
Source-Navigator™
Reference Guide

GNUPro 2001

Copyright © 1997-2001 by Red Hat®, Inc. All rights reserved.
Red Hat, the Red Hat Shadow Man logo®, GNUPro®, Source-Navigator™, and Insight™ are
trademarks of Red Hat, Inc.
Linux® is a registered trademark of Linux Torvalds.
Sun Microsystems® and Java™ are trademarks of Sun Microsystems, Inc.
AT&T® is a registered trademark of AT&T, Inc.
UNIX® is a registered trademark of The Open Group.
All other brand and product names, trademarks, and copyrights are the property of their
respective owners.
Permission is granted to make and distribute verbatim copies of this documentation,
provided the copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this documentation under
the conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this documentation into another
language, under the above conditions identical to this one.
While every precaution has been taken in the preparation of this documentation, the
publisher assumes no responsibility for errors or omissions, or the damages resulting from
the use of the information within the documentation.

Certain portions of this product are copyrighted as follows:
Copyright © 1987-1994 The Regents of the University of California.
Copyright © 1993-1996 Lucent® Technologies.
Copyright © 1994-1998 Sun Microsystems, Inc.
Copyright © 1998-1999 Scriptics® Corporation.
Permission is hereby granted, without written agreement and without license or royalty
fees, to use, copy, modify, and distribute this software and its documentation for any
purpose, provided that the above copyright notice and the following two paragraphs appear
in all copies of this software. IN NO EVENT SHALL THE UNIVERSITY OF
CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
SOFTWARE PROVIDED HEREUNDER IS ON AN “AS IS” BASIS, AND THE
UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
ii ■ Reference Guide Red Hat Source-Navigator

c
Certain portions of this product are copyrighted as follows:

Copyright © 1993 AT&T Bell® Laboratories
Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear
in all copies and that both that the copyright notice and warranty disclaimer appear in
supporting documentation, and that the names of AT&T Bell Laboratories any of their
entities not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. AT&T disclaims all warranties with regard to
this software, including all implied warranties of merchantability and fitness. In no event
shall AT&T be liable for any special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether in an action of contract,
negligence or other tortuous action, arising out of or in connection with the use or
performance of this software.

RCS is copyrighted by Walter Tichy and Paul Eggert. Distributed under license by the Free
Software Foundation, Inc.

CVS is copyrighted by Signum Support AB and distributed under “GNU General Publi
License.”
Red Hat Source-Navigator Reference Guide ■ iii

How to Contact Red Hat
How to Contact Red Hat
Red Hat Corporate Headquarters

2600 Meridian Parkway
Durham, NC 27713 USA
Telephone (toll free): +1 888 REDHAT 1 (+1 888 733 4281)
Telephone (main line): +1 919 547 0012
Telephone (FAX line): +1 919 547 0024
Website: http://www.redhat.com
iv ■ Reference Guide Red Hat Source-Navigator

http://www.redhat.com

Contents

How to Contact Red Hat...iv

Introduction...1

About this Guide..2
Document Conventions ..2
Mouse Conventions ..2
Keyboard Conventions ...3

Part I: User’s Guide

Using the Project Editor ...7

Project Editor ...7
Adding Files to a Project ..8
Adding Directories to a Project ..9
Adding Another Project to a Project ..9
Using Views ...10
Hiding Files from a View...10
Unloading Files from a Project...11
Statistics for a Project...11
Closing the Project Editor ..11
Closing Projects..11
Deleting Projects ..11
Importing Files and Directories into a Project11
Red Hat Source-Navigator Reference Guide ■ v

General Source-Navigator Features..13

Menus ..13
History Menu..13
Windows Menu ..14
Help Menu ..14

Symbol and Type Abbreviations ...15
General Window Features ...16

Adding a Browser to an Existing Window.................................16
Reusing Windows...18
Preserving Context Between Windows18
Adjusting Column Width Size ...19

Using Filters...19
Symbol Selectors ..19
Pattern Box ...20

Printing from Source-Navigator ..21
Print Dialog ..21

Customizing Source-Navigator ..25

Preferences Dialog...25
General Project Preferences ...26

Symbol Browser ..37

Using the Symbol Browser..38
Toolbar Buttons ..38
Symbol Filters ..40
Column Filters ..41

Editor ...45

The Editor Window ...45
Symbol Accelerator Combo-box..46
Find Box ...47
Pattern Searching..47
View History ..49
Search Menu...49
Editor Preferences ..51

Using Emacs as your Editor ..54
To Start a New Emacs Process...54
To Communicate with an Already Running Emacs Process......55

Hierarchy Browser..57

Using the Hierarchy Browser ..57
Tools Menu...58
vi ■ Reference Guide Red Hat Source-Navigator

Class/Hierarchy Preferences...59
Hierarchy Browser Shortcut Keys..60

Class Browser ..61

Using the Class Browser..61
Class Name...62
Member List ...62
Inheritance Tree..62
Member List Filter Dialog..63
Scope Selector ..64

Cross-Reference Browser ...65

Using the Cross-Reference Browser..66
Cross-Reference Filter..67
Cross-Reference Browser Details...67
Cross-Reference Preferences..69

Include Browser ..73

Using the Include Browser ..73
Reducing Displayed Information ...74
Include Preferences ..75

Retriever ..79

Using the Retriever ..79
Retriever Filter..81

Retriever with the Cross-Reference Browser81

Grep..83

Using Grep...83
GNU Regular Expressions...85

Ordinary Characters..85
Special Characters ..86
Predefined Sets of Characters...87
Repetition ...87
Escape Sequences...88

Version Control Systems...91

Using Version Control ...91
Checking Out a File..92
Checking In a File ..93
Discarding Changes to a File..93
Show Differences ...93

Version Control Preferences ..94
Red Hat Source-Navigator Reference Guide ■ vii

Building Programs ..97

The Building Process...97
make ...98
Build Targets..99

Creating a New Build Target..99
Modifying Build Targets ..99
Editing a Target ..100

Compiling Build Targets..109
Modifying the Build ...111

Build Tutorial... 114
Creating the Project ..114
Creating the monop Target ..115
Creating the initdeck Target ..123

Command Line Options ...131

Example: Creating a New Project in devo-files132
Example: Creating a New Project in the Current Directory.....132
Example: Auto-Create Dialog ..132

Part II: Programmer’s Guide

Introduction...135

Software Development Kit ..136

Customization..137

The profile File ...137
Configurable Settings ...137

The rc.tcl Start-up File ...138
Adding Events to the rc.tcl File ..139
Changing Functionality Within the Symbol Browser140
Adding Menus and Submenus..141
Changing Functionality Within the Editor144

Error Formats...148

Predefined Language Conventions..149

Predefined Parsers ...149
The C and C++ Parser ..150
The FORTRAN Parser ...150
The COBOL Parser ..150
The Tcl and [incr Tcl] Parser ...150
The Java Parser...150
The PowerPC Assembly Parser..150
viii ■ Reference Guide Red Hat Source-Navigator

Adding Parsers ..153

The Parser Toolbox Library...155
Project Database Calls ...156
sn_insert_symbol...157
sn_insert_xref...159
sn_insert_comment...161

Integration with Source-Navigator ..162

Database API ...163

Introduction..163
Structure...164
Views ...165

Using Views ...166
Cross-Reference Tables ...166
Tcl API Functions ..168
dbopen for Tcl ..168
Methods ..170

Fetching Tables ..172
Fetch Methods ..173

C Programming API Functions ...175
dbopen for C ...176
btree Database Access Method...179
Hash Database Access Method ..181
Simple Query Tool ...183

Database Table Structures..184
Database API Program Examples..185
Database Application Examples ..188

Scripts ...188

Database Utilities...191

dbdump..191
dbcp ...192
dbimp..192

Limitations..193

Integrating with Version Control Systems..................................195

Basics ...195
Version Control Operations ...196

The Configuration File ...196
Patterns ...202
Red Hat Source-Navigator Reference Guide ■ ix

Replacements..203
Scripts ...203

Interapplication Communication ..205

The Tk send Command ...205
Multiple Source-Navigator Interpreters206

Index...209
x ■ Reference Guide Red Hat Source-Navigator

e
Introduction

As was described in the Getting Started Guide, the GNUPro® Toolkit is made up of
several components, including Source-Navigator™.

If you are familiar with the basics of Source-Navigator and are looking for additional
details on using it to develop and manage your source code, see Part I: “User’s Guide”
on page 5. If you want to do your development work from the command line, see
“Command Line Options” on page 131.

In addition to the languages supported in this distribution, you can use the
Source-Navigator Software Development Kit (SDK) to add new parsers for new
programming language or customize the graphical user interface (GUI). For mor
information, see Part II: “Programmer’s Guide” on page 133.
Red Hat Source-Navigator Reference Guide ■ 1

About this Guide

About this Guide
This document serves as a reference to Source-Navigator GUI elements, tools, and
functionality. Part I provides more detailed information than was included in the
Getting Started Guide, and discusses why you might choose one option over another
when a choice is available to you. Part II provides information on customizing
Source-Navigator, using the SDK.

Document Conventions
This documentation uses the following general conventions:

Italic Font
Indicates a new term that will be defined in the text and items called out for
special emphasis.

Bold Font
Represents menus, window names, and tool buttons.

Bold Italic Font
Denotes book titles, both hardcopy and electronic.

Plain Typewriter Font
Denotes code fragments, command lines, contents of files, and command
names; also indicates directory, file, and project names when they appear in
body text.

Italic Typewriter Font
Represents a variable for which an actual value should be substituted.

Bold Typewriter Font
Represents program output.

Menu names and their submenus are separated by an arrow (→). For example,
File → Open means from the File menu, select Open from its submenu.

Paths are written in UNIX notation (forward slashes) throughout; ~/bin means the
directory Source-Navigator is installed into, subdirectory bin.

Mouse Conventions
The following are conventions for using the mouse with Source-Navigator:

Click Place the cursor on a specified object and press the left mouse
button. The term “click” alone always means left-click.

Double-click Click the left mouse button twice in rapid succession without
moving the mouse.
2 ■ Reference Guide Red Hat Source-Navigator

About this Guide
Keyboard Conventions
You can use the keyboard to activate many of the functions displayed on the toolbar
and in the menus.

Holding down the Alt key while pressing S is represented as Alt+S. To open a
command in the menu bar, press the Alt key plus the underlined letter of the menu.

Right-click Place the cursor on a specific object and click the right mouse
button.

Select text Click and drag the cursor through text (or code) to be selected.
Selected text is highlighted.
Red Hat Source-Navigator Reference Guide ■ 3

About this Guide
4 ■ Reference Guide Red Hat Source-Navigator

Part I:
User’s Guide
Red Hat Source-Navigator Reference Guide ■ 5

6 ■ Reference Guide Red Hat Source-Navigator

ou
Using the Project Editor

You learned how to create basic Source-Navigator projects in the “Starting a New
Project” section in the Getting Started Guide. In this documentation, you will learn to
use the Project Editor to fine-tune your projects.

Project Editor
The Project Editor enables you to add, hide, and unload files from your project. Y
can also use it to create and change views. To open the Project Editor, from the File
menu, select Project Editor.

1

Red Hat Source-Navigator Reference Guide ■ 7

Project Editor

ill
same
ve
Figure 1: Project Editor Window

Select an option from Display project files as to change the layout of the files and
directories in the Project Editor window; Tree is the default layout.

The Project File text box contains a file path; the directory that your project file is
located in is your project directory. From now on, every non-absolute path will be
relative to this directory. If you would like to choose a different path, click the “...”
button. You can change the path only when creating a project.

NOTE If the source code included in the project is in a read-only directory, you w
not be able to create the project and corresponding database files in the
directory as your source files. You must choose a directory where you ha
write permission for the project file and the database files.

Adding Files to a Project
To add source files to a project, click the Add Files button. The Open dialog appears.
8 ■ Reference Guide Red Hat Source-Navigator

Project Editor
Figure 2: Dialog for Adding Files to a Project

You can filter files based on the Files of type menu. All files (*) is chosen by default.
Select the source files to be added to the project and click the Open button.

Adding Directories to a Project
The Add Directory button allows you to add directories and their entire contents to
your project.

Figure 3: Dialog for Adding Directories to a Project

Select the directory you want to add and click OK. You can add as many directories as
you wish, but you must add them one at a time.

Adding Another Project to a Project
The Add Project button allows you to import another Source-Navigator project and
all of its files into your current project.
Red Hat Source-Navigator Reference Guide ■ 9

Project Editor
Figure 4: Dialog for Adding Another Project to a Project

This is the same Open dialog as when you clicked on the Add Files button, except
that Project files (*.proj) is the default in the Files of type field. To see all files in the
directory, choose All files (*). Click on the project from which you want to import
files.

Using Views
Views show a partial set of project files. For example, one view might be set to show
only database-specific files from a project, while another one shows the GUI
components in the project. You may hide specific files in one view and show these
hidden files in other views.

Creating views
Enter the name of the new view in the View text box and click OK. This creates the
new view and closes the Project Editor. The next time you open the Project Editor,
this view will be the default view in the View selection box.

Selecting another view
To select an existing view, click the down arrow to the right of the View text box. A
pulldown list of views appears. Select the view you wish to see.

Hiding Files from a View
The Hide button allows you to hide files from the current view, but does not delete
them from the project or the file system. Hiding files is convenient when there are
many files in a view, but you are only interested in seeing a subset.

Hide files or directories by clicking on a file or directory in the file system tree view of
the Project Editor, and click the Hide button. A new folder named Hidden appears
and the hidden files and directories are placed into this folder. To make the hidden
items visible again, select the hidden file or directory and click the View button.
10 ■ Reference Guide Red Hat Source-Navigator

Project Editor

e
ort

e
Unloading Files from a Project
The Unload button allows you to remove files from a project, but not from your hard
drive. To remove files from a project, select the files from the Project Editor window
and click the Unload button.

Statistics for a Project
The Statistics button allows you to view the number of symbols (such as classes,
methods, and functions) in a file. In the Name text box, select a file and click the
Statistics button. The statistics for the file are displayed. Click Close to close the
Statistics window.

Closing the Project Editor
When you’re finished working with the Project Editor, click OK.

Closing Projects
To close a project, from the File menu, select Close Project. Closing a project:
■ closes all tools used while working on the project or a project view.
■ closes all database files for the project.
■ brings up the Projects window, if no other projects are open.

Deleting Projects
To delete a project while using the Symbol Browser, from the File menu, select
Delete Current Project. To delete a project from another browser, from the File
menu, select Project → Delete Current Project. The project file and other project
database files are deleted. All source files and directories remain unchanged.

Importing Files and Directories into a Project
As an alternative to using the Project Editor to select source code directories for th
new project, you can collect file and directory names into a separate file and imp
this file into Source-Navigator. You can also use the find command to generate this
list.

To import files or directories, start Source-Navigator with the import option. At the
command line, type:
snavigator -import filename

The project directory is the current working directory, and filename must be a file or
directory, one per line (the Include Browser uses the directory names). A sample fil
for import follows:
chk.h
chk.c
Red Hat Source-Navigator Reference Guide ■ 11

Project Editor
hello.h
/usr/tuxedo/src/main.c
/usr/tuxedo/src/read.c
/home/scribbles/tcp/call.c
/usr/local/include
/tmp

For more information on using Source-Navigator from the command line, see
“Command Line Options” on page 131.
12 ■ Reference Guide Red Hat Source-Navigator

ach
General Source-Navigator
Features

This chapter builds on the basic information in the Getting Started Guide and
provides details about the most commonly used features of Source-Navigator.

Menus
The File, Edit, Search, and Tools menus appear in all windows, however they are
context-sensitive: the options available from the menus change depending upon which
tool you’re using. The History, Windows, and Help menus, however, are more
general and offer the same options within each tool.

History Menu
The History menu enables you to repeat queries and restore previous states of e
browser’s view of your project.

2

Red Hat Source-Navigator Reference Guide ■ 13

Menus
Figure 5: History Menu

Windows Menu
The Windows menu contains the tools available in Source-Navigator.

Figure 6: Windows Menu

To add a new tool in a view, from the Windows menu, select New View. To add a
tool to your current window, from the Window menu, select Add View. To change to
a currently running instance of a tool, from the Windows menu, select Open Views.

Help Menu
The Help menu provides help for Source-Navigator.

Creates new
window

Creates new,
split-screen
window
14 ■ Reference Guide Red Hat Source-Navigator

Symbol and Type Abbreviations

ype

Figure 7: Help Menu

Online Manuals contains an HTML version of the current documentation.
Abbreviations opens the Abbreviations dialog, which displays a list of abbreviations
Source-Navigator uses in its browsers. For more information see “Symbol and T
Abbreviations” below. About Source-Navigator displays copyright and version
information about Source-Navigator.

Symbol and Type Abbreviations
Source-Navigator uses the following abbreviations in its browsers. This dialog is
accessible from the Help menu by selecting Abbreviations.
Red Hat Source-Navigator Reference Guide ■ 15

General Window Features
Figure 8: Abbreviations Dialog

General Window Features
You may reuse Source-Navigator windows and adjust the window column size. The
status line, located at the bottom of a window, shows information such as the number
of lines of source code and the current directory.

Adding a Browser to an Existing Window
If you find yourself often using two Source-Navigator tools simultaneously, you can
combine them into one window. This keeps you from constantly switching between
windows, and allows you to see both tools at the same time.
16 ■ Reference Guide Red Hat Source-Navigator

General Window Features
For instance, if you have a class open in the Cross-Reference Browser and you want
to bring up an Editor to see the same class, but you want to continue to see the
cross-references, from the Windows menu select Add View → Editor, and an Editor
appears in the same window. Depending upon your settings in the Project
Preferences dialog (see page 28), the new Editor appears either at the bottom of the
window (Vertical) or on the right side of the window (Horizontal).

Figure 9: Vertical Windows

Cross-

Editor

Resize
Pane
Box

Reference
Browser
Red Hat Source-Navigator Reference Guide ■ 17

General Window Features

Figure 10: Horizontal Windows

As you click on symbols in the Cross-Reference Browser, those symbols appear in
the Editor.

Reusing Windows
When the Reuse button in the window status line is selected, a new view is displayed
in the current window when you change to another tool. When the Reuse button is
deselected, when you change to another tool, a new window opens.

Figure 11: Reuse Button Selected

For example, with Reuse deselected, double-clicking a symbol to display its symbol
definition opens a new Editor window. Your previous Editor window remains
unchanged. Reuse is selected by default.

Preserving Context Between Windows
Selecting the Context button from a window’s status line preserves the context of a
selected symbol when you switch between tools. If Context is deselected, the new
tool opens to the default or empty condition.

Cross- Editor

Resize
Pane
Box

Reference
Browser
18 ■ Reference Guide Red Hat Source-Navigator

Using Filters
Figure 12: Context Button Selected

For example, if a particular class is selected in the Editor, the same class is displayed
when you change to the Class Browser. Context is selected by default. When
Context is not selected, the Class Browser opens with whatever was previously
displayed.

Adjusting Column Width Size
The column dividers allow you to adjust the width of columns on the screen. You can
adjust the size of a column by moving your cursor over the divider until the left-right
arrows appear, then clicking and dragging the column divider to the desired position.

Figure 13: Adjusting Column Width

Using Filters
Source-Navigator provides several ways to filter the symbols displayed in the Symbol
Browser. You can:
■ use the List Filter buttons (see page 39).
■ use the Symbol Selectors from the View menu.
■ use Column Filters (see page 41).

Symbol Selectors
Although the List Filter buttons allow you to search by classes, methods, functions,
and project files, the Symbol Selector provides a more complete list of search
choices. In the Symbol Browser window, from the View menu, select Symbol
Selectors.
Red Hat Source-Navigator Reference Guide ■ 19

Using Filters

bset,

tern.

s
Figure 14: Symbol Selectors Menu

If the Exclusive Search box is selected, you may choose only one symbol type to
search for; if it’s deselected, you may combine symbol types for more complex
searches.

Pattern Box
In large projects, thousands of symbols may be listed in any list view. To list a su
or to restrict a symbol list, use the Pattern search field. When text is typed in this
field, the list updates to show only the symbols or components matching that pat
For instance, when Variables is selected in the Symbol Browser or Symbol
Accelerator, typing *gv* in the Pattern: field shows all global variables in the file or
project. See “Symbol and Type Abbreviations” on page 15 for a list of pattern
abbreviations.

The Pattern text box allows you to search in a tool for a particular pattern. Pattern
are not case sensitive.

Table 1: Pattern Interpretation of Special Characters

Special Character Interpretation in Filter or Pattern Boxes

* Matches any sequence of zero or more characters.

? Matches a single character.

[chars] Matches any single character in chars. If chars
contains a sequence of the form c-x, any character
between c and x inclusive will match.

\? Matches the ? character exactly, avoiding special
interpretation of the character. Also applies to the
following characters: [,], *, ?, and \.
20 ■ Reference Guide Red Hat Source-Navigator

Printing from Source-Navigator
For example, *.[hc] matches all strings with *.C, *.H, *.c, and *.h extensions;
[0-9]* matches all symbols beginning with a number.

With Agent* entered into the Pattern text box, and Classes, Methods, and Files
chosen from the View menu, the results would be as shown in Figure 15.

Figure 15: Symbol Browser Showing Filter Results

To clear the text box for another search, type Ctrl+U.

Printing from Source-Navigator
To print the contents of Source-Navigator browsers, such as the Editor or
Cross-Reference Browser, from the File menu, select Print.

Print Dialog
The print dialog box varies with different printers, printer drivers, and platforms.
Red Hat Source-Navigator Reference Guide ■ 21

Printing from Source-Navigator
UNIX
Figure 16: UNIX Print Dialog

The default command line shown in the Printer command text box is set from the
Others tab of the Project Preferences dialog (see “Others tab” on page 31).

Choose Selection to print only the highlighted portion of the file (if you do not
highlight any part of the file, the entire file is printed).

Choose All to print the entire file.

Windows
Figure 17: Windows Print Dialog

Printer
Name

Choose the name of the desired printer.

Print to file
Check this box to print to a file.

NOTE If you choose Print to file, a dialog box appears after clicking OK. Type the
desired filename (alone or with a path to a specific directory) in the Output
File Name text box and click OK.

If you enter the filename without a path, your file is saved in the same
directory as the project file.
22 ■ Reference Guide Red Hat Source-Navigator

Printing from Source-Navigator
Print range
All

Prints the contents of the entire file.

Copies
Number of copies

Choose the number of copies to print.

Properties
If you click the Properties button, the Document Properties dialog appears.

Figure 18: Document Properties Dialog

The options in this dialog box depend on which printer you have selected, but usually
include paper size, orientation, and duplex printing. For more information on these
options, see your printer documentation.
Red Hat Source-Navigator Reference Guide ■ 23

Printing from Source-Navigator
24 ■ Reference Guide Red Hat Source-Navigator

Customizing Source-Navigator

This chapter describes how to customize Source-Navigator to reflect your preferences.
For additional information on changing the start-up and runtime behaviors, see
“Customization” on page 137.

Preferences Dialog
Use the Preferences dialog to specify project-specific parameters. In the Symbol
Browser, from the File menu, select Project → Project Preferences and enter your
changes in the dialog. Click OK to update the project with the current settings.

NOTE Default values may be transferred from the previously created
project, some options take effect only in new windows, and some
options only take effect the next time the project is opened.

3

Red Hat Source-Navigator Reference Guide ■ 25

Preferences Dialog

you
rt.
Figure 19: Project Tab of the Preferences Dialog

General Project Preferences
Descriptions of the general Preferences tabs (Project, Parser, Others, and Colors &
Fonts) are included in this section. The following tabs are discussed in the relevant
chapters:

Edit see “Editor Preferences” on page 51.

Class/Hierarchy see “Class/Hierarchy Preferences” on page 59.

Xref see “Cross-Reference Preferences” on page 69.

Include see “Include Preferences” on page 75.

Version Control see “Version Control Preferences” on page 94.

Project tab
Project
Read-only project

Select this if the project should be read-only. Default is off.

Refresh project upon startup
Select this when files are likely to be changed by other developers, or when
want to be sure that your database is in sync with your sources when you sta
Default is off.
26 ■ Reference Guide Red Hat Source-Navigator

Preferences Dialog

g a

e of
 of the
e
 is

ur
me

t
e

here

ffect.

t

data

 a
e
emory.
Changing this to on may cause delays when opening your project. For large
source bases that are relatively stable, or where network latency is a problem, set
this to off and periodically, from the Tools menu, select Refresh Project to resync
the database with the source.

Database
Database directory name

Source-Navigator creates all database files under this directory. If the directory
already exists, you will need read and write permissions for it. If you’re creatin
new directory, you will need permission to create it.

The filesystem for this directory must contain free disk space equal to the siz
the source base without cross-references, and up to about ten times the size
source code if you choose to generate cross-references. If you don’t have th
necessary permissions (for example, if it is a read-only filesystem), or if there
insufficient free disk space in your first choice of location, you may create yo
project directory in another location on your network by entering a directory na
with its absolute path.

This option can be changed only when creating a project.

Permissions
These buttons control the read-write permissions for your project: the first se
controls access for the creator of the file, the second set for the group, and th
third for “others” (everyone else on the network).

Build comment database
Select this to store comment strings in the database. Default is off.

Database cache size
Caches improve performance by using memory (fast) instead of disk (slow) w
possible. Larger cache sizes increase the likelihood that data will be found in
memory rather than on disk, though overallocating caches has the opposite e
The operating system will swap the cache to disk and the system will get
dramatically slower. The cache defaults are generous for most projects; don’
increase them without a reason.

This option can be changed only when creating a project.

Enter the database cache size (in kilobytes) or accept the default value.
Source-Navigator creates the project database (in the background) with the
specified cache size. Increasing this amount speeds up project creation and
access, but requires that more memory be allocated to Source-Navigator.

The recommended maximum is the amount of free RAM divided by 16, up to
maximum of four MB. The total of this amount plus the amount allocated to th
cross-reference database cache should not exceed one quarter of the total m

For more details about this parameter, see “dbopen for Tcl” on page 168.
Red Hat Source-Navigator Reference Guide ■ 27

Preferences Dialog

lect

ol,

u

ject

.

.
X-reference (Cross-Reference) database cache size
Enter the Cross-Reference database cache size in kilobytes or accept the default
value. Source-Navigator creates the project cross-reference database with this
cache size. Increasing this amount speeds up cross-reference creation and data
access but requires that more memory be allocated to Source-Navigator.

This option can be changed only when creating a project.

The recommended maximum size is the amount of system memory divided by 32,
up to eight MB. The total of this amount plus the amount allocated to the database
cache should not exceed one quarter of the total memory.

For more details about this parameter, see “dbopen for Tcl” on page 168.

Window
Split Windows

These buttons control where new views appear when you add a view to an
existing window (from the Windows menu, select Add View).

Select Horizontal to have new views appear to the right of the current pane; se
Vertical to have new views appear below the current pane.

New Windows
Selecting Reusable causes new information to appear in the current window;
deselecting it causes a new window to appear when you choose a new symb
tool, or view.

Selecting Keep Context causes new tool windows to be opened to the same
symbol context as the current window; deselecting it causes a new tool to be
empty when opened.

Window size is
This setting controls the size of newly-created Source-Navigator windows. Yo
may also resize the windows after they are created.

Internationalization
Character set encoding

This combo-box allows you to choose the character set encoding for your pro
to match the character set of your source files.

The default character set for English, German, and most other European
languages is ISO8859-1. For Japanese, the default character set is Shift-JIS

Parser tab
Source-Navigator uses plug-in parsers to parse multiple programming languages
Choosing the appropriate parser is based on file extensions.
28 ■ Reference Guide Red Hat Source-Navigator

Preferences Dialog
Figure 20: Parser Tab of the Preferences Dialog

Source-Navigator is pre-configured for the most commonly used file types; these can
be changed and new parsers can be added. For more information on adding parsers,
see “Adding Parsers” on page 153.

After each of the languages is an External Editor text box; you may type in the
executable (shell) command for an external editor, or you may click the “...” button to
browse. If you leave the text box blank, Source-Navigator uses its built-in editor.

Table 2: File Types and Associated Filename Extensions

Parse source files as File Extensions

PowerPC 601 assembly *.asm *.s *.S

C/C++ *.[hHcC] *.[ch]xx *.[ch]pp *.cc *.hh
*.[CH]XX *.[CH]PP *.CC *.HH

Cobol *.cbl *.cob

FORTRAN *.f *.for *.FOR

Java *.java

others *.[ly] *[IMm]akefile *.am *.in *.m4
*.txt

Tcl [incr Tcl] *.tcl *.itcl *.itk *.tk
Red Hat Source-Navigator Reference Guide ■ 29

Preferences Dialog

hen

and

de

 in a

ce
Macro processing
Macros make the task of source code analysis more complicated, and there is no single
right way to handle them. By default, Source-Navigator treats them as opaque
symbols and, aside from recording where they are defined, it ignores them completely.
This behavior not only makes parsing substantially faster than true compilation, but it
also preserves the layer of source code abstraction that is presented in the Editor. This
behavior is particularly useful when maintaining software that must run on multiple
platforms, and you would like to see all of the impacts that a change might have,
regardless of a macro’s platform definition.

For some projects and/or tasks, this layer of abstraction is a barrier to code
comprehension. For these cases, you can direct Source-Navigator to define and
expand macros in one of four ways:
■ define

define is used to insert a symbol into Source-Navigator’s preprocessor
namespace. If you define FOO (or #define FOO, the leading # is optional),
then conditionals that test #ifdef/#ifndef are scanned according to the
#ifdef/#ifndef test. FOO will be replaced with the empty string.

define can also be used to give a symbol a value (such as define FOO BAR).
This will not only inject the symbol into the namespace, but will cause
Source-Navigator to scan BAR whenever it sees the FOO macro. This is
particularly useful for DEFUN or PROTO macros that are used to bridge between
K&R and ANSI C at the source code comprehension level. It is also useful w
macros test numerical results, such as #if (X >= Y) or #if X.

define macros can take arguments, just as in C and C++, and they can exp
recursively. For example, FOO might expand to BAR (5) which might then
expand to mumble (5, 5, 0); in this case Source-Navigator would only see
mumble (5, 5, 0).

■ replace
replace is just like define, except that the symbol is not injected into the
namespace. Thus, if you want to expand macros, but not have conditional co
compiled away, use replace.

The macro processor does not support include, token concatenation, ANSI
stringification, or other pre-processor directives. These may be implemented
future release.

■ delete
Source-Navigator lets you use more than one macro file in a project. You can
specify a macro in one file and then delete it from the preprocessor namespa
using delete in a second macro file.

■ undef
undef doesn’t do any substitution, it just affects the evaluation of #if, #ifdef,
and #ifndef statements.
30 ■ Reference Guide Red Hat Source-Navigator

Preferences Dialog
Defining and using macro files
Source-Navigator parses, but does not interpret, macro definitions in your project
files. It only interprets macro definitions from files you specify explicitly in the parser
preferences of your project. Because multiple files may be specified, you may want to
organize your macro files according to global, per-user, and per-project divisions.
This order is important, because Source-Navigator uses the last encountered definition
for the macro.

Macro files are ASCII files and every non-blank line is a macro directive. Leading
blanks and # characters are stripped, and if the first character of a line is an apostrophe
(’), the line is treated as a comment. The macro file can contain continuation lines, for
example:
define ABC\

\
5

Others tab
The Others tab allows you to configure external interfaces.

Figure 21: Others Tab of the Preferences Dialog

Build
Type the executable (shell) command used to start your make system.
Red Hat Source-Navigator Reference Guide ■ 31

Preferences Dialog
HTML viewer
Enter the HTML viewer to display online help. From Help, select Online
Manuals to open the viewer, which must be included in your path.

This preference can only be set in UNIX.

Bug reports
Mailhost

Source-Navigator supports sending bug report emails by SMTP. Enter the name of
your SMTP mail server in this field.

Printer
Printer preferences can only be set in UNIX.

ASCII Print Command
Enter the command you use when printing a source file from the command line.

Print Command
Enter the print command appropriate for your system. For example, Linux-based
systems use lpr.

On Windows, Source-Navigator uses the Windows Registry Editor to decide how to
print.

Insight Debugger command
gdb is the executable (shell) command used to start Insight.

Retriever
Do not display the warning dialog for multiple matches

Select this if you do not want to be warned when the Retriever finds more than
one symbol with the name you are searching for. See page 79 for more
information about the Retriever.

Colors & Fonts tab
Source-Navigator assigns a different default color to each component of your source
code. To customize these colors or choose different fonts, click the Colors & Fonts
tab of the Preferences dialog.
32 ■ Reference Guide Red Hat Source-Navigator

Preferences Dialog

m.

t
Figure 22: Colors & Fonts Tab of the Preferences Dialog

From the list of components, choose the item you want to change. The current settings
appear in the Font, Foreground, and Background text boxes, and “Sample” displays
the text with these settings.

Changing Fonts
Changing the font assigned to a component varies, depending upon your platfor

On UNIX, click the “...” button at the end of the Font text entry box. The Choose
Font dialog appears:

Figure 23: UNIX Font Dialog

Choose the Family, Name, and Size of the font that you would like, as well as Bold or
Italics, if you want to use those properties. Click the Apply button to see the effect of
your changes and, when you are satisfied, click OK. Your changes take effect the nex
time you start Source-Navigator.
Red Hat Source-Navigator Reference Guide ■ 33

Preferences Dialog

t

t
e
On Windows, click the “...” button at the end of the Font text entry box. The Font
window appears.

Figure 24: Windows Font Dialog

Choose the Font, Font style, and Size of the font to use and your changes appear in
the Sample box. When you are satisfied, click OK. Your changes take effect the nex
time you access the item you changed.

Changing Colors
You may want to change the Foreground or Background colors from their defaul
settings if they do not show up well on your laptop or CRT display, or if your cod
colorization conventions do not match Source-Navigator’s default colors.

To choose a different color for any component, you must set new RGB
(Red-Green-Blue) values. Click the Foreground or Background “...” button. The
Choose Color dialog appears.
34 ■ Reference Guide Red Hat Source-Navigator

Preferences Dialog
Figure 25: Choose Color Dialog

Move the red, green, and blue sliders until the color you want appears in the box at the
top of the dialog. Click the Apply button to see how your text or background looks
with the new color. If you are satisfied, click OK. Your changes take effect the next
time you start Source-Navigator.
Red Hat Source-Navigator Reference Guide ■ 35

Preferences Dialog
36 ■ Reference Guide Red Hat Source-Navigator

Symbol Browser

The Symbol Browser window is displayed when you first create or open a project. It
is the main window for navigating between Source-Navigator symbols. The Symbol
Browser shows high-level information about the project, such as files, definitions,
functions, variables, or classes/methods.

4

Red Hat Source-Navigator Reference Guide ■ 37

Using the Symbol Browser
Figure 26: Symbol Browser Window

Using the Symbol Browser
Each symbol in the Symbol list box is hyperlinked to the Editor. Double-clicking on
a symbol starts the Editor, which displays the symbol in the source file. Depending on
your settings in the Edit tab of the Preferences dialog, the cursor is positioned on the
location where the symbol is declared or defined. For information on the Editor, see
page 45.

Toolbar Buttons
Tool icons are located in the Symbol Browser under the main menu bar. To find out
what a tool does, move the cursor over it; a tooltip appears describing the tool. The
toolbar is shown in its default configuration in Figure 27.

Toolbar buttons

Symbol list box,
hyperlinked
to the EditorClick to list

symbols
in file

Right-click
for column filter;
left-click to sort
38 ■ Reference Guide Red Hat Source-Navigator

Using the Symbol Browser

:

e the
Figure 27: The Default Toolbar

Browser buttons
With the toolbar, you can access many of the browsers you will use most often.
However, you can add or remove toolbar buttons and menus. For more information,
see “Customization” on page 137.

Toolbar buttons provide quick access to the following Source-Navigator functions

Hierarchy Browser button

Class Browser button

Cross-Reference Browser button

Include Browser button

List Filter buttons
The List Filter searches for specific types of symbols in the symbol database. Us
List Filter buttons to restrict searches by symbol type in the Symbol Browser.

Select this button to start the Hierarchy Browser. For more
information about this tool, see page 57.

This button starts the Class Browser. For more information
about this tool, see page 61.

Select this button to start the Cross-Reference Browser. For
more information about this tool, see page 65.

Select this button to start the Include Browser. For more
information about this tool, see page 73.
Red Hat Source-Navigator Reference Guide ■ 39

Using the Symbol Browser

ich

a

mns
Figure 28: Filter Toolbar Buttons

For details on how to filter for other symbols, see “Using Filters” on page 19.

Symbol Filters
The Symbol list box displays different kinds of project symbols, depending on wh
type of symbol you select from the Symbol-type selector (accessed through the View
menu). If Exclusive Search is selected, then only one symbol type is displayed at
time. If Exclusive Search is deselected, then clicking additional symbol-type
selectors adds those symbols to the existing contents of the Symbol list box.

Figure 29: Symbol Browser with Exclusive Search and Classes Selected

To find the number of symbols matching your selection, right-click in the Symbol list
box. From the popup menu you may sort the symbol list by column and hide colu
to simplify the display.

Clas
se

s

M
et

ho
ds

Fun
cti

on
s

Pro
jec

t F
ile

s

40 ■ Reference Guide Red Hat Source-Navigator

Using the Symbol Browser

Figure 30: Symbol Browser Right Button Menu

For faster searching you can use the toolbar buttons to browse project files, functions,
methods, and classes. For more information on the toolbar see “Toolbar Buttons” on
page 38.

Column Filters
Column filters override all other filter preferences, and allow you to constrain the
contents of a list view by filtering by a certain pattern. They are available in any
window where information is presented in columns, such as the Symbol Browser,
Class Browser, and Retriever windows.

Right-click on the column header and it is replaced by a column filter box.
Red Hat Source-Navigator Reference Guide ■ 41

Using the Symbol Browser
Figure 31: Column Filter Box

Type in a pattern and press the Enter key. The list displays all symbols matching your
pattern.

Figure 32: Symbol Browser Showing Pattern Matches

If you left-click on the column header, it sorts the data by that column.

Column filter

Column filter
42 ■ Reference Guide Red Hat Source-Navigator

Using the Symbol Browser
Figure 33: Column Data Sorted

Column filter
Red Hat Source-Navigator Reference Guide ■ 43

Using the Symbol Browser
44 ■ Reference Guide Red Hat Source-Navigator

see

es are
Editor

Source-Navigator allows you to edit source files with its built-in editor, or with an
external editor that you select in the Edit tab of the Preferences dialog (see “Editor
Preferences” on page 51). For instructions on how to specify an external editor,
“Common editor configurations” on page 53.

The Editor Window
To open the Editor, double-click a symbol in the Symbol Browser (or other
Source-Navigator browser window). Symbols are hyperlinked to the Editor, which
displays the contents of a project source file and allows you to edit it.

When you save a modified source file, the project database is updated and chang
reflected in all of the Source-Navigator tools. Standard mouse operations are
supported in the Editor:
■ click on the text and new text will be inserted to the right of the cursor.
■ clicking and dragging selects text so that operations such as Cut, Copy, and Paste

can be performed.
■ clicking and dragging in the scroll bars scrolls the file appropriately.

5

Red Hat Source-Navigator Reference Guide ■ 45

The Editor Window
■ double-clicking on a word selects the entire word; triple-clicking selects the entire
line.

Figure 34: Editor Window

Symbol Accelerator Combo-box
The Symbol Accelerator combo-box in the toolbar allows you to quickly navigate
through your source code.

Text

Select previousSymbol accelerator

Previous

Next

Line, Column number

Find box (enter
search pattern)

combo-box search pattern
46 ■ Reference Guide Red Hat Source-Navigator

The Editor Window

ox

ct
.
Figure 35: Symbol Accelerator Combo-box

When the Editor is open this combo-box lists all of the symbols in the open file.
When the All button is clicked, all of the symbols within the entire project are
displayed. When other tools are open, the Symbol Accelerator combo-box lists the
components relative to the tool.

For instance, in the Class Browser, it lists only classes in the file. When the All button
is clicked, all of the classes in the project are displayed.

Notice that the Symbol Accelerator text field in the toolbar displays the component
that is referenced as the Editor’s cursor moves through the file.

Find Box
You can use the Find box in the toolbar to search for text. Type text into the text b
and press the Enter key; the next instance of the text is found. To find a previously
used pattern, click the Find box down arrow to see a list of previous patterns. Sele
one of the patterns with the mouse and the next instance of that pattern is found

Pattern Searching
Use these buttons to search the window or the project database for a symbol.
Red Hat Source-Navigator Reference Guide ■ 47

The Editor Window
Figure 36: Pattern Searching Toolbar Buttons

The Extended Toolbar
The extended toolbar provides buttons to manage your files and text. To add this
toolbar to Source-Navigator, from the File menu, select Project Preferences. Select
the Edit tab and select the Extended Toolbar Buttons box.

Ent
er

 p
at

te
rn

fo
r F

ind
 a

cti
on

Find
 h

ist
or

y

Find
 p

at
te

rn

in
cu

rre
nt

 w
ind

ow

Sea
rc

h
fo

r p
at

te
rn

in
pr

oje
ct

da
ta

ba
se

Gre
p

fo
r p

at
te

rn

ac
ro

ss
 so

ur
ce

 fil
es

(u
sin

g
re

gu
lar

ex
pr

es
sio

ns
)

48 ■ Reference Guide Red Hat Source-Navigator

The Editor Window
Figure 37: File and Text Management Toolbar Buttons

View History
Source-Navigator provides complex information in a number of ways. As you
navigate through a project, you may want to return to the view of a relationship that
you previously investigated. Source-Navigator stores a view history of your journey
through the project. The left and right arrows in the toolbar act like Back and
Forward buttons in popular Web browsers. You can also right-click on one of these
buttons to get a list of previously visited locations within the project.

Figure 38: View History Buttons

For more detailed history, the History menu lists previous views on a per-tool basis.
This lets you jump directly to the view you want, rather than paging through previous
views.

Search Menu
The Search menu is context-sensitive; different options are available depending upon
the tool you are using.

Find dialog
To find a specific string or pattern in the text file, from the Search menu, select Find.

New
 fil

e

Ope
n

file

Sav
e

file

Dele
te

 S
ele

cti
on

Cut
 se

lec
tio

n

Cop
y s

ele
cti

on

Pas
te

 se
lec

tio
n

Com
pil

e
file

Und
o

ch
an

ge
s

Red Hat Source-Navigator Reference Guide ■ 49

The Editor Window
Figure 39: Find Dialog

Type your string or pattern into the text box and click the Search button; you can click
the Search button multiple times to find more instances of the string. Deselect Ignore
case if you want a case-sensitive search. When Regular expression is selected, the
pattern is treated as a regular expression, and clicking the Search button finds the next
match for the regular expression. Deselect Forward if you wish to search backwards.

Replace dialog
To search and replace a specific string or pattern in the text file, from the Search
menu, select Replace.

Figure 40: Replace Dialog

The Replace dialog is similar to the Find dialog. The Ignore case, Regular
expression, and Forward options behave the same way. Search finds the next
instance of the pattern. Replace replaces the current pattern with the pattern in the
Replace pattern text box. Select All to replace all occurrences of the pattern.

Find Declaration, Implementation
If a symbol is selected in the Editor, selecting Find Declaration switches to the
location of the declaration of the symbol, and Find Implementation switches to the
location of the implementation of the symbol.

NOTE You can also toggle between Declaration and Implementation by using the
keyboard shortcut commands Ctrl+Shift+D and Ctrl+Shift+I, respectively.
50 ■ Reference Guide Red Hat Source-Navigator

The Editor Window
Grep
Grep activates the Grep tool, which allows you to search for text in all project files.
Select the expression you want to search for and from the Search menu select Grep.
Source-Navigator automatically searches for your text in all project files. For more
information on Grep, see page 83.

Go To menu
When you want to go to a specific line in the file, from the Search menu, select
Go To → Go To Line. This allows you to type in the line number you wish to go to.
Set Mark allows you to set a place in the file you wish to come back to later.
Go To Mark jumps to the last mark you set. Go to Error displays the line that caused
the build error.

Editor Preferences
You’ll find preference settings for the Editor window in the Edit tab of the
Preferences dialog. To find this dialog:

1. In the Symbol Browser, from the File menu, select Project Preferences. In the
Editor, from the Edit menu, select View Preferences.

2. Choose the Edit tab.
Red Hat Source-Navigator Reference Guide ■ 51

The Editor Window

t.
Figure 41: Edit Tab of the Preferences Dialog

Format
Tab stop

When a tab is inserted, it is this many spaces wide.

Auto Indent width
When the Enter key is pressed, this is the number of spaces inserted at the
beginning of the next line. This is also the number of spaces inserted by indent
(from the Edit menu, select Indent Text) and deleted by outdent (from the Edit
menu, select Outdent Text) when reformatting source code.

Wrap by
This controls where the Editor breaks a line that is longer than the width of the
window.

Work
Create *.bak Files

If selected, the Editor creates backup files whenever you save a file.

Output File Translation
End-of-lines of source files may be represented differently on different platforms:

• Keep retains the original file’s end-of-line characters; this is set by defaul

• Auto saves the file with your current platform’s end-of-line characters.
52 ■ Reference Guide Red Hat Source-Navigator

The Editor Window

e

hown

n

an

w
he
or

to be

ee
• UNIX, Windows, or Macintosh sets the end-of-line characters to match th
platform you choose, regardless of the platform you’re working on.

Bracket match delay
Sets the amount of time (in milliseconds) that matching brackets should be
highlighted.

Right mouse supports
If Edit menu is selected, you can access some functions, such as Undo, Delete,
Cut, Copy, and Paste through a right-mouse pop-up menu.

If Scrolling is selected, you can scroll the text in the Editor using the right-mouse
button.

Translate Tabs to Spaces
Selecting this converts all tab characters in the file to the number of spaces s
in the Tab Stop box.

Extended toolbar buttons
Selecting this adds several new tool buttons to the Editor toolbar. For more
information, see “The Extended Toolbar” on page 48.

External Editor
Insert the command line for your favorite editor in this text box. See “Commo
editor configurations” for command line syntax.

Source-Navigator can set the position of the cursor in the editor if the editor c
be configured by command line options. Source-Navigator can perform the
following substitutions on the command line before it is executed:

Common editor configurations
Emacs

Starting a new Emacs session: To start a new Emacs session whenever you vie
source code, enter emacs or the name of the executable file of Emacs in either t
External Editor text box in the Edit preferences tab or at the command line. F
example, enter nemacs or xemacs, without any parameters. The string emacs
must be found in the command if you want the changes you make and save
immediately stored in the database (without terminating Emacs).

Using a current Emacs session: For instructions on how to configure
Source-Navigator to communicate with a currently running Emacs session, s
“Using Emacs as your Editor”.

Notepad
On Windows, you can invoke Notepad by typing:

%f file name

%l line number

%c column number

%d project directory
Red Hat Source-Navigator Reference Guide ■ 53

Using Emacs as your Editor

 may

s
.
notepad %f

vi
To invoke the vi editor, you must enter the following into either the External
Editor text box in the Edit preferences tab or at the command line:

xterm -T %f -e vi +%l %f

The modifications you make and save are stored in the database only after you
quit vi.

Windows NT can execute DOS executables without launching a shell. The
command line for a DOS version of vi is:

vi +%l %f

For information on customizing your key bindings or using another external editor,
see “Customization” on page 137.

Using Emacs as your Editor
Source-Navigator supports GNU Emacs 19.34 and XEmacs 19.14; other versions
also work, although these have not been tested.

When you use Emacs as your editor, Source-Navigator displays files in an Emac
window. Whenever Emacs saves a file, Source-Navigator updates the database
Multiple projects can share a single Emacs editing session.

You can use Emacs with Source-Navigator in one of two ways:
■ to start a new Emacs process whenever you make an edit request.
■ to communicate with an already running Emacs process.

To Start a New Emacs Process
Enter emacs (or the name of your program with the string emacs) in the External
Editor text box of the Edit preferences tab.
54 ■ Reference Guide Red Hat Source-Navigator

Using Emacs as your Editor

de
To Communicate with an Already Running Emacs
Process

1. Modify your Emacs start-up file so that gnuserv utility, which is provided in
your Emacs distribution, is loaded. This involves adding two lines to your Emacs
start-up file (usually ~/emacs). You need to enter the full path to your Emacs
directory:
(load "path-to-Emacs-location/lisp/gnuserv")
(server-start)

See your Emacs documentation for additional information.

2. In the External Editor text box, set your editor to gnuclient.

When you start a new Emacs session, Source-Navigator can now request that the
running Emacs session bring up files for editing. Source-Navigator also rescans
the files when you finish editing.

NOTE If you use xemacs, the gnuserv package is included; see your XEmacs
documentation for instructions on loading it.

Source-Navigator’s search function replaces the find-tag command when you
search for a symbol. Because the other tag commands are not yet available insi
Source-Navigator, you need to use the equivalent emacs commands, if available.
Red Hat Source-Navigator Reference Guide ■ 55

Using Emacs as your Editor
56 ■ Reference Guide Red Hat Source-Navigator

Hierarchy Browser

Inheritance, a type of relationship between objects, allows one object to share
behavior with one or more other objects. Inheritance provides a basic mechanism for
the reuse of code. Sharing with more than one is known as multiple inheritance.

The Hierarchy Browser can display the entire class hierarchy, including the
superclasses and subclasses of a selected class. This helps you understand class
hierarchy trees, which in turn helps you to reuse existing code.

A baseclass is a top-level class in the class hierarchy. It does not inherit from any
other class; other classes inherit from it.

A class a is said to be a superclass of class b when class b inherits from a or another
class that inherits from a.

A class a is said to be a subclass of class b when class a inherits from b or another
class that inherits from b.

If class a is a superclass of class b, then class b is a subclass of class a.

Using the Hierarchy Browser
Start the Hierarchy Browser in one of the following ways:

6

Red Hat Source-Navigator Reference Guide ■ 57

Using the Hierarchy Browser
■ from the Windows menu, select New View → Hierarchy.
■ click the Hierarchy toolbar button.
■ choose the Hierarchy tab.

Figure 42: Hierarchy Browser Window

Tools Menu
The Hierarchy menu, accessed from the Tools menu, contains the following items,
which control how the class hierarchies are displayed.

Show Superclasses
Limits the hierarchy to the superclasses (and their subclasses) of the selected
class.

Show Subclasses
Limits the hierarchy to the subclasses of the selected class.

Show All
This is the default for this menu.

Display file names
Displays the file names of the superclasses and subclasses.

Shows entire Shows class, baseclasses,
and superclasses

Shows class and
superclasses only

Filter

Shows number of baseclasses
and superclasses in hierarchy

class hierarchy
58 ■ Reference Guide Red Hat Source-Navigator

Using the Hierarchy Browser
Class/Hierarchy Preferences
Many of the settings that control how the Hierarchy Browser window functions are
located in the Class/Hierarchy tab of the Preferences dialog. To find this dialog:

1. In the Symbol Browser, from the File menu, select Project Preferences. In the
Hierarchy Browser, from the File menu, select View Preferences.

2. Choose the Class/Hierarchy tab.

Figure 43: Class/Hierarchy Tab of the Preferences Dialog

Class
Go To

Select Declaration if you want the Class Browser to display the prototype of the
function; select Implementation if you want to see the actual code.

Orientation
Select Horizontal to have the Hierarchy Browser appear below the Class
Browser; select Vertical to have the Hierarchy Browser appear to the right of
the Class Browser.

Display members
Select First to cause instance variables to appear before methods in the Class
Browser; select Second to cause methods to appear first, with the instance
variables after them.
Red Hat Source-Navigator Reference Guide ■ 59

Using the Hierarchy Browser
Hierarchy Layout
Display order

Left to right displays the hierarchy from left to right in the main window; Top to
Bottom displays the hierarchy from top to bottom.

Display layout style:
Select Tree to display the hierarchy in tree layout; select ISI to display the
hierarchy in ISI layout.

Vertical space:
Enter the number of vertical pixels between symbols in the Hierarchy Browser
window.

Horizontal space:
Enter the number horizontal pixels between symbols in the Hierarchy Browser
window.

Hierarchy Browser Shortcut Keys
This shortcut key is available for use with the Hierarchy Browser.

Key Combination Function

UNIX Windows

Meta+B
(or Alt+B)

Alt+B Starts the Class Browser for the marked class.
60 ■ Reference Guide Red Hat Source-Navigator

Class Browser

For projects developed using object-oriented languages, the Class Browser enables
you to browse class hierarchies, access levels, and member types. The Class Browser
displays the list of class members of a particular class, based on your selections from
the Class/Hierarchy tab of the Preferences dialog (see page 59).

For traditional languages such as C, COBOL, and FORTRAN, the Class Browser
enables you to see the members of structures and common blocks.

NOTE Source-Navigator treats structures, classes, and common blocks in the
same way. The only difference is that classes have inheritance and the
others do not.

Using the Class Browser
Start the Class Browser in one of the following ways:
■ double-click on a class.
■ select a class and click the Class Browser toolbar button (see “Class Browser

button” on page 39).
■ from the Windows menu, select New View → Class.
■ choose the Class tab.

7

Red Hat Source-Navigator Reference Guide ■ 61

Using the Class Browser
Figure 44: Class Browser Window

Class Name
You can enter the class name into the Symbol Accelerator combo-box (Emacs-style
tab completion is also supported). If you press the Enter key and the name matches a
valid class name, the information for the appropriate class is loaded.

Member List
The symbols displayed in the member list are controlled by the pulldown menus and
inheritance tree. Access levels and attributes are indicated by icons; for the key to
these icons select Abbreviations from the Help menu, or see Figure 8 on page 16.

Inheritance Tree
The inheritance tree shows the relationship of the browsed class and its baseclasses.

Figure 45: Inheritance Tree

The check boxes before the class names determine whether or not members of a class
are included in the member list. Use the mouse to manipulate these check boxes:

Member
list

Inheritance
Tree

Symbol
Accelerator

Scope
Selector
62 ■ Reference Guide Red Hat Source-Navigator

Using the Class Browser
Click
Toggles the check box.

Ctrl+click
Includes only the members of the selected class.

Double-click
Starts the Editor, which displays the source file.

Right-click
Displays a menu in which you may select one or all classes.

Member List Filter Dialog
Click on the Filter button to bring up the Filter dialog. The symbols displayed by the
Member List are included based upon these settings.

Figure 46: Member List Filter Dialog

All
Sets all items except AND, overridden, and overloaded.

None
Clears all items except AND, overridden, and overloaded.

Methods, Instance Variables, Friends
Shows methods based on their types.

public, private, protected
Shows members based on their access level.

AND
If AND is selected, only functions matching all attributes will be shown. If AND
is not selected, functions matching any of the attributes will be shown.
Red Hat Source-Navigator Reference Guide ■ 63

Using the Class Browser
static, structor, inline, virtual, pure virtual
Shows members based on their attributes.

overridden
Shows members that are overridden from a base class. You can also display these
by selecting the overridden checkbox in the main window.

overloaded
Shows functions that have more than one type signature in the class.

Scope Selector
The Scope Selector menu filters the member list by the accessibility of the members.

Figure 47: Scope Selector Menu

subclass
Shows only the members accessible to new subclasses of the currently browsed
class. Does not include private members of the currently browsed class or private
base classes.

class
Shows only the accessible members of the currently browsed class; private
members of base classes are not included.

baseclass
Shows all members, including the private members of the base classes.
64 ■ Reference Guide Red Hat Source-Navigator

erse
elect
ese

f

h
Cross-Reference
Browser

The Cross-Reference Browser shows you where elements in your program are used
or accessed. It can find every call of a function, or tell you everything a particular
function calls. It creates tree diagrams that show essential relationships within the
project’s symbol database, such as the function-call hierarchy tree. You can trav
up and down the hierarchy tree, as well as expand or restrict the tree. You can s
items in the hierarchy and display their refers-to and referred-by relationships; th
relationships are based on the “point-of-view” of the selected symbol.

A refers-to relationship is one where the selected symbol is used in the context o
another symbol, which is in turn referred-by the selected symbol.

Source-Navigator creates the cross-reference database in the background, whic
enables you to work in other views. During this process, the Cross-Reference tool
button is disabled (grayed-out). After the database is built, the Cross-Reference tool
can be opened.

8

Red Hat Source-Navigator Reference Guide ■ 65

Using the Cross-Reference Browser
Using the Cross-Reference Browser
Although you can always start the Cross-Reference Browser from the Windows
menu by selecting New View → Xref, you may want to start the Cross-Reference
Browser so that it focuses on a specific symbol. To do this, select a symbol in the
Symbol Browser or Editor, and then click the Cross-Reference tool button or
choose the Xref tab.

The selected symbol becomes the root symbol in the Symbol Accelerator text box at
the top left of the Cross-Reference Browser window. The references that refer-to the
root symbol are indicated by connecting lines and those that are referred-by are
indicated by connecting arrows. You can traverse the hierarchy tree by selecting
references and clicking the right-pointing hand tool (Refers-to) and left-pointing one
(Referred-by) as shown in Figure 48.

Figure 48: Cross-Reference Browser Window

The Remove Subnodes button allows you to remove displayed subnodes from the
hierarchy tree view.

To set the number of subnode levels to display, enter a positive integer in the Levels
text entry box.

Referred-by

Refers-to

Subnode

Remove

Symbol Accelerator Filter
text box

subnodes
Depth of
subnodes
expanded
automatically
66 ■ Reference Guide Red Hat Source-Navigator

Using the Cross-Reference Browser

r
Double-clicking a symbol in the Cross-Reference Browser window starts the Editor,
with the specific symbol in context in the source file. The cross-reference information
is stored in the database and is kept current by the Editor.

Cross-Reference Filter
Click the Filter button to bring up the Filter dialog. The symbols displayed by the
Cross-Reference Browser are included based on these settings.

Figure 49: Cross-Reference Filter

All
Sets all non-Access selections.

None
Clears all non-Access selections.

Cross-Reference Browser Details
Right-clicking on a symbol in the Cross-Reference Browser brings up a popup menu
that allows you to filter the list of symbols you’re working with, as well as to gathe
new information about the symbols you’re interested in.
Red Hat Source-Navigator Reference Guide ■ 67

Using the Cross-Reference Browser
Figure 50: Cross-Reference Browser Right Button Menu

Choosing Details By brings up a window that shows where each symbol in the list is
referenced.

Figure 51: Cross-Reference Browser Showing Details By Window
68 ■ Reference Guide Red Hat Source-Navigator

Using the Cross-Reference Browser
Clicking on the column headers allows you to sort by the selected column, either
alphabetically, by line number, by class, etc. The Pattern text entry box in the
window allows you to use a string to filter the list.

Symbols that occur multiple times are listed; when you click on a symbol and then add
the Editor to the window (from the Windows menu, select Add View → Editor), the
Editor shows where that symbol is referenced.

Figure 52: Editor Showing Referencing of Symbol

Cross-Reference Preferences
Preference settings for the Cross-Reference Browser are located in the Xref tab of
the Preferences dialog.

1. In the Symbol Browser, from the File menu, select Project Preferences. In the
Cross-Reference Browser, from the Edit menu, select View Preferences.

2. Choose the Xref tab.
Red Hat Source-Navigator Reference Guide ■ 69

Using the Cross-Reference Browser
Figure 53: Cross-Reference Tab of the Preferences Dialog

Cross-referencing
Build Cross-Reference database

Select this if you would like Source-Navigator to build the cross-reference
databases for your project. This is on by default.

Generate references to local variables
Select this if you would like cross-reference information for local variables. This
is off by default.

NOTE Parsing is much slower when cross-referencing local variables. Also, the
database size grows considerably when generating local variable
cross-references. Make sure that you have an adequate amount of disk space
(approximately ten times the space used by your source code).

Audible alert when complete
Selecting this causes a bell to ring when cross-referencing is complete.

Layout
Compare parameters

Select this to generate cross-references only when the parameter types of the
refers-to and referred-by symbols match. Deselecting this allows symbols to be
considered matches, regardless of differences in parameters.
70 ■ Reference Guide Red Hat Source-Navigator

Using the Cross-Reference Browser
Compare static information
Select this to generate cross-references only when both the refers-to and
referred-by static attributes match.

Display parameter list
Select this to display parameters with the symbol in the Cross-Reference
Browser window.

Display boxes
Select this to surround cross-reference nodes with boxes.

Display order
Left to right displays the cross-reference hierarchy from left to right; Top to
Bottom displays it from top to bottom.

Display layout style
Select Tree to display cross-references in tree layout; select ISI to display them in
ISI layout.

Vertical space
Enter the number of vertical pixels between symbols in the Cross-Reference
Browser window.

Horizontal space
Enter the number of horizontal pixels between symbols in the Cross-Reference
Browser window.
Red Hat Source-Navigator Reference Guide ■ 71

Using the Cross-Reference Browser
72 ■ Reference Guide Red Hat Source-Navigator

Include Browser

Some programming languages provide a facility for including other source files. In
C/C++ this is achieved using the #include preprocessor directive. The Include
Browser lets you display Includes and Included by relationships simultaneously.

Using the Include Browser
Start the Include Browser in one of the following ways:
■ from the Windows menu, select New View → Include.
■ click the Include toolbar button (see “Include Browser button” on page 39).
■ choose the Include tab.

9

Red Hat Source-Navigator Reference Guide ■ 73

Using the Include Browser
Figure 54: Include Browser Window

To see further relationships, after selecting a file in the Include Browser window, use
the right pointing-hand tool icon to show files included by the selected file. Use the
left pointing-hand tool icon to show files that include the selected file.

To determine the number of levels shown for a query, enter a positive integer in the
Levels text entry box.

Reducing Displayed Information
Right-clicking on a symbol in the Include Browser window brings up a popup menu
that allows you to show or hide include information.

Hide Include Subtree
Show files included by

the selected file
Show files that
include selected file
74 ■ Reference Guide Red Hat Source-Navigator

Using the Include Browser
Figure 55: Include Browser Right Button Menu

This is useful when the Include Browser displays more information than you need,
and you’d like to hide all relationships but the particular one you’re interested in.

Include Preferences
Preference settings for the Include Browser are located in the Include tab of the
Preferences dialog.

1. In the Symbol Browser, from the File menu, select Project Preferences. In the
Include Browser, from the Edit menu, select View Preferences.

2. Choose the Include tab.
Red Hat Source-Navigator Reference Guide ■ 75

Using the Include Browser
Figure 56: Include Tab of the Preferences Dialog

Layout
Display order

Left to right displays the include hierarchy from left to right; Top to Bottom
displays it from top to bottom.

Display layout style
Select Tree to display includes in tree layout; select ISI to display them in ISI
layout.

Vertical space
Enter the number of vertical pixels between symbols in the Include Browser
window.

Horizontal space
Enter the number of horizontal pixels between symbols in the Include Browser
window.

Include directories
Locate Headers

Uncheck this box to prevent included files from being cross-referenced.

In the Include Directories box you can choose which directories should be searched
for include files. Using the set of directories shown in Figure 56, for example, if
stdio.h is a reference then Source-Navigator looks first for the file
76 ■ Reference Guide Red Hat Source-Navigator

Using the Include Browser
/usr/include/stdio.h, then for ./stdio.h, and so on down the list. The order
of the list is important, because the first file found is the one that will be used by the
Include Browser.
Red Hat Source-Navigator Reference Guide ■ 77

Using the Include Browser
78 ■ Reference Guide Red Hat Source-Navigator

Retriever

Retriever allows you to search for text patterns in the names of symbols in the
database. To search for text patterns in source files, use the Grep tool in
Source-Navigator. For more information about the Grep tool, see “Grep” on page 83.

Using the Retriever
To find a symbol, enter its search pattern surrounded by asterisks (for example
agent) in the Pattern text box and click Search. The *, ?, [, and] wildcard
characters are supported.

10
Red Hat Source-Navigator Reference Guide ■ 79

Using the Retriever
Figure 57: Retriever Window

The Retriever displays all the symbols it found containing the pattern being searched.

Figure 58: Retriever Window Showing Search Results

Double-clicking an item in the list opens the Editor showing the symbol in context in
the source code.

For more information on reusing windows for multiple searches, see “Reusing
Windows” on page 18.

Pattern
text box
80 ■ Reference Guide Red Hat Source-Navigator

Retriever with the Cross-Reference Browser

x

e
Retriever Filter
Click the Filter button to bring up the Filter dialog. The symbols displayed by
Retriever are included or excluded based upon these settings.

Figure 59: Retriever Filter Dialog

All
Selects all items except Unions and Files.

None
Clears all selections.

Executive Search
If the Exclusive Search box is selected, you may choose one symbol type to
search for. If it’s deselected, you may combine symbol types for more comple
searches.

Retriever with the Cross-Reference
Browser

If you’re looking at a unique symbol in the Editor and you click the Xref tab to see its
cross-references, the Cross-Reference Browser window appears.

However, if you’re looking at a symbol that is not unique (there’s more than one
symbol with that name in the database), the Retriever displays a message dialog
notifying you that it has found multiple matches and requests that you choose th
correct one to display.
Red Hat Source-Navigator Reference Guide ■ 81

Retriever with the Cross-Reference Browser

Figure 60: Multiple Symbols Notification Dialog

If you don’t want to see this warning in the future, but want to go straight to the
Retriever, click the check box in the dialog. This can also be changed in the Others
tab of the Preferences dialog (see page 31).

Figure 61: Xref Retriever Window

In the Xref Retriever window, double-click on the symbol for which you want
cross-reference information, and the Cross-Reference Browser window appears. See
“Cross-Reference Browser” on page 65 for more information.

Click this to go straight
to the Retriever dialog
from now on
82 ■ Reference Guide Red Hat Source-Navigator

Grep

The Source-Navigator Grep tool allows you to search for text patterns in source files
throughout the project. It is more powerful than using grep at the command line
because it:
■ allows you to search multiple directories.
■ searches only the files in your project.
■ can be restricted to a subset of the files in your project.
■ saves a list of previously performed searches so you can repeat a search later.
■ provides “one-click” Editor access to the lines of code matching your search.

To search for text patterns in the symbols database, use the Retriever tool. For more
information, see “Retriever” on page 79.

Using Grep
A convenient way to use the Grep tool is by using a Grep-Editor window. From the
Windows menu, select New View → Grep-Editor (for more information on split
windows, see page 16).

11
Red Hat Source-Navigator Reference Guide ■ 83

Using Grep

ges
Figure 62: The Grep/Editor Window

In the Pattern text box, enter a regular expression then click the Search icon. For
more information on regular expressions, see “GNU Regular Expressions” on
page 85.

You can use the Files filter to limit your search; for example, entering *.c restricts
the search to only C files. For a list of file extensions and their associated langua
see Table 1 on page 20. Figure 63 shows the results of a sample Grep search.

Grep window

Editor
84 ■ Reference Guide Red Hat Source-Navigator

GNU Regular Expressions
Figure 63: Sample Grep Search Results

Clicking on an item in the Grep window displays the appropriate file in the Editor,
with the cursor positioned at the selected line.

To step through the Grep results, click the left or right black arrow keys in the toolbar.
To filter your Grep results, use the Format combo-box to select an option.

GNU Regular Expressions
A GNU regular expression1 is a pattern that describes a set of strings. Regular
expressions are constructed like arithmetic expressions: various operators combine
smaller expressions to form larger expressions.

Ordinary Characters
An ordinary character is a simple regular expression that matches a single character
and nothing else. For example, f matches f and no other string. You can concatenate
regular expressions together. For example, foo matches foo and no other string.

1 Richard Stallman and Karl Berry wrote the GNU regex backtracking matcher. Copyright © 1989, 1991 Free
Software Foundation, Inc., 675 Massachusetts Avenue, Cambridge, MA 02139, USA.

GNU regular expression Files to search
Red Hat Source-Navigator Reference Guide ■ 85

GNU Regular Expressions
Special Characters
You can combine regular expressions with regular expression operators, or
metacharacters, to increase the versatility of regular expressions. Traditional
expression characters are enclosed by brackets [and].

For example, [Aa]pple matches either Apple or apple. A range of characters is
indicated by a dash -. [a-z] matches any lowercase letter and [0-9] matches any digit
string between zero (0) and nine (9). You can string groups together, so that
[a-zA-Z0-9] matches any single alphanumeric character.

To represent the - dash itself, it must be the last character, directly succeeded by the].
To represent] bracket, it must be the first character after the [or the [^.

Table 3 lists special characters and examples of how to use them.

NOTE In the | (pipe) example above, notice that foo|bar is matching either foo or
bar. It’s not matching o or b, resulting with either fooar or fobar.

Table 3: Special Characters

Symbol Definition Example

. (period) matches any single
character except a new line

a.b
matches any three-character string
beginning with a and ending with b
(such as acb, a6b, and a#b)

[...] matches characters between
the brackets

[af]
matches either one a or one f
[af]*
matches any string composed of just
a’s or f’s or the empty string

[^...] matches any character
except the ones specified

[^a-z]
matches any characters except
lower-case letters

^ (caret) matches the empty string,
but only at the beginning of
the line

^foo
matches foo and food, but not ofoo

$ (dollar sign) matches the empty string,
but only at the end of the
line

fo$
matches a string ending in fo, but not
foop

\ (backslash) escapes special characters
(including \)

fo\?
matches fo?

| (pipe) is used to designate OR foo|bar
matches either foo or bar

(...) is a grouping construct foo(bar)*
matches zero or more instances of
bar with foo (such as foo, foobar,
and foobarbar)
86 ■ Reference Guide Red Hat Source-Navigator

GNU Regular Expressions
Predefined Sets of Characters
Certain named classes of characters are predefined, but can only be used within
bracket expressions.

For example, [[:alnum:]] means [0-9A-Za-z] in the C-locale, except the latter form is
dependent upon the ASCII character encoding, whereas the former is portable.

Repetition
A regular expression matching a single character may be followed by one of several
repetition operators:

Table 4: Character Classes

Symbol Definition C-locale Equivalent

[:alnum:] alphanumeric characters [a-zA-Z0-9]

[:alpha:] alphabetic characters [a-zA-Z]

[:blank:] space and tab characters

[:cntrl:] control characters

[:digit:] numeric characters [0-9]

[:graph:] characters that are printable and
are also visible (a tab is
printable, but not visible, while
an a is both)

[:lower:] lower-case alphabetic characters [a-z]

[:print:] printable characters (ASCII 32
and above), but not control
characters

[:punct:] punctuation characters

[:space:] space characters (such as space,
tab, newline, and page eject)

[:upper:] upper-case alphabetic characters [A-Z]

[:xdigit:] hexadecimal digit characters [0-9a-fA-F]

Table 5: Interval Expressions

Symbol Description Example

* (asterisk) post-fix operator that matches an
expression 0 or more times

fo*
matches a string
starting with f and
ending with a
repeating o or no
o’s (such as f, fo,
and foo)
Red Hat Source-Navigator Reference Guide ■ 87

GNU Regular Expressions
Escape Sequences
Some characters cannot be included literally in regular expressions. You represent
them instead with escape sequences, which are characters beginning with a backslash
(\). A backslash is also part of the representation of unprintable characters such as a
tab or newline.

+ (plus) post-fix operator that matches an
expression at least once

f+o
matches a string
starting with one or
more f’s and
ending with an o
(such as fo, ffo,
and fffo)

? (question
mark)

post-fix operator that must
match an expression once or not
at all

f?o
matches fo or o

{n} preceding item is matched
exactly n times

fo{2}
matches foo

{n,} preceding item is matched n or
more times

fo{2,}
matches foo and
fooo

{,m} proceeding item is optional and
is matched at most m times

fo{,3}
matches f, fo, foo,
and fooo

{n,m} proceeding item is matched at
least n times and at most m times

fo{1,3}
matches fo, foo,
and fooo

Table 6: Escape Sequences

Symbol Description

\\ a literal backslash

\a alert

\b backspace

\e escape character

\f form feed

\n newline

\r carriage return

\t horizontal tab

\v vertical tab

\? question mark

\(left parenthesis

Table 5: Interval Expressions (Continued)
88 ■ Reference Guide Red Hat Source-Navigator

GNU Regular Expressions
Two regular expressions may be concatenated; the resulting regular expression
matches any string formed by concatenating two substrings that respectively match
the concatenated subexpression.For example:

The backreference \n, where n is a single digit, matches the substring previously
matched by the nth parenthesized subexpression of the regular expression. For
example, \(ab)c\1 matches abbbcabbb, but not abbbcabb.

For additional information on regular expressions, please refer to a reference text such

as Mastering Regular Expressions2.

\) right parenthesis

\[left bracket

\] right bracket

[a-b] matches either a or b

[d-e] matches either d or e

[a-b][d-e] matches ad, bd, ae, or be

2 Friedl, Jeffrey E. F. 1997. Mastering Regular Expressions. ISBN 1-56592-257-3.

Table 6: Escape Sequences (Continued)
Red Hat Source-Navigator Reference Guide ■ 89

GNU Regular Expressions
90 ■ Reference Guide Red Hat Source-Navigator

s
n

ng
ection
Version Control Systems

Version control systems use locks to prevent the same files from being modified by
two developers simultaneously. If a lock is used while revising a file, no one can
modify the file until it is unlocked. Locking and unlocking can be controlled by
checking in or checking out versions.

Source-Navigator provides a GUI to several external version control systems. With
version control you can organize your development to manage versions, version
history, labels, and related documents.

Using Version Control
The following version control systems have been integrated with Source-Navigator:
GNU Revision Control System (RCS), Concurrent Versions System (CVS), and the
Source Code Control System (SCCS). It has also been integrated with Rational’
ClearCase version 3; other versions may also work, although these have not bee
tested. When creating a project, you must specify the version control system bei
used to manage the body of source code you wish to analyze. You make your sel
in the Version Control tab of the Preferences dialog (see page 94).

12
Red Hat Source-Navigator Reference Guide ■ 91

Using Version Control
To open the Revision Control Editor, from the Tools menu, select
Revision Control → Revision Control Editor (see Figure 64).

Figure 64: Revision Version Control Window

Checking Out a File
In the Editor, from the Tools menu select Revision Control → Check Out to check
out a file. Versions of a file can be checked out for modification either locked or
unlocked.

Figure 65: Check Out Dialog Box

Checking out with With lock selected in the Check Out dialog box prevents other
users from checking out the same version in write mode.

Shows all or specific
changes

Change history

File
92 ■ Reference Guide Red Hat Source-Navigator

Using Version Control
Checking In a File
You can check in all or selected project files into your version control system. When
you check in, you may enter descriptive text of the changes and a version number.
Using the left-mouse button, select one or more files to check in. With these files
highlighted, in the Revision Control Editor window, from the Edit menu, select
Check In. The Check In dialog is displayed.

Figure 66: Check In Dialog Box

If you check in with With lock selected in this dialog box, others may not check out
the same file in write mode.

This is useful if you are continuously working on a particular file, but wish to register
checkpoints in your work without giving others the opportunity to make modifications
to that file.

Discarding Changes to a File
To revert working files to the repository version, in the Revision Control Editor
window, from the Edit menu, select Discard Changes.

Show Differences
The Diff tool highlights differences between the current version of a file (the one you
have checked out) and another one that you select from the list of available version
numbers.

To access Diff, from the Edit menu, select Compare Revisions.
Red Hat Source-Navigator Reference Guide ■ 93

Version Control Preferences
Figure 67: Showing Differences

Version Control Preferences
Preference settings for the Version Control window are located in the Version
Control tab of the Preferences dialog.

1. In the Symbol Browser, from the File menu select Project Preferences. In the
Version Control window, from the Edit menu, select View Preferences.

2. Choose the Version Control tab.
94 ■ Reference Guide Red Hat Source-Navigator

Version Control Preferences

g
Figure 68: Version Control Tab of the Preferences Dialog

Version control system
Select your external version control system for the project.

Ignored directories
These directories will be ignored by Source-Navigator as it scans for files to
parse.

For more information on integrating version control packages, see the “Integratin
with Version Control Systems” on page 195.
Red Hat Source-Navigator Reference Guide ■ 95

Version Control Preferences
96 ■ Reference Guide Red Hat Source-Navigator

Building Programs

Source-Navigator allows you to build executable programs from the files in your
project. Using Source-Navigator, you can compile your code, navigate to any errors,
link your code, and, with the Insight debugger, set up a debugging session to debug
your code.

NOTE The compiler, make, and the Insight debugger must be installed on
your machine before using these features.

At the end of this chapter, there is a build tutorial for a command line-driven real
estate trading game.

The Building Process
The building process compiles and links source files, such as libraries and executable
files, to produce an output binary file.

13
Red Hat Source-Navigator Reference Guide ■ 97

make

e

Figure 69: Build Process

There are four steps to building your program:
■ editing your code,
■ compiling your source into an intermediate format, called object files,
■ linking your object files together to produce an executable application, and
■ debugging your executable to find any problems.

The minimum requirements for building source code include specifying which source
files should be included, the directory in which the build should be stored, linking
rules, debugging, optimization flags, and included paths.

You can edit your code using Source-Navigator. This chapter explains compiling and
linking. For information about the Insight debugger, see “Working with Insight, th
Debugger Interface” in the Getting Started Guide.

make
Source-Navigator uses a utility called GNU make. make combines a set of rules for
compiling and linking code with a tracking mechanism for determining which files
must be compiled.

Source-Navigator generates a makefile, which make uses to determine which
commands to be execute in order to build your program.
98 ■ Reference Guide Red Hat Source-Navigator

Build Targets

e

.

 an
Build Targets
A build target is a conceptual object that contains information needed to compile and
link a project. For example, hello.c converts into hello.o before producing the
hello executable. The hello.o object file is linked with required libraries.

The first time you select Build Settings, the Build Targets list is empty. After you
create a build target, its name appears in the list.

Creating a New Build Target
From the Tools menu, select Build Settings to start the Build Settings dialog.

Figure 70: Build Settings Dialog

Type the name of the build target in the text entry box and click the Create button.
The Edit Target dialog opens. See “Editing a Target” on page 100.

Modifying Build Targets
Rename a build target by selecting the target, typing a new name, and clicking th
Rename button.

NOTE Do not highlight the target name in the text box or a new target is created

To edit an existing build target, select the target and click the Edit button.

Duplicating a build target is useful when a new target is only slightly different from
existing target. To duplicate an existing build target, select the target in the Build
Targets list and click the Duplicate button.

Delete a build target by selecting it in the Build Targets list and click the Delete
button. The target is removed from the listing.
Red Hat Source-Navigator Reference Guide ■ 99

Build Targets
Editing a Target
In the Build Targets list, either
■ select the target name and click the Edit button, or
■ double-click the target name.

The Edit Target dialog opens.

Figure 71: Edit Target Dialog

Edit Target tabs
The Build Directory, Target Type, and Tool Chain combo-boxes are common to the
tabs accessed in the Edit Target dialog.

Figure 72: Build Directory, Target Type, and Tool Chain Combo-boxes

These store information about the build target.

select
development
tool set

select
directory

select target
type
100 ■ Reference Guide Red Hat Source-Navigator

Build Targets

e

he
Build Directory
This is the directory where all files generated in the build process are initially stored.
By default this is blank. If this is left blank, then the project directory is used. To
specify the directory, either type the directory path or click the “...” button. If you
click the “...” button, the Open dialog opens.

Figure 73: Build Directory Open Dialog

Select the directory in which to store the intermediate files. Click OK to close the
dialog. The directory appears in the Build Directory field.

Target Type
Use this combo-box to select the type of build target to create. The options are
Executable and Library.

Tool Chain
A tool chain is a set of compilers, debuggers, and linkers. The GNUPro (native)
option is always available. Other toolchains may be available, depending upon th
Source-Navigator package purchased.

Source Files tab
The Source Files tab controls which source files are included in your build target. T
Project Files and Target Files lists contain tree information for the selected build
target.
Red Hat Source-Navigator Reference Guide ■ 101

Build Targets
Figure 74: Source Files Tab

Adding files
To add files to the Target Files list:

1. Select the files from the Project Files list.

2. Click the Add Files button.

The files are copied into the Target Files list.

Removing files
To remove files from the Target Files list, select the files to remove and click the
Clear button. To remove all of the files from the Target Files list, click the Clear All
button.

Importing files and directories
To import files or directories into your currently active project:

1. Under Import, click either the Files or Directory button.

2. Select the files or directories you wish to add to the project. Click OK when done.
The names of the added files or directory appear in the Project Files list.

Library Files tab
Most libraries required for building targets are linked in automatically by the
compiler/linker. If you know that your target requires additional libraries, use the
Library Files tab to add them to your build.

Add additional
files and
directories
102 ■ Reference Guide Red Hat Source-Navigator

Build Targets
Figure 75: Library Files Tab

Add additional libraries by clicking the Add button. The Open dialog opens to the last
directory you have looked at in this project. After you select a library and click the
Open button, it appears in the library list.

To remove a library from the Libraries list, select the library and click the Remove
button. The library is removed from the build.

Libraries are linked in the order listed in the Libraries list. To change the order of
libraries, select the library and click either the Move Up or Move Down button to
change its linking order.

Build Rules tab
Click the Build Rules tab to configure each rule in the build target.

A rule contains information required to compile files in a project. For example, a rule
to compile a C file might contain information about which compiler and flags to use,
as well as what the file is called after it’s compiled.

This tab lists the rules for the specified build target. Within the Build Rules tab, you
can:
■ disable and enable rules for the target.
■ edit existing rules.
Red Hat Source-Navigator Reference Guide ■ 103

Build Targets
Figure 76: Build Rules Tab

Status
This column shows the currently enabled and disabled rules. To disable a rule,
highlight the rule and click the Disable button. To enable a rule, highlight the rule and
click the Enable button.

NOTE This button changes between Disable and Enable depending upon the state of
the rule.

File Type
This column displays the type of file the rule acts upon.

Description
This column displays a description of the rule.

Editing a rule
To edit a rule, either
■ select the rule from the rule listing and click the Edit Rule button, or
■ double-click the rule.

The Build Rule Settings dialog opens. The dialog title bar displays the extension for
the files involved.

Command
Line for
Selected
Rule
104 ■ Reference Guide Red Hat Source-Navigator

Build Targets

re

ee

,
Settings tab
The Settings tab allows you to change the default settings for the rule.

Figure 77: Build Rule Settings with Options Selected

Debug
This controls the debug information generated by the compiler.

Warnings
Controls the level of warnings the compiler generates. A stricter warning ensures
fewer problems with future compatibility. Set “Warnings as Errors” to make su
the compile stops any time a warning is generated.

User flags
Enter flags not covered by the options listed in this screen. To add macros, s
“Defines tab” on page 106.

Optimization
Compiler optimization for the code.

Code Generation
Processor- or code control-specific optimizations of settings.

Executable
Selects the executable to use. To change the tool (such as compiler) location
either enter the location path or click the “...” button to choose the tool binary to
use.

Includes tab
Sometimes files include other files. In C this is done with the #include statement.
The Includes tab allows you to change the included paths for the rule.

Displays rule
Red Hat Source-Navigator Reference Guide ■ 105

Build Targets
Figure 78: Includes Tab

The Auto-Generated Include Paths list displays paths generated from the
Source-Navigator database.

Click the Generate button to generate a list of Source-Navigator included paths.
These appear in the Auto-Generated Include Paths list.

To add additional paths, click the Add button. The selected paths appear in the User
Specified Include Paths list. Delete paths by highlighting the path and clicking the
Delete button.

Defines tab
The Defines tab enables you to view, edit, and create new macro definitions.

Figure 79: Defines Tab

Modifying macro definitions
To create a new macro, type the name and definition in the text entry box and click the
New button.
106 ■ Reference Guide Red Hat Source-Navigator

Build Targets
Figure 80: New Macro Created

To change the current macro definition, select the macro from the Macro defines list.
The macro appears in the text entry box.

Figure 81: Macro Created and Selected

Make the necessary modifications to the macro.

To create a new macro, click the New button. The new macro appears in the listing.

To delete a macro, select it from the Macro defines list and click the Delete button.
The macro is removed from the listing.

To update the macro, click the Change button. The modified macro appears in the
listing.

Link Rules tab
The Link Rules tab allows you to specify the program to execute and the name of the
final output file.
Red Hat Source-Navigator Reference Guide ■ 107

Build Targets

n

s the

Figure 82: Link Rules Tab of the Build Targets Menu

Output File
The name of the final output file.

Linker
Auto-detects the type of project. Click the “...” button to select another linker.

Entry Point
This is the first function executed for the application. Default is main(). In
Java™, you must specify the name of the class that defines main().

Link flags
Displays the full link command line and allows you to add flags, but you cannot
edit existing links or flags.

Debug/Execute Settings
Controls the mode for the rule. Execute allows running the program from the
Build window. Debug allows starting the Insight debugger from the Build
window. See “Debugging the build target” on page 113 for more information o
debugging your program.

Command to launch Application
This field lists the name of the binary to execute or debug. The default name i
file listed in Output File. If you changed the default output file, you must also
change the name here.

On UNIX, type xterm -e before the executable name if you are debugging a
console application.

Command
line output
displayed
108 ■ Reference Guide Red Hat Source-Navigator

Compiling Build Targets
Click the OK button to close the Edit Target dialog. Click the Done button to close
the Build Settings dialog.

Compiling Build Targets
After you have created and configured a build target, you must build it.

Source-Navigator can generate its own makefiles or work with one that you supply.

Internal build systems
To build your project using the Source-Navigator build system:

1. From the Tools menu in the Symbol Browser, select Build.

2. The Build window opens.

Figure 83: Build Window

3. Select the build target from the Build Target list.
Red Hat Source-Navigator Reference Guide ■ 109

Compiling Build Targets

ild”

ick
Figure 84: Selecting a Build Target

4. Click the Start button to perform the build. If you need to stop the build process
for any reason, click the Stop button.

5. When Source-Navigator starts the make command, output from the make process
is displayed. To step through the results, click the left or right black arrow keys in
the toolbar.

6. If errors appear, the build target needs to be modified. See “Modifying the Bu
on page 111.

If no errors appear, the build target is compiled and ready to be executed. Cl
the Run button to execute the application.

External build systems
To build using your own makefile:

1. From the Tools menu in the Symbol Browser, select Build.

2. Ensure that Build Targets is set to <External Makefile>.
110 ■ Reference Guide Red Hat Source-Navigator

Compiling Build Targets
Figure 85: Selecting the <External Makefile> Build Target

3. In the Directory field, select the directory containing the external makefile.

If you require additional flags or a different make program, from the File menu,
select Project Preferences and select the Others tab. Enter the additional flags or
make program into the Build field (see Figure 21 on page 31).

4. Click the Start button to perform the build. If you need to stop the build process
for any reason, click the Stop button.

5. When Source-Navigator starts the make command, output from the make process
is displayed. To step through the results, click the left or right black arrow keys in
the toolbar.

6. If errors appear, the source code needs to be modified.

If no errors appear, the build target is compiled and ready to be executed. Click
the Run button to execute the application.

Modifying the Build
If errors appear in the Build window, the source code must be modified before the
program will run.

Double-clicking a line with a compiler error message activates the Editor with the
cursor positioned on the line of code where the error appears. Right-clicking in the
output window allows you to save the build output to a file.

From the Windows menu, select Add View → Build to add a Build window to an
Editor window.
Red Hat Source-Navigator Reference Guide ■ 111

Compiling Build Targets
Figure 86: Editor-Build Window

To save and recompile the modified files, press the Start button. The Fast Save dialog
appears asking if you want to perform a fast save. Click the Yes button to save the
changes and rebuild. Click the No button to discard changes and perform a rebuild.
Clicking the Cancel button closes the dialog without rebuilding the program.

When the build is completed, Source-Navigator saves the executable using the name
specified in the Link Rules tab. If a name is not specified, the file name will be the
target name. The compiled file is saved in the build directory.

Build types
The Tools menu in the Build window lists the types of builds you can perform. Before
selecting an option from this menu, ensure that a build target has been selected.

Editor

Build
112 ■ Reference Guide Red Hat Source-Navigator

Compiling Build Targets

s

ger
Figure 87: Tools Menu

Build
Rebuilds only the modified files. This is the same as clicking the Start button in
the Build Targets window.

Force Build
Rebuilds the modified files in the project and ignores errors.

Clean Build
Removes the object files and executables. This is equivalent to the command
make clean.

Export Makefile
Saves your build target as a makefile for external use.

Debugging the build target
If you selected Debug from the Link Rules tab in the Edit Target dialog, you will use
Insight or another debugger to debug your code.

1. From the Build window, click the Debug button.

The Program to debug dialog appears.

Figure 88: Program to Debug Dialog

2. In the Program field, type or select the application to debug.

In the Working Directory field, type or select the path of the project directory.

On UNIX, in the Xterm field, type xterm to have a separate debugger output
console window appear. If this field is left blank, the Source-Navigator output
console, specified in the Others preference tab (see “Others tab” on page 31), i
used.

3. Click OK to debug the build target.

The debugger launches.

For more information on the debugger, see “Working with Insight, the Debug
Red Hat Source-Navigator Reference Guide ■ 113

Build Tutorial

bug

m

age

res
Interface” in the Getting Started Guide.

4. Return to Source-Navigator to fix any errors and repeat the build-download-de
cycle.

Changing the build target from Debug to Execute
After debugging and fixing your build target, you must change the build target fro
debug to execute in order to run the application.

1. From the Symbol Browser window, select Tools → Build Settings.

2. Double-click the build target to modify from the Build Targets list box.

3. Click the Link Rules tab.

4. Under Debug/Execute Settings, select Execute.

5. Click the OK button to close the Edit Target dialog.

6. Click the Done button to close the Build Settings dialog.

7. Recompile and execute your build target (see “Compiling Build Targets” on p
109).

Executing the application
Once the application compiles without errors, from the Build window, click the Run
button to execute the application.

Build Tutorial
This build tutorial is based on the monop demo, located in the demos directory.
monop is a command line based game that you can build, edit, and play. In this
tutorial, you will create two build targets and use many build and debugging featu
of Source-Navigator.

NOTE The monop demo is written in C. A Java demo is located in the
~/share/demos/java folder. A C++ demo is located in the
~/share/demos/c++ folder. To learn more about these demos, read the
Readme file located in each folder.

Creating the Project
1. In the Symbol Browser, from the File menu, select New Project.

2. Create a new project called monop.proj.

3. Under Add Directory, click the “...” button to select the demos/monop folder.
114 ■ Reference Guide Red Hat Source-Navigator

Build Tutorial
Figure 89: Creating the monop Project

4. Click OK to create the project.

Creating the monop Target
1. From the Tools menu, select Build Settings. The Build Settings dialog opens.

2. Type monop as the name of the build target.

Figure 90: Creating the monop Build Target

3. Click the Create button. The Edit Target dialog opens.
Red Hat Source-Navigator Reference Guide ■ 115

Build Tutorial
Figure 91: Edit Target Dialog

4. In the Build Directory field, click the “...” button and select the build directory
for the monop project.

Figure 92: Adding the Build Directory

5. From Project Files, select the cards.c, execute.c, getinp.c, houses.c,
jail.c, misc.c, monop.c, morg.c, print.c, prop.c, rent.c, roll.c,
spec.c, and trade.c files.

6. Click the Add Files button to copy the files to the Target Files list.
116 ■ Reference Guide Red Hat Source-Navigator

Build Tutorial
Figure 93: Files Added to the Target

NOTE To execute the program correctly on UNIX, click the Link Rules tab. Type
xterm -e ./monop in the Command to launch Application field. Click
OK to close the Link Rules dialog.

7. Click OK to close the Edit Target dialog.

8. Click the Done button to close the Build Settings dialog.

The build target is created. Now you need to compile the program.

Debugging the monop build target
1. From the Tools menu, select Build. The Build dialog opens.

2. From the Build Targets field, select monop.
Red Hat Source-Navigator Reference Guide ■ 117

Build Tutorial
Figure 94: Selecting the monop Build Target

3. Click the Start button.

Figure 95: Building monop

Errors are generated from the build. The lint macro must be defined.

Creating the lint macro
1. From the Tools menu, select Build Settings. The Build Settings dialog appears.

2. Double-click the monop build target. The Edit Target dialog opens.

3. Click the Build Rules tab.
118 ■ Reference Guide Red Hat Source-Navigator

Build Tutorial
Figure 96: Build Rules Tab

4. Because monop is written in C, double-click the C rule. The Build Rule Settings
dialog opens.

5. Click the Defines tab. Type lint in the text entry box.

Figure 97: Creating the lint Macro

6. Click the New button to create the macro.

7. Click OK to close the Build Rules Settings dialog.

8. Click OK to close the Edit Target dialog.

9. Click the Done button to close the Build Settings dialog.
Red Hat Source-Navigator Reference Guide ■ 119

Build Tutorial
Rebuilding the monop build target
1. From the Tools menu, select Build.

2. From the Build Targets combo-box, select monop.

3. Click the Start button.

Figure 98: Rebuilding the monop Build Target

The build generates without errors. However, at runtime the program will not execute
because the path to the cards must be defined.

Creating the _PATH_CARDS macro
1. From the Tools menu, select Build Settings.

2. Double-click the monop build target. The Edit Target dialog opens.

3. Click the Build Rules tab.
120 ■ Reference Guide Red Hat Source-Navigator

Build Tutorial
Figure 99: Build Rules Tab

4. Double-click the C rule. The Build Rule Settings dialog opens.

5. Click the Defines tab.

6. Type the following information in the text entry box, replacing
project-directory with the path to the demos/monop directory:
_PATH_CARDS=”\” project-directory/cards.pck\””

Figure 100: Creating the _PATH_CARDS Macro

This tells Source-Navigator which card pack to use when running the monop
program.

7. Click the New button to create the macro.
Red Hat Source-Navigator Reference Guide ■ 121

Build Tutorial
8. Click OK to close the Build Rules Settings dialog.

9. Click OK to close the Edit Target dialog.

10. Click the Done button to close the Build Settings dialog.

Performing a clean build
To ensure that the new macro is picked up at compile time, perform a clean build on
the monop target.

1. In the Build window, from the Tools menu, select Clean Build.

Figure 101: Selecting Clean Build

2. Click the Start button to perform the build.
122 ■ Reference Guide Red Hat Source-Navigator

Build Tutorial
Figure 102: Performing a Clean Build

Again monop compiles without errors, but now uses the correct card pack.

Now you need to create another target to initialize the cards used in the monop game.

Creating the initdeck Target
1. From the Tools menu, select Build Settings. The Build Settings dialog opens.

2. Type initdeck as the name of the build target.

Figure 103: Creating the initdeck Target

3. Click the Create button. The Edit Target dialog opens.

4. In the Build Directory field, click the “...” button and select the build directory
for the monop project. This is the same build directory used for the monop target.
Red Hat Source-Navigator Reference Guide ■ 123

Build Tutorial
Figure 104: Adding the Build Directory

5. From Project Files, select the initdeck.c file.

6. Click the Add Files button to copy the file to the Target Files list.

Figure 105: Files Added to the Target

NOTE To execute the program correctly on UNIX, click the Link Rules tab. Type
xterm -e ./initdeck in the Command to launch Application field.
Click OK to close the Link Rules dialog.

7. Click OK to close the Edit Target dialog.

8. Click the Done button to close the Build Settings dialog.

The build target is created. Now you need to compile the program.

Debugging the initdeck build target
1. From the Tools menu, select Build. The Build dialog opens.

2. From the Build Targets combo-box, select initdeck.
124 ■ Reference Guide Red Hat Source-Navigator

Build Tutorial
Figure 106: Selecting the initdeck Build Target

3. Click the Start button.

Figure 107: Building initdeck

Errors are generated from the build. The lint and _PATH_CARDS macros must be
defined.

Creating the lint and _PATH_CARDS macros
1. From the Tools menu, select Build Settings. The Build Settings dialog appears.

2. Double-click the initdeck build target. The Edit Target dialog opens.

3. Click the Build Rules tab.
Red Hat Source-Navigator Reference Guide ■ 125

Build Tutorial
Figure 108: Build Rules Tab

4. Because initdeck is written in C, double-click the C rule. The Build Rule
Settings dialog opens.

5. Click the Defines tab. Type lint in the text entry box.

Figure 109: Creating the lint Macro

6. Click the New button to create the macro.

7. Type the following information in the text entry box, replacing
project-directory with the path to the demos/monop directory:
_PATH_CARDS=”\” project-directory/cards.pck\””
126 ■ Reference Guide Red Hat Source-Navigator

Build Tutorial
Figure 110: Creating the _PATH_CARDS Macro

This tells Source-Navigator which card pack to use when running the monop
program.

8. Click the New button to create the macro.

9. Click OK to close the Build Rules Settings dialog.

10. Click OK to close the Edit Target dialog.

11. Click the Done button to close the Build Settings dialog.

12. Open a console window and copy the card.inp file, located in the
demos/monop directory, into the build directory.

Figure 111: Copying the card.inp File

Performing a clean build
To ensure that the macros are picked up at compile time, perform a clean build on the
initdeck target.

1. In the Build window, from the Tools menu, select Clean Build.
Red Hat Source-Navigator Reference Guide ■ 127

Build Tutorial
Figure 112: Selecting Clean Build

2. Click the Start button to perform the build.

Figure 113: Performing a Clean Build

This time initdeck compiles and links without errors. initdeck is the name of
the working executable.

3. Click the Run button to run initdeck, which creates the cards used in the game.

A console window opens to build the cards and closes after the build is complete.

4. From the Build Targets field, select monop.

5. Click the Run button.
128 ■ Reference Guide Red Hat Source-Navigator

Build Tutorial
A console window opens and monop runs automatically. Enter the number of
players and their names. Press the ? key to list the playing options.

Figure 114: Playing monop
Red Hat Source-Navigator Reference Guide ■ 129

Build Tutorial
130 ■ Reference Guide Red Hat Source-Navigator

Command Line Options

Source-Navigator supports the following command line options:

--batchmode

This forces batch mode to create a new project. If this is set, Source-Navigator
will not launch. Instead the following command line options will be used to create
a new project.

--projectname

This command creates a project in the current directory using the directory path.
For example, if the current directory is /home/foo and --projectname is run,
the project name becomes /home/foo/foo.proj.

--avail-options

Sets preferences for an option used in project creation.

--define option=value

Lists options that can be set using --define.

--databasedir directory

(synonyms: -dbdir, -database, -db)

Defines the directory for the symbol databases. Without this, the symbol
databases are put in a directory called .snprj at the same level as the project file.

--import file

Specifies a text file with a list of all files or directories to add to the project.

14
Red Hat Source-Navigator Reference Guide ■ 131

--noxref

This option prevents the creation of cross-references. By default,
Source-Navigator generates cross-reference information for the project.

--create

This option is used to start the Auto-Create dialog. It is not normally used with
--batchmode. Source-Navigator prompts the user for information used to create
a project.

Example: Creating a New Project in devo-files
The following command creates a project named /home/smith/devo.proj using
the files listed in devo-files in batch mode. The database files are stored in
~/db_files. Source-Navigator returns when the project has been created.

~bin/snavigator --batchmode \

--import devo-files \

--databasedir ~/db_files \

--projectname /home/smith/devo

Example: Creating a New Project in the Current
Directory

The following command creates a project in batch mode using the current directory. It
adds all of the files in the current directory and in all of the subdirectories. The current
working directory is /home/smith/devo/snavigator. The generated project
name is /home/smith/devo/snavigator/snavigator.proj.

~bin/snavigator --batchmode

Example: Auto-Create Dialog
The following command displays the Auto-Create dialog, initialized with the current
directory, with foo.proj as the project name. To view the project, you must open
Source-Navigator.

~bin/snavigator --projectname foo
132 ■ Reference Guide Red Hat Source-Navigator

Part II:
Programmer’s Guide
Red Hat Source-Navigator Reference Guide ■ 133

134 ■ Reference Guide Red Hat Source-Navigator

Introduction

Source-Navigator is based on two software components: a database engine and a
graphical user interface for representing information about software projects which
are held in the database. Source-Navigator has been designed to permit third parties to
customize and extend Source-Navigator into specific problem domains.

Figure 115: Source-Navigator Component Overview

C/C++
Cobol
Java
FORTRAN

Sources Parsers Project Database
Red Hat Source-Navigator Reference Guide ■ 135

ing

).

 as
Software Development Kit
With the Software Development Kit (SDK), you can:
■ modify the graphical user interface (see “Customization” on page 137).
■ write new parsers that allow Source-Navigator to support additional program

languages (see “Adding Parsers” on page 153).
■ query the database for specific information (see “Database API” on page 163
■ use other applications in conjunction with Source-Navigator (see

“Interapplication Communication” on page 205).

The graphical user interface (GUI) is based on Tcl and Tk (v. 8.1). If you are not
familiar with the Tcl programming language, please refer to a reference text such

Practical Programming in Tcl and Tk1 and Tcl and the Tk Toolkit2.

1 Welch, Brent B. 1997. Practical Programming in Tcl and Tk. 2nd ed. ISBN 0-13-616830-2.
2 Ousterhout, John K. 1994. Tcl and the Tk Toolkit. ISBN 0-201-63337-X.
136 ■ Reference Guide Red Hat Source-Navigator

at all

te a
Customization

This chapter describes how to change the start-up and runtime behaviors of
Source-Navigator. You can also customize menu items and keyboard shortcuts for the
Editor. For more information see “Editor” on page 45.

The profile File
A general configuration file, ~/share/etc/profile, is a system-wide configuration
file for GUI language and database cache size. These form the default values th
users inherit for all the tools.

If you would like to customize Source-Navigator for a specific user, you may crea
file called $HOME/.sn/profile (on UNIX) or %USERPROFILE%/.sn/profile (on
Windows) to contain the configuration for that user’s preferences.

Configurable Settings
The settings that may be customized are sn_language and encoding, which
designates the language of the GUI, and sn_mailhost, which tells Source-Navigator
how to connect to your mailer.

1

Red Hat Source-Navigator Reference Guide ■ 137

The rc.tcl Start-up File

cl,

The format for a user’s profile file is setting name:value, one entry per line.

An example profile file for the German user interface is:
sn_language:german
sn_mailhost:mailhost

The rc.tcl Start-up File
The information in the following section assumes that you are conversant with T
which is used by Source-Navigator for program configuration tasks.

You can create a file called rc.tcl, which will automatically load when
Source-Navigator starts. If you have either a ~/share/etc/rc.tcl or a
$HOME/.sn/rc.tcl file, Source-Navigator reads and executes the file with the Tcl
source command. The system-wide configuration file is read first; your own
configuration file is read afterwards and can override the site-local defaults.

When a Source-Navigator project opens, a Tcl procedure called sn_rc (if it exists) is
called with no input parameters. This enables you to:
■ install additional Tcl programs.
■ customize keyboard shortcuts.
■ launch specific applications at start-up.

Table 7: User-Specific Settings

Setting Name Default Possible Values

sn_language english english, german, or
japanese

encoding ISO8859-1 see the character set
encoding combo-box in the
Project Preferences dialog

sn_mailhost mailhost mailhost, DNS name, or IP
address of the mailhost
138 ■ Reference Guide Red Hat Source-Navigator

The rc.tcl Start-up File
Adding Events to the rc.tcl File
Many events in Source-Navigator have a corresponding Tcl procedure that is called
when the event occurs. This provides the facility to control the appearance and
behavior of each tool. You can choose whether or not to implement each of these Tcl
procedures in rc.tcl, but it is not mandatory to do so.

Table 8: Events and Corresponding Tcl Procedures

Event Procedure called (with parameters)

A new symbol browser is opened sn_rc_symbolbrowser{window menu}

A new window is created sn_rc_mainwindow{window menu}

A new editor view is created sn_rc_editor{view text}

A new class view is created sn_rc_classbrowser{view classtree memberlist}

A new grep window is opened sn_rc_grep{view list}

A new include view is created sn_rc_include{view canvas}

A new make window is opened sn_rc_make{view list}

A new retriever view is created sn_rc_retriever{view list}

A new cross-reference view is created sn_rc_xref{view canvas}

The preferences dialog is opened sn_rc_preferences{win}

The project editor dialog is opened sn_rc_projecteditor{win menu}

A project is opened sn_rc_project_open{projectdb}

The version control browser is started sn_rc_project_editor{win menu list}

The retriever is started sn_rc_retrieve{win menu list}

Table 9: Parameters for Tcl Event Procedures

Parameter Description

win The name of the Tk window widget. Referencing $win.exp returns
the name of the Tk toolbar widget, and $win.menu returns the name of
the Tk menu widget.

view The name of the current view.

list A window-specific list of data (for example, a list of filenames).

canvas The name of the Tk canvas widget used to draw graphs in those tools
where it is applicable.

menu The path to the menus.

classtree A path to a Source-Navigator tree widget.

memberlist A path to a Source-Navigator tree table widget.
Red Hat Source-Navigator Reference Guide ■ 139

The rc.tcl Start-up File
When a Symbol Browser window is created, a Tcl procedure called
sn_rc_symbolbrowser, if it exists, is called with the following input parameters:
■ the name of the Symbol Browser window.
■ the path of the menu.

Changing Functionality Within the Symbol Browser
The following example script lists the names of the button widgets of a Symbol
Browser toolbar:
proc sn_rc_symbolbrowser {top menu} {

set toolbar_frame $top.exp
puts stdout [join [winfo children \
$toolbar_frame] "\n"]

}

which, when using the default toolbar, provides output similar to:
.multisymbr-1.exp.tree
.multisymbr-1.exp.class
.multisymbr-1.exp.xref
.multisymbr-1.exp.inc
.multisymbr-1.exp.space
.multisymbr-1.exp.retrfr

Example: adding a DOS shell or xterm toolbar button
The following example code adds a new button that starts a DOS shell on Windows
and an xterm application on UNIX:
proc sn_rc_symbolbrowser {top menu} {
 global tcl_platform

 set tool_frame $top.exp

 # Set a variable that identifies the text widget on
 # the status bar.
 set info $top.msg.msg

 # Create a new button on the toolbar. Note that the
 # button’s command invokes the command line tool
 # in the background so that Source-Navigator is not
 # blocked while the tool is running. On Win32, we emulate
 # ‘xterm’ with ‘cmd’.

 if {$tcl_platform(platform) != "windows"} {
 set cmdline "exec xterm -T {Source-Navigator} &"
 set description xterm
 } else {
 set cmdline "exec cmd /c start cmd &"
 set description shell
 }
 button $tool_frame.xterm -text $description \
140 ■ Reference Guide Red Hat Source-Navigator

The rc.tcl Start-up File
 -command $cmdline

 # Set the main window’s status bar to read "xterm"
 # or "shell" when the mouse pointer is over the region
 # of the button.
 balloon_bind_info $tool_frame.xterm \
 "Starts a new $description"
 bind $tool_frame.xterm <Leave> "set $top.msg {}"

 # Pack this button onto the toolbar.
 pack $tool_frame.xterm -side left
}

Figure 116: Adding a new toolbar button

Adding Menus and Submenus
You can use the rc.tcl file to add new menus to the menu bar or new menu items to
existing menus.

Example: adding an Extras menu
The following example shows how to add a new menu with two submenus. The first
procedure creates the menu and submenu items, and the next two are the procedures
that each of the submenu items actually execute.
proc sn_rc_symbolbrowser {win menu} {

Abbreviate the name of the menu to "extras".
set extras $menu.extras
Create a new menu called "Extras".
menu $extras -tearoff 0
Add a menu item to the menu. The second character is
the designated hot key. Place this menu fourth in
the menu bar.
$menu insert 3 cascade -label Extras -underline 1 \

-menu $extras
Add two items to the menu.
$extras add command -label Functions -command \

"custom_show_symbols Functions" -underline 0
$extras add command -label Methods -command \

"custom_show_symbols Methods" -underline 0
}

proc custom_show_symbols {symboltype} {
Set the scope appropriately.
switch -- $symboltype {

"Methods" {
set scope "md"

New tool button
Red Hat Source-Navigator Reference Guide ■ 141

The rc.tcl Start-up File
}
default {

set scope "fu"
}

}

if {[info commands paf_db_$scope] == ""} {
sn_error_dialog \
"No symbols of the type <$scope> are available in the project."
return

}

Generate a unique name for our new top-level window
widget.
set w .custom_win_$scope
See if the window already exists.
if {![info exists $w]} {

Create a new top-level window with a unique name.
toplevel $w
Change its title.
wm title $w "[sn_read_option project-name] ($symboltype)"
Put a frame around this window and add scrollbars
that scroll through a listbox.
frame $w.frm
scrollbar $w.frm.scrollx -orient horizontal \

-relief sunken -command "$w.frm.symlist xview"
scrollbar $w.frm.scrolly -relief sunken \

-command "$w.frm.symlist yview"
Create a listbox to hold the symbol names.
listbox $w.frm.symlist -height 20 -width 40 \

-xscrollcommand "$w.frm.scrollx set" \
-yscrollcommand "$w.frm.scrolly set"

If the user double-clicks in the list box, find
the nearest entry in the list and pass the name of
the symbol to custom_edit_file. This will launch
us into the source file where that symbol is
defined.
bind $w.frm.symlist <Double-1> {

custom_edit_file [%W get [%W nearest %y]]
}
Pack the widgets onto our new window.
pack $w.frm.scrolly -side right -fill y
pack $w.frm.scrollx -side bottom -fill x
pack $w.frm.symlist -expand y -fill both
pack $w.frm -fill both -expand y

} else {
The window already exists, so just delete
everything from the listbox and we’ll re-insert
the current items in the next step.
$w.frm.symlist delete 0 end

}
Put all of the database keys into the list.
eval $w.frm.symlist insert end \

[paf_db_$scope seq -data]
}

142 ■ Reference Guide Red Hat Source-Navigator

The rc.tcl Start-up File
proc custom_edit_file {key} {
We have been passed the key of a record from either
the function or method database tables. We need to
determine the filename and line number for the
editor to jump into the source code.
The key of a record takes the form:
{ name, start_position, filename }
if {[llength $key] == 3} {

set pos [lindex $key 1]
set filename [lindex $key 2]

} else {
set pos [lindex $key 2]
set filename [lindex $key 3]

}
sn_edit_file {} $filename $pos

}

Figure 117: Adding a Menu Item to the Menu Bar
New menu item
Red Hat Source-Navigator Reference Guide ■ 143

The rc.tcl Start-up File

Changing Functionality Within the Editor
All Source-Navigator Editor windows execute a Tcl procedure called sn_rc_editor
(if it exists) at start-up. You can implement this procedure in the file rc.tcl as
described in the section “Adding Events to the rc.tcl File” on page 139. The input
parameters of this procedure are as follows:
■ the name of the view.
■ the name of the text widget.

Example: adding or changing Editor keyboard shortcuts
You can add or change keyboard shortcuts for the Editor using commands shown in
the following example rc.tcl file. This example demonstrates how the built-in
Editor can be customized to emulate other popular editors.

Note that the bind command assigns the key bindings Ctrl+A and Ctrl+E to move
the cursor to the beginning and end of a line, respectively.
proc sn_rc_editor {view text} {

set top [winfo toplevel $view]
set menu_frame $top.menu
set tool_frame $top.exp

Bind Control-a to jump to the start of the line
(like emacs).
bind $text <Control-a> {

%W mark set insert "insert linestart"
%W yview -pickplace insert
break

}
Bind Control-e to jump to the end of the line
(like emacs).
bind $text <Control-e> {

%W mark set insert "insert lineend"
%W yview -pickplace insert
break

}
}

For more information about bindings, see Practical Programming in Tcl and Tk by
Brent B. Welch, page 285.

Example: changing behavior of Editor toolbar buttons
The following example shows how to change the behavior of the Compile button so it
compiles the current source file using the Java™ bytecode compiler rather than gcc.

NOTE This example only works when the extended toolbar buttons are enabled. To
enable them, from the File menu, select Project Preferences. Select the Edit
tab and click the Extended toolbar buttons checkbox.

proc sn_rc_editor {view text} {
 set top [winfo toplevel $view]
144 ■ Reference Guide Red Hat Source-Navigator

The rc.tcl Start-up File
 set menu_frame $top.menu
 set tool_frame $top.toolbar.editfr

MAKE SURE THAT THE EXTENDED TOOLBAR BUTTONS ARE ENABLED.

 # Reassign the command associated with the "compile" button.
 if {[winfo exists $tool_frame.compile]} {
 $tool_frame.compile config \
 -command "custom_compile $view"
 }
}

proc custom_compile {view} {
 # Save the preconfigured "make" command line; we need
 # to tamper with it in this procedure.
 set temp [sn_read_option make-command]
 # Extract the filename.
 set file [$view cget -filename]
 # Set the "make" command line appropriately.
 if {[string match {*.jav*} $file]} {
 sn_modify_option make-command "javac \"$file\""
 }

 # Byte-compile the source file.
 sn_make

 # Restore the "make" command line.
 sn_modify_option make-command $temp
}

Example: adding a button to the Editor’s extended toolbar
The following example shows how either the Windows Notepad editor or the UNIX vi
editor can be integrated into Editor toolbar as an auxiliary editor.

NOTE This example only works when the extended toolbar buttons are enabled. To
enable them, from the File menu, select Project Preferences. Select the Edit
tab and click the Extended toolbar buttons checkbox.

proc sn_rc_editor {view text} {
 global tcl_platform

 set topw [winfo toplevel $view]
 set tool_frame $topw.toolbar
 # On Windows call Notepad to edit a file.
 if {$tcl_platform(platform) == "windows"} {
 # Create a new button to edit the file using Notepad.
 button $tool_frame.vi -text Notepad \
 -command "exec notepad \[$view getfilename\]"
 balloon_bind_info $tool_frame.vi \
 "Edit current file using the Notepad editor."
Red Hat Source-Navigator Reference Guide ■ 145

The rc.tcl Start-up File
 } else {
 # Create a new button to edit the file using vi
 button $tool_frame.vi -text vi \
 -command "exec xterm -T vi -e vi \[$view getfilename\]"
 balloon_bind_info $tool_frame.vi \
 "Edit current file using vi"
 }
 # Pack this button onto the toolbar.
 pack $tool_frame.vi -side left
}

Example: generating an HTML file of the project database
This example shows how you can display project database information in a format
that is different from what Source-Navigator usually provides.
proc html_doc {topw} {
 set actview [$topw ActiveWidget]
 set ed [MultiWindow&::list_find_editor $actview]
 if {$ed == ""} {
 bell; return
 }
 doc_start [list [$ed getfilename]]
}

proc sn_rc_editor {view editor} {
 # main window
 set topw [winfo toplevel $view]
 # add a menu entry for the html documentation
 set mn $topw.menu
 $mn.tools add command \
 -label "HTML Documentation" \
 -command "html_doc $topw"
}

In the Editor, from the Tools menu, select HTML Documentation, and
Source-Navigator brings up a browser window containing definitions and
cross-references of the symbols in your project.
146 ■ Reference Guide Red Hat Source-Navigator

The rc.tcl Start-up File
Figure 118: Generating an HTML Representation of the Project Database
Red Hat Source-Navigator Reference Guide ■ 147

Error Formats

s;
ontain
Error Formats
Source-Navigator can receive and act upon messages from external tools such as a
compiler or debugger through use of a configurable error format file that can be found
in ~/share/etc/sn_cmp_g.pat.

The contents of this error-format file is as follows; the comment above each regular
expression illustrates the kind of text that the given expression can handle. For more
information on regular expressions see “Grep” on page 83.
Source-Navigator regular expressions for compiler,
debugger and grep patterns.

Source-Navigator supports also blanks, so the patterns
must be so defined that blanks could be a part of the filename

"filename.c", line 789
"([^"]+)",[]+line[]+([0-9]+)

filename.c, line 789
([^]+),[]+line[]+([0-9]+)

line 789, filename.c,
line[]+([0-9]+),[]+([^,]+)

[filename.c:789]
\[([^\[:]+):([0-9]+)\]

filename.c:789
([^:]+):[]*([0-9]+)

filename.c(789)
([^]+\.[^]+)\(([0-9]+)\)

filename.c(789,11) or filename.c(789.11)
([^]+\.[^]+)\(([0-9]+[,.][]*[0-9]+)\)

/dir/filename.c, 789
([^/]+),[]+([0-9]+)

The lines beginning with the hash # symbol are comments showing matching pattern
the GNU regular expression describes the expressions. Every expression must c
two expressions enclosed in parentheses (for the file name and line number).
148 ■ Reference Guide Red Hat Source-Navigator

u can

rent

al
Predefined Language
Conventions

Source-Navigator does not invoke a compiler to build its databases; instead, it has a
plug-in parser for each language it supports. For details on how to add plug-in parsers
to Source-Navigator, see “The Parser Toolbox Library” on page 155.

Predefined Parsers
Source-Navigator was designed to support not only the most common software
development languages, but to support them together. With Source-Navigator yo
follow references from a C++ method to a FORTRAN subroutine, and even to
assembly language. To accomplish this task efficiently, Source-Navigator shares
terms between multiple languages, even when the languages are defined in diffe
terms.

For example, a C struct is represented in Source-Navigator as a class; there is no
separate struct type for C. By unifying these terms, Source-Navigator greatly
simplifies both the task of multi-language code comprehension and its own intern
organization.

2

Red Hat Source-Navigator Reference Guide ■ 149

Predefined Parsers

uage.
The C and C++ Parser
This parser understands C++, K&R C, and ANSI C languages, including the
pre-processor directives. Pre-processing is not necessary to parse C or C++ source
code. During project creation a default include search path is created that has the same
role as the -I option for the C pre-processor. The include search path can be modified
during project creation or from the File menu by selecting
Project Preferences → Include.

The FORTRAN Parser
The FORTRAN parser understands the FORTRAN 77 syntax, plus extensions such as
record, structure, and include. The usual FORTRAN extensions are understood
by the parser as well. The include search path has the same role as the -I option for
the C pre-processor. The include search path can be modified during project creation
or from the File menu by selecting Project Preferences → Include.

The FORTRAN structure declaration is mapped by the tools to a class. Structure
members are treated as instance variables.

The COBOL Parser
The COBOL parser understands these dialects: ANSI ’74 Standard, ANSI ’85
Standard (ANSI X3.23-1985), IBM OS/VS COBOL, IBM VS COBOL II, IBM SAA
COBOL/370, IBM DOSVS COBOL, X/Open, and Micro Focus COBOL.

The Tcl and [incr Tcl] Parser
The Tcl parser understands all versions of Tcl/Tk through version 8.1. In addition, it
understands [incr Tcl] versions 1.5 and 2.x.

The Java Parser
The Java parser understands Java 1.0.

The PowerPC Assembly Parser
The PowerPC assembly parser understands model number 601 assembly language.

NOTE The empty areas of Table 10 represent types that don’t exist in each lang
150 ■ Reference Guide Red Hat Source-Navigator

Predefined Parsers
Table 10: Type Definitions for Supported Languages

Type
Abbrev.

C/C++ and
Java FORTRAN COBOL Tcl [incr Tcl]

PowerPC
assembly

cl Class, Struct Structure Structure Namespace Class

com Common
Block

cov Common
variable

con #define*

const†

static final‡

Constant Const

e Enum

ec Enum value

fd Function
declaration

fr Friend

fu Function Function,
Label

Function,
Label

Procedure Procedure Function

gv Global
variable

Global
variable

Global
variable

Global
variable

Global
variable

iv Instance
variable

Instance
variable**

Instance
variable††

Namespace
variable

Instance
variable

lv Local
variable

Local
variable

Local
variable

ma Macro Macro

md Method
declaration

mi Method
implemen-
tation

Namespace
procedure

Method
implemen-
tation

su Subroutine

t Typedef

un Union

* In C and C++.
† In C and C++.
‡ In Java.
** For structure members.
†† For structure members.
Red Hat Source-Navigator Reference Guide ■ 151

Predefined Parsers
152 ■ Reference Guide Red Hat Source-Navigator

bles
Adding Parsers

Each parser in Source-Navigator is capable of understanding source files written in a
specific programming language. In the Source-Navigator suite, parsers are stand-alone
executables which adhere to a consistent command line interface. This interface
allows Source-Navigator to control the parser’s behavior through command line
switches that the parser is expected to observe.

The SDK provides a C-based application programming interface (API) which ena
parsers to insert information into a project database.

3

Red Hat Source-Navigator Reference Guide ■ 153

Figure 119: Parsers Overview

All files listed in Table 11 can be found in the ~/share/sdk directory.

Parsers may be implemented in any programming language. Naturally, the task of
writing a parser is significantly simpler when using compiler generation tools such as
GNU flex. All of the examples provided with Source-Navigator are written using
GNU flex.

A sample parser for the ELF language (an embedded SQL-like language) is provided
with the SDK. To experiment with this parser, change to the
~/share/sdk/parsers/examples/elf directory and type
make test

This will compile the parser and then parse a number of ELF source files, placing
items of interest into a project database.

Table 11: SDK-Related Files

Subdirectory Files Description

/include/ sn.h
snptools.h

Include files

/lib/ libdbutils.a
libpafdb.a
libsnptools.a
libtcl8.1.a

Source-Navigator library files

/parsers/examples/assembly Makefile
README
a.c
abrowser.l.in
b.c
build-macros
linux-i486-elf.m4
solaris-sparc.m4
toolbox.m4

/parsers/examples/elf Makefile
README
blobsql.elf
ebrowser.l

Makefile for ebrowser.l
The latest release information
Example source
Parser (lex)

C/C++. Java, Fortran, Tcl,

New Languages

Standard Parsers

Project Database

New Parsers

[incr Tcl], Cobol, assembly

(generated with the SDK)
154 ■ Reference Guide Red Hat Source-Navigator

The Parser Toolbox Library

r.

tring

ce
The Parser Toolbox Library
A library, implemented above the API, simplifies the task of writing new parsers. This
library, known as the parser toolbox, allows programmers to focus on the issues of
parsing source files in their chosen language and then storing the relevant information
in the database.

The toolbox provides a number of C functions that can help you write your parser with
less effort. These functions can be grouped as follows:
■ functions to maintain line and column counts in your source files. Whenever the

parser encounters an interesting symbol in the source program, it must know
where in the source file the symbol occurred.

That is, the function sn_advance_line() will increment a line counter
maintained internally by the toolbox library. This function would be called along
with other actions that the parser might perform when it encounters a newline
character in the source text.

■ a function to determine the name of the source file currently being parsed.
■ miscellaneous text processing functions for counting the number of lines and

columns consumed by a given block of text and so on.
■ an entry point, called sn_main, which manages all of the details of interfacing

with Source-Navigator and parsing each source file. In most circumstances, it is
sufficient for the parser to call sn_main and allow this function to call back to
your actual parsing function when required.

This introduces a number of important concepts best explained with an example:
int sn_main(int argc, char *argv[], char *lang_string,

FILE **infile_ref, int(*parse)(), void(*reset)());
char group[] = "java";
int main(int argc, char *argv[])
{

return sn_main(argc, argv, group, &yyin, yylex, reset);
}

When calling sn_main, it is necessary to pass:

• the argc and argv variables as passed into your main() function. This allows
the library to access the command line options given by Source-Navigato

• a pointer to a string identifying the language. In the example above, the s
is called group.

• a pointer to a FILE * stream variable. You must pass the address of this
variable as the library will manipulate the stream when opening new sour
files. If you are using GNU flex/bison, then pass a pointer to the global
variable yyin.
Red Hat Source-Navigator Reference Guide ■ 155

Project Database Calls

en

urce

be

to

s

nts,

he
s
• A pointer to a function which takes no arguments and returns an int. This is a
pointer to your actual parsing function. If you are using GNU flex/bison, th
pass yylex or yyparse.

• A pointer to a function which takes no arguments and returns void. This
function is expected to perform any actions prior to processing the next so
file. Typically this function might look like:

void reset()
{

sn_reset_line(); /* reset line count */
sn_reset_column(); /* reset column count */

}

A detailed description of the functions available in the parser toolbox library can
found in ~/share/sdk/include/snptools.h.

Unless the parser has to do something out of the ordinary, it should be possible
create a new parser by following these steps:

1. #include snptools.h in your program (or within the verbatim section of your
lex specification).

2. Define a main function which calls sn_main with the appropriate arguments and
returns the result of sn_main to the host environment.

3. Utilize the parser toolbox routines to simplify your work within the parser. For
example, sn_message may be called to display messages in a dialog box that i
shown to the user during the parsing process.

4. When your parser recognizes important language constructs such as comme
function declarations, or function invocations, call the appropriate sn_insert
function to insert this information into the project database.

5. Link your final program with the sntools library. A typical command line for
linking a parser can be found in the Makefile given in the
~/share/sdk/parsers/examples/elf directory.

Project Database Calls
The toolbox library provides a number of functions for inserting information into t
database that the parser will encounter in the source text. Each of these function
return an int with two possible return values:

0 success

-1 failure
156 ■ Reference Guide Red Hat Source-Navigator

Project Database Calls
sn_insert_symbol
int sn_insert_symbol(int id_type, char *classname,

char *identifier, char *filename, int start_lineno,
int startCol, int endLine, int endCol, unsigned long attrib,
char *returnType, char *argTypes, char *argNames,
char *comment, int highStartLine, int highStartCol,
int highEndLine, int highEndCol);

sn_insert_symbol inserts a symbol into the project database.

type determines the type of the symbol. Possible values are:

SN_TYPE_DEF type definitions (such as a C typedef)

SN_CLASS_DEF class definition (particularly for object-oriented
languages)

SN_MBR_FUNC_DEF member functions

SN_MBR_VAR_DEF member variables

SN_ENUM_DEF enumerations

SN_CONS_DEF constants

SN_MACRO_DEF macros

SN_FUNC_DEF functions

SN_SUBR_DEF subroutines

SN_GLOB_VAR_DEF global variables

SN_COMMON_DEF common blocks

SN_COMMON_MBR_VAR_DEF member variables within a common block

SN_CLASS_INHERIT class inheritance

SN_MBR_FUNC_DCL member function declarations

SN_FUNC_DCL functions

SN_ENUM_CONST_DEF enumeration constant

SN_UNION_DEF definitions of unions or variant records

SN_FRIEND_DCL friends (for C++)

SN_NAMESPACE_DEF name spaces

SN_EXCEPTION_DEF exceptions

SN_LOCAL_VAR_DEF local variables

SN_VAR_DCL variables

SN_INCLUDE_DEF include files

SN_REF_UNDEFINED reference to undefined symbols
Red Hat Source-Navigator Reference Guide ■ 157

Project Database Calls

e.

r

or

e

classname the name of the class, structure or common block of the symbol
if the symbol’s type is one of SN_MBR_FUNC_DEF,
SN_MBR_VAR_DEF, SN_COMMON_MBR_VAR_DEF, or
SN_CLASS_INHERIT. Otherwise, classname must be a NULL
pointer. If the symbol’s type is SN_CLASS_INHERIT,
classname contains the name of the base class.

identifier the name of the symbol to be inserted into the project databas

filename the name of the source file in which this symbol was
encountered.

start_lineno the line number of the position where the symbol starts.

startCol the column number of the position where the symbol starts.

endLine the line number of the position where the symbol ends.

endCol the column number of the position where the symbol ends.

attrib contains attributes of the symbol definitions (see sn.h).

returnType a string describing the return type of the function, subroutine o
method. If the symbol is not one of these types, pass a NULL
pointer.

argTypes a string containing a comma-separated list of argument types f
the argument list of functions, subroutines or methods. If the
symbol is not one of these types, pass a NULL pointer.

argNames a string containing a comma-separated list of argument names
for the argument list of functions, subroutines or methods. If th
symbol is not one of these types, pass a NULL pointer.

comment a string containing the comment that often occurs after a
definition in the source text. Note that eight-bit characters
including \n may be used in the string. If there is no comment,
pass a NULL pointer.

highStartLine the line number of the position where the highlighting of the
symbol starts.

highStartCol the column number of the position where the highlighting of the
symbol starts.

highEndLine the line number of the position where the highlighting of the
symbol ends.

highEndCol the column number of the position where the highlighting of the
symbol ends.
158 ■ Reference Guide Red Hat Source-Navigator

Project Database Calls
Examples
The following example inserts a class definition:
sn_insert_symbol(SN_CLASS_DEF, NULL, classname,

sn_current_file(), sn_line(), sn_column(), sn_line(),
sn_column() + strlen(classname), 0L, NULL, NULL,
NULL, NULL, sn_line(), sn_column(), sn_line(),
sn_column() + strlen(classname));

The following example inserts a method definition:
sn_insert_symbol(SN_MBR_FUNC_DEF, classname, methodname,

sn_current_file(), sn_line(), sn_column(), sn_line(),
sn_column() + strlen(methodname), 0L, NULL, NULL,
NULL, NULL, sn_line(), sn_column(), sn_line(),
sn_column() + strlen(methodname));

For a C function with the following prototype:
int transform(struct coord * p, int x, int y, unsigned att);

the following example inserts the definition into the database:
sn_insert_symbol(SN_FUNC_DEF, NULL, "transform",

sn_current_file(), sn_line(), sn_column(), sn_line(),
sn_column + len, 0L, "int", "struct coord *, int, int,
unsigned", "p,x,y,att", NULL, NULL, sn_line(), sn_column(),
sn_line(), sn_column() + len);

sn_insert_xref
sn_insert_xref inserts cross-referencing information.

One of the most useful aspects of Source-Navigator is its cross-referencing
capabilities. For instance, it is possible to see which functions are used by other
functions or which functions modify a particular global variable.

Where possible, a parser should attempt to collect information of this nature and insert
it into the project database. In a language with a flat namespace such as C, this can be
achieved by noting the name of the current function within the parser. If a function
invocation is encountered in the source text, then the cross-referencing can be inferred
based on the current function’s name and the function being called.

