/* * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. * * SPDX-License-Identifier: BSD-3-Clause */ #include "pico.h" #include "hardware/irq.h" #include "pico/asm_helper.S" pico_default_asm_setup #if !PICO_DISABLE_SHARED_IRQ_HANDLERS .data .align 2 .global irq_handler_chain_slots .global irq_handler_chain_first_slot .global irq_handler_chain_remove_tail // // These Slots make up the code and structure of the handler chains; the only external information are the VTABLE entries // (obviously one set per core) and a free list head. Each individual handler chain starts with the VTABLE entry I // pointing at the address of slot S (with thumb bit set). Thus each slot which is part of a chain is executable. // // The execution jumps (via branch instruction) from one slot to the other, then jumps to the end of chain handler. // The entirety of the state needed to traverse the chain is contained within the slots of the chain, which is why // a VTABLE entry is all that is needed per chain (rather than requiring a separarte set of head pointers) // irq_handler_chain_slots: .set next_slot_number, 1 .rept PICO_MAX_SHARED_IRQ_HANDLERS // a slot is executable and is always 3 instructions long. #ifndef __riscv .hword 0 // inst1 (either: ldr r0, [pc, #4] or for the FIRST slot: add r1, pc, #0 ) .hword 0 // inst2 ( blx r0 b irq_handler_chain_first_slot ) .hword 0 // inst3 (either: b next_slot or for the LAST pop {pc} ) #else .word 0 // inst1 (either: lui ra, %hi(handler) or for the FIRST slot: jal t0, irq_handler_chain_first_slot) .word 0 // inst2 (either: jalr ra. %lo(handler)(ra) .word handler ) .hword 0 // inst3 (either: j next_slot or for the LAST slot: cm.popret {ra}, 16 ) #endif // next is a single byte index of next slot in chain (or -1 to end) .if next_slot_number == PICO_MAX_SHARED_IRQ_HANDLERS .byte 0xff .else .byte next_slot_number .endif // next is the 8 bit unsigned priority .byte 0x00 1: // and finally the handler function pointer for Arm: #ifndef __riscv .word 0x0000000 #endif .set next_slot_number, next_slot_number + 1 .endr irq_handler_chain_first_slot: #ifndef __riscv push {r0, lr} // Save EXC_RETURN token, so `pop {r0, pc}` will return from interrupt // Note that r0 does not NEED to be saved, however we must maintain // an 8 byte stack alignment, and this is the cheapest way to do so ldr r0, [r1, #4] // Get `handler` field of irq_handler_chain_slot adds r1, #1 // r1 points to `inst3` field of slot struct. Set Thumb bit on r1, mov lr, r1 // and copy to lr, so `inst3` is executed on return from handler bx r0 // Enter handler #else .insn 0xb842 // cm.push {ra}, -16: Save ultimate return address add ra, t0, 4 // Set up function call to return to offset 8 of the slot lw t0, (t0) // Load pointer from offset 4 of the slot jr t0 // Call it, with our calculated return address #endif irq_handler_chain_remove_tail: #ifndef __riscv mov r0, lr // Get start of struct. This function was called by a bl at offset +4, subs r0, #9 // so lr points to offset +8. Note also lr has its Thumb bit set! ldr r1, =irq_add_tail_to_free_list blx r1 pop {r0, pc} // Top of stack is EXC_RETURN #else add a0, ra, -10 // Expect to be called with a 16-bit jal, at 8-byte offset in the slot. call irq_add_tail_to_free_list .insn 0xbe42 // cm.popret {ra}, 16 #endif #endif