Patch lines of context: The patch area shows the patch file syntax to
convert from the left version to the right version. By default, 3 matching lines are
shown around a change to provide context. You can choose this option and change
the number of lines in the Patch Lines of Context dialog.

» Color choices: These options let you change the highlighting in the code
comparisons. The Different Word color is an overlay that is combined with the other
highlight colors as appropriate.

» Options->Double Click Merging: A shortcut for merging is to double-click on a
difference in the code. This works only if you enable it here.

The Case Insensitive, Skip Whitespace, and Files are Unicode options are not available
if you have made a change to a file.

Refresh button: You can use the Refresh button to update the Difference
List at the bottom of the Change Results. This list may become out-of-date if you merge
differences or edit the file directly.

Save Patch button: You can use the Save Patch button to create a patch
file in “unified format” (or unidiff). This patch file can be used with the Unix patch tool
and other similar programs.

b Pray s Click the Prev and Next buttons above the Code Comparison area
4= s = to jump to another difference between the entities.

Understand 3.0 User Guide and Reference Manual 281

Chapter 12: Comparing Source Code

Patch File

Difference List

You can merge differences into the version of
an entity shown on the right. You cannot save
code directly to a file. Instead, you can save a patch file or copy and paste code with
merged differences and edits into another application. To merge differences, follow
these steps:

_")'J hMerge Selected H'ﬂf‘ Unnerge Selected

1 Select a difference in the code or by selecting a line in the Difference List area.

2 Click the Merge Selected button. This copies the older (left) version of this
difference to the current (right) version of the code. (If you change your mind, click
Unmerge Selected.)

3 Click the Prev or Next button to move to another difference and repeat the previous
step.

In the Difference List, merged differences are shown in blue italics. In the code,
differences you have merged are highlighted in green. (The currently selected
difference is still highlighted in blue/purple, even if it has been merged.)

A shortcut for merging is to double-click on a difference in the code if you have enabled
Double Click Merging in the Options drop-down.

If you know you want to merge all of the differences, click

L Merge &l 45 Unmerge Al
) ? = ? Merge All. If you want to undo all merges you have

made, click Unmerge All.

This area shows the differences in patch file format. Such patch files can be used with
the Unix patch tool and other similar programs. You can hide this area by clicking the
small | fold icon above the area.

The Patch lines of context command in the Options button menu lets you adjust the
number of unchanged lines shown around a difference.

The Difference List area shows a list of the differences in the code shown in the Code
Comparison area.

—_=
1: Changed 1 line on the left to 2 lines on the right line 114; z-=stream transparent = (voidpf 0,
2 Deleted 1 line on the right lime 117: =-=file = MILL;
3 Changed 1 line anthe left ta 1 line on the right line 123 g-=cro = creB40L, Z_MULL, 07;

In the Difference List, merged differences are shown in blue italics.

You can hide the Difference List portion of the results by clicking the small |
fold icon below the area. This makes more space for the Code Comparison area.

282

Understand 3.0 User Guide and Reference Manual

chapter13 Running Tools and External
Commands

This chapter will show you how to configure and use source code editors and other

external tools from within Understand.

This chapter contains the following sections:

Section Page
Configuring Tools 284
Adding Tools to the Context Menus 291
Adding Tools to the Tools Menu 292
Adding Tools to the Toolbar 293
Importing and Exporting Tool Commands 294
Running External Commands 295

Understand 3.0 User Guide and Reference Manual

283

Chapter 13: Running Tools and External Commands

Configuring Tools

Select Tools > User Tools > Configure from the menus to open the Tool
Configurations dialog, where you can configure external tools such as source code
editors for use within Understand. External tools configured for use will be available for
context-sensitive launching. The Tool Configurations dialog provides a number of

categories that determine how they are launched.

User Tools

Edit Entity with TextPad
Edit Location with TextPad
New User Tool

Delete

-
(1]

Imnport

Menu Text Edit Location with TextPad

Cormmand tetpad3Z exe

Parameters SCurEntity

Initial Directory

lcon file

Input [None -]
Output El:aptur& - i

Understand perl script

Analysis Options:

|:| Save All |:| Rescan |:| Analyze Changed Files |:| Anahyze All Files

Run Anahyzsis Options: |:| Before Uszer Tool |:| After User Tool

Add to...

Pop Up Menu Main Menu Toolbar

0K] [Cancel

First, use the User Tools category of the Tool Configurations dialog to define a
command and parameters as follows:

1 Click New.

2 Inthe Menu Text field, type the name you want to appear in Understand menus for
this tool. You can use variables in the Menu Text. For example, you can use
$CurEntity to put the name of the currently selected entity in the tool name. See

Variables on page 286 for a full list of variables.

284

Understand 3.0 User Guide and Reference Manual

Configuring Tools

3 If the tool you use is on your executable search path, simply type its name in the
Command field. If not, use the Browse button to specify the full path to its
executable.

4 Inthe Parameters field, specify parameters that need to be passed on the tool's
command line. See Variables on page 286 for a full list of variables. Variables
beginning with $Cur are current position variables that apply only from a Source
Editor window. Variables beginning with $Decl are declaration variables that apply
only when an entity with a declaration is selected. Variables beginning with $Prompt
display a dialog to ask the user for some information.

5 Inthe Initial Directory field, specify the directory in which the tool should start
running. You can use variables such as $CurProjectDir in this field.

6 Inthe Icon file field, type or browse for a small graphic file to act as the icon for this
command. You can choose a BMP, GIF, PBM, PGM, PNG, PPM, XBM, or XPM file.

7 Choose the Input you want to use for the command. The options are None
(default), Selected Text, and Entire Document. The Selected Text and Entire
Document options are intended to be used when running a tool from the Source
Editor.

8 Choose what you want done with the Output from the command. Options are:
- Discard the output. This is the default.

- Capture it in a Command Window, which is an area that appears by default near
the Information Browser. The command window is reused by default if you run
another tool or re-run the same tool. You can force results to go to a new window
by unchecking the Reuse box on the command results window(s).

- Replace Selected Text in the current Source Editor window.

- Replace Entire Document in the current Source Editor window.
- Create a New Document in a Source Editor window.

- Copy to Clipboard so you can paste the results elsewhere.

9 Check the Understand perl script box if this is a Perl script that uses the
Understand Perl API.

10 In the “Analysis Options” area, choose actions you would like to be performed
before and/or after this user tool is run. These actions can include saving all files, re-
scanning for new files in project directories, analyzing modified files, and analyzing
all files.

11 In the “Add to...” area, choose ways you want to access this command in
Understand. The Pop Up Menu checkbox adds the tool to the right-click context
menu. The Main Menu checkbox adds the tool to the Tools > User Tools
submenu. The Toolbar checkbox adds the tool’s icon to the toolbar.

To edit settings for an existing tool, select it in the list and make changes as needed.
Click OK to save your changes. If you want to remove a tool, select it and click Delete.

For information about using the Import button, see Importing and Exporting Tool
Commands on page 294.

Understand 3.0 User Guide and Reference Manual 285

Chapter 13: Running Tools and External Commands

Variables beginning with $Cur are current position variables that apply only from a
Source Editor window. Variables beginning with $Decl are declaration variables that
apply only when an entity with a declaration is selected. Variables beginning with
$Prompt display a dialog to ask the user for some information.

Variables

You can use the following variables in the Command or the Parameter field.

Variable

Description

$Cpplncludes

$CppMacros

$CurCol
$CurEntity

$CurEntityShortName

$CurEntityType
$CurFile
$CurFileDir
$CurFileExt
$CurFileFlatStr

$CurFileName
$CurFileShortName
$CurLine
$CurProject
$CurProjectDir
$CurProjectName
$CurReportHtml
$CurReportText
$CurScopeEntity
$CurSelection
$CurWord

$DeclCol

$DeclFile
$DeclFileShortName
$DeclLine
$DeclScopeEntity

Lists all of the include directories specified in the Project
Configuration. This may be useful, for example, if the tool you want
to run is a compiler or linker.

Lists all of the macro definitions specified in the Project
Configuration.

Column position of cursor position in current file.
Full name of selected entity.

Short name of selected entity.

Type of selected entity.

Current file's full path.

Current file's directory.

Current file's extension.

Current file's full path with all directory separation characters (such
as / and \) replaced with an underscore ().

Current file's name not including extension or full path.

Current file's name without full path.

Line number of cursor position in current file.

Current fullname location of opened project.

Directory in which the opened project is located.

Current short filename of opened project (not including extension).
Current fullname location of opened project's HTML report.
Current fullname location of opened project's CSV report.

Scope of current entity.

Currently selected text in the current window (file windows only).

The word/text at the current cursor position in the current file
window.

Column in which the selected entity was declared, defaults to 1.
Full path name of the file in which the selected entity was declared.
Filename only of the file in which the selected entity was declared.
Line in which the selected entity was declared, defaults to 1.
Name of the entity within which the selected entity is declared.

286

Understand 3.0 User Guide and Reference Manual

Configuring Tools

Variable Description

$NamedRoot Specify $NamedRoot "namedrootname”, where the
namedrootname is the actual name of the named root. Note that
the named root must be active. This variable can be used in either
the Parameters field or the Initial Directory field.

$PromptForCheckBox Prompts user for a true/false value required by the command. A 0
(unchecked) or 1 (checked) is passed to the command in place of
this variable. This variable should be followed by a string to be
displayed as text next to the checkbox. For example,
$PromptForCheckBox "Show Debug Text" displays the following
prompt

[] show Debug Text

$PromptForCheckBoxGH Prompts user with a series of checkboxes displayed in a horizontal
group. For example, $PromptForCheckBoxGH "Show=Debug
Text ;Tool Tips;Line Numbers" displays the following prompt.
The label (“Show” in this example) is optional. A semicolon must
be used to separate items. The text strings for all checked items
(separated by spaces) are passed to the command.

Zhawy

[] Debug Text [] Tool Tips [] Line Numbers

$PromptForCheckBoxGV Prompts user with a series of checkboxes displayed in a vertical
group. For example, $PromptForCheckBoxGV "Show=Debug
Text ;Tool Tips;Line Numbers" displays the following prompt.
The text strings for all checked items (separated by spaces) are
passed to the command.

Shiovy
[] Debug Text

[] Tacl Tips

[] Line Mumbers

$PromptForDir Prompts user to select a directory and passes the full path as a
string. For example, $PromptForDir "Directory
Path=$CurProjectDir" displays the following prompt with the
current project directory as the default. The “...” button opens the
standard directory selection dialog for your operating system:

Directory Path | CProgram Files\STheampleyixie_proj E]

Understand 3.0 User Guide and Reference Manual 287

Chapter 13: Running Tools and External Commands

Variable

Description

$PromptForFile

$PromptForRadioBoxGH

$PromptForRadioBoxGV

$PromptForSelect

Prompts user to select a file and passes the full path as a string.
For example, sPromptForFile "Filename=$CurFile" displays
the following prompt with the current source file as the default. The
“...” button opens the standard file selection dialog for your
operating system:

Filename |Cicodeipixie 2 2 1Piieisrciguiopeng b E]

Prompts user for a selection from a set of options displayed
horizontally. For example, $Prompt ForRadioBoxGH
"Format=PNG;BMP;GIF; JPEG" displays the following prompt. The
text string for the selected item is passed to the command.

Format

® PN O BMP O oF (O JPEG

Prompts user for a selection from a set of options displayed
vertically. For example, $Prompt ForRadioBoxGV
"Format=PNG;BMP;GIF; JPEG" displays the following prompt. The
text string for the selected item is passed to the command.

Format

(&) PG
) Etdp
O GF

() JPEG

Prompts user to select from a drop-down box. For example,
SPromptForSelect "Build
Version=Debug;Release;Optimized" displays the following
prompt. The text string for the selected item is passed to the
command.

Build “Wersion |Debug w

Debug
Releaze
Optimized

288

Understand 3.0 User Guide and Reference Manual

Configuring Tools

Variable Description

$PromptForSelectEdit Prompts user to select from a drop-down box or edit the text in the
box. For example, $PromptForSelectEdit "Build
Version=Debug;Release;Optimized" displays the same prompt
as the example for $PromptForSelect, except that you can edit the
string in the box.

$PromptForText Prompts user for a string required by the command. For example,
$PromptForText "Replace=foo" displays the following prompt
and provides a default value. The text provided is passed as a
string.

Replace |foo

In general, the multiple-selection $Prompt variables accept strings of the format
"label=iteml;item2". Any number of items may be separated by semicolons. The
item strings for all selected items (separated by spaces) are passed to the command.

The label is optional except in the cases of $PromptForCheckBox, $PromptForDir,
$PromptForFile, and $PromptForText. The default value is optional in the cases of
$PromptForDir, $PromptForFile, and $PromptForText.

Prompts are processed after the other types of variables, so you can use other
variables in the labels and values. For examples, see $PromptForDir and
$PromptForFile in the previous table.

In addition, operating system environment variables can be used in prompt syntax. For
example, sPromptForSelect "Dir=$PATH" presents a drop-down list of all the
directory paths in your $PATH definition.

You can optionally provide the item list in a separate file. In that case, the syntax for
most $Prompt variables is 1abel=@efullpath of listfile.txt.