Cross-referencing information is added using:
int sn_insert_xref(int type, int scope_type, int scope_level,

char *classname, char *funcname, char *argtypes,
char *refclass, char *refsymbol, char *ref_arg_types,
char *filename, int lineno, int acc);

type describes the type of the referenced symbol. It must be one of
the following:

SN_REF_TO_TYPEDEF

SN_REF_TO_DEFINE
Red Hat Source-Navigator Reference Guide ■ 159

Project Database Calls
SN_REF_TO_ENUM

SN_REF_TO_STRUCT

SN_REF_TO_UNION

SN_REF_TO_CLASS

SN_REF_TO_FUNCTION

SN_REF_TO_MBR_FUNC

SN_REF_TO_MBR_VAR

SN_REF_TO_COMM_VAR

SN_REF_TO_CONSTANT

SN_REF_TO_SUBROUTINE

SN_REF_TO_GLOB_VAR

SN_REF_TO_LOCAL_VAR

SN_REF_TO_TEMPLATE

SN_REF_TO_NAMESPACE

SN_REF_TO_EXCEPTION

SN_REF_TO_LABEL

scope_type describes the type of the location where the cross-reference
information is reported. It must be one of the following:

SN_FUNC_DEF

SN_MBR_FUNC_DEF

SN_SUBR_DEF

scope_level describes the scope level of the referenced symbol. It must be
one of:

SN_REF_SCOPE_LOCAL

SN_REF_SCOPE_GLOBAL

classname a string containing the class name of the method if scope_type
is SN_MBR_FUNC_DEF; otherwise, it must be a NULL pointer.

funcname a string containing the function, method or subroutine name in
which the reference information is reported.

argtypes a string containing a comma-separated list of argument types for
the argument list of functions, subroutines or methods. Pass
NULL if there are no arguments.

refclass a string containing the class, structure or common block name of
the referred symbol. If the symbol is not within a namespace,
pass a NULL pointer.

refsymbol the name of the referred symbol.
160 ■ Reference Guide Red Hat Source-Navigator

Project Database Calls

s

:

Examples
The following example inserts cross-referencing information for a function that is
called from another function.
sn_insert_xref(SN_REF_TO_FUNCTION, SN_FUNC_DEF,

SN_REF_SCOPE_GLOBAL, NULL, currentFunction, NULL, NULL,
calledFunction, NULL, sn_current_file(), sn_line(),
SN_REF_PASS);

The following example inserts cross-referencing information for a function that is
called from a member function called insert which belongs to a C++ class called
Stack.
sn_insert_xref(SN_REF_TO_MBR_VAR, SN_MBR_FUNC_DEF,

SN_REF_SCOPE_GLOBAL, "Stack", "insert", NULL, "Stack",
"i", NULL, sn_current_file(), sn_line(), SN_REF_READ);

sn_insert_comment
sn_insert_comment inserts comments into the project database.

When comments are encountered in the source text, the parser should call
sn_insert_comment to add these comments to the project database. In some
Source-Navigator projects, the user will choose to not include comments, but the
parser should call this function regardless. The library function will decide whether or
not to actually store the information in the database.

Comments are added to the database using:
int sn_insert_comment(char *classname, char *funcname,

char *filename, char *comment, int beg_line, int beg_col);

ref_arg_types a string containing a comma-separated list of argument types if
the referred symbol’s type is a method, subroutine or function.
Pass NULL if there are no arguments or the referred symbol is
not one of these types.

filename the name of the source file in which the reference information i
reported.

lineno the line number of the source file in which the reference
information is reported.

acc the level of access to the referenced symbol and is one of

SN_REF_READ symbol is read (such as if (x) { ... })

SN_REF_WRITE symbol is modified (such as x = 10)

SN_REF_PASS variable is passed to a subroutine/function

SN_REF_UNUSED symbol is never used
Red Hat Source-Navigator Reference Guide ■ 161

Integration with Source-Navigator
Integration with Source-Navigator
A completed parser can be integrated into Source-Navigator by following these steps:

1. Copy the parser executable into the ~/bin directory.

2. Edit sn_prop.cfg in the directory ~/share/etc. The Tcl procedure
sn_add_parser is used to add parsers to the configuration. The following
example shows how to include support for Java:

sn_add_parser java -suffix {*.java} \
-brow_cmd $odd_path(bindir)/jbrowser \
-high_cmd $odd_path(bindir)/jbrowser \
-high_switch "-h"

When Source-Navigator is restarted, support for the new language becomes available.
When creating a project, the Parsers tab in the Project Preferences dialog shows the
new language and its associated filename extensions.

This is all that is required to add new language support to Source-Navigator. If a
project is created which contains files with any of the specified filename extensions,
the new parser is invoked to process those files as a part of the overall parsing process.

classname a string containing the name of the class or method where the comment
was found or NULL.

funcname a string containing the name of the function or method in which the
comment was found, or NULL if the comment is outside any function
or method scope.

filename a string containing the name of the current file being parsed.

comment a string containing the comment without the comment separators. For
example, in Tcl this would exclude the leading # character.

beg_line the line number of the source file where the comment begins.

beg_col the column number of the source file where the comment begins.
162 ■ Reference Guide Red Hat Source-Navigator

ges.

oject
Database API

This chapter provides information that enables programmers to build applications that
make use of Source-Navigator’s project databases. It covers the API, including
available functions and their syntax.

This chapter assumes that you are familiar with the Tcl or C programming langua

For information about Tcl, see Practical Programming in Tcl and Tk1 and Tcl and

the Tk Toolkit2, and for information about C, see The C Programming Language3.

Introduction
Source-Navigator project information is stored in a database. There is one database
for each project and the database may contain one or more views. A view is a named
subset of records; this might be the subset of all .h files, or the subset of all files in a
given subdirectory. Views are a powerful and fast way to narrow down a large pr
without building multiple projects (see page 165).

4

1 Welch, Brent B. 1997. Practical Programming in Tcl and Tk. 2nd ed. ISBN 0-13-616830-2.
2 Ousterhout, John K. 1994. Tcl and the Tk Toolkit. ISBN 0-201-63337-X.
3 Kernighan, Brian W., and Dennis M. Ritchie. 1988. The C Programming Language. 2nd ed. ISBN 0-13-110362-8.
Red Hat Source-Navigator Reference Guide ■ 163

Structure

ing

n the

ase

ers,

n be

ble.

n
 the

tion

l
A database consists of 15 to 25 files; each file consists of a table that contains symbol
and index information. Database files are regular files in the operating system that you
can share between UNIX and Windows operating systems.

When you create a project with Source-Navigator, a database is created in the
projectdir/.snprj directory. By default, this location can be changed in the Project
Preferences dialog when the project is created. See “General Project Preferences” on
page 26 for more information. Each database file is created with a filename start
with projectname, where projectname is the project name you chose and
projectdir is the project directory you chose. One or more databases may exist i
same directory.

Each file is a table that contains specific symbol information and indexes. A datab
table can be accessed via an index, which is handled internally by the database, or
sequentially. To use the Tcl API, you do not need additional header files, compil
or libraries. All of the Tcl commands you need to work with a Source-Navigator
project database are built into the Source-Navigator Tcl interpreter called hyper.

NOTES In previous versions of Source-Navigator, fields in the database were
separated by space characters. To accommodate filenames that contain
spaces, the field separator has been changed to an internal value that ca
referenced through the read-only Tcl variable sn_sep. See the scripts in
“Cross-Reference Tables” on page 166 for more information on this varia

The first three lines of the scripts in this chapter are “boilerplate” text to ru
these scripts on UNIX. On Windows you must delete these lines and run
remainder from a file using SNsdk.

To run stand-alone Tcl scripts (see page 188) on Windows NT, an execu
command must be used. The usage of this command is:
SNsdk script-name arguments

To run the multicludes.tcl example script on a project called test1 in the
C:\test directory the syntax would be:
SNsdk multicludes.tcl C:\test test1

Structure
The database may be accessed by a set of Tcl commands. The primary goals in
designing the API were performance and flexibility; for high-level queries, the Tc
language provides a powerful and flexible solution.
164 ■ Reference Guide Red Hat Source-Navigator

Views

 is

s to
Figure 120: Database API Overview

The database supports the btree and hash file formats. The btree format is a
representation of a sorted, balanced tree structure. The hash format is an extensible,
dynamic hashing scheme.

The dbopen, close, del, get, put, and seq routines are used to access the database.
Optimal database tuning calls and parameters may also be configured in Tcl using the
cachesize and pagesize properties (see “dbopen for Tcl” on page 168) to give
optimum performance in specific applications.

Views
Views define sets of files to include or exclude from queries. The hidden files list
stored in a view. For example, in a project where you have both database- and
GUI-specific source files, you can hide the database file sql.c and save the remaining
project information as a view. Hiding this view means the records with reference
the file sql.c must be skipped. The following example lists a view table:
set db_view [dbopen nav_view .snprj/cpl.2 RDONLY 0644 hash \
cachesize=300000]
puts stdout [join [$db_view seq -data] \n]

The output is as follows:
sql.c

Project Database tables

Low-level

Tcl APIApplication Source-Navigator

dbopen, close, del, get, putTcl Interpreter

database calls
Red Hat Source-Navigator Reference Guide ■ 165

Cross-Reference Tables
Using Views
Views have to be specified when a table is opened using the dbopen command; the
application does not have to be changed. For more information on dbopen for Tcl, see
page 168.

The example below uses a view. The view table in the following example
(.snprj/cpl.2) is created using the Editor. The first view in a project has the suffix
.1, the second .2. There is no limit for views.

#!/bin/sh
Replace $HOME/snavigator with the Source-Navigator
installation directory! \
exec $HOME/snavigator/bin/hyper "$0" "$@"
#
Don’t forget the backslash before exec!
#
set db_view [dbopen nav_view .snprj/cpl.2 RDONLY 0644 \

hash cachesize=300000]

set db_functions [dbopen nav_func .snprj/cpl.fu RDONLY \
0644 btree cachesize=20000 $db_view]

Output the list of matches with newline characters
after each.
puts [join [$db_functions seq -data] \n]

Force our way out of this event-driven shell.
exit

Cross-Reference Tables
Source-Navigator stores the cross-reference information in two tables with the
suffixes by and to . They contain the same information, only their key format differs.
The to table keeps the refers-to information and the by table the referred-by
information. The following script opens the to cross-reference table of a project and
lists its contents.

#!/bin/sh
Replace $HOME/snavigator with the Source-Navigator
installation directory! \
exec $HOME/snavigator/bin/hyper "$0" "$@"
#
Don’t forget the backslash before exec!
#
set db_functions [dbopen nav_func .sn/cpl.to RDONLY 0644 btree \

{cachesize=200000}]
166 ■ Reference Guide Red Hat Source-Navigator

Cross-Reference Tables
puts [join [$db_functions seq -data] \n]
exit

The above script would generate these results:
len fu # strlen fu p 000019 c.c
main fu # glob_var gv w 000010 c.c
main fu # len fu p 000013 c.c
main fu # printf fu p 000013 c.c
main fu # strcpy fu p 000012 c.c

The hash (#) characters mean that the symbols do not belong to any classes. To fetch
only the references in the main function, modify the fetch instruction:
$db_functions seq -data "#${sn_sep}main${sn_sep}"

In the query, note that the first character of the key must be a hash (#) character
because main is not a method but a function. To be sure that only the references of
main are reported, a separator character ($sn_sep) has to be added to the string main.
Without the separator, the query would report the references of all functions whose
names begin with the string main.

An example of the result after the modification:
main fu # glob_var gv w 000010 c.c
main fu # len fu p 000013 c.c
main fu # printf fu p 000013 c.c
main fu # strcpy fu p 000012 c.c

If an application collects references to a function referred-by, it is better to use the by
database table.

The script below opens the referred-by table and reports every reference to the global
variable glob_var and the function len.

#!/bin/sh
Replace $HOME/snavigator with the Source-Navigator
installation directory! \
exec $HOME/snavigator/bin/hyper "$0" "$@"
#
Don’t forget the backslash before exec!
#
global sn_sep
set db_functions [dbopen nav_func .snprj/cpl.by RDONLY \

0644 btree cachesize=200000]
Output the cross-references which match the following
criteria, with newline characters between all of them.
puts [join [$db_functions seq -data \

"#${sn_sep}glob_var${sn_sep}gv"] \n]
puts [join [$db_functions seq -data \

"#${sn_sep}len${sn_sep}fu"] \n]

Force our way out of this event-driven shell.
exit

The result will be:
glob_var gv # main fu w 000010 c.c
len fu # main fu p 000013 c.c
Red Hat Source-Navigator Reference Guide ■ 167

Tcl API Functions

k.

at

 is
The output above indicates that the symbols glob_var and len are only used by the
function main.

Tcl API Functions
The Source-Navigator database tables can be accessed by means of Tcl commands
created using the dbopen command. The database API can access Source-Navigator
tables regardless of whether Source-Navigator is running, or a project is using the
target tables.

dbopen for Tcl
The dbopen command opens a table for reading and/or writing. dbopen creates a new
Tcl object (command) with the name dbobject.

SYNOPSIS
dbopen dbobject tableName access permission type ?openinfo?

dbobject The desired name of the new command. dbopen will fail if there is
already a command named dbobject.

tableName The dbopen command opens a table for reading and/or writing. Files
not intended for permanent storage on disk can be created by setting
the tableName parameter to NULL.

access The access argument is as specified for the Tcl open routine;
however, only the CREAT, EXCL, RDONLY, RDWR, and TRUNC flags are
significant. Refer to the Tcl documentation for further information on
modes for opening files.

permission If a new file is created as part of the process of opening it,
permission (an integer) sets the permissions for the file. On UNIX,
this is done in conjunction with the process’ file mode creation mas

type The type argument must be either btree or hash. The btree
format represents a sorted, balanced tree structure. The hash form
is an extensible, dynamic hashing scheme.

openinfo The openinfo optional argument must be a valid Tcl list and can be
used to set type-specific properties of database tables. The syntax
as follows:
property1=value,property2=value,...\
propertyn=value
See Table 12 and Table 13 for valid values for this parameter.
168 ■ Reference Guide Red Hat Source-Navigator

Tcl API Functions

ce
d
d as

an

Table 12: Hash Table Properties

Hash table
properties Meaning

bsize Defines the hash table bucket size, and is, by default, 256 bytes. It may be
preferable to increase the page size for disk-resident tables and tables with large
data items.

factor Indicates a desired density within the hash table. It is an approximation of the
number of keys allowed to accumulate in any one bucket, determining when the
hash table grows or shrinks. The default value is 8.

nelem An estimate of the final size of the hash table. If not set, or set too low, hash tables
will expand gradually as keys are entered. Although a slight degradation in
performance may be noticed, the default value is 1.

cachesize Suggested maximum size, in bytes, of the memory cache. This value is only
advisory, and the access method will allocate more memory rather than fail.

Table 13: btree Table Properties

btree table
properties Meaning

flags The flags value is specified by applying the bitwise OR operation with any of
these values:

R_DUP permit duplicate keys in the tree; that is, permit insertion if the key to be
inserted already exists in the tree. The default behavior is to overwrite a matching
key when inserting a new key or to fail if the R_NOOVERWRITE flag is specified. The
R_DUP flag is overridden by the R_NOOVERWRITE flag, and if the R_NOOVERWRITE
flag is specified, attempts to insert duplicate keys into the tree will fail. If the
database contains duplicate keys, the order of retrieval of key/data pairs is
undefined if the get method is used; however, seq method calls with the R_CURSOR
flag set will always return the logical “first” of any group of duplicate keys.

cachesize Suggested maximum size (in bytes) of the memory cache. This value is only
advisory, and the access method will allocate more memory rather than fail. Sin
every search examines the root page of the tree, caching the most recently use
pages substantially improves access time. In addition, physical writes are delaye
long as possible, so a moderate cache can reduce the number of I/O operations
significantly. Using a cache increases (but only increases) the likelihood of
corruption or lost data if the system crashes while a tree is being modified. If
cachesize is 0 (no size is specified), a default cache is used.

minkeypage The minimum number of keys stored on any single page. This value determines
which keys are stored on overflow pages; that is, if a key or data item is longer th
the pagesize divided by the minkeypage value, it is stored on overflow pages
instead of in the page itself. If minkeypage is 0 (no minimum number of keys is
specified), a value of 2 is used.
Red Hat Source-Navigator Reference Guide ■ 169

Tcl API Functions

f

es,
, a
es the
p,
If the file already exists (and the TRUNC flag is not specified), the values specified for
the parameter flags, lorder, and psize are ignored in favor of the values used when
the tree was created.

Forward sequential scans of a tree are from the least key to the greatest.

Space freed up by deleting key/data pairs from the tree is never reclaimed, although it
is normally made available for reuse. This means that the btree storage structure is
grow-only. The only solution is to avoid excessive deletions, or to create a fresh tree
periodically from a scan of an existing one (see “dbcp” on page 192).

The instruction below opens (for read-only) a btree database table using cachesize o
two MB.
set db [dbopen nav_classes brow.cl RDONLY 0644 btree \

{cachesize=2000000}]

The next example opens a hash table that is used later as a view.
set db_view [dbopen nav_view .snprj/progs.1 RDONLY \

0644 hash "cachesize=300000"]
set db_functions [dbopen nav_func .snprj/progs.fu \

RDONLY 0644 btree "cachesize=200000" $db_view]

Methods
With commands created by dbopen, these methods can be used: close, del, exclude,
get, isempty, put, reopen, seq, and sync. In the following examples, dbobject
represents the command returned from dbopen.

close

SYNOPSIS
dbobject close

This method flushes any cached information to disk, frees any allocated resourc
and closes the underlying table. Since key/data pairs may be cached in memory
database should be closed or synchronized before the application exits; this flush
cache to disk. Failure to close or synchronize can cause data loss. As a final ste
dbobject is also destroyed.

psize Page size is the size (in bytes) of the pages used for nodes in the tree. The minimum
page size is 512 bytes, and the maximum page size is 64K. If psize is 0 (no page
size is specified), a page size is selected based on the underlying file system I/O
block size.

lorder The byte order for integers in the stored database metadata. The number should
represent the order as an integer; for example, big endian order would be the
number 4,321. If lorder is 0 (no order is specified), the current host order is used.

Table 13: btree Table Properties (Continued)

btree table
properties Meaning
170 ■ Reference Guide Red Hat Source-Navigator

Tcl API Functions

” on

del

SYNOPSIS
dboject del ?-glob pattern? ?-beg pattern? ?-end pattern?

?-regexp pattern? ?-strstr pattern? ?key? ?flags?

This method removes key/data pairs from the table.

With glob, beg, end, regexp, and strstr switches (applicable only to the btree
tables), a pattern must be specified to delete every record whose key matches the
pattern. If key is specified, only those records are checked for deletion whose keys
begin with key.

The parameter flags may be set to the value R_CURSOR. Delete the record referenced
by the cursor. The cursor must have previously been initialized.

This method returns the number of the deleted records.

exclude

SYNOPSIS
dbobject exclude view

This method effectively sets the view of dbobject by excluding all symbols not in the
view. View must be the name of an already existing object created using an earlier
dbopen command.

get

SYNOPSIS
dbobject get key

If key is found, this method returns key and the associated data in separate Tcl lists;
otherwise, it returns an empty string. For more information, see “Fetching Tables
page 172.

isempty

SYNOPSIS
dbobject isempty

This method returns 1 if the table (with its current view) is empty, otherwise 0.

put

SYNOPSIS
dbobject put key data ?flags?

This method stores key/data pairs in the table.

The parameter flags may be set to one of these values:

The default behavior of the put routines is to enter the new key/data pair, replacing
any previously existing key.
Red Hat Source-Navigator Reference Guide ■ 171

Fetching Tables

 This

e

This method returns 0 on success, and 1 if the R_NOOVERWRITE flag was set and the key
already exists in the table.

reopen

SYNOPSIS
dbobject reopen

This method closes and reopens the table. This flushes data to disk and resets any
views.

seq

SYNOPSIS
dbobject seq option

See “Fetching Tables” on page 172.

sync

SYNOPSIS
dbobject sync

If the table is in memory only, this method has no effect and will always succeed.
method returns zero (0) on success.

Fetching Tables
Database tables can be fetched by the get and seq methods.

get returns only one record if the fully qualified key can be found. For more
information, see the description of the get method on page 171.

seq can be used to fetch tables sequentially. If the key argument is not given, the
whole table is fetched (records to be retrieved can be filtered with patterns). key limits
the records that should be fetched. seq may begin at any time, and the position of th
cursor is not affected by calls to the del, get, put, or sync methods. Use the optional
filters -end, -glob, -nocase, -regexp, -result_filter, and -strstr to limit the
retrieved records.

R_CURSOR Replace the key/data pair referenced by the cursor. The cursor
must have previously been initialized.

R_NOOVERWRITE Enter the new key/data pair only if the key did not previously
exist.

R_SETCURSOR Store the key/data pair, setting or initializing the position of the
cursor to reference it. (Applicable only to the btree tables.)
172 ■ Reference Guide Red Hat Source-Navigator

Fetching Tables

Using key assures the best performance because it already limits the records that
should be fetched while the filters limit the results only after the records have been
fetched.

By fetching, the view (if any) assigned to the table while it was open is always
processed.

Fetch Methods
Database tables can be fetched sequentially using seq or with indexed get access.

seq

SYNOPSIS
dbobject seq ?-columns column_list? ?-data? ?-end pattern?

?-first? ?-format format_string? ?-glob pattern? ?-key?
?-nocase pattern? ?-regexp expression?
?-result_filter pattern? ?-strstr pattern? ?-uniq? ?-list?
?key? ?flags?

-columns column_list

This switch determines the order and format in which the fields
of the records are to be retrieved. column_list is a Tcl list with
the format:
{{col_num1 ?format?} {col_num2 ?format?}...
{column_numbern ?format?}}
where format may be one of the following:

/ Only the remainder of the field after the last
/ character is retrieved.

#separator The remainder of the field after the last /
character is retrieved, and then separator
and the field contents, until the last /.
If the field doesn’t contain any /, only the
field contents are retrieved.

% The field is formatted with the sprintf C
Programming function as if it were:
sprintf(result,format,field);

& The formatted result up to the current field is
formatted as if it were:
sprintf(new_result, format,

current_result);
The & character is interpreted as if it were %.

:biteq:bitor Records are retrieved only if the current field
contents fulfill the condition as follows:
(biteq & field) == biteq && (bitor
& field)
Use this operator only for numerical fields.
Red Hat Source-Navigator Reference Guide ■ 173

Fetching Tables
=value Records are retrieved only if the current field
equals to value.

-min:max Records are retrieved only if the current field
is between min and max. The field is in the
range if it equals to min or max.
This operator can be used only for decimal
numerical fields.

<value Records are retrieved only if the current field
is less than value.
Use this operator only for numerical fields.

>value Records are retrieved only if the current field
is greater than value.
Use this operator only for numerical fields.

|suffix A suffix is added to the contents of the field.

If format does not match any of the special characters
listed above, it will just be appended after the field
contents.

In column_list, every field can be defined only once.

-data When this switch is specified, the fetched data of the record is
not retrieved.

-end pattern Only those records are fetched whose keys end with pattern.

-first When this switch is specified, only the first record to match the
conditions is retrieved.

-format
format_string

If this option is specified, every retrieved record is additionally
formatted with the sprintf C Programming function as if it
were:
sprintf(new_result,format_string,result);

-glob pattern The record is retrieved only if its key matches the glob pattern.

-key If this key is specified, the keys of the selected records are not
retrieved.

-nocase
pattern

The record is retrieved only if its key matches the
non-case-sensitive glob pattern.

-regexp
expression

The record is retrieved only if its key matches the regular
expression.

-result_filter
pattern

The record is retrieved only if the formatted fields match the
glob pattern.

-strstr
pattern

The record is fetched only if the pattern can be found in the key
of the fetched record. (For more information, see the strstr C
library function).

-uniq If this option is specified, duplicated lists in the result returned
are eliminated.
174 ■ Reference Guide Red Hat Source-Navigator

C Programming API Functions
C Programming API Functions
This section provides the equivalent of manual pages for the C Programming API
functions.

NOTE You must #include <db.h> when using the C API, and you need to link the
final executable with libpafdb.a and libtcl8.1.a to locate the database
library routines.

-list If neither the column, data, or key switch is used, the keys and
data parts of the fetched records are retrieved in separated
sub-Tcl list. If this switch is specified, the key and data parts are
retrieved in the same lists.

flags The flags value may be set to one of these values:

R_CURSOR The data associated with the specified key is
returned. This differs from the get routines
in that it sets or initializes the cursor to the
location of the key as well. (For the btree
access method, the returned key is not
necessarily an exact match for the specified
key. The returned key is the smallest key
greater than or equal to the specified key,
permitting partial key matches and range
searches.)

R_FIRST The first key/data pair of the database is
returned, and the cursor is set or initialized to
reference it.

R_LAST The last key/data pair of the database is
returned, and the cursor is set or initialized to
reference it (applicable only to the btree
tables.)

R_NEXT Retrieve the key/data pair immediately after
the cursor. If the cursor is not yet set, this is
the same as the R_FIRST flag. This value is
taken if a flag is not given.

R_PREV Retrieve the key/data pair immediately
before the cursor. If the cursor is not yet set,
this is the same as the R_LAST flag
(applicable only to the btree tables).
R_LAST and R_PREV are available only for
the btree tables because they each imply
that the keys have an inherent order that does
not change.
Red Hat Source-Navigator Reference Guide ■ 175

C Programming API Functions

rror.

quired
to a
dbopen for C
SYNOPSIS
#include <db.h>

DB *dbopen(const char *file, int flags, int mode, DBTYPE type, const
void *openinfo);

dbopen is the library interface to database files.

dbopen opens file for reading and/or writing. Files that are never intended to be
preserved on disk may be created by setting the file parameter to NULL.

The flags and mode arguments are as specified to the open(2) routine; however, only
the O_CREAT, O_EXCL, O_EXLOCK, O_NONBLOCK, O_RDONLY, O_RDWR, O_SHLOCK, and
O_TRUNC flags are meaningful. (Note that opening a database file O_WRONLY is
meaningless.)

The type argument is of type DBTYPE, defined in the <db.h> include file. It may be set
to DB_BTREE or DB_HASH.

The openinfo argument is a pointer to an access method specific structure described
in the access method’s manual page. If openinfo is NULL, each access method will
use defaults appropriate for the system and the access method.

The dbopen routine returns a pointer to a DB structure on success and NULL on e
The DB structure is defined in the <db.h> include file, and contains at least these
fields:
typedef struct {

DBTYPE type;
int (*close)(const DB *db);
int (*del)(const DB *db, const DBT *key, u_int flags);
int (*fd)(const DB *db);
int (*get)(const DB *db, DBT *key, DBT *data, u_int flags);
int (*put)(const DB *db, DBT *key, const DBT *data, u_int flags);
int (*sync)(const DB *db, u_int flags);
int (*seq)(const DB *db, DBT *key, DBT *data, u_int flags);

} DB;

The elements of this structure specify the database type and a set of functions re
to perform operations on a database of this type. These functions take a pointer
structure as returned by dbopen, and sometimes one or more pointers to key/data
structures and a flag value.

The structure elements are:

type The type of the underlying access method (and file format).

close A pointer to a routine to flush any cached information to disk, free any
allocated resources, and close the underlying file(s). Since key/data
pairs may be cached in memory, failing to sync the file with a close or
sync function may result in inconsistent or lost information. close
routines return -1 on error (setting errno), and 0 on success.
176 ■ Reference Guide Red Hat Source-Navigator

C Programming API Functions

an
r are
ed.
del A pointer to a routine to remove key/data pairs from the database.

The parameter flags may be set to:

R_CURSOR Delete the record referenced by the cursor. The
cursor must have previously been initialized.

del routines return -1 on error (setting errno), 0 on success, and 1 if
the specified key was not in the file.

fd A pointer to a routine that returns a file descriptor representative of the
underlying database. A file descriptor referencing the same file is
returned to all processes that call dbopen with the same filename. This
file descriptor may be safely used as an argument to the fcntl(2) and
flock(2) locking functions. The file descriptor is not necessarily
associated with any of the underlying files used by the access method.
No file descriptor is available for use in memory databases. fd routines
return -1 on error (setting errno), and the file descriptor on success.

get A pointer to a routine that is the interface for keyed retrieval from the
database. The address and length of the data associated with the
specified key are returned in the structure referenced by data. get
routines return -1 on error (setting errno), 0 on success, and 1 if the
key was not in the file.

put A pointer to a routine to store key/data pairs in the database.

The parameter flags may be set to one of these values:

R_CURSOR Replace the key/data pair referenced by the
cursor. The cursor must have previously been
initialized.

R_NOOVERWRITE Enter the new key/data pair only if the key does
not previously exist.

R_SETCURSOR is available only for the DB_BTREE access method
because it implies that the keys have an inherent order that does not
change.

The default behavior of the put routines is to enter the new key/data
pair, replacing any previously existing key.

put routines return -1 on error (setting errno), 0 on success, and 1 if
the R_NOOVERWRITE flag was set and the key already exists in the file.

seq A pointer to a routine that is the interface for sequential retrieval from
the database. The address and length of the key are returned in the
structure referenced by key, and the address and length of the data are
returned in the structure referenced by data.

Sequential key/data pair retrieval may begin at any time, and the
position of the “cursor” is not affected by calls to the del, get, put, or
sync routines. Modifications to the database during a sequential sc
are reflected in the scan, that is, records inserted behind the curso
not returned while records inserted in front of the cursor are return

The flags value must be set to one of these values:
Red Hat Source-Navigator Reference Guide ■ 177

C Programming API Functions
Key/Data pairs
Access to all file types is based on key/data pairs. Both keys and data are represented
by this data structure:
typedef struct {

void *data;
size_t size;

} DBT;

The elements of this structure are defined as follows:

R_CURSOR The data associated with the specified key is
returned. This differs from the get routines in
that it sets or initializes the cursor to the location
of the key as well. (For the DB_BTREE access
method, the returned key is not necessarily an
exact match for the specified key. The returned
key is the smallest key greater than or equal to the
specified key, permitting partial key matches and
range searches.)

R_FIRST The first key/data pair of the database is returned,
and the cursor is set or initialized to reference it.

R_LAST The last key/data pair of the database is returned,
and the cursor is set or initialized to reference it.
(Applicable only to the DB_BTREE access
method.)

R_NEXT Retrieve the key/data pair immediately after the
cursor. If the cursor is not yet set, this is the same
as the R_FIRST flag.

R_PREV Retrieve the key/data pair immediately before the
cursor. If the cursor is not yet set, this is the same
as the R_LAST flag. (Applicable only to the
DB_BTREE access method.)

R_LAST and R_PREV are available only for the DB_BTREE access
method because they each imply that the keys have an inherent order
that does not change.

seq routines return -1 on error (setting errno), 0 on success, and 1 if
there are no key/data pairs less than or greater than the specified or
current key.

sync A pointer to a routine to flush any cached information to disk. If the
database is in memory only, the sync routine has no effect and always
succeeds.

The flags value may be set to this value:

sync routines return -1 on error (setting errno), and 0 on success.

data A pointer to a byte string.

size The length of the byte string.
178 ■ Reference Guide Red Hat Source-Navigator

C Programming API Functions
Key and data byte strings may reference strings of essentially unlimited length
although any two of them must fit into available memory at the same time. It should
be noted that the access methods provide no guarantees about byte string alignment.

Errors
The dbopen routine may fail and set errno for any of the errors specified for the
library routines open(2) and malloc(3) or the following:

The close routines may fail and set errno for any of the errors specified for the
library routines close(2), read(2), write(2), free(3), or fsync(2).

The del, get, put, and seq routines may fail and set errno for any of the errors
specified for the library routines read(2), write(2), free(3), or malloc(3).

The fd routines will fail and set errno to ENOENT for any of the errors specified in
memory databases.

The sync routines may fail and set errno for any of the errors specified for the library
routine fsync(2).

Limitations
None of the access methods provides any form of concurrent access, locking, or
transactions.

btree Database Access Method
SYNOPSIS
#include <db.h>

The routine dbopen is the library interface to database files. One of the supported file
formats is btree files. For a general description of the database access methods, see
dbopen(3); this describes only the btree-specific information.

The btree data structure is a sorted, balanced tree structure storing associated
key/data pairs.

The btree access method specific data structure provided to dbopen is defined in the
<db.h> include file as follows:
typedef struct {

u_long flags;
u_int cachesize;
int maxkeypage;
int minkeypage;

[EFTYPE] A file is incorrectly formatted.

[EINVAL] A parameter, such as hash function or pad byte, has been specified
that is incompatible with the current file specification, or which is not
meaningful for the function (for example, use of the cursor without
prior initialization), or there is a mismatch between the version
number of the file and the software.
Red Hat Source-Navigator Reference Guide ■ 179

C Programming API Functions

alue

tree,
ss
o a
ntly.
ata

ntly

e
y or

 of

 The
K. If
n the

ess

e
 on a

ith
u_int psize;
int (*compare)(const DBT *key1, const DBT *key2);
size_t (*prefix)(const DBT *key1, const DBT *key2);
int lorder;

} BTREEINFO;

The elements of this structure are as follows:

flags The flags value is specified by applying the bitwise OR operation
with the following value:

R_DUP Permit duplicate keys in the tree, that is, permit insertion
if the key to be inserted already exists in the tree. The
default behavior, as described in dbopen(3), is to
overwrite a matching key when inserting a new key or to
fail if the R_NOOVERWRITE flag is specified. The R_DUP
flag is overridden by the R_NOOVERWRITE flag, and if the
R_NOOVERWRITE flag is specified, attempts to insert
duplicate keys into the tree will fail.
If the database contains duplicate keys, the order of
retrieval of key/data pairs is undefined if the get routine
is used; however, seq routine calls with the R_CURSOR
flag set will always return the logical “first” of any group
of duplicate keys.

cachesize A suggested maximum size (in bytes) of the memory cache. This v
is only advisory, and the access method will allocate more memory
rather than fail. Since every search examines the root page of the
caching the most recently used pages substantially improves acce
time. In addition, physical writes are delayed as long as possible, s
moderate cache can reduce the number of I/O operations significa
Using a cache slightly increases the likelihood of corruption or lost d
if the system crashes while a tree is being modified. If cachesize is 0
(no size is specified), a default cache is used.

maxkeypage The maximum number of keys stored on any single page. Not curre
implemented.

minkeypage The minimum number of keys stored on any single page. This valu
determines which keys are stored on overflow pages; that is, if a ke
data item is longer than the pagesize divided by the minkeypage
value, it is stored on overflow pages instead of in the page itself. If
minkeypage is 0 (no minimum number of keys is specified), a value
2 is used.

psize psize is the size (in bytes) of the pages used for nodes in the tree.
minimum page size is 512 bytes and the maximum page size is 64
psize is 0 (no page size is specified) a page size is chosen based o
underlying file system I/O block size.

compare compare is the key comparison function. It must return an integer l
than, equal to, or greater than zero if the first key argument is
considered to be respectively less than, equal to, or greater than th
second key argument. The same comparison function must be used
given tree every time it is opened. If compare is NULL (no
comparison function is specified), the keys are compared lexically, w
shorter keys considered less than longer keys.
180 ■ Reference Guide Red Hat Source-Navigator

C Programming API Functions
If the file already exists (and the O_TRUNC flag is not specified), the values specified
for the parameters flags, lorder, and psize are ignored in favor of the values used
when the tree was created.

Forward sequential scans of a tree are from the least key to the greatest.

Space freed up by deleting key/data pairs from the tree is never reclaimed, although it
is normally made available for reuse. This means that the btree storage structure is
grow-only. The only solutions are to avoid excessive deletions, or to create a fresh tree
periodically from a scan of an existing one.

Searches, insertions, and deletions in a btree will all complete in O (ln N) where N is
the average fill factor. Often, inserting ordered data into a btree results in a low fill
factor. This implementation has been modified to make ordered insertion the best
case, resulting in a much better-than-normal page fill factor.

Errors
The btree access method routines may fail and set errno for any of the errors
specified for the library routine dbopen(3).

Hash Database Access Method
SYNOPSIS
#include <db.h>

The routine dbopen is the library interface to database files. One of the supported file
formats is hash files. For a general description of the database access methods, see
dbopen(3); this describes only the hash specific information.

The hash data structure is an extensible, dynamic hashing scheme.

The access method specific data structure provided to dbopen is defined in the <db.h>
include file as follows:
typedef struct {

u_int bsize;
u_int ffactor;

prefix prefix is the prefix comparison function. If specified, this routine
must return the number of bytes of the second key argument, which is
necessary to determine that it is greater than the first key argument. If
the keys are equal, the key length should be returned. Although the
usefulness of this routine is very data dependent, in some data sets it
can produce significantly reduced tree sizes and search times. If
prefix is NULL (no prefix function is specified) and no comparison
function is specified, a default lexical comparison routine is used. If
prefix is NULL and a comparison routine is specified, no prefix
comparison is done.

lorder The byte order for integers in the stored database metadata. The
number should represent the order as an integer; for example, big
endian order would be the number 4,321. If lorder is 0 (no order is
specified), the current host order is used.
Red Hat Source-Navigator Reference Guide ■ 181

C Programming API Functions
u_int nelem;
u_int cachesize;
u_int32_t (*hash)(const void *, size_t);
int lorder;

} HASHINFO;

The elements of this structure are as follows:

If the file already exists (and the O_TRUNC flag is not specified), the values specified
for the parameters bsize, ffactor, lorder, and nelem are ignored and the values
specified when the tree was created are used.

If a hash function is specified, hash_open attempts to determine if the hash function
specified is the same as the one with which the database was created, and will fail if it
is not.

Backwardly compatible interfaces to the routines described in dbm(3) and ndbm(3)
are provided; however, these interfaces are not compatible with previous file formats.

Errors
The hash access method routines may fail and set errno for any of the errors specified
for the library routine dbopen(3).

bsize bsize defines the hash table bucket size, and is, by default, 256
bytes. It may be preferable to increase the page size for
disk-resident tables and tables with large data items.

ffactor ffactor indicates a desired density within the hash table. It is an
approximation of the number of keys allowed to accumulate in any
one bucket, determining when the hash table grows or shrinks. The
default value is 8.

nelem nelem is an estimate of the final size of the hash table. If not set or
set too low, hash tables will expand gracefully as keys are entered,
although a slight performance degradation may be noticed. The
default value is 1.

cachesize A suggested maximum size, in bytes, of the memory cache. This
value is only advisory, and the access method will allocate more
memory rather than fail.

hash hash is a user-defined hash function. Since no hash function
performs equally well on all possible data, the user may find that
the built-in hash function performs poorly on a particular data set.
User-specified hash functions must take two arguments (a pointer
to a byte string and a length) and return a 32-bit quantity to be used
as the hash value.

lorder The byte order for integers in the stored database metadata. The
number should represent the order as an integer; for example, big
endian order would be the number 4,321. If lorder is 0 (no order
is specified), the current host order is used. If the file already
exists, the specified value is ignored, and the value specified when
the tree was created is used.
182 ■ Reference Guide Red Hat Source-Navigator

C Programming API Functions
Simple Query Tool
The example below shows a simple query tool written in the C programming
language. Note that it works only for btree tables and that views are not supported.
#include <db.h>

main(int argc,char *argv[])
{

DB *db;
DBT data,key;
int flag,len;
char *pattern;
if (argc != 3)
{

printf("usage: %s database pattern\n",argv[0]);
exit(1);

}
if (!(db = dbopen(argv[1],O_RDONLY,0644,DB_BTREE,NULL)))
{

fprintf(stderr,"Could not open \
\"%s\",%s\n",argv[1],

strerror(errno));
exit(2);

}
pattern = argv[2];
len = strlen(pattern);
key.data = (void *)pattern;
key.size = len;
for(flag = R_FIRST;

db->seq(db,&key,&data,flag) == 0 &&
strncmp(key.data,pattern,len) == 0; flag = R_NEXT)

{
printf("key: %s\n",key.data);
printf("data: %s\n",data.data);

}
db->close(db);
exit (0);

}

To compile and link you can use the following Makefile:
SDK=/export/home/tom/snavigator/sdk

CFLAGS= -I$(SDK)/include
LIB= -L$(SDK)/lib -lpafdb

dbqry: dbqry.c
$(CC) -o $@ $< $(LIB)
Red Hat Source-Navigator Reference Guide ■ 183

Database Table Structures

e

 any
e

\

Database Table Structures
Source-Navigator stores information about source files in project (database) tables to
assure high performance with flexible query possibilities.

With the exception of the project file (that is itself also a hash database table), every
table normally relies on the .snprj sub-directory of the project and can be accessed
like any other database table. The following example shows what the table structure of
a project database looks like on a UNIX system. It was produced using the shell
command ls -l .snprj.
-rw-r--r-- 1 user sys 16384 Aug 12 12:19 cpl.1
-rw-r--r-- 1 user sys 16384 Aug 12 12:34 cpl.2
-rw-r--r-- 1 user sys 8192 Aug 12 12:19 cpl.by
-rw-r--r-- 1 user sys 8192 Aug 12 12:19 cpl.cl
-rw-r--r-- 1 user sys 16384 Aug 12 12:19 cpl.f
-rw-r--r-- 1 user sys 8192 Aug 12 12:19 cpl.fil
-rw-r--r-- 1 user sys 8192 Aug 12 12:19 cpl.fu
-rw-r--r-- 1 user sys 8192 Aug 12 12:19 cpl.gv
-rw-r--r-- 1 user sys 8192 Aug 12 12:19 cpl.iv
-rw-r--r-- 1 user sys 8192 Aug 12 12:19 cpl.md
-rw-r--r-- 1 user sys 8192 Aug 12 12:19 cpl.mi
-rw-r--r-- 1 user sys 8192 Aug 12 12:19 cpl.to

In the following table, the symbol ‡ represents the sn_sep separator character. See th
scripts in “Cross-Reference Tables” on page 166 for more information on this
variable. Additionally, all of the following keys must be on one line.

 The hash # character in class names means that the symbol does not belong to
classes, and semicolon (;) separates the key and data parts. Positions consist of lin
and column numbers separated by a comma (,).

Table 14: Database Table Structures

File
Suffix

Table
Type

Table
Description Record Format

0 hash Ignored words word;#

1 hash Default view filename;#

2 hash Second view filename;#

by btree Referred by ref-class‡ref-symbol-name‡ref-type‡class‡symbol‡type‡access‡position‡filename;\
{caller_argument_types}‡{ref_argument_types}

cl btree Classes name‡start_position‡filename;end_position‡attributes‡{}‡{class template}‡{}‡{comment}

com btree Common blocks name‡start_position‡filename;end_position‡attributes‡{}‡{}‡{}‡{comment}

con btree Constants name‡start_position‡filename;end_position‡attributes‡{dec_type}‡{}‡{}‡{comment}

cov btree Common value common-block‡name‡start_position‡filename;end_position‡attributes‡{}‡{}‡{}‡{comment}

e btree Enumerations name‡start_position‡filename;end_position‡attributes‡{}‡{}‡{}‡{comment}

ec btree Enum-constants name‡start_position‡filename;end_position‡attributes‡{}‡{}‡{}‡{comment}

f btree Project files name;group‡parsing-time‡highlight-file

fd btree Function name‡start_position‡filename;end_position‡attributes‡{ret_type}‡{arg_types}‡{arg_names}‡
{comment}
184 ■ Reference Guide Red Hat Source-Navigator

Database API Program Examples

\

\

t}
Database API Program Examples
The Tcl script below opens a table for a fictitious Source-Navigator project named
pure.

#!/bin/sh
Replace $HOME/snavigator with the Source-Navigator
installation directory! \
exec $HOME/snavigator/bin/hyper "$0" "$@"
#
Don’t forget the backslash before exec!
#
set db_functions [dbopen nav_func .snprj/pure.fu RDONLY \

0644 btree cachesize=200000]
Output the list of matches with newline characters after
each.
puts [join [$db_functions seq] \n]

This shell script produces the following result:

fil btree Symbols of files filename‡start_position‡class‡identifier‡type;end_position‡high_start_pos‡high_end_pos‡\
arg_types

fr btree Friends name‡start_position‡filename;end_position‡attributes‡{ret_type}‡{arg_types}‡{arg_names}‡
{comment}

fu btree Functions name‡start_position‡filename;end_position‡attributes‡{ret_type}‡{arg_types}‡{arg_names}‡
{comment}

gv btree Variables name‡position‡filename;attributes‡{type}‡{template‡parameter}‡{comment}

in btree Inheritances class‡base-class‡start_position‡filename;end_position‡attributes‡{}‡{class template}‡\
{inheritance‡template}‡{comment}

iu btree Include included_file‡start_position‡include_from_file;0.0‡0x0‡{}‡{}‡{}‡{}

iv btree Instance variables class‡variable-name‡start_position‡filename;end_position‡attributes‡{type}‡{}‡{}‡{commen

lv btree Local variables function‡variable-name‡start_position‡filename;end_position‡attributes‡{}‡{type}‡{}‡\
{comment}

ma btree Macros name‡start_position‡filename;end_position‡attributes‡{}‡{}‡{}‡{comment}

md btree Method
definitions

class‡name‡start_position‡filename;end_position‡attributes‡{ret_type}‡{arg_types}‡\
{arg_names}‡{comment}

mi btree Method
implementations

class‡name‡start_position‡filename;end_position‡attributes‡{ret_type}‡{arg_types}‡\
{arg_names}‡{comment}

rem btree Remarks filename‡position‡class‡method_or_function;comment

su btree Subroutines name‡position‡filename;attributes‡{}‡{}‡{comment}

t btree Typedefs name‡position‡filename;attributes‡{original}‡{}‡{comment}

to btree Refers to class‡symbol-name‡type‡ref-class‡ref-symbol‡ref-type‡access‡position‡filename;\
{caller_argument_types}‡{ref_argument_types}

un btree Unions name‡position‡filename;attributes‡{}‡{}‡{comment}

Table 14: Database Table Structures (Continued)

File
Suffix

Table
Type

Table
Description Record Format
Red Hat Source-Navigator Reference Guide ■ 185

Database API Program Examples
{chk 000011.012 chk.c} {17.1 0x8 {void} {int} {size} {}}
{fnc1 000019.012 chk.c} {33.1 0x8 {void} {int,int,char *}

{i,size,str} {}}
{keys 000026.005 keybind.tcl} {28.1 0x0 {} {} {k} {}}
{main 000035.000 chk.c} {38.1 0x0 {int} {} {} {}}

Each record contains two Tcl lists: the first is the key part, the second is the data part.
If -key, -data, or -columns is used, the key and the data parts are always retrieved in
separate Tcl lists.

If you use the -data switch in the fetch command (such as $db_functions seq
-data) in the example script above, only the key is fetched and the result is the
following:
chk 000011.012 chk.c
fnc1 000019.012 chk.c
keys 000026.005 keybind.tcl
main 000035.000 chk.c

To restrict the result to functions whose names begin with main, use the following
command:
$db_functions seq -data "main"

To fetch only the functions with the name main, you should add a blank to the key
value:
$db_functions seq -data "main$sn_sep"

The -columns switch can be used to change the order of fields. The query below
retrieves the name of the files, then the name of the functions and their positions:
$db_functions seq -data -columns [list 2 0 1]

The result is:
chk.c chk 000011.012
chk.c fnc1 000019.012
keybind.tcl keys 000026.005
chk.c main 000035.000

As described on page 173, the Tcl list following -columns contains sub-lists. The first
element of a sub-list identifies (offset number beginning from 0) which field should be
retrieved, and the second element is an optional format that controls formatting. In the
example below, the "" appends a blank after every retrieved field. Sometimes it is
useful to use \t (tab) instead of blanks. In Source-Navigator, types are often shown in
parentheses.

For example, to obtain a listing of every function, indicated as (fu), the following
command
$db_functions seq -data -columns [list {2 "(fu) "} 0 1]

produces the result:
chk.c(fu) chk 000011.012
chk.c(fu) fnc1 000019.012
keybind.tcl(fu) keys 000026.005
chk.c(fu) main 000035.000
186 ■ Reference Guide Red Hat Source-Navigator

Database API Program Examples
The format characters :, <, >, and = can be used to make comparisons of database
table field contents. When a condition is not true, the record is not retrieved.

For the purposes of this example, the source file where the following C++ class TEST
is defined will be called test.cc.
class TEST {
private:

int inm()
{

return 0;
}
outside(int x,int y);

public:
static void copy(){}

protected:
int var;

};

TEST::outside(int x,int y)
{
}

The Tcl script below queries the project for all of the public methods of classes that
have been defined in test.cc. The value four used in the example maps to the
constant PAF_PUBLIC from sn.h.
#!/bin/sh
Replace $HOME/snavigator with the Source-Navigator
installation directory! \
exec $HOME/snavigator/bin/hyper "$0" "$@"
#
Don’t forget the backslash before exec!
#

set db_prefix .sn/doc.md
set db [dbopen methods_db $db_prefix RDONLY 0444 btree]

set res [$db seq -col [list 0 1 3 2 "5 :0:4"] -end "test.cc"]
4 -> 1 for private methods, 4 -> 5 for public and private methods

puts [join $res "\n"]

The script produces this output:
TEST copy test.cc 000009.014 0x200c

To query the private methods, change the value four to one (the value of PAF_PUBLIC).

This modified script produces this output:
TEST inm test.cc 000003.006 0x2001
TEST outside test.cc 000007.002 0x1

To query the public and private methods, use the value five. This is the bitwise OR of
the values for PAF_PRIVATE and PAF_PUBLIC.
Red Hat Source-Navigator Reference Guide ■ 187

Database Application Examples
To query all static (SN_STATIC) methods defined in test.cc, change the script as
follows:
set res [$db seq -col [list 0 1 3 2 "5 :8:7"] -end "test.cc"]

To query every method between lines seven and nine in test.cc, make the following
query:
set res [$db seq -col [list 0 1 3 \
"2 <10" "2 >6"] -end "test.cc"]

Database Application Examples
The Source-Navigator installation contains a number of larger examples for useful
tools that can be quickly realized using the database API. They are located in
~/share/sdk/api/tcl/database/examples.

Source-Navigator can assist in a wide variety of software engineering and
re-engineering tasks and these examples tend to address the common scenario of
bringing under control inherited bodies of source code that may be poorly written and
poorly understood.

These examples are all written in the Tcl programming language. Some examples
utilize the Tk toolkit. None of the examples require that Source-Navigator be running
in order to use them. They work on the database directly using the database API
provided by the hyper interpreter that comes with Source-Navigator.

NOTE At the top of each script is a path to the interpreter that may need to be edited
to locate hyper on your system.

Most of the examples require at least two command line arguments: the path to the
Source-Navigator project directory and the name of the project you’re interested in.
More details can be found in the comment block at the top of each script file, and each
script is quite heavily documented.

Scripts
The example scripts are described below.

multicludes.tcl
This tool reports on redundant header files. By reducing #include complexity in a
source file, compilation time can be reduced. This tool locates simple duplication,
whereby foo.c may include bar.h (such as #include "bar.h") and then bar.h again
later. By optionally specifying a -transitive command line argument to the script, a
188 ■ Reference Guide Red Hat Source-Navigator

Database Application Examples

ct

ses

this

ject.

st box

ere is
t that
more thorough search through the header file graph is performed, such that includes of
stdio.h may be detected as unnecessary if another included header file includes it on
your behalf.

diamonds.tcl
This tool locates multiple inheritance “diamonds” in the class hierarchy of a proje

written in an object-oriented language like C++. In his book, Effective C++4, Scott
Myers points out the dangers associated with class hierarchies in which two clas
derived from the same superclass are inherited by a fourth derived-most class.
Diamonds are universally considered to be poor C++ programming practice and
tool can locate them in a Source-Navigator project.

call-freq.tk
This tool plots the caller/callee frequencies for all functions and methods in a pro
Functions appearing to have called many functions or that are called by many
functions may be ones requiring coverage testing, additional documentation,
optimization, etc.