Understand 3.0 User Guide and Reference Manual 289

Chapter 13: Running Tools and External Commands

You can combine variables to pass all the parameters needed by a command. All
prompts are combined into one dialog. For example if the command is “Is”, you can use
the following parameters to create a dialog that lets you select command-line options
for the Is command:

SPromptForRadioBoxGH "Show option=-A;-a" SPromptForSelect "Sort=-e;-
t" $PromptForCheckBoxGV "Additional flags=-d;-D;-1;-L;-s;-1;-u;-x;-c"
SPromptForDir "Dir:=$CurProjectDir"

User, Tool: Is

Shiovwe option

& -A O -a

Additional flags
[]-d
[]-o
[1-
[]-L
ol =
e
[]-u
] -=
[]-=

Dir: |C:1Pr|:|gram Files = Theample'pixie_praj | E]

Ok l ’ Cancel]

290 Understand 3.0 User Guide and Reference Manual

Adding Tools to the Context Menus

Adding Tools to the Context Menus

Once a command is defined in the Tools tab, the Pop Up Menu category in the Tool
Configurations dialog lists user tools that are currently in the context menu on the left
and commands you can add to that menu on the right. (Context menus are sometimes
called contextual, shortcut, right-click, or pop-up menus.)

Tool Configurations

zer Toals .

Pop Lip Menu Pop up menu arder Available Tools
h=in Menu Edit Location with TextPad Achcd

Toolkar Edit Entity weith TextPad

Export Tools

hove Daowen

L84 l ’ Cancel

To add a tool to the context menus, select it on the right and click Add. To remove a
tool from the context menus, select it on the left and click Remove.

User tools appear in the context menu in the order they are listed in the left column.
Use the Move Up and Move Down buttons to sort the tools as desired.

The following figure shows a context menu for an entity showing the available external
tools.

maip M

View Information

Graphical Views k

Interactive Reports

Edit Definition

lIser Tools L4 Edit Location with TextPad
Explore k Edit Entity with TextPad
Find In... k

Understand 3.0 User Guide and Reference Manual 291

Chapter 13: Running Tools and External Commands

Tools are active or inactive on the context menu based on the context of the
parameters provided to the tool. For example, a source editor that specifies $DeclFile
as a parameter is selectable from the context menu for any entity where the declaration
is known, but will not be active for an undeclared entity or when no entity is selected.

0.001E:
1000, Qs
2y ; Uszer Tools » Edlit Location with TextPacd
TRUE; Find In... r
Add Favorite r
Oz
FALSH Cut Clrl+x
1: Copy Crl+C

Adding Tools to the Tools Menu

Once a command is defined in the Tools tab, the Main Menu category in the Tool
Configurations dialog lists user tools that are currently in the Tools > User Tools menu
on the left and commands you can add to that menu on the right.

Tool Configurations

User Tools Main menu order Available Tools
Pop Up Menu
hain kenu cli 0 extPac Al
Toolbar Edit Entity with TextPad
howve Lp

| o || cance

To add a tool to the menus, select it on the right and click Add. To remove it from the
menus, select it on the left and click Remove.

292 Understand 3.0 User Guide and Reference Manual

Adding Tools to the Toolbar

User tools appear on the Tools menu in the order they are listed in the left column. Use
the Move Up and Move Down buttons to sort the tools as desired.

Tools | Window Help

Run Command fU> | Us Uz | & [0 | [T] A [

LF

| User Tools » Edit Location with TextPad |

] Editor Macros Edit Entity with TextPad 0]
Scheduler L Configure...

[U, derlZce oro
Compare L4 d d — red
Clt'— g, 4, deflate fas=t},
ions... -
S hE, 2, deflate fast},

Adding Tools to the Toolbar

Once a command is defined in the Tools tab, the Toolbar category in the Tool
Configurations dialog shows user tools currently in the toolbar in the left box and
commands you can add to the toolbar in the right box.

Tool Configurations

l=er Tool
ser oois Toolbar order Aveailable Tools
Pop Up Menu
hain Menu ¥ cation with TextPac
Toolkar Edit Ertity weith TextPad
Export Tools Inzert Separatar

Retnove

II:D:
o
o

hove Up

hove Daowven

[Ok, l [Canicel

To add a tool to the toolbar, select it on the right and click Add. To remove it from the
toolbar, select it on the left and click Remove.

To add a vertical separator to the toolbar, select the item in the Toolbar order box that
should have a vertical line to the right of it. Click Insert Separator to add “----------- " to
the list.

Icons for the selected tools appear on the toolbar in the order they are listed in the left
column. Use the Move Up and Move Down buttons to sort the icons as desired.

To change the icon for a particular tool, use the Icon file field in the User Tools
category.

Understand 3.0 User Guide and Reference Manual 293

Chapter 13: Running Tools and External Commands

Note:

For example, in the following figure, the first icon is provided by Understand to open the
Tool Configurations dialog. The second icon is the default icon for a user tool if none is
specified.
U | U2

In this toolbar, two icons have been added for user tools. A separator has been added
between them.

AN
You can control which icons are visible in the main toolbar by right-clicking on the
background of the toolbar and checking or unchecking items for the various toolbar
sections.

Importing and Exporting Tool Commands

You can import and export tool commands from files. This makes it easy to share tool
commands with co-workers.

1 To export commands, choose Tools > User Tools > Configure from the menus
and switch to the Export Tools category. You will see the following dialog.

Tool Configurations

Ejsruﬁﬂznu =er Tools to export

hzin Menu Edit Entity weith TextPad
Toolbar Edltt Location with TextPa
Export Tools [] Meswne Uzer Tool

Al H Mone] Export to file..

I Ok, l[Cancel]

Check the boxes next to commands you want to share.
Click Export to file.

Choose a location and filename for an initialization file (*.ini) that contains the
selected user tool information.

5 Click Save.

To import commands, choose the User Tools category in the Tool Configurations dialog
and click the Import button. Browse for an initialization file created by another
Understand user and click Open. In the Import User Tools dialog, check the boxes next
to the tool commands you want to be available in your copy of Understand.

294

Understand 3.0 User Guide and Reference Manual

Running External Commands

Running External Commands

The Tools > Run Command menu item permits any external command to be run
directly from Understand. Common commands to invoke are compilers, configuration
management tools, and Perl programs written using Understand’s API.

The Run a Command dialog looks like this:

B Run a command

Cammand: COProgram Files S Thhbinypc-winga\Perhdumpyar ol L E]
Parameterz L
Wiorking Directary w E]
Capture Qutput STI perl script

I Fun ‘ ’ Close]

Running commands

To run a command, follow these steps:

1 Type a Command or click ... and browse for a file to run. A number of Perl programs
are provided in the Understand installation.

2 Type any command-line Parameters required by the command. Click the right
arrow if you want to select one of the special variables. These are listed on
page 286.

Click ... and browse for the directory that should act as the Working Directory.

4 If you want the output sent to a window in Understand, leave the Capture Output
box checked.

5 If you are running a Perl script, check the STI Perl script box if this is a script
provided by Scientific Toolworks.

6 Click Run. The output is shown in a Command Window in Understand if you
checked the Capture Output box. Otherwise, the command runs in the background

Understand 3.0 User Guide and Reference Manual 295

Chapter 13: Running Tools and External Commands

and output is shown in the Running Commands box. You can select a command
from this list and click Stop to halt the command.

Command Window: CHProgram FilestsTheample o

__dest (float *) -~
Define: create patches cppf! 555}
Modify: creste patches cppf{1555}
Zet: create patches cppi1555)

1 1int)
Define: create patches cpp{1515}
Modify: creaste patches .cppi{1515}
Set: create patches .cppf{1515}

Uze: create patches cppi1515) r

Runmning: Reuse

The font used in the Command Window is determined by settings in the Command
Window category of the Understand Options dialog, which you can open by choosing
Tools > Options from the menus. See page 102.

On UNIX systems, output to both stdout and stderr are captured.

296 Understand 3.0 User Guide and Reference Manual

P

Chapter 14

Note:

Command Line Processing

This chapter shows how to use Understand from the command line. Command line
processing can be used in a batch file for automatic re-building and report generation of
projects.

This chapter describes the “und” command line, which allows you to analyze sources
and create Understand databases from the command line. In addition, it allows you to
generate metrics and reports.

The “und” commands were standardized in build 571, and the tool should now be much
easier to use. Because of the extensive changes, this new version is not backwards
compatible with older versions of und. The old und executable has been renamed
“undlegacy”. If you have legacy scripts, you should rename the binary run by these
scripts in order for them to continue to work.

Most examples in this chapter refer to C/C++ files. However, you can use “und” with
any supported language.

This chapter contains the following sections:

Section Page
Using the und Command Line 298
Using the understand Command Line 305
Using Buildspy to Build Understand Projects 306

Understand 3.0 User Guide and Reference Manual 297

Chapter 14: Command Line Processing

Using the und Command Line

The command-line tool for creating and building Understand databases is und.

The Understand installer can optionally place the appropriate bin directory in your
operating system’s PATH definition to simplify running the “und” command line. For
example the Windows PATH definition might include the C:\Program
Files\SciTools\bin\pc-win64 path.

Und can be run in the following modes:

* Interactive mode: You enter this mode if you simply type und on the command line
with no command or text file. While in the interactive shell, settings such as open
database are remembered from command to command. This is a good mode to use
to test a sequence of commands you want to use in a batch file. You can optionally
specify the database to open on the command line to run the interactive shell.

c:“Program Files“SciTools“bhin“pc—wint4>und
Welcome to wund. Type "help® for a list of commands. "“"guit" to guit

wnd>

» Batch mode: Once you identify a sequence of commands you want to run more
than once, you can store them in a text file that you can run in batch mode with the
und process command. The text file should contain one command per line. Omit
the “und” from each command within a batch file. You can use # to begin comments.
For example use either of the following commands to run the sequence in the
This.txt file:

und process This.txt
und process This.txt MyDatabase.udb

The This.txt file might contain commands similar to these:

My command file
c:\projects\MyDatabase.udb
settings -C++MacrosAdd VERSION="Option 2"

analyze # update database
report # generate reports
metrics # generate metrics

* Line mode: You can specify a single command or set of commands on a single
command line. You must specify the database to be used on each command line,
because it is not remembered from line to line. Commands are run in the order they
appear on the command line. The help and list commands cannot be combined with
other commands. For example, you could run either of the following commands to
create a database, add files, analyze all, and then exit:

und create -db c:\myDb.udb -languages c++ add @myFiles.txt analyze -all
und create -languages c++ add emyFiles.txt analyze -all c:\myDb.udb

is the equivalent of running the following set of commands in interactive mode:

create -languages c++ c:\myDb.udb
add e@myFiles.txt

analyze -all

298 Understand 3.0 User Guide and Reference Manual

Using the und Command Line

Alternately, you could run a sequence of line mode commands like the following:

und create -languages c++ c:\myDb.udb
und add e@myFiles.txt c:\myDb.udb
und analyze -all c:\myDb.udb

In general, und commands are case-insensitive.
Und returns a value of 1 if an error occurred.

Und supports the following options that can be added to any command:

Option Discussion
-db Specify the database to use
-quiet Print only errors. Do not print warnings or

informational messages
-verbose Print extra informational details.

Und accepts a number of separate commands. A different set of options is supported
for each of these commands, and separate help is available for each. For example, for
help on the add command, type:

und help add
The commands supported by und are as follows:

Option Discussion See

add Adds files, directories, and roots page 300
analyze Analyzes the project files page 303
codecheck Runs CodeCheck page 304
create Creates an empty database page 300
export Exports settings, dependencies, or architectures page 302
help Gives help information for a command page 300
import Imports project settings and architectures page 302
list Lists information about the project page 301
metrics Generates project metrics page 303
process Runs all the commands in a text file in batch mode page 298
purge Purges the database page 303
remove Removes files, directories, roots, and architectures page 301
report Generates project reports page 303
settings Sets project settings and overrides page 301
uperl Runs Perl scripts page 304
version Shows the current software version page 300

Refer to the sections that follow for details on the commands supported by und.

Understand 3.0 User Guide and Reference Manual 299

Chapter 14: Command Line Processing

Getting Help on Und

Creating a New
Project

Adding Files to a
Project

Since we do frequent builds of Understand, it is likely that this manual may not describe
all the options of the “und” command line. We recommend that you check the
command-line help. For example, to get details on the report command, type:

und help report
You can see the version of Understand for the und command tool by using the following
command:

und version

Use the und create command to create a new database (project). Specify the name of
the database either with the -db option or as the last parameter. Any settings allowed
with the settings command (see page 301) can also be used with create. For
example:

und create -db newDB.udb -languages c++ c#

und create -open files as read only on newDB.udb
For more information, use the following command:

und help create

If you have a small number of source files then it may be easiest to just supply their
names to the analyzer using the wildcarding abilities of your operating system shell. For
example:

und -db myproject.udb add \usr\myproject
und -db myproject.udb add filel.cpp file2.cpp
und -db myproject.udb add *.cpp

In some cases, there may be too many file locations to use the -add technique. A
common command line limitation is 255 characters. A directory with hundreds or
thousands of files may easily exceed this limit. In this case, or when you want more
fine-grained/repeatable control over what files are processed, you should create a
“listfile”. This file must have a format of one filename per line:

:\myfiles\myproject\myproject.c
:\myfiles\myproject\myproject.h
:\myfiles\myproject\support.c
:\myfiles\myproject\io.c
:\myfiles\myproject\io.h
:\shared\allprojects\file2.c
:\options\file3.c
:\options\file4.c
:\options\file5.c

[gie g = ¢ 0 M6 N6 B!

You can then add all of these files as follows:
und -db myproject.udb add e@myfiles.lis
Note that there is no limit on the number of files listed in the list file.

You can also use the add command to add named roots and Visual Studio projects.
Options are available to set the watch behavior, subdirectory adding, the exclude list,
file filtering, and languages.

300

Understand 3.0 User Guide and Reference Manual

Using the und Command Line

Removing Items from
a Project

Getting Information
about a Project

Modifying Project
Settings

For more information, use the following command:
und help add

Use the und remove command to remove files, directories, Visual Studio files, named
roots, and architectures from a project.

Unless there is a name conflict, the type of item to be removed is automatically
detected by und. If there is a conflict, the command defaults to deleting the directory
with the specified name. You can use the -file, -vs, -root, and -arch options to override
this default.

For example:

und remove someFile.cpp myProject.udb
und remove C:\SomeDirectory myProject.udb
und -db myProject.udb remove vsl.vcproj Vvs2.vcproj

und remove -file main.c myProject.udb

For more information, use the following command:

und help remove

Use the und 1ist command to list file, setting, architecture, or named root settings in a
project. For example:

und list -tree files myProject.udb
und list settings myProject.udb
und list arches myProject.udb

und list roots myProject.udb

There are a number of options for listing settings for the project. You can list all settings,
language-specific settings, report settings, metric settings, include directories, macro
definitions, and more. For example:

und list -override fl.cpp f2.java settings myDB.udb
und list -override @listfile.txt myDB.udb

und list -metrics -reports settings myDB.udb

und list -all settings myDB.udb

und list -lang C++ -macros -includes settings myDB.udb

und list -lang fortran settings myDB.udb
For more information, use the following command:

und help list

Use the und settings command to modify the settings in a project. You can find the
names for each setting by using the following command:
und list -all settings myProject.udb

In general, setting names are the same as the field name in Understand, but with
spaces omitted.

Understand 3.0 User Guide and Reference Manual 301

Chapter 14: Command Line Processing

For example:

und settings -ReportDisplayCreationDate on myProject.udb

und settings -ReportFileNameDisplayMode full myProject.udb

und settings -ReportReports "Data Dictionary" "File Contents" myProject.udb
und settings -C++MacrosAdd MYLONG="Long Text" myProject.udb

und settings -ReportNumberOfPages 250 myProject.udb

For more information, use the following command:

und help settings

Importing into a Use the und import command to import project settings or architectures from an XML
Project file. In general, you might use this command when creating a new database to import
setting that you have exported from another database.

For example:
und import settings.xml myNewProject.udb
und import -arch myArch.xml myProject.udb

For more information, use the following command:

und help import

Exporting from a Use the und export command to export project settings, architectures, or a list of
Project dependencies to an XML file.

For example, this command exports project settings to an XML file that you can use
with the und import command:

und export toHere.xml myProject.udb
This command exports architectures to an XML file that you can use with the und
import command:

und export -arch "Calendar" toHere.xml myProject.udb
These commands export file, architecture, and class dependencies to a CSV, matrix, or
Cytoscape file. Several options are available to control the output of dependencies.

und export -dependencies file csv output.csv myProject.udb
und export -dependencies class matrix output.csv myProject.udb
und export -dependencies arch myArch csv output.csv myProject.udb

und export -dependencies -col refs -format short file csv out.csv myDB.udb

For more information, use the following command:

und help export

302 Understand 3.0 User Guide and Reference Manual

Using the und Command Line

Analyzing a Project

Generating Reports

Generating Metrics

Use the und analyze command to run (or rerun) the project analysis.

When you analyze a project, you have several options. You may re-analyze all files with
the -all option (the default), only files that have changed with the -changed option, or a
list of files with the -files option. For example:

und analyze myProject.udb
und analyze -files @someFile.txt
und -db myProject.udb analyze -rescan -changed

und analyze -files filel.cpp file2.cpp myProject.udb

You can scan project directories for new files with the -rescan option. (This is done
automatically when you analyze all.)

If you are doing your first analysis after creating a new project, it doesn’t matter which
option you choose as it will parse all files regardless. However, if you are performing
this function on a regular basis, you may prefer to do an incremental analysis where
only the modified files and any other files dependent on those files are re-analyzed.

Use the und purge command to remove all parsed data from the Understand
database, leaving only the project definition. This significantly shrinks the udb file size,
which you may want to do before sharing the file or backing it up. Running the analyze
command will repopulate the project. For example:

und purge myProject.udb
For more information, use the following command:

und help analyze

Use the und report command to generate reports for the project. This command uses
the current report settings, which can be viewed by using the und 1ist command (see
page 301), and changed using the settings command (see page 301). For example:

und list -reports settings myProject.udb

und report myProject.udb

Use the und metrics command to generate metrics reports for the project. You can
generate project metrics (the default), architecture metrics, and the HTML metrics
report. For example:

und metrics myProject.udb
und metrics -arch myArch myProject.udb

und metrics -html archl arch2 c:\temp myProject.udb

This command uses the current metrics settings, which can be viewed by using the und
1ist command (see page 301), and changed using the settings command (see
page 301). For example:

und list -metrics settings myProject.udb
For more information, use the following command:

und help metrics

Understand 3.0 User Guide and Reference Manual 303

Chapter 14: Command Line Processing

Using CodeCheck

und codecheck -html

Running Perl Scripts

Use the und codecheck command to run the CodeCheck tool on the project and print
the log to the screen. You need to provide the name of a CodeCheck configuration file
and an output directory for the reports. For example:

und codecheck config.ini C:\temp myProject.udb
You can create a CodeCheck configuration file as described in Using CodeCheck
Configurations on page 271.

Options are provided to specify which files to run the CodeCheck configuration on,
whether to show ignored violations, whether to flatten the directory tree, and whether to
generate HTML output in addition to the default CSV output. For example:

-files filelist.txt config.ini C:\temp myProject.udb
For more information, use the following command:

und help codecheck

Use the und uperl command to run Perl scripts from the command line. For example,
the following command would run the myScript.pl file with the argl space and arg2
arguments passed to Perl:

und uperl myScript.pl -quiet "argl space" arg2 myProject.udb

Creating a List of
Files

For more information, use the following command:

und help uperl

Where a command accepts a @lisfile.txt for an option, the file must contain one item
per line. Full or relative paths may be used. Relative paths are relative to the current
directory. A # sign in the first column of a line in the file indicates a comment. If an item
has a definition, for example a macro definition, the macro name and its value must be
separated by an = sign. For example, DEBUG=true.

On UNIX here are a couple ways to create such a file:
e Use the‘ls’ command, as in:
ls *.c *.h > my project.txt
» Use the ‘find’ command to recurse subdirectories, as in:
find . -name “*.c *.h” -print > my project.txt
In a Windows command shell:
* Use the dir command with the /b option:
dir /b *.c *.h > my project.txt
» Use the /s option to recurse subdirectories, as in:

dir /b /s *.c *.h > my project.txt

304

Understand 3.0 User Guide and Reference Manual

Using the understand Command Line

Using the understand Command Line

The Understand GUI is launched by the “understand” executable. Normally, you launch
this using the shortcuts provided by the installation. If you like, you can modify this
using the following command-line syntax.

understand [file 1 ... file n] [-optiomns]
Any filenames listed on the command like are opened along with The Understand GUI.
For example:

understand source.c source.h -db myproject.udb

The available command-line options (also called command-line switches) are as

follows:

Option Discussion

-contextmenu filename Shows the context (right-click) menu for the specified

[-line # -col # -text #] filename at the mouse location. Optionally shows the
context menu for the entity located at -line -col (The -text
option provides a name hint for the entity).

-cwd path Set the current working directory to "path”. This takes
precedence over the last working directory for a project
loaded with -db or -lastproject.

-db filename Open the project specified by the filename.

-diff left_path right_path Compare the two specified files or folders as with the Tools
> Compare command within Understand.

-existing Detects any running instance of Understand and sends the
command line to that instance.

-importusertools importfile.ini Import user tool definitions from an initialization file.

-lastproject Open the last project opened by the application.

-lastproject_cwd Use the directory of the last opened project as the current
working directory.

-new Force the creation of a new instance of Understand. If you
use the operating system to open a file with an extension
that opens Understand, by default that file opens in any
existing instance. You can use this command-line option to
force a new instance to open.

-noproject Ignore all project load requests on startup. (This also clears
the "Open Last Project" application setting.)

-no_splashscreen Use this option to skip the splash screen when Understand
starts up. This setting is stored until you change it in the
Tools > Options dialog.

-quiet_startup Use this option to disable all dialogs and splash screens
shown during startup.

-SlowConnect Allow for a longer timeout period when communicating with

the license server.

Understand 3.0 User Guide and Reference Manual 305

Chapter 14: Command Line Processing

Option

Discussion

-visit filename [line# column#] Open the file "filename" in an editor window. Optionally

-wait

position the cursor at the specified line number and column
number in the specified file.

When used with the -existing option, causes this instance of
Understand to block while waiting for the other instance to
finish the given command.

Using Buildspy to Build Understand Projects

Buildspy is a tool that allows gcc/g++ users to create an Understand project during a
build. Buildspy gets lists of files, includes, and macros from the compiler. This can save
time and improve project accuracy.

To use Buildspy, follow these steps:

1 Change the compiler command from gcc/g++ t0 gccwrapper/g++wrapper in your
makefile or build system.

2 Either add the <SciTools>/bin/<platform>/buildspy directory to your PATH definition
or use the full path to the gccwrapper/g++wrapper executables in your makefile or
build system. On Linux, this might be the /SciTools/bin/linux32/buildspy directory.
On Windows, this might be the C:\Program Files\SciTools\bin\pc-win64\buildspy
directory.

Perform a make clean or equivalent command.

Run a command similar to the following:

buildspy -db path/name.udb -cmd <compile command>
For example:

buildspy -db -/Documents/MyProject.udb -cmd make

5 When the build has finished running, open the Understand project that was created
and choose Project > Analyze All Files.

The buildspy command sends information from gccwrapper/g++wrapper to Buildspy,
which allows it to build a complete Understand project. The wrappers then call the
corresponding compiler.

To change the compiler run by gccwrapper or g++wrapper, edit the configuration file
located at $HOME/ . config/SciTools 0n Linux systems and
$HOME/Library/Preferences on Mac. The wrappers will work with any compiler that
has gcc-like syntax.

306

Understand 3.0 User Guide and Reference Manual

Chapter 15

Quick Reference

This chapter contains the following sections:.

This chapter lists of commands provided by Understand. These lists provide cross
references to information about these commands in this manual.

Section Page
File Menu 308
Edit Menu 309
Search Menu 309
View Menu 310
Project Menu 310
Reports Menu 311
Metrics Menu 311
Graphs Menu 312
CodeCheck Menu 312
Annotations Menu 312
Tools Menu 313
Window Menu 314
Help Menu 314

Since new versions of Understand are provided frequently, these lists are subject to
change.

Understand 3.0 User Guide and Reference Manual

307

Chapter 15: Quick Reference

File Menu
The File menu in Understand contains the following commands:

Command See
New > Project page 35
New > File page 165
Open > Project page 21
Open > File page 165
Open > Understand 1.4 Project page 119
Close <project_name> page 21
Export to Image File page 255
Save Configuration page 271
Save <filename> page 162
Save <filename> As page 162
Save All page 162
Page Setup page 174
Print <filename> page 174
Print Entity Graph page 257
Recent Files page 97
Recent Projects page 97
Exit page 51

308 Understand 3.0 User Guide and Reference Manual

Search Menu

Edit Menu

The Edit menu in Understand contains the following commands:
Command See
Undo page 161
Redo page 161
Cut page 160
Copy page 160
Copy Image to Clipboard page 255
Paste page 160
Select All page 160
Comment Selection page 164
Uncomment Selection page 164
Change Case page 164
Toggle Overtype page 165
Bookmarks page 166

Search Menu

The Search menu in Understand contains the following commands:
Command See
Find page 155
Find Previous page 155
Find & Replace page 155
Go to Line page 159
Go to Matching Brace page 163
Instant Search page 141
Find in Files page 143
Replace in Files page 146
Show Find Results page 145
Find Entity page 148

Understand 3.0 User Guide and Reference Manual 309

Chapter 15: Quick Reference

View Menu

The View menu in Understand contains the following commands:
Command See
Toolbars page 154
Browse Mode page 160
Zoom page 158
Fold All page 163
Soft Wrap page 165
Hide Inactive Lines page 163
Bookmarks page 166
Contextual Information page 156
Entity Filter page 123
Entity Locator page 148
Information Browser page 125
Favorites page 136
Last Parse Log page 114
Project Browser page 130
Scope List page 159
Window Selector page 152

Project Menu

The Project menu in Understand contains the following commands:
Command See
Configure Project page 39
Rescan Project Directories page 46
Analyze Changed Files page 114
Analyze All Files page 114
Project Overview Charts page 229
Architectures > New Architecture page 185

Architectures > Browse Architectures page 177
Architectures > Manage Architectures page 184

310 Understand 3.0 User Guide and Reference Manual

Metrics Menu

Reports Menu

The Reports menu in Understand contains the following commands:

Command See
Configure Reports page 191
Generate Reports page 193
View Reports > HTML page 194
View Reports > Text page 194
Dependency > Architecture Dependencies page 225
Dependency > File Dependencies page 225
Dependency > Class Dependencies page 225
Project Interactive Reports page 32

Metrics Menu

The Metrics menu in Understand contains the following commands:

Command See
Metrics Summary page 215
Browse Metrics page 216
Export Metrics page 218
Project Metric Charts > Code Volume page 220
Project Metric Charts > File Volume page 220
Project Metric Charts > Average page 220
Complexity

Project Metric Charts > Sum Complexity page 220
Configure Metric Charts page 220
Metrics Treemap page 223

Understand 3.0 User Guide and Reference Manual

311

Chapter 15: Quick Reference

Graphs Menu

The Graphs menu in Understand contains the following commands:

Command See
Dependency Graphs > By <architecture> page 179
Dependency Graphs > Load Saved page 180
Dependency Graph

Project Graphs page 32
Graphs for <selected entity> page 231

CodeCheck Menu

The CodeCheck menu in Understand contains the following commands:

Command See

Open CodeCheck page 261
Re-Run Previous Checks page 271
Standards page 271
Saved Configurations page 271
Implement Your Corporate Standard page 272

Annotations Menu

The Annotations menu in Understand contains the following commands:
Command See
Annotate page 168
Filter Annotations page 172
Manage Annotations page 173
Search Annotations page 171
Annotation Options page 59
Refresh Annotations page 59
Display Inline page 59
Display Hover page 59
Display Indicator page 59

312 Understand 3.0 User Guide and Reference Manual

Tools Menu

Tools Menu

The Tools menu in Understand contains the following commands:

Command See

Run Command page 295
User Tools > <tool_name> page 292
User Tools > Configure page 284
Editor Macros > Record Macro page 165
Editor Macros > Replay Macro page 165
Scheduler > Scheduled Activities page 50
Compare > Compare Files/Folders page 275
Compare > Compare Entities page 277
Compare > Compare Arbitrary Text page 278
Options page 93

Understand 3.0 User Guide and Reference Manual

313

Chapter 15: Quick Reference

Window Menu

The Window menu in Understand contains the following commands:
Command See
Close <current_file> page 162
Close All Document Windows page 152
Release Window page 152
Split Vertically page 152
Split Horizontally page 152
Unsplit page 152
Tile page 152
Cascade page 152
Predefined Windows Layouts page 152
<open source file list> page 152
Windows page 152

Help Menu

The Help menu in Understand contains the following commands:

Command See
Help Content page 16
Key Bindings page 100
Example Projects page 16
PERL API Documentation page 32
Python API Documentation page 32
Frequently Asked Questions page 16
Getting Started page 21
Licensing page 14
View SciTools Blog page 16
Check for Updates page 21
About Understand page 16

314 Understand 3.0 User Guide and Reference Manual

Index

Symbols

~in regular expressions 151

:in F77 identifiers, FORTRAN 81

?in regular expressions 151

? wild card 150

. in regular expressions 151

" prefixing octal constants or string literals, FORTRAN
81

surrounding normal includes 72

[-1in regular expressions 151

[1in regular expressions 151

[*]in regular expressions 151

* in regular expressions 151

*wild card 150

/* ... */ C-style comments 69, 81

\'in regular expressions 151

\< in regular expressions 151

\> in regular expressions 151

comment in command line file 304

+ expanding tree in Information Browser 126
+ in regular expressions 151

<> surrounding system includes 72

= macro definition in command line 304

| in regular expressions 151

$ in regular expressions 151

$ prefixing external tool parameters 285, 286

A

About Understand option, Help menu 16

absolute portability mode 47

Activate when Control key is pressed field, Browse
Mode Editor options 111

actual parameters, relationship to formal parameters,
Ada 62

Ada
configuration for 61
macro definitions 63
versions supported 15

Ada category, Project Configuration dialog 61

Add found include files to source list field, C++ Includes
71,78

Add found system include files to source list field, C++
Includes 71, 78

-addDir option, und command 300
-addFiles option, und command 300
Adobe Acrobat, saving graphical views to 258
Advanced category, Editor options 107
Aggregate Nodes by options 255
Alerts category, User Interface options 98
Allow Colons in Names field, FORTRAN 81
Allow C-style comments field, FORTRAN 81
Allow embedded SQL field, Pascal 87
Allow function declaration without parentheses field,
FORTRAN 81
Allow interactivity during intensive processing field,
General options 95
Allow Nested Comments field, C++ 69
Allow quote in octal constants field, FORTRAN 81
Analysis Options area 285
Analyze All Files option, Project menu 51, 114
Analyze category, Understand Options dialog 101
Analyze Changed Files option, Project menu 114
-analyze option, und command 303
-analyzeFiles option, und command 303
analyzing projects 114
after changing configuration of 40
beep on completion of 101
on command line 303
scheduling 51
and operators, including in strict complexity, Ada 62
angle brackets (<>) surrounding system includes 72
Animate windows/drawers field, User Interface options
96
Annotations category, Project Configuration dialog 59
Annotations menu 312
anti-virus software, turning off while generating reports
193
Apache Lucene syntax 141
APIs 32
Append the names of externally linkable entities with
field
C++ 70
FORTRAN 81
Application font field, General options 94
Architect Manager 178, 184
Architecture Browser 30, 177
duplicating architectures 178, 185
graphical views in 178, 179
metrics in 178, 183
opening Architect Manager from 178, 184

315 Understand 3.0 User Guide and Reference Manual

Index

opening Architecture Builder from 178

renaming architectures 178

right-clicking in 178

XML listing in 178
Architecture Builder 178, 187
Architecture Graph View 240
Architecture Wizard 186
architectures 19, 176

auto-architectures 177

creating 185

duplicating 178, 185

editing. See Architecture Builder

exporting dependency list 225

graphical views of 178, 179

hierarchies of, exploring 177

hierarchies of, graphical view of 240

list of 177

listing 30

managing. See Architect Manager

metrics about 178, 183

metrics graphs about 220

navigating 30

renaming 178, 185

XML listing of 178, 189
arrows, for Information Browser history 130
ASCII text. See text
ASP style tags 92
assembly

configuration for 65

embedded in C code 70, 74

include files, directories for 65
Assembly category, Project Configuration dialog 65
asterisk (*)

in regular expressions 151

wild card 150
Auto Category, C++ Includes 72
auto-architectures 30, 177
Auto-complete fields, Advanced Editor options 108
Auto-indent fields, Advanced Editor options 108, 109
Automatic compool file field, JOVIAL 85
Average Complexity metrics graph 220

B

background processing, interactivity during 95
backslash (\) in regular expressions 151
base classes

count of 210

displaying 237, 239, 244
Base Classes View 237, 239
beep on parse completion 101
bitmaps, saving graphical views as 255
black text 110
blank lines

in Entity Comparison area 281
Blank metric 212
blocks

expanding and collapsing 158, 163

in Filter Area 25
blue italic text 110
blue text 110
bookmarks

creating 166

list of 154, 166

navigating 166
Bookmarks option, Edit menu 166
Bookmarks option, View menu 154, 166
Boolean searches 142
braces, matching. See brackets
brackets

in regular expressions 151

matching 163
Browse Architectures option, Project menu 177
Browse Metric Charts option, Metrics menu 224
Browse Metrics option, Metrics menu 214, 216
Browse Mode option, View menu 160
Browse Mode, Source Editor 160
Browser Area 20
Build Log 34
Buildspy 306
Butterfly View 237, 238
Butterfly-Dependency graph 179

C

C/C++
API for custom reports 32, 196, 214
configuration for 69, 76
include files, auto including 72
include files, directories for 71, 77
include files, ignoring 72
macro definitions 73, 79
preprocessor directives 73
strict analysis 76
versions supported 15

Understand 3.0 User Guide and Reference Manual

316

C#
configuration for 79
reference files, importing 79
versions supported 15
C# category, Project Configuration dialog 79
C++ (Strict) category, Project Configuration dialog 76
C++ category, Project Configuration dialog 69
caching include files, C++ 70
Calendar auto-architecture 30, 177
Called by menu, graphical views 246
Called By View 237, 238
Calls View 237, 238
capitalization, of selected text 164
Captured output font field, Command Window options
102
caret (®) in regular expressions 151
Caret Line field, Editor options 106
Cascading Style Sheet 193
case
changing for selected text 164
of displayed entity names, Ada 62
of displayed entity names, FORTRAN 81
of displayed entity names, JOVIAL 85
of displayed entity names, Pascal 88
of displayed entity names, PL/M 89
of externally linkable entities, Ada 62
of externally linkable entities, FORTRAN 81
of externally linkable entities, Pascal 88
of identifier names, FORTRAN 81
Case of externally linkable entities field
Ada 62
FORTRAN 81
Pascal 88
Case sensitive identifiers field, FORTRAN 81
case sensitivity
of Entity Comparison area 281
of FORTRAN identifiers 81
CBO (Count of Coupled Classes) metric 210
Change Case menu option 164
Change Case option, Edit menu 164
Change Log 34
Changed Entities area, Change Results window 279
character strings, red text for 110
Check for Updates option, Help menu 22
Child Lib Units View 237
children of entity 237
CIS. See Contextual Information Sidebar

Class and Interface Cross-Reference report 199
Class Declaration View 240, 244
class diagram 242
Class Extend Tree report 203
.class files 83
Class Inheritance View 237
Class Metrics report 210
Class OO Metrics report 210
Class Paths category, Java 83
classes
base classes for 210, 237, 239, 244
cohesion of 210
coupled 210
declaration for 244
derived 210, 237, 239
exporting dependency list 226
extended by other classes 237, 240, 247
extending other classes 237, 239, 247
as hexagons, in graphical views 245
implemented 247
implemented by 248
information about 240
inherited from other classes 237
listing in Filter Area 25
metrics about 210
providing without source code, Java 83
reports about 199, 203, 210
clipboard 280
copying graphical view to 256
copying text from Source Editor to 160
Close All Document Windows option, Window menu
152, 162
Close option
File menu 22
Window menu 152, 162
Close Selected Window(s) command 154
cluster graphs 254
customizer 180
COBOL
configuration for 67
copybook files, directories for 67
COBOL category, Project Configuration dialog 67
Code metric 212
Code Volume metrics graph 220
CodeCheck 259
checks 262
configuration 263, 271

317 Understand 3.0 User Guide and Reference Manual

Index

ignoring violations 270
result log 264
running 261
scripts 272
CodeCheck menu 312
cohesion for class data members 210
colon (%) in F77 identifiers, FORTRAN 81
Color Mode field, Advanced Editor options 107
colors
in Entity Comparison area 281
in file/folder comparisons 276
of highlighted differences in Entity Comparison area
280
in HTML reports 193
of merged differences in Difference List area 282
of merged differences in Entity Comparison area 282
for printing source code 107
of rows in User Interface, alternating 96
in Source Editor, customizing 158, 110
in Source Editor, default 110
column truncation
FORTRAN 81
JOVIAL 85
command line. See und command; understand
command
command renames, reports about 204
Command window 295
Command Window category, Understand Options
dialog 102
commands, external. See external tools
Comment metric 212
Comment Selection menu option 164
comments
adding or removing 164
associating with entities, Ada 62
associating with entities, C 77
associating with entities, C++ 70
associating with entities, Java 83
blue italic text for 110
C-style 69
nested, C++ 69
companion file 165
Compaq Pascal 87
Compare Arbitrary Text option, Tools menu 278
Compare Entities option, Tools menu 277
Compare Files/Folders option, Tools menu 275
compilation environment, Ada 62

compilation unit
Child Library Units of 237
declaration nesting of program units in 237
entities called by 237
instantiation tree for 237
With By relationships of 237, 253
With relationships of 237
compiler
COBOL 67
compared to Understand 34
Compiler field
C++ 69
PL/M 89
Compiler Include Paths field, C++ 69
complexity
exception handlers included in, Ada 62
FOR-loops included in, Ada 62
metrics graphs about 220
strict, and/or operators in, Ada 62
Component field, Key Bindings options 100
compool file, JOVIAL 85
Configure category, Understand Options dialog 102
Configure Metric Charts option, Metrics menu 214, 220
Configure option, Project menu 39
Configure Reports option, Reports menu 191
constants
displayed in graphical views 246
reports about 207
Constants menu, graphical views 246
contact information 15
Context Browser, Contextual Information Sidebar 156
-contextmenu option, understand command 305
Contextual Information option, View menu 156
Contextual Information Sidebar (CIS) 156
Control Flow View 240, 244
ICOPY directives, directories to search, JOVIAL 86
Copy category, JOVIAL 86
Copy Hover Text menu option 162
Copy option, Edit menu 160
Copybook category 67
copybook files
adding to project, COBOL 67
copying text 280
rectangular area 160
Count and/or operators in strict complexity field, Ada 62
Count exception handlers in complexity field, Ada 62
Count for-loops in complexity field, Ada 62

Understand 3.0 User Guide and Reference Manual

318

Count of All Methods metric 210
Count of Base Classes metric 210
Count of Coupled Classes metric 210
Count of Derived Classes metric 210
Count of Instance Methods metric 210
Count of Instance Variables metric 210
Count of Methods metric 210
coupled classes 210
Create and cross-reference record object components
field, Ada 62
Create implicit special member functions field 70
Create references in inactive code field, C++ 70
Create references in inline assembly, C++ 70
Create references to local objects field, C++ 70
Create references to macros during macro expansion
field, C++ 70
Create references to parameters field, C++ 70
Create relations between formal and actual parameters
field, Ada 62
Crossing layout option 249
cross-reference reports 197
cross-referencing record object components, Ada 62
CSSfiles 15
C-style comments
in FORTRAN 81
nesting of, allowing 69
CSV file
exporting dependencies to 225
exporting metrics to 51, 214, 218
exporting project overview charts to 230
Ctrl+Alt+F keystroke, find and replace text 155
Ctrl+F keystroke, find text 155
Ctrl+j keystroke, jump to matching bracket 163
Ctrl+right-click keystroke
creating new windows 23, 121
Ctrl+Shift+j keystroke, select text in brackets 163
$Cur variables 285, 286
Cut option, Edit menu 160
-cwd option
understand command 305
Cyclomatic complexity 205, 212
Cytoscape
installation location 104
XML output 225
Cytoscape XML 225, 226

D

dashed outline shapes, in graphical views 245

Data Dictionary report 197

Data Members View 240

database 19, 34
changes to format of 34
creating on command line 298
file extension for 19, 34
multi-user read/write access for 34
See also project

-db option
understand command 305

DEC Pascal 87

$Decl variables 285, 286

Declaration File View 240, 243

Declaration Tree report 202

Declaration Tree View 237

Declaration Type View 240, 243

Declaration View 240, 241

declaration views
calling methods displayed in 246
constants displayed in 246
default members displayed in 246
extended by classes displayed in 247
extended classes displayed in 247
external functions displayed in 247
file dependencies displayed in 246
globals displayed in 247
header files include by’s displayed 248
implemented by classes displayed in 248
implemented classes displayed in 247
imported entities displayed in 248
include files displayed in 248
inherited entities displayed in 248
invocations displayed in 249
local items displayed in 250
members displayed in 250
objects displayed in 251
operators displayed in 250
private members displayed in 251
protected members displayed in 251
public members displayed in 251
rename declarations in 251
static functions displayed in 252
types displayed in 253
used-by items shown in 253

319 Understand 3.0 User Guide and Reference Manual

Index

variables displayed in 253
With By relationships displayed in 253
With relationships displayed in 253
See also graphical views
declarations
implicit, report about 207
local, including in database, C++ 70
Declared In View 237
Default Members menu, graphical views 246
Default style field, Editor options 105
default working directory 95
defines. See macros
Delphi Pascal 87
Depended On By graph 179, 237
dependencies
browsing 133
exporting 134, 225
file 246
Dependency Browser 133
Dependency category, Understand Options dialog 104
Dependency Graph 178
Dependency Graphs option, Graphs menu 179
Dependency menu 225
Dependent menu
graphical views 246
Dependent Of menu, graphical views 246
Depends On graph 179, 237
Depth menu, graphical views 246
derived classes 210, 237, 239
Derived Classes View 237, 239
DFM converter exe field 87
-diff option, understand command 305
Difference List area, Change Results window 279, 282
Dim highlight color field 96
directives, C++ 73
directories
adding to project 43
comparing 275
copying 276
deleting from project 45
overriding settings for 45
watched, scanning 46, 50
watched, setting 44, 45
Directory Structure auto-architecture 30, 177
Display entity names as field
Ada 62
FORTRAN 81

JOVIAL 85
Pascal 88
PL/M 89
DIT (Max Inheritance Tree) metric 210
Dock Window Layouts field, User Interface options 97
docking windows 18
Document Area 20
documentation 16, 21
dollar sign ($)
in regular expressions 151
prefixing external tool parameters 285, 286
DOS line termination style
for reports 193
for saving source files 106
DOT files, saving graphical views as 256
double quotes. See quotes
double-click merging, in Entity Comparison area 281,
282
double-clicking
in Bookmarks area 166
column header dividers 148
entities in Entity Filter 128
entities in graphical view 233
entities in Information Browser 128
in Exploring View 132
in Find Results window 145
messages in Parse Log window 115
in Project Browser 216
in Source Editor 29
drawers 18, 96
Drill down command 225
drop-down menu See right-clicking
.dsp file extension 57
.dsw file extension 57
Duplicate Architecture menu option 178
duplicate references, C++ 70
Duplicate Subtrees menu, graphical views 246

E

Edges Shown options 254
edges, in dependency graphs 180
Edit Architecture menu option 178, 187
Edit Graphic Filters menu option 235
Edit menu 309

Bookmarks option 166

Change Case option 164

Copy option 160

Understand 3.0 User Guide and Reference Manual

320

Cut option 160
Select All option 160
Toggle Overtype option 165
Editor category, Understand Options dialog 105
Editor Macros option, Tools menu 165
editor windows, saving automatically 94
editor, external 112
editor, source. See Source Editor
Emacs editor 112
embedded SQL, in Pascal 87
Enable Editor Tooltips field 111
Enable permissions checking for NTFS filesystems field
95
encoding formats 49, 105
entities 19
comments associated with, Ada 62
comments associated with, C 77
comments associated with, Java 83
comparing two entities 277
comparisons between versions of 279
components of 240
current, information about 156
declaration structure for 240, 241
displaying source for. See Source Editor
favorites of, displaying 136
favorites of, marking 135
full name of, displaying 124
graphical views of. See graphical views
hierarchy of, exploring 132, 156
hierarchy of, graphical view 232, 237
information about. See Information Browser
list of, alphabetic 197
listed in Entity Filter 123
listed in Entity Locator 26, 148
listed in Filter Area 25
metrics for. See metrics
names of, formatting for reports 55
as rectangles, in graphical views 245
references for 128
relationships between 19
renamed 241
reports about. See reports
sorting of 123
structural information about, graphical view of 233,
240
unknown 253
unresolved 253

XML listing of 178
See also specific entities
Entity Comparison area, Change Results window 279
Entity Filter 123
displaying information about entities in 125
displaying source of selected entity 128
entities not listed in 26, 148
jumping to entities in 25
location of 20
right-clicking in 24
Entity Graph option, Window menu 233
entity index, for HTML reports 194
Entity Locator 26, 148
column headers in, customizing 149
columns in, hiding and reordering 149
columns in, resizing 148
filtering by selection 149
filtering manually 150
filtering with regular expressions 150
filtering with wildcards 150
length of names in 148
opening 148
right-clicking in 26, 148
right-clicking on column header 149, 150
right-clicking on entities 149
sorting entities in 149
Entity Locator option, View menu 26, 148
entity_index.html file 194
environment variables
using in include paths, assembly 66, 68
using in include paths, C++ 71, 78
equal sign (=) in macro definition in command line 304
errors
displaying from Parse Log window 115
parse errors, prompting for, Ada 63
parsing, FORTRAN 81
Essential metric 212
Example Projects option, Help menu 16
Exception Cross-Reference report 201
exceptions
handlers for, including in Ada complexity 62
reports about 201
-existing option, understand command 305
Expand Recursive Nodes menu, graphical views 247
Expand Repeated Nodes menu, graphical views 247
Exploring view 132
Export Dependency CSV 225

321 Understand 3.0 User Guide and Reference Manual

Index

Export Metrics option, Metrics menu 51, 214, 218
exporting tool commands 294
Extended By menu, graphical views 247
Extended By View 237, 240
Extends menu, graphical views 247
Extends View 237, 239
extensions. See file extensions
external editor 112
External Editor category, Editor options 112
External Functions menu, graphical views 247
external tools
adding to Right-click Menu 285, 291
adding to toolbar 293
adding to User Tools menu 292
commands for, importing and exporting 294
commands for, running 295
configuring 284
editor 112
externally linkable entities
case of, Ada 62
case of, FORTRAN 81
case of, Pascal 88
prefix for, C++ 70
prefix for, FORTRAN 81
suffix for, C++ 70
suffix for, FORTRAN 81
Externally Modified Files field, Editor options 106

F

F5 key, Find in Files option 143
FAQ option, Help menu 16
favorites 27

displaying 136

marking entities as 135
Favorites option, View menu 27, 136
File Average Metrics report 212
File Contents report 198
file extensions

configuring for project 48

for database 19, 34

for MSVC project files 57
File Information, Contextual Information Sidebar 156
File menu 308

Close option 22

New > File option 165

New > Project option 35

Open > File option 165
Open > Project option 21
Open > Understand 1.4 Project option 119
Page Setup option 174
Print Entity Graph option 257
Print option 174
Recent Projects option 21
Save All option 162
Save option 162
File Metrics report 211
File Mode field, Editor options 105
File Options category, Project Configuration dialog 49
file permission checking 95
File Sync box 127
File Types category, Project Configuration dialog 48
File Volume metrics graph 220
Filename menu, graphical views 247
filenames
in graphical views 247
for reports 194
in title areas 97

files

comparing 275
copying 276
exporting dependency list 225
Information Browser for 156
location included in listing of 124
searching 27, 143
searching and replacing in 146
toolbar for 154
See also database; header files; include files; MSVC
project; project; source files
Files category, Project Configuration dialog 42
Filter Area 25
See also Entity Filter; Project Browser
Filter By Selection menu option 149
Filter field, Entity Filter 124

filters

for graphical views 235

See also Entity Filter; Entity Locator
Find dialog 155
Find Entity option, Search menu 148
Find in Files dialog 20, 27
Find in Files menu option 27, 143
Find option, Search menu 155
Find Results window 27, 145

fixed file format, FORTRAN 80

Understand 3.0 User Guide and Reference Manual

322

flow chart symbols 245
flow charts 240, 244
Fold All option, View menu 163
fold icon 279
folders. See directories
folding code 163
font
in Command window, changing 102
for printing source code 107
for Source Editor windows 105
in Source Editor windows 167
in Understand, changing 94
Font Size field, Advanced Editor options 107
FOR-loops, including in complexity metrics, Ada 62
formal parameters, relationship to actual parameters,
Ada 62
Format field, FORTRAN 80
FORTRAN
configuration for 80
extensions supported 15
include files 82
macro definitions 82
reports showing non-standard extension usage 206
versions supported 15
FORTRAN category, Project Configuration dialog 80
FORTRAN Extension Usage report 206
frames in windows, sliding 18
Frameworks Category, C++ Includes 78
free file format, FORTRAN 80
function declarations without parentheses, FORTRAN
81
Function Pointer menu, graphical views 247
functions
external 247
in graphical views 251
listing in Filter Area 25
metrics about 212
reports about 198, 212
static 252
See also invocations; procedures; program units
fuzzy search 142

G

gcc build 306
General category, Understand Options dialog 94
Generate Reports option, Reports menu 193

Generic Instantiation report 204
generic unit
instantiation hierarchy for 237
instantiation tree for 237
Getting Started dialog
displaying at startup 94
opening 22
Getting Started option, Help menu 16, 22
Getting Started tab 21
Globals menu, graphical views 247
Go To Line dialog 160
Go to Matching Brace option, Search menu 163
Graph Architecture 178, 179
Graph Architecture graph 179
Graph Customizer pane 179
Graph View of graphs 229
Graph View, for metrics graphs 222
Graphic Filter dialog 235
graphical user interface (GUI), parts of 20
graphical views 31, 229
of architecture 178, 179
browsing 233
calling methods displayed in 246
constants displayed in 246
copying to clipboard 256
default members displayed in 246
diagram of 20
displaying 231
entity name truncation for 252
expanding or contracting nodes in 234
extended by classes displayed in 247
extended classes displayed in 247
external functions displayed in 247
file dependencies displayed in 246
filename display options 247
filtering 235
fullnames displayed in 250
function pointers displayed in 247
functions displayed in 251
globals displayed in 247
Graph View of 229
header files include by’s displayed 248
hierarchy levels displayed in 250
hierarchy views 232, 237
implemented by classes displayed in 248
implemented classes displayed in 247
imported entities displayed in 248

323 Understand 3.0 User Guide and Reference Manual

Index

include files displayed in 248

inherited entities displayed in 248

intrinsic functions displayed in 248

invocations displayed in 249

layout configuration for 235, 245, 249

local items displayed in 250

members displayed in 250

multiple subtrees displayed in 246

objects displayed in 251

open, list of 233

operators displayed in 250, 251

parameters, displaying in 251

path highlighting in 234

printing 234, 257

private members displayed in 251

procedures displayed in 251

protected members displayed in 251

public members displayed in 251

rename declarations in 251

reusing 99, 236

saving 234, 255

saving as PDF 258

scrolling in 233

sorting entities in 252

spacing entities in 252

SQL entities shown in 252

static functions displayed in 252

structure views 233, 240

synchronizing with other windows 236

Table View of 230

text size of 252

types displayed in 253

unknown entities, displaying 253

unresolved entities, displaying 253

used-by items shown in 253

uses items shown by 253

variables displayed in 253

With By relationships displayed in 253

With relationships displayed in 253

zooming 234

See also structure views; hierarchy views
Graphical Views menu option 178, 179, 231
Graphs category, Understand Options dialog 113
Graphs for option, Graphs menu 179, 231
Graphs menu 312

Dependency Graphs option 179

Graphs for option 179, 231

Project Graphs option 32, 196
graphs, of metrics 220
gray background for text 111
gray shapes, in graphical views 245
green text 110
GUI (graphical user interface), parts of 20
GVIM editor 112

H

header files 248
help 16, 21
Help menu 314
About Understand 16
Check for Updates option 22
Example Projects option 16
FAQ option 16
Getting Started option 16, 22
Help Content option 16
Key Bindings option 16, 165
Licensing option 14
Perl APl Documentation option 16, 32, 214
Python APl Documentation option 16, 32
View SciTools Blog option 16
-help option, und command 300
hexagons, in graphical views 245
Hide Inactive Lines option, View menu 163

hiding common lines, in Entity Comparison area 281

hierarchy views 31, 232
layout of 249
list of 237
multiple subtrees displayed in 246
number of levels in 250
parameters, displaying in 251
See also graphical views
highlighting full line at cursor 106
history
Information Browser 126, 130
Source Editor 153
toolbar for 154
Horizontal Non-Crossing layout option 249
hover menu 162
hover text, copying 162
HTML
colors in reports 193
entity index in reports 194
exporting metrics to 51, 214, 217
files 15

Understand 3.0 User Guide and Reference Manual

324

generating reports as 32, 54, 191, 193
viewing reports as 194
Hyper Grep. See Find in Files dialog
hyphen (-) collapsing tree in Information Browser 126

IB. See Information Browser
IFANIN (Count of Base Classes) metric 210
Ignore category, C++ Includes 72
Ignore directories in include names field 72
Ignore Parent Overrides field 46
Implementation fields field, JOVIAL 85
Implemented By menu, graphical views 248
Implements menu, graphical views 247
implicit special member functions, C++ 70
Implicitly Declared Objects report 207
import files

adding to project, Python 91
Import report 204
imported entities, displaying in graphical views 248
importing tool commands 294
Imports category

Python 91
Imports menu, graphical views 248
-importusertools option, understand command 305
inactive code, cross-reference information for, C++ 70
inactive lines, hiding 163
Include By View 239
Include File Cross-Reference report 200
include files

adding as source files, assembly 65

adding as source files, C++ 71, 78

adding as source files, FORTRAN 82

adding as source files, PL/M 90

adding before each project file, C++ 72

adding in bulk, assembly 66, 68

adding in bulk, C++ 71, 78

adding in bulk, FORTRAN 82

adding in bulk, PL/M 90

adding to project, assembly 65

adding to project, C++ 71, 77

adding to project, COBOL 67

adding to project, FORTRAN 82

adding to project, PL/M 90

compiler path for, C++ 69

displayed in graphical views 248

environment variables in paths for, assembly 66, 68
environment variables in paths for, C++ 71, 78
hierarchy of, for source files 237, 239
ignoring during analysis, C++ 72
overriding MSVC project settings for 58
Pascal search path 89
replacement text for, C++ 73
replacement text for, FORTRAN 82
replacement text for, PL/M 90
reports about 200
system include files, C++ 72
Include line numbers in rich text field 108
Include Paths button 116
Include View 237, 239
IncludeBy View 237
Included By menu, graphical views 248
Includes category
C++ 71,77
FORTRAN 82
PL/M 90
Includes menu, graphical views 248
Indent field, Editor options 106
indentation 108, 109
fixing 164
Information Browser (IB) 25, 28, 125
architecture information in 177
copying information in 125, 129
displaying from entity in Entity Filter 125
displaying source of selected entity 128
entity information displayed by, choosing 126
expanding and collapsing the tree 126
for current entity 156
for current file 156
history for 126, 130
location of 20
metrics in 129, 214
multiple occurrences open 127
References in 128
right-clicking in 24
saving information in 125, 129
searching 127
synchronizing 127
Information Browser option, View menu 125
Inherited By menu, graphical views 248
Inherits menu, graphical views 248
initialization files 22
Insert Spaces Instead of Tabs field, Editor options 106

325 Understand 3.0 User Guide and Reference Manual

Index

instance methods 210
instance variables 210
Instant Search 141
Instant Search menu option 141
Instantiated From View 237
instantiation

of compilation units 237

of generic types 237

of generic units 237

reports about 204
Instantiations View 237
interactivity during background processing 95
interfaces

listing in Filter Area 25

reports about 199
Internal Dependencies graph 179
interrupt handlers, listed as unused program units 208
intrinsic functions, parsing, FORTRAN 81
Intrinsic menu, graphical views 248
Intrinsics file field, FORTRAN 81
Invocation Tree report 203
Invocation View 237
invocations

reports about 203

views of 237, 238, 240, 242
Invocations menu, graphical views 249

J

Jar files 83
Java
configuration for 83
versions supported 15
Java category, Project Configuration dialog 83
Javascript files 15
JDK, versions supported 15
JNI external entities, Java 83
JOVIAL
configuration for 85
directories for ICOPY directives 86
versions supported 15
JOVIAL category, Project Configuration dialog 85
JPEG format, saving graphical views as 255
Jump to Matching Brace menu option 163
Jump to Matching Directive menu option 163

K

Key Bindings category, Understand Options dialog 100,
165

Key Bindings option, Help menu 16, 165

keyboard mappings 100

Keyboard Scheme field, Key Bindings options 100

keywords, blue text for 110

KNI external entities, Java 83

L

Language auto-architecture 30, 177
Languages category, Project Configuration dialog 41
Last Parse Log option, View menu 115
-lastproject option, understand command 305
-lastproject_cwd option, understand command 305
Layout menu, graphical views 249
layout, for graphical views 249
LCOM (Percent Lack of Cohesion) metric 210
Less memory usages versus speed field, Ada 62
Level menu, graphical views 250
libraries, standard

Ada, directory for 62

including in parse log 101

Pascal, paths for 88
Library directories field, Ada 63
license server

connection timeout 305
licensing

specifying level from Help menu 14
Licensing option, Help menu 14
line endings for source files 105
line numbers, displaying in Source Editor 158
line termination style

for reports 193

for saving source files 106
Lines metric 212
@lisfile.txt file 304
Local menu, graphical views 250
local object declarations, including in database, C++ 70
local parameters, listed in Entity Locator 26
Lucene, Apache syntax 141

M

Macintosh line termination style 106
Macro Cross-Reference report 200
macros

Understand 3.0 User Guide and Reference Manual

326

adding in bulk, C++ 74 instance 210

changing, Ada 64 listing in Filter Area 25
compiler-specific, C++ 69 metrics about 210
defining 118 metrics 178, 183
defining in command line 304 calculating automatically 51
defining on command line, Ada 64 configuring 52
defining, Ada 63 displayed in Information Browser 129
defining, C++ 73,79 exporting to CSV file 51, 214, 218
of editing changes, recording and replaying 165 exporting to HTML 51, 214, 217
expansion text for, C++ 70 for project 215, 216
importing, Ada 64 graphs for 220
listing in Filter Area 25 in Information Browser 214
as octagons, in graphical views 245 list of, online 205, 209, 214, 215
overriding MSVC project settings for 58 reports about 209, 210, 211, 212, 214
recording references when expanding, C++ 70 selecting 53
reports about 199, 200 Metrics Browser 214
undefined, C++ 75 Metrics category, Project Configuration dialog 52
See also objects Metrics Export 178
Macros category Metrics Export menu option 184
Ada 63 Metrics menu 311
C++ 73,79 Browse Metric Charts option 224
FORTRAN 82 Browse Metrics option 214, 216
Pascal 88 Configure Metric Charts option 214, 220
Main subprograms field, Ada 63 Export Metrics option 51, 214, 218
makefile 306 Metrics Summary option 214, 215
Manage Architectures option, Project menu 178, 184 Metrics Summary 178, 183
Margins field, Editor options 107 Metrics Summary option, Metrics menu 214, 215
"Mastering Regular Expressions" (O’'Reilly) 152 Microsoft Visio files, saving graphical views as 256
Max Inheritance Tree metric 210 Microsoft Visual C++ project. See MSVC project
McCabe (Cyclomatic) complexity 205, 212 Microsoft Visual C++, as editor 112
members minus sign (-) collapsing tree in Information Browser
cohesion of 210 126
default 246 Modified metric 212
displayed in graphical views 250 modules, listing in Filter Area 25
graphical views of 240 MSVC project, importing into Understand project 37, 57
private 251 multiple users, initialization files for 22
protected 251
public 251 N
Members menu, graphical views 250

Name menu, graphical views 250

named root portability mode 47

named roots 103

Namespaces category, Pascal 88

Navigation category, Editor options 111
Navigation Mode, Source Editor 111

nested comments, C++ 69

New Architecture option, Project menu 185, 186
New File option, File menu 165

memory
caching include files, C++ 70
optimizing analysis to use less, Ada 62
menu bar 20
menus. See specific menus
merging, in Entity Comparison area 281
methods
cohesion of 210

327 Understand 3.0 User Guide and Reference Manual

Index

-new option, understand command 305

New Project option, File menu 35

New Project Wizard 35, 102

next button 18

Next icon 29

NIM (Count of Instance Methods) metric 210
NIV (Count of Instance Variables) metric 210
No Truncation text option 252

No Wrap text option 253

-no_splashscreen option, understand command 305
NOC (Count of Derived Classes) metric 210
-noproject option, understand command 305
NTFS filesystem 95

O

Object Cross-Reference report 199
Objective C/C++ 15
configuration 76
enabling 41
object-oriented metrics 210
objects
displayed in graphical views 251
listing in Project Window 25
reports about 199, 207
Objects menu, graphical views 251
octagons in graphical views 245
online help 16, 21
Open File option, File menu 165
Open last project at startup field, General options 94
Open Project option, File menu 21
Open Understand 1.4 Project option, File menu 119
Operators menu, graphical views 251
operators, displayed in graphical views 250, 251
Options option, Tools menu 93
Options subcategory, Reports 55
or operators, including in strict complexity, Ada 62
Output subcategory, Reports 54, 191

P

Package View 240

packages
declaration structure for 240
listing in Filter Area 25
reports about 204
With By relationships for 240
With relationships for 240

page guide, showing 106
Page Setup option, File menu 174
parallelograms, in graphical views 245
parameters
cross-reference information for, C++ 70
relationships between formal and actual, Ada 62
reports about 199, 207
See also objects
Parameters menu, graphical views 251
parent
of class. See base classes
of entity 237
Parent Declaration View 240, 242
Parent Lib Unit View 237
parentheses, matching. See brackets
Parse Log window 115
reopening previous Parse Log 153
saving to text file 115
parsing. See analyzing projects
Pascal
configuration for 87
macro definitions 88
namespaces directory 88
search paths 89
standard libraries, paths for 88
versions supported 15
Pascal category, Project Configuration dialog 87
Patch File area, Change Results window 279, 282
patching lines of context, in Entity Comparison area
281, 282
PATH definition 298
path highlighting, in graphical views 234
pattern matching. See regular expressions
PC line termination style
for reports 193
for saving source files 106
.pcn file 198
PDF, saving graphical views to 258
Percent Lack of Cohesion metric 210
period (.) in regular expressions 151
Perl
API for custom reports 32
CodeCheck scripts 272
interface for custom reports 196, 214
scripts 19
Perl APl Documentation option, Help menu 16, 32, 214
permission checking 95

Understand 3.0 User Guide and Reference Manual

328

PHP files 15, 92
pin icons. See pushpin icons
pink background for text 110
PL/M
configuration for 89
versions supported 15
PL/M category, Project Configuration dialog 89
plus sign (+)
expanding tree in Information Browser 126
in regular expressions 151
PNG format, saving graphical views as 255
Popup Menu category, Tool Configurations dialog 291
Portability category, Understand Options dialog 103
portability of project 47
pound sign (#) comment in command line file 304
pragma statements, defining macros referenced in, Ada
63
Predeclared entities file field, Pascal 87
Prefix Headers Category, C++ Includes 79
Prepend the names of externally linkable entities with
field
C++ 70
FORTRAN 81
Prepend the names of JNI/KNI external entities with
field, Java 83
preprocessor directives, C++ 73
Preprocessor field, Ada 61
preprocessor macros. See macros
preprocessor statements, green text for 110
preprocessor support, enabling, FORTRAN 81
previous button 18
Previous icon 29
Print Entity Graph option, File menu 257
Print option, File menu 174
printing
CodeCheck results 269
graphical views 257
source files 174, 257
Private Members menu, graphical views 251
procedures
in graphical views 251
reports about 198
See also invocation; functions; program units
Program Unit Complexity report 205
Program Unit Cross-Reference report 198
Program Unit Metrics report 210
program units

metrics about 210
reports about 202, 203, 204, 205, 208, 210
With relationships for 204, 208
programming languages
selecting for project 41
setting in Source Editor 160
project 19
adding source files on command line 300
analyzing (parsing). See analyzing projects
closing 22
closing automatically when opening new project 98
configuring 39
converting from Understand 1.4 to 2.5 119
creating 35
creating, with New Project Wizard 102
directory hierarchy for, displaying 130
existing, opening 21
metrics for 209, 215, 216
opening most-recent project at startup 94
portability of 47
saving configuration of 40
toolbar for 154
Project Browser 130
Project Browser option, View menu 130
Project Configuration dialog 39, 191
Ada category 61
Assembly category 65
C# category 79
C++ (Strict) category 76
C++ category 69
COBOL category 67
File Options category 49
File Types category 48
Files category 42
FORTRAN category 80
Java category 83
JOVIAL category 85
Languages category 41
Metrics category 52
Pascal category 87
PL/M category 89
Python category 91
Reports category 54
saving configuration 40
Scheduled Activities category 50
Visual Studio category 57
Web category 92

329 Understand 3.0 User Guide and Reference Manual

Index

Project Graphs option, Graphs menu 32, 196
Project Interactive Reports option, Reports menu 32,

196
Project menu 310

Analyze All Files option 51, 114

Analyze Changed Files option 114

Browse Architectures option 177

Configure option 39

Manage Architectures option 184

New Architecture option 185, 186

Project Overview Charts option 229

Rescan Project Directories option 46, 50

Rescan Watched Project Directories option 46
Project Metrics report 209
Project Overview Charts option, Project menu 229
Prompt before closing the current project field, User

Interface Alerts options 98
Prompt for missing includes field, C++ Includes 72, 78
Prompt on parse errors field

Ada 63

FORTRAN 81
$Prompt variables 285, 286, 287
prompt when files modified externally 106
Protected Members menu, graphical views 251
Public Members menu, graphical views 251
pushpin icons 18
Python

API for custom reports 32

configuration for 91

versions supported 15
Python APl Documentation option, Help menu 16, 32
Python category, Project Configuration dialog 91

Q

quality reports 205
guestion mark (?)

in regular expressions 151

wild card 150
-quiet_startup option, understand command 305
guote (") prefixing octal constants or string literals 81
quotes (") surrounding normal includes 72

R

read-only access 49
Recent files most recently use list field, User Interface
Lists options 97

Recent projects most recently use list field, User
Interface Lists options 97
Recent Projects option, File menu 21
Record Macro option, Tools menu 165
rectangles, in graphical views 245
rectangles, rounded, in graphical views 245
rectangular area, copy and paste 160
red project file icon 159
red text 110
Reference Count option 179
reference files, C# 79
References category, C# 79
References, in Information Browser 128
regular expressions
book about 152
in filters for Entity Locator 150
in Find dialog 155
Reindent Selection command 164
relationship 19
relative portability mode 47
Rename Architecture menu option 178
Rename Declaration View 241
rename declarations
displayed in graphical views 251
reports about 204
Renames menu, graphical views 251
Renames report 204
Replace in Files area 146
Replace in Files option, Search menu 146
Replacement Text category
C++ Includes 73
FORTRAN Includes 82
PL/M Includes 90
Replay Macro option, Tools menu 165
reports 32, 191
anti-virus software, turning off while generating
reports 193
canceling generation of 193
categories of 195
colors in 193
configuring 191
cross-reference reports 197
customizing 32
customizing with Perl or C 196, 214
entity name format in 55
filenames for 194
generating 191, 193

Understand 3.0 User Guide and Reference Manual

330

generation time of 55, 193

HTML output 54, 193

HTML output, entity index for 194

list of, choosing from 56, 192

metrics reports 209, 214

quality reports 205

structure reports 202

text output 55, 193

viewing 194

See also specific reports
Reports category, Project Configuration dialog 54

Options subcategory 55

Output subcategory 54, 191

Selected subcategory 56, 192
Reports menu 311

Configure Reports option 191

Generate Reports option 193

Project Interactive Reports option 32, 196

View Reports option 194
Rescan project before parsing changed files field 101
Rescan Project Directories option, Project menu 46, 50
Rescan Watched Project Directories option 46
Reuse window when requesting a similar type of graph

from within window field, General options 99
RFC (Count of All Methods) metric 210
Right-click Menu

external tools available in 285, 291

Find in Files option 143
right-clicking 18, 121

+ or - sign in Information Browser tree 126

on Analyze icon 114

anywhere in Understand 23

in Architecture Browser 178

in background of graphical views 245

bold heading in Information Browser 126

creating windows by 23

on entities in graphical views 233

on entities to display source 128

on entities in Entity Locator 26

on entities in Entity Locator entities 149

on entities in Information Browser 24

on entities in Source Editor 23, 29

in Entity Filter 24

in Entity Locator 148

on Entity Locator column headers 149, 150

in Information Browser 129

on Selector window 154

reusing windows by 23, 121
on selected text 160, 164
in Source Editor 161
on Source Editor tabs 167
See also Ctrl+right-click
RO (read-only) indicator, in Source Editor 160
Root filters, Entity Filter 124
Routines menu, graphical views 251
routines. See functions; procedures
row colors, alternating 96
Run Command option, Tools menu 295
RW (read-write) indicator, in Source Editor 160

S

Save all modified editor windows when application
loses focus field, General options 94
Save All option, File menu 162
Save comments associated with entities field
Ada 62
C 77
C++ 70
Java 83
Save duplicate references field, C++ 70
Save macro expansion text field
C++ 70
Save on command field, User Interface Alerts options
98
Save on parse field, User Interface Alerts options 98
Save option, File menu 162
saving edits automatically 94
Scale menu, graphical views 252
Scheduled Activities category, Project Configuration
dialog 50
Scheduler option, Tools menu 50, 51
Scientific Toolworks website 15
SciTools forum 196
Scope Information, Contextual Information Sidebar 156
Scope List option, View menu 159
Scope List, Source Editor 159
See also Structure Browser, Source Editor 156
toolbar for 154
scripts
CodeCheck 272
Perl 19
Search for include files among project files field, C++
Includes 72, 78
Search menu 140, 309

331 Understand 3.0 User Guide and Reference Manual

Index

Find Entity option 148
Find in Files option 27, 143
Find option 155
Go to Matching Brace option 163
Instant Search option 141
Replace in Files option 146
Search Paths Category, Pascal 89
searching
files 140, 143
graphical views 233
Select All option, Edit menu 160
Select Block menu option 163
Selected subcategory, Reports 56, 192
selecting text 280
Selector area 153
sharp sign (#) comment in command line file 304
shortcut commands 100
Show Edge Labels options 255
Show Page Guide field, Editor options 106
Show standard library files field, Analyze options 101
Show tabs field, User Interface options 96
Show the Getting Started dialog on startup field,
General options 94
Show the Splash-Screen on startup field, General
options 94
Simple Invocation Tree report 203
Simple With Tree report 204
SlickEdit editor 112
sliding frames 18
-SlowConnect option, understand command 305
Soft Wrap option, View menu 165
"Software Engineering with Ada" (Booch) 241
Sort menu, graphical views 252
Sort Selection command 165
sorting entities 123
Sound beep field 98

Sound beep on parse completion field, Analyze options

101

Source Editor 29, 158
auto-complete options 108
auto-indent options 108, 109
bookmarks, creating 166
bookmarks, navigating 166
bracket matching in 163
Browse Mode in 160
case, changing in 164
closing files 162

colors in, customizing 110, 158

colors in, default 110

commenting and uncommenting code 164

configuring 105

Contextual Information Sidebar (CIS) in 156

copying to clipboard from 160

creating files 165

displaying by right-clicking on entities 128

displaying from Find Results window 27, 145

external editor replacing 112

folding (hiding blocks in) code 163

hiding inactive lines in 163

history of locations visited in, moving through 153

jumping to specific line number 160

keystrokes in, list of 165

language, setting 160

line numbers displayed in 158

list of specific structures in 156, 159

location of 20

macros of editing changes, recording and replaying
165

moving between windows of 29

opening files 165

printing from 107, 174

read-write (RW) and read-only (RO) indicators 160

right-clicking in 23, 29, 161

right-clicking tabs in 167

saving files 162

Scope Listin 159

searching and replacing text in source files 155

searching in source files 140

status bar in 159

status icon in 159

tabs in, controlling behavior of 167

toolbar for 154

source files

adding to project 37,42, 131

adding to project on command line 300
analyzing using projects. See project
closing 152, 162

creating 165

declaration structure for 240, 243
deleting from project 45

directories for, adding to project 43
directories for, deleting from project 45
displaying by double-clicking entity 128
displaying by right-clicking on entities 128

Understand 3.0 User Guide and Reference Manual

332

displaying from Find Results window 27, 145
editing. See Source Editor
encoding for 49, 105
excluding from source list 44
external editor for 112
imported classes in 243
imported, report about 204
include files specified as, assembly 65
include files specified as, C++ 71, 78
include files specified as, FORTRAN 82
include files specified as, PL/M 90
include hierarchy for 237, 239
line endings for 105
list of, generating from command line 304
listing in Filter Area 25
metrics about 211
moving between windows of 29
opening 165
opening from graphical view 233
overriding settings for 46
as parallelograms, in graphical views 245
portability of 47
printing 174, 257
printing, configuration for 107
read-only access for 49
removing from project 131
saving 162
searching 27, 131, 140, 143
Sources tab, Project Configuration dialog 42
sourcestyles.css file 193
spaces, converting tabs to 106
Spacing menu, graphical views 252
special member functions, C++ 70
splash screen, displaying at startup 94
split
Source Editor 164
workspace 152
workspace, toolbar for 154
Sql menu, graphical views 252
SQL, embedded, in Pascal 87
square brackets. See brackets
src.jar file 83
src.zip file 83
Standard field, Ada 62
standard libraries
Ada, directory for 62
displaying in parse log 101

Pascal, paths for 88
Standard Library Paths category, Pascal 88
standards, CodeCheck 262
Start menu, Understand commands in 21
startup
Getting Started dialog displayed on 94
Splash-Screen displayed on 94
static functions, displayed in graphical views 252
Static menu, graphical views 252
status bar, Source Editor 159
status icon, in Source Editor 159
status line 20
strict C/C++ analyzer 41, 76
strict complexity, count and/or operators in, Ada 62
Strict metric 212
Structure Browser, Contextual Information Sidebar 156
structure reports 202
structure views 31, 233, 240
See also declaration views; graphical views
Styles category, Editor options 110
subprograms, listing in Filter Area 25
subtraction sign (-) collapsing tree in Information
Browser 126
Sum Complexity metrics graph 220
support contact information 15
SVG format, saving graphical views as 255
switches, command line
understand command 305
synchronizing Information Browser 127
"System Design in Ada" (Buhr) 241
system include files, C++ 72

T

tab, automatic 108, 109
Table View of graphs 230
Table View, for metrics graphs 222
tabs for windows, displaying 96
tabs, converting to spaces 106
Task View 241
tasks
declaration structure for 241
With relationships for 241
technical support contact information 15
text
comparing 278
copying to clipboard 160
generating reports as 32, 55, 191, 193

333 Understand 3.0 User Guide and Reference Manual

Index

selecting 160
size of, in graphical views 252
viewing reports as 194
Text Comparison window 278
text favorite 138
Text menu, graphical views 252
TextPad editor 112
title areas, filenames in 97
title bar 18
Title Formats field, User Interface options 97
title page 55
Toggle Overtype option, Edit menu 165
tool commands, importing and exporting 294
Tool Configurations dialog
Popup Menu category 291
Toolbar category 293
toolbar
external tools available from 293
hiding and displaying icons 154
location of 20
visibility of icons in, controlling 294
Toolbar category, Tool Configurations dialog 293
Tools menu 313
Compare Arbitrary Text option 278
Compare Entities option 277
Compare Files/Folders option 275
Editor Macros option 165
Options option 93
Run Command option 295
Scheduler option 50, 51
User Tools option 284, 285, 292, 294
tools, external. See external tools
tooltips 111
Treat system includes as user includes field
C++ Includes 72
Tree row indentation field, User Interface options 96
treemap
CodeCheck 268
metrics 223
Truncate column field
FORTRAN 81
JOVIAL 85
Truncate Long text option 252
Truncate Medium text option 252
Truncate Short text option 252
truncation at column
FORTRAN 81

JOVIAL 85
Turbo Pascal 87
Type Cross-Reference report 199
Type Derived From View 237
Type Tree View 237
types
displayed in graphical views 253
as hexagons, in graphical views 245
information about 240, 243
listing in Filter Area 25
reports about 199, 207
types derived from 237
Types menu, graphical views 253
Typetext menu, graphical views 253

U

.udb file extension 19, 34
UML Class Diagram 240, 242
Uncomment Selection menu option 164
und command 297, 298

adding files to project 300

analyzing a project 303

options in latest version, listing 300
Undefined Macros button 118
undefined macros, C++ 75
Undefines category, C++ Macros 75
Understand

compared to compiler 34

contact information 15

features of 13

multiple users for 22

online help for 16, 21

starting 21

starting from command line 305

windows in 18, 20
Understand 1.4, converting to 2.5 119
understand command 305
Understand Options dialog 93

Analyze category 101

Command Window category 102

Configure category 102

Dependency category 104

Editor category 105

General category 94

Graphs category 113

Key Bindings category 100, 165

Portability category 103

Understand 3.0 User Guide and Reference Manual

334

User Interface category 96
undocking windows 18
Unicode file handling, in Entity Comparison area 281
Uninitialized Items report 207
UNIX
line termination style, for reports 193
line termination style, for saving source files 106
unknown entities, displaying in graphical views 253
Unknown menu, graphical views 253
unresolved entities
displaying in graphical views 253
Unresolved menu, graphical views 253
unresolved variables, listed in Entity Locator 26
Unused Object report 207
Unused Program Unit report 208
Unused Type report 207
Unused Variables and Parameters report 207
Update Information Browser field, Browse Mode Editor
options 111
uperl command 19
Use alternating row colors field, User Interface options
96
Use case-insensitive lookup for includes field
C++ Includes 72
Use default working directory field, General options 95
Use include cache field, C++ 70
Use preprocessor field, FORTRAN 81
use statements, reports about 208
Use the New Project Wizard when creating new
projects field, Configure options 102
Used By View 237
Usedby Menu, graphical views 253
User Interface category, Understand Options dialog 96
user interface, parts of 20
User Tools option, Tools menu 284, 285, 292, 294
users, multiple, initialization files for 22
Uses Menu, graphical views 253
Uses Not Needed report 208
Uses View 237

Vv

variables
displayed in graphical views 253
instance 210
listed in Entity Locator 26
metrics about 210

reports about 199, 207
as rounded rectangles, in graphical views 245
uninitialized, report about 207
unresolved 26
See also objects
Variables menu, graphical views 253
.vep file extension 57
.vew file extension 57
Version field
Ada 61
FORTRAN 80
Java 83
JOVIAL 85
Pascal 87
Python 91
vertical bar (]) in regular expressions 151
Vertical Non-Crossing layout option 250
VHDL
terminology 91
versions supported 15
vi editor 112
View menu 310
Bookmarks option 154, 166
Browse Mode option 160
Contextual Information option 156
Entity Locator option 26, 148
Favorites option 27, 136
Fold All option 163
Hide Inactive Lines option 163
Information Browser 125
Last Parse Log option 115
Project Browser option 130
Scope List option 159
Soft Wrap option 165
Window Selector option 153
Zoom option 158, 167
View Reports option, Reports menu 194
View SciTools Blog option, Help menu 16
views. See declaration views; graphical views;
hierarchical views
violations
checking for 262
ignoring 270
Visio files, saving graphical views as 256
-visit option, understand command 306
Visit Source field, Browse Mode Editor options 111
Visual C++, as editor 112

335 Understand 3.0 User Guide and Reference Manual

Index

Visual Studio

as external editor 112

files, synchronizing with Understand project 37, 57
Visual Studio category, Project Configuration dialog 57

W

-wait option, understand command 306
warnings, displaying from Parse Log window 115
watched directories
scanning 46, 50
setting 44, 45
Web category, Project Configuration dialog 92
Web support 15
websites
external editor information 112
metrics, list of 205, 209, 214, 215
O'Reilly and Associates 152
Scientific Toolworks 15
SciTools forum 196
white file icon 159
whitespace
in Entity Comparison area 281
indicators for 106
Whitespace field, Editor options 106
wild cards, in filters for Entity Locator 150
%WINDIR% environment variable 22
Window menu 152, 314
Close All Document Windows option 152, 162
Close option 152, 162
Entity Graph option 233
Windows option 153
Window Selector option, View menu 153
windows 18, 20
animated opening and closing of 96
closing 18
creating with Ctrl+right-click 23, 121
docking and undocking 18
docking layout for 97
filenames in title area of 97
frames in, sliding 18
graphs in, reusing 99
list of 122
list of open windows 153
organizing 152
reusing for graphical views 236
reusing with right-click 23, 121

tabs for, displaying 96
Windows category, User Interface options 99
Windows CE project 57
Windows CE workspace 57
Windows folder 22
Windows line termination style

for reports 193

for saving source files 106
Windows option, Window menu 153
With Bys menu, graphical views 253
With Tree report 204
With View 237
WithBy View 237
Withs menu, graphical views 253
Withs Not Needed report 208
WMC (Count of Methods) metric 210
workbench file 57
working directory, default 95
workspace file 57
Wrap Long text option 253
Wrap Medium text option 253
Wrap Mode field, Advanced Editor options 108
Wrap Short text option 253
wrapping lines

display 165

printing 108

X

XML Export 178, 189
XML output 225, 226
XML, sharing architectures using 189

Y

yellow background for text 111
yellow project file icon 159

Z

Zoom option, View menu 158, 167
zooming

graphical views 234

source views 158

Understand 3.0 User Guide and Reference Manual

336

	Understand 3.0 User Guide and Reference Manual
	Contents
	Chapter 1 Introduction
	What is Understand?
	Licensing Issues
	Languages Supported
	For Those Who Don’t Like to Read Manuals

	Chapter 2 Parts and Terminology
	Using Understand Windows
	Understand Terminology
	Parts

	Starting Understand
	Other Ways to Run Understand

	Context Menus Are Everywhere
	Quickly Find Things in Your Source
	Entity Filter
	Entity Locator
	Instant Search
	Find in Files
	Favorites

	Information Browser
	Source Editor
	Architecture Browser
	Graphical Views
	ASCII and HTML Reports
	APIs for Custom Reporting

	Chapter 3 Configuring Your Project
	About Understand Projects
	The Understand Project Database

	Creating a New Project
	New Project Wizard

	Project Configuration Dialog
	Languages Category
	Files Category
	Adding Directories
	Adding Files
	Removing Directories and Files
	Setting Overrides
	Scanning Watched Directories
	Setting File Portability

	File Types
	File Options
	Scheduled Activities
	Metrics
	Metrics > Selected Category

	Reports
	Reports > Output Category
	Reports > Options Category
	Reports > Selected Category

	Visual Studio
	Annotations
	Ada Options
	Ada > Macros Category

	Assembly Options
	COBOL Options
	COBOL > Copybooks Category

	C++ Options
	C++ > Includes Category
	C++ > Includes > Auto Category
	C++ > Includes > Ignore Category
	C++ > Includes > Replacement Text
	C++ > Macros Category
	C++ > Macros > Undefines Category

	C++ (Strict) Options
	C++ (Strict) > Includes Category
	C++ (Strict) > Includes > Frameworks Category
	C++ (Strict) > Includes > Prefix Headers Category
	C++ (Strict) > Macros Category

	C# Options
	FORTRAN Options
	Fortran>Includes Category
	Other Fortran Categories

	Java Options
	Java > Class Paths Category

	JOVIAL Options
	Jovial > !Copy Category

	Pascal Options
	Pascal > Macros Category
	Pascal > Namespaces Category
	Pascal > Standard Library Paths Category
	Pascal > Search Paths Category

	PL/M Options
	PL/M>Includes Category

	Python Options
	Python > Imports Category

	VHDL Options
	Web Options
	Setting General Preferences
	General Category
	User Interface Category
	User Interface > Lists Category
	User Interface > Alerts Category
	User Interface > Windows Category
	Key Bindings Category
	Analyze Category
	Configure Category
	Command Window Category
	Portability Category
	Dependency Category
	Editor Category
	Editor > Advanced Category
	Editor > Styles Category
	Editor > Navigation Category
	Editor > External Editor Category
	Graphs Category

	Analyzing the Code
	Using the Missing Header Files Tool
	Using the Undefined Macros Tool

	Converting an Understand 1.4 Project

	Chapter 4 Exploring Your Codebase
	PLEASE RIGHT CLICK
	Various Windows Explained...
	Entity Filter
	Using the Filter Field
	Customizing the Display
	Root Filters

	Information Browser
	Drilling Down A Relationship
	Displaying More or Less Information
	Searching the Information Browser
	Syncing the Information Browser
	Visiting Source Code
	Visiting References
	Viewing Metrics
	Saving and Printing Information Browser Text
	Entity History

	Project Browser
	Exploring a Hierarchy
	Dependency Browser
	Favorites
	Creating a Favorite Entity
	Creating a Favorite View
	Using a Favorites Group
	Creating a Plain Text Favorite

	Chapter 5 Searching Your Source
	Searching: An Overview
	Instant Search
	Find in Files
	Find Results
	Replace in Files

	Entity Locator
	Resizing Columns
	Long versus Short Names
	Column Headers
	Choosing Columns
	Filtering the List

	Finding Windows
	Source Visiting History
	View Menu Commands
	Displaying Toolbars

	Searching in a File
	Find Next and Previous
	Find & Replace
	Contextual Information Sidebar

	Chapter 6 Editing Your Source
	Source Editor
	Scope List
	Status Icons
	Status Line
	Selecting and Copying Text
	Browse Mode
	Context Menu
	Hover Menu

	Saving Source Code
	Other Editing Features
	Bracket Matching
	Folding and Hiding
	Splitting the Editor Window
	Commenting and Uncommenting
	Fixing Indentation
	Changing Case
	Line Wrapping
	Insert and Overtype Modes
	Sorting Lines Alphabetically
	Keyboard Commands
	Recording and Replaying Macros
	Creating and Opening Files
	Bookmarking
	Managing Source Editor Tabs
	Changing the Source Code Font Size

	Annotations
	Adding an Annotation
	Editing an Annotation
	Deleting an Annotation
	Managing Annotation Files and Display
	Searching Annotations
	Filtering Annotations
	Managing Orphaned Annotations

	Printing Source Views

	Chapter 7 Architecting Your Codebase
	About Architectures
	Using the Architecture Browser
	Exploring Architectures

	Viewing Architecture Dependency Graphs
	Graph Customizer Toolbar
	Graph Customizer Fields

	Viewing Architecture Metrics
	Managing Architectures
	Creating an Architecture
	Using the Architecture Wizard

	Building an Architecture
	Using XML to Manage Architectures
	Exporting Architectures to XML
	Importing XML Architectures

	Chapter 8 Using Reports
	Configuring Reports
	Customizing Report Colors

	Generating Reports
	Viewing Reports
	An Overview of Report Categories
	Augment with the PERL or C API

	Cross-Reference Reports
	Data Dictionary Report
	Program Unit Cross- Reference Report
	File Contents Report
	Object Cross- Reference Report
	Type Cross-Reference Report
	Class and Interface Cross-Reference
	Macro Cross- Reference
	Include File Cross- Reference
	Exception Cross- Reference Report

	Structure Reports
	Declaration Tree
	Class Extend Tree
	Invocation Tree Report
	Simple Invocation Tree Report
	With Tree Report
	Simple With Tree Report
	Generic Instantiation Report
	Renames Report
	Import Report

	Quality Reports
	Program Unit Complexity Report
	FORTRAN Extension Usage Report
	Implicitly Declared Objects Report
	Uninitialized Items
	Unused Variables and Parameters
	Unused Objects Report
	Unused Types Report
	Unused Program Units Report
	Uses Not Needed Report
	Withs Not Needed Report

	Metrics Reports
	Project Metrics Report
	Class Metrics Report
	Class OO Metrics Report
	Program Unit Metrics Report
	File Metrics Report
	File Average Metrics Report

	Chapter 9 Using Metrics
	About Metrics
	Metrics Summary
	Metrics Browser
	Exporting Metrics to HTML
	Exporting Metrics to a CSV File
	Configuring Metric Charts
	Using the Metrics Treemap
	Exporting Dependency Metrics
	Exporting Dependencies to a CSV File
	Exporting Dependencies to a CSV Matrix File
	Exporting Dependencies to Cytoscape

	Chapter 10 Using Graphical Views
	Project Overview Graphics
	Graphical View Browsers
	Hierarchy Views
	Structure Views
	General Commands for Using Graphical Browsers
	Filtering Out Entities
	Reuse Checkbox
	Sync Checkbox
	Graph Options

	Types of Views
	Hierarchy View Types
	Hierarchy View Examples
	Structure View Types
	Structure View Examples

	Graphical Notation
	Controlling Graphical View Layout
	Called by Menu
	Constants Menu
	Default Members Menu
	Dependent Of Menu
	Dependent Menu
	Depth
	Duplicate Subtrees Menu
	Expand Recursive Notes
	Expand Repeated Notes
	Extended By Menu
	Extends Menu
	External Functions Menu
	Filename Menu
	Function Pointer Menu
	Globals Menu
	Implements Menu
	Implemented By Menu
	Imports Menu
	Included By Menu
	Includes Menu
	Inherits Menu
	Inherited By Menu
	Intrinsic Menu
	Invocations Menu
	Layout Menu
	Level Menu
	Locals Menu
	Members Menu
	Name Menu
	Objects Menu
	Operators Menu
	Parameters Menu
	Private Members Menu
	Protected Members Menu
	Public Members Menu
	Renames Menu
	Routines Menu
	Scale Menu
	Sort Menu
	Spacing Menu
	Sql Menu
	Static Menu
	Text Menu
	Types Menu
	Typetext Menu
	Unknown Menu
	Unresolved Menu
	Usedby Menu
	Uses Menu
	Variables Menu
	Withs Menu
	With Bys Menu

	Controlling Cluster Graph Layout
	Saving Graphical Views
	Saving Views to Files
	Saving Views as Visio Files
	Saving Views as DOT Files

	Printing Graphical Views
	Graphical View Printing

	Chapter 11 Using CodeCheck for Standards Verification
	About CodeCheck
	Running a CodeCheck
	Files Tab
	Checks Tab

	Viewing CodeCheck Results
	Using the Result Log
	Using the Results by File Tab
	Using the Results by Check Tab
	Using the Result Locator
	Using the Result Treemap
	Printing and Exporting Results
	Ignoring Checks and Violations

	Using CodeCheck Configurations
	Writing CodeCheck Scripts
	Installing Custom Scripts

	Chapter 12 Comparing Source Code
	Comparing Files and Folders
	Comparing Entities
	Comparing Text
	Exploring Differences
	Code Comparison
	Patch File
	Difference List

	Chapter 13 Running Tools and External Commands
	Configuring Tools
	Variables

	Adding Tools to the Context Menus
	Adding Tools to the Tools Menu
	Adding Tools to the Toolbar
	Importing and Exporting Tool Commands
	Running External Commands

	Chapter 14 Command Line Processing
	Using the und Command Line
	Getting Help on Und
	Creating a New Project
	Adding Files to a Project
	Removing Items from a Project
	Getting Information about a Project
	Modifying Project Settings
	Importing into a Project
	Exporting from a Project
	Analyzing a Project
	Generating Reports
	Generating Metrics
	Using CodeCheck
	Running Perl Scripts
	Creating a List of Files

	Using the understand Command Line
	Using Buildspy to Build Understand Projects

	Chapter 15 Quick Reference
	File Menu
	Edit Menu
	Search Menu
	View Menu
	Project Menu
	Reports Menu
	Metrics Menu
	Graphs Menu
	CodeCheck Menu
	Annotations Menu
	Tools Menu
	Window Menu
	Help Menu

	Index