Each function is represented as a point on a graph. Clicking on a point opens a li
showing the name of the function and the caller/callee statistics.

clobber.tcl
This tool shows the names of all functions/methods in a project that modify a
particular global variable.

constants.tcl
This tool identifies global variables in projects which are accessed as read-only
objects. These variables are therefore candidates for becoming constants.

unimp-methods.tcl
This tool locates class method definitions that are surplus to a class, for which th
no method implementation. This tool is not always accurate as it will also sugges
methods that are defined inline are not implemented when they actually are.

unused.tcl
This tool determines where unused global variables exist in a project.

4 Meyers, Scott. 1997. Effective C++: 50 Specific Ways to Improve Your Programs and Designs. 2nd ed. ISBN
0-20-192488-9.
Red Hat Source-Navigator Reference Guide ■ 189

Database Application Examples
190 ■ Reference Guide Red Hat Source-Navigator

Database Utilities

The Source-Navigator utilities dbdump, dbcp, and dbimp access and maintain
databases that can be started from user shells or applications. These utilities are
located in the ~/bin directory.

NOTE The scripts in this chapter are written to work on the UNIX operating
system. When running on DOS, the scripts must be changed.

dbdump
The dbdump utility provides a complete listing, or a dump, of the contents of a
database table. Its usage is:
dbdump ?-separator char? file

dbdump separates the key and data parts with a semicolon (;). The hash character (#)
and brackets ({}) indicate an empty field. The following shell script lists the name
and locations of the project class.

#!/bin/sh

dbdump=$HOME/snavigator/bin/dbdump
project=tmp

5

Red Hat Source-Navigator Reference Guide ■ 191

dbcp
$dbdump -s ’ ’ $project.cl | awk ’{printf
"%s,%s,%s\n",$1,$3,$2}’

dbcp
The dbcp utility copies and compacts the database. Space freed up by deleting
key/data pairs from btree tables is never reclaimed, although it is normally made
available for reuse. When copying a database with dbcp, deleted records are not
copied, resulting in a much better page-fill factor and reduced disk space
requirements. Its usage is:
dbcp input_table output_table

The following shell script compresses the tables of a Source-Navigator project.
#!/bin/sh

execdir=$HOME/snavigator/bin
dbcp=$execdir/dbcp

project=TEST
cd .paf

for i in $project.[a-z]*
do

$dbcp $i $$.tmp
mv $$.tmp $i

done

You can use this script even for currently-running Source-Navigator projects because
compressing database tables does not affect performance. Hash tables may also be
copied with dbcp, but there will be no space savings.

dbimp
The dbimp utility inserts, updates, and deletes records in a project database. It reads
commands from its standard input.

Its usage is:
dbimp ?-c cache_size? ?-C cross_cache_size?

?-l? ?-f file? db_prefix

References to local variables are stored only if the -l flag is specified.

db_prefix contains the name of the database directory, for example, .sn and the base
name of the project file. If the project file is called test.proj, db_prefix could be
called .snprj/test.

The format of the commands (read from standard input) must follow this syntax:
COMMAND;KEY;DATA
192 ■ Reference Guide Red Hat Source-Navigator

dbimp

 the

the

the
If COMMAND is greater than or equal to 0, dbimp inserts key/data pairs. The value of
COMMAND must be between PAF_FILE and PAF_COMMENT_DEF, inclusive. (For the
numerical values see sn.h.)

The following example inserts a function (strcopy) definition.
8;strcopy 000001.004 x.c;4.1 0x0 {int} {} {} {}

The following example inserts a method definition (pro3) of the class xharom.
17;xharom pro3 000036.005 x.C;36.11 0x2 {int} {} {} {}

The instructions below insert cross-references (refers-to and referred-by) into the
project database. The ‡ symbol represents the sn_sep separator character in the
instructions below.
16;#‡abc‡fu‡abc‡var‡lv‡w‡000004‡x.c;#
15;abc‡var‡lv‡#‡abc‡fu‡w‡000004‡x.c;#
16;#‡abc‡fu‡#‡hello‡fu‡p‡000005‡x.c;#
15;#‡hello‡fu‡#‡abc‡fu‡p‡000005‡x.c;#

See “Database Table Structures” on page 184 for information on the structure of
Source-Navigator database tables.
■ If COMMAND is 0, KEY must contain a known source file name of the project, and

dbimp deletes the definitions of, but not cross-references to, the file.
■ If COMMAND is -1, KEY must be 0 and DATA must contain a known source file name

of the project, and dbimp deletes the definitions of, but not cross-references to,
file.

■ If COMMAND is -2, KEY must be 0 and DATA must contain a known source file name
of the project, and dbimp deletes the cross-references to, but not definitions of,
file.

The following example deletes the cross-reference information for the file x.c:
-2;0;x.c

Limitations
Undefined results occur if the COMMAND does not have a legal value.

In the commands, you may use only single blank spaces and no tabs.
Red Hat Source-Navigator Reference Guide ■ 193

dbimp
194 ■ Reference Guide Red Hat Source-Navigator

 that
 This

et of

s a

le
d to
Integrating with Version Control
Systems

Source-Navigator’s user interface provides a standard set of version control
operations. The SDK allows third parties to integrate version control packages so
some or all of these operations can be performed from within Source-Navigator.
chapter assumes a basic understanding of the Tcl programming language and
familiarity with the version control system that is to be integrated with
Source-Navigator.

Basics
The version control interface in Source-Navigator assumes that there is a basic s
version control operations in the context of source code comprehension:
■ obtaining different versions of a source file from a repository or archive

maintained by the version control system. This operation will be referred to a
check-out.

■ examining the differences between the current working version of a source fi
and another version held under version control. This operation will be referre
as a diff.

6

Red Hat Source-Navigator Reference Guide ■ 195

Version Control Operations

CS,

 line

ion

gs,
s a

ion
by

ical
■ making changes to the most current version of a file and placing those changes
under version control. This operation will be referred to as a check-in.

■ deleting versions from the repository.
■ acquiring exclusive access to a particular version of a file so that no other

developer can make changes to that version. This operation will be referred to as
locking.

■ relinquishing exclusive access to a particular version of a file so that other
developers may make modifications. This operation will be referred to as
unlocking.

■ discarding any changes to the current working version and reverting to the most
recent version in the repository.

■ obtaining the history of a file from the version control system. This includes:

• descriptive text about the changes made for each version.

• a list of symbolic names for the versions associated with a file. In GNU R
for example, these names are known as tags.

Version Control Operations
Source-Navigator takes a universal approach to interfacing with external version
control systems: each operation is performed by executing a particular command
and capturing the output from that command.

For some operations, the output of the command is significant and only informat
relevant to the user must be extracted from the output. Examples of this include
obtaining a history of changes made to a file, obtaining the names of symbolic ta
and obtaining all of the version numbers associated with a file. The SDK provide
mechanism based on Tcl regular expressions for extracting the relevant text from
command output.

The Configuration File
The Source-Navigator configuration file, ~/share/etc/sn_prop.cfg, is read at
start-up and can be used to customize Source-Navigator. In particular, new vers
control systems may be integrated from within this file. New systems are added
calling a Tcl procedure called sn_add_version_control_system.

The signature of this procedure is:
sn_add_version_control_system {ident args}

where

ident is an internal identifier used by Source-Navigator. This should be a log
196 ■ Reference Guide Red Hat Source-Navigator

Version Control Operations

t.

derivation of the name of the version control system and consist only of
alphanumeric characters and start with an alphabetic character. Examples are:

rcs
cvs
ccase3

args is a variable number of arguments and may be any of the options described
in the Options section, followed by a suitable value. For example:

-checkout co

Options
For options that have simple values, the possible values are outlined and the default is
given. If this default value is satisfactory, the option may be omitted from the call.

For options that specify command lines, the usage of the command is shown. If the
option is not applicable to a particular command, omitting it from the call is
permissible, but may result in some version control operations being unavailable to
the user.

Using the -checkout example on page 198, the checkout command line is illustrated
in the following notation:
${checkout} filename

At runtime, the command line that is executed might be:
co main.c

args may be any of the following options:
-checkin

This specifies the command line to check a modified file back into the
repository.

Command usage:

${checkin} filename or

${checkin} comment-text filenames or

${checkin} comment-filename filenames

Which command is used depends on the value of -checkin-comment-via.
-checkin-comment-via

This option specifies how comments about changes made to a file must be
passed to the -checkin command. The three possible values are:

Default:

stdin The comment is issued on the checkin command’s standard inpu

file The command is placed into a temporary file and the filename is
passed on the command line prior to the names of source files.

cmdline The comment is placed on the command line prior to the
filename(s).
Red Hat Source-Navigator Reference Guide ■ 197

Version Control Operations
None
-checkin-exclusive

This option specifies the command line to check a file into the repository and
to acquire a lock once the check-in is complete. This is useful when you want
to make successive changes to a file.

Command usage:

 {$checkin-exclusive} filenames
-checkout

This option specifies the command line to check out the latest version of a file
from the repository.

Command usage:

${checkout} filenames
-checkout-exclusive

This option specifies the command line to check out the latest version of a file
from the repository with exclusive access that prevents other developers from
modifying the file. Some version control systems require that a file be
checked out exclusively before a modified version of it may be checked in.

Command usage:

${checkout-exclusive} filenames
-checkout-individual

This option specifies the command line to check out a particular version of a
file from the repository.

Command usage:

${checkout-individual} version-num filenames
198 ■ Reference Guide Red Hat Source-Navigator

Version Control Operations
-checkout-individual-to-stdout

This option specifies the command line to check out a particular version of a
file from the repository and echo the contents to standard output.

Command usage:

${checkout-individual-to-stdout} version-num filenames
-checkout-with-lock

If this option is set to yes, then checkout operations will by default attempt to
acquire a lock to prevent other developers from making concurrent
modifications. This option determines whether the with lock check button is
initially set in the Checkout dialog box.

Default:

None.
-default

If this option is set to yes, then this version control system entry will be the
default for new projects. If this option is set to yes for more than one entry in
the configuration file, then the entry which appears last in the file will be the
default.

Default:

None.
-delete-revision

This option specifies the command line to delete a particular version of a file
from the repository.

Command usage:

${delete-revision} version-num filename
-diff-command

This option specifies the name of the command used to compare two files (or
two versions of the same file).

Default:
diff

-diff-ignore-case

This option specifies any additional command line options to the diff
command to cause it to perform case insensitive comparisons. For almost all
implementations of the traditional diff command, this will be -i.

Default:
-i
Red Hat Source-Navigator Reference Guide ■ 199

Version Control Operations

t of
t
-diff-ignore-whitespace

This option specifies any additional command line options to the diff
command to cause it to perform comparisons that are insensitive to
whitespace. For almost all implementations of the traditional diff command,
this will be -w.

Default:
-w

-discard

This option specifies a command line to discard any modifications made to
the working version of a file and revert it to the current version in the
repository.

Command usage:

${discard} filenames
-history

This option specifies a command line to retrieve the history of a file. Typically
this includes comments made by developers at each version of the file, the set
of version numbers for the file and the time and date of each change.

Command usage:

${history} filename
-history-pattern

This option specifies a pattern to extract the version history from the output of
${history}. It should extract all the relevant information about all versions
of a file. See “Patterns” on page 202 for more detailed information about
possible values for this option.

Default:

None.
-history-individual

This option specifies the command to retrieve the history for a particular
version of a file.

Command usage:

${history-individual} version-num filename
-history-individual-pattern

This option specifies a pattern to extract the version history from the outpu
${history-individual}. It should extract all the relevant information abou
the particular revision of a file.

Default:

None.
200 ■ Reference Guide Red Hat Source-Navigator

Version Control Operations

r

e

ers
-history-replacements

This option specifies a set of textual replacements to perform on text extracted
by the patterns ${history-pattern} and
${history-individual-pattern}. This allows text to be manipulated so
that it may be cosmetically improved before being shown in the History
window.

See “Replacements” on page 203 for details about possible values for this
option.

Default:

None.
-ignore-dirs

This option specifies one or more directories to ignore when presenting
directory trees to the user. Such directories may include a repository
subdirectory for each directory maintained by the version control system.
When specifying more than one subdirectory, use the Tcl list notation. Fo
example: {foo bar}

Default:

None.
-lock

This option specifies the command line to lock a file such that no other
developer may make concurrent modifications.

Command usage:

${lock} filename
-lock-individual

This option specifies the command line to lock a particular version of a fil
such that no other developer may make concurrent modifications to that
version of the file.

Command usage:

${lock-individual} version-num filename
-revision-number-pattern

This option specifies a pattern to extract all of the available revision numb
from the output of the ${history} command.

Default:

None.
Red Hat Source-Navigator Reference Guide ■ 201

Version Control Operations

gs

 is

 in

 in

er

that
e

. It is

text.
the
-symbolic-tags-pattern

This option specifies a pattern to extract the names of a file’s symbolic ta
from the output of the ${history} command.

Default:

None.
-symbolic-tags-replacements

This option specifies a set of textual replacements to perform on text that
extracted by the ${symbolic-tags-pattern} option. This allows text to be
manipulated so that it may be cosmetically improved before being shown
the Symbolic tags window.

Default:

None.
-title

This option specifies a descriptive label that will be presented to the user
the project preferences window. This option is useful for showing a
mixed-case product name or one that contains whitespace.

Default:

the ident parameter (in upper-case).
-unlock

This option specifies the command line needed to unlock a file so that oth
developers may make concurrent modifications.

Command usage:

${unlock} filename
-unlock-individual

This specifies the command line to unlock a particular version of a file so
other developers may make concurrent modifications to that version of th
file.

Command usage:

${unlock-individual} version-num filename

Patterns
Patterns are used to extract text resulting from certain version control commands
necessary to use patterns to filter relevant lines of text from the output.

A pattern is specified as either:
■ A list of regular expression pairs specifying where to start and stop extracting

The two keywords start and end are reserved and refer to the start and end of
body of text respectively, or
202 ■ Reference Guide Red Hat Source-Navigator

Version Control Operations

.

ult of

s are a
e
iteral

ith

nds

ifying
such
■ An atomic regular expression specifying lines that will be extracted if the regular
expression matches any text in the line.

Some examples of patterns are:

Extract the names of all the directories in ls -l output:

^d (an atomic regular expression)

Extract the names of all the files and directories in ls -al output, but exclude the
current and parent directories (“.” and “..”):

{ {".." end} } (a list of one regular expression pair)

More sophisticated examples exist in the configuration example on page 204

Replacements
Replacements may be used to modify or delete text that is extracted from the res
certain version control commands.

Where replacements are mentioned in the option descriptions above, legal value
list of zero or more pairs. A pair is defined to be a list of exactly two elements. Th
left-hand side of the pair is a Tcl regular expression and the right-hand side is a l
string to replace the text matched by the regular expression.

An example of a replacement list is:
{ {"\t" " "} {"foo" "bar"} {"^-+$" ""} }

When applied to output from a version control command, this would cause:
■ tabs to be replaced by spaces.
■ all occurrences of foo to be replaced by bar.
■ separation lines consisting of hyphens to be replaced by a blank line.

Scripts
Situations may arise in which a version control system will seem incompatible w
Source-Navigator’s approach to constructing command lines and examining the
output of the command.

In most cases, these issues are overcome by writing shell scripts that provide a
wrapper interface that Source-Navigator works with, but internally issues comma
that work with the version control system.

Consider a version control system that does not adhere to the convention of spec
the version number of a file prior to the filename on the command line. Systems
as RCS would expect a command line such as:
co -r1.5 main.c

But other systems might expect a command line like:
foocs checkout main.c/1.5
Red Hat Source-Navigator Reference Guide ■ 203

Version Control Operations
This could be handled by writing a small shell script that maps the command lines
accordingly:
#!/bin/sh
foocs checkout $2/$1

You would then instruct Source-Navigator to work via the shell script:
-checkout-individual "foocs-wrapper"

Shell scripts can also be useful in situations where a particular operation requires more
than one command to be issued to the version control system.

Example
The following example is based on the GNU RCS version control system, which
many developers are familiar with. Red Hat has integrated Source-Navigator with
RCS and this configuration example is taken directly from the sn_prop.cfg
configuration file.
GNU Revision Control System (RCS)
sn_add_version_control_system rcs -default yes \

-checkin "ci" \
-checkin-comment-via stdin \
-checkin-exclusive "ci -l" \
-checkout "co -f" \
-checkout-exclusive "co -f -l" \
-checkout-individual "co -f -r" \
-checkout-individual-to-stdout "co -p" \
-checkout-with-lock yes \
-delete-revision "rcs -o" \
-discard "unco" \
-history "rlog" \
-history-pattern { {"^-----" "^====="} } \
-history-individual "rlog -r" \
-history-individual-pattern { {"^-----" "^====="} } \
-history-replacements { {"[\t]+" " "} } \
-ignore-dirs RCS \
-lock "rcs -l" \
-lock-individual "rcs -l" \
-revision-number-pattern "^revision (\[0-9.\]+)" \
-symbolic-tags-pattern { {"^symbolic names" "^keyword"} } \
-symbolic-tags-replacements { {"\t" ""} } \
-unlock "rcs -u" \
-unlock-individual "rcs -u"
204 ■ Reference Guide Red Hat Source-Navigator

Interapplication Communication

This chapter addresses communication between Source-Navigator and external
applications, and provides examples of how to control Source-Navigator from other
applications.

These examples use the Source-Navigator Tcl interpreter called hyper. To use the
standard Tcl/Tk interpreter, replace the ~/snavigator/bin/hyper string with the
appropriate name; for example /usr/local/bin/wish.

After an external application connects to a Source-Navigator project, it may be
controlled remotely using the Tk send command.

The Tk send Command
The communication between external applications and Source-Navigator can be
achieved using the Tk send command. Communicating with Source-Navigator from
another application requires that the application know the name of the interpreter
running Source-Navigator. The Tk command winfo interps is useful for
determining the name of all the interpreters active on a host.

Further information on the Tk send command can be found in one of the Tcl/Tk texts
mentioned on page 136.

7

Red Hat Source-Navigator Reference Guide ■ 205

The Tk send Command
Multiple Source-Navigator Interpreters
An application may need to query every Source-Navigator interpreter name in the
network. The example below queries every Source-Navigator interpreter name and
fetches the name of the Source-Navigator projects. Then if the string c++_demo is
found, the project name reloads files specified in the command line.
#!/bin/sh
REPLACE $HOME/snavigator/bin/hyper with the
Source-Navigator installation directory! \
exec $HOME/snavigator/bin/hyper "$0" "$@"
#
Don’t forget the backslash!
#
This program instructs all Source-Navigator applications
running on this host to reload the files specified on the
command line. The project currently opened by each
Source-Navigator application must contain the string
"c++_demo".
The C++ demo project, c++_demo.proj, is optionally generated
during the Source-Navigator installation process.
We don't need the top-level window for this program.
wm withdraw .
Scan through all the Tcl-based interpreters on this system
and try and find running Source-Navigators.
foreach interpreter [winfo interps] {

if {![string match "*navigato*" $interpreter]} {
continue ;# not S-N, keep looking.

} else {
set sn $interpreter ;# found one.

}
set msg ""
Set the command that we're going to send to the
application (using "set" on a temporary variable to
examine the name of the currently opened project).
set cmd {set tmp sn_options(ProjectName)}
Send the command to the other application and capture the
results.
catch {set result [send $sn $cmd]} msg
if {$msg != ""} {

puts $msg
}
See if the project name contains the substring "c++_demo".
If so, then issue the command "paf_parse_uptodate" within
the remote interpreter.
if {[string match "*c++_demo*" $result]} {

send $sn_parse_uptodate [list $argv]
}

}

Force our way out of this event-driven shell.
exit
206 ■ Reference Guide Red Hat Source-Navigator

The Tk send Command
If the script above is executable and the path to the interpreter is correct, the script will
reparse and reload all files specified on the command line. If a listed file is being
edited in a Source-Navigator editor window, the contents of the editor window will be
updated.

NOTE File names have to be used relative to the project root directory if the file is in
a subdirectory of the project; otherwise, the file names must be specified with
absolute path names (./ and ../ cannot be used in file names).
Red Hat Source-Navigator Reference Guide ■ 207

The Tk send Command
208 ■ Reference Guide Red Hat Source-Navigator

Index

A
abbreviations

panel, 16
symbol and type, 15

access level, filtering by, 64
adding

see also creating, importing
additional libraries to build targets, 103
directories to a project, 9
files

from another project, 9
to a project, 8
to build targets, 102

menu buttons, 140
new macros, 106
parser, 153

ANSI C programming language, 150
API (Application Programming Interface), 153

call examples, 185
functions, 168
using Tcl, 164

applications
connecting external, 205
starting specific, 138

assembly file extensions, 29
associating files, 29
auto generated paths, 106

B
backslashes, 31, 88
baseclass, 64
bind, 144
browser

Class, 61
Cross-Reference, 65
Hierarchy, 57, 59
Include, 73
Symbol, 37

btree
data structure, 179
database access
cachesize, 180
compare, 180
errors, 181
lorder, 181
maxkeypage, 180
minkeypage, 180
prefix, 181
psize, 180

, 179
table
cachesize, 169
flags, 169
lorder, 170
minkeypage, 169
psize, 170
Red Hat Source-Navigator Reference Guide ■ 209

C - C
BTREEINFO, 180
Build Rules tab, 103
build targets

adding
files, 102
libraries, 103

Build Rules tab, 103
Defines tab, 106
Includes tab, 105
Settings tab, 105

compiling, 109
creating, 99
defined, 99
deleting, 99
duplicating, 99
editing, 100
include

libraries, 102
paths, 105
project directories, 101
source files, 101

Library Files tab, 102
project

directory, 102
files, 102

removing
files, 102
library, 103

rule
description, 104
edit, 104

Source File tab, 101
user specified paths, 106

button
adding, 140, 145
browser, 39
changing behavior, 144
list filter, 39
toolbar, 38

C
C programming language

API functions, 175
code pre-processing, 150
file extensions, 29
query tool, 183

type definitions, 151
C++ programming language

code pre-processing, 150
diamonds, 189
file extensions, 29
type definitions, 151

cachesize, 165
character

set, 28
special, 20

checking in files, 93
checking out files, 92
Class Browser, 61

baseclass, 64
declaration and implementation, 59
filtering by access level, 64
Member List Filter dialog box, 63
preferences, 59
scope selector, 64
starting, 61
subclass, 64
window, 62

class name
filtering by access level, 64
searching, 62

ClearCase, 91
close

synopsis, 170
close, 165, 176
COBOL

dialects supported, 150
file extensions, 29
structure declaration, 150

color
changing, 34
preferences, 32

Colors & Fonts tab, 32
column

filter, 41
resizing, 19

command line
editor, external, 53
importing files and directories from, 11
options, 11, 131
parser, 153
print (UNIX), 22, 32
version control, 196

Compile button, changing behavior, 144
210 ■ Reference Guide Red Hat Source-Navigator

D - D
compiler
build target, 109
error format, 148
macros, 30

concatenated expressions, 89
contacting Red Hat, iv
continuing commands, 31
conventions

document, 2
keyboard, 3

creating
see also adding, importing
build targets, 99
macro, 106
views, 10

cross-reference
database, creating in background, 65
information, 166
inserting in database, 193
tables, 166

Cross-Reference Browser, 65
preferences, 69
starting, 66
subnode levels, 66
tree diagrams, 65
window, 66

customizing, startup/runtime behaviors, 137
CVS (Concurrent Versions Systems), 91

D
database, 163

accessing using Tcl, 164
compressing, 192
creating in background, 65
files, 164
indexes, 164
inserting cross-references, 193
modifying records, 192
tables, 164

complete listing (dump), 191
fetching, 172, 173
get, 172
seq, 172

dbcp, 192
dbdump, 191
dbimp, 192
dbopen (C)

access, 168
specific data structure, 181

errors, 179
library interface, 179
synopsis, 176

dbopen (C), 176
dbopen (Tcl)
dbobject, 168
openinfo, 168
permission, 168
tableName, 168
type, 168

dbopen (Tcl), 165, 168
debugger, error format, 148
declaration

Class Browser, 59
Editor, 50

define, 30
Defines tab, 106
del

synopsis, 171
del, 165, 177
deleting

see also removing
build targets, 99
libraries, 103
projects, 11

dialog box
Check In files, 93
Check Out files, 92
Choose Color, 34
Choose Font, 33
Find, 49
Member List Filter, 63
Replace, 50

Diff tool, 93
directories

adding to a project, 9
importing into project, 11

discarding version control changes, 93
document

conventions, 2
documentation

online manuals, 14
DOS

scripts, 191
shell, adding button to toolbar, 140
vi executable, 54
Red Hat Source-Navigator Reference Guide ■ 211

E - G
duplicating build targets, 99

E
editing

build targets, 100
rules, 104

Editor, 38, 45, 85, 111
adding keyboard shortcuts, 144
changing Compile button behavior, 144
declaration and implementation, 50
extended toolbar, 48
modifying the extended toolbar, 145
opening, 45
preferences, 51
window, 46

editor, external
Emacs, 53, 54, 55, 62
specifying in Source-Navigator, 53
vi, 54

Emacs
commands, 55
starting a new process, 54
tab completion supported, 62
using as editor, 54
using with a running process, 55
versions supported, 54

error format
compiler, 148
debugger, 148

escape sequences, 88
example code

adding
buttons to Editor extended toolbar, 145
buttons to Symbol Browser toolbar, 140
Editor keyboard shortcuts, 144
new menu items, 141

changing Compile button behavior, 144
generating HTML from project database, 146

exclude, synopsis, 171
expressions, concatenated, 89
expressions, regular, 88, 174
extended toolbar, 48

modifying, 145
extensions, file, 28
external applications

communicating, 205
connecting, 205

F
fd, 177
files

adding
from another project, 9
to a project, 8

associating, 29
checking in, 93
checking out, 92
database, 164
extensions, 28
hiding

from a project, 10
from view, 165

locking, 91
removing from a project, 11
SDK related, 154
types, 29
unlocking, 91

filter
by access level, 64
by symbol type, 19
column, 41
Member List Filter, 63
patterns, 20
special characters, 20
symbol accelerator combo-box, 46
toolbar buttons, 39

Find dialog box, 49
fonts

changing, 33
preferences, 32

FORTRAN
file extensions, 29
FORTRAN 77 syntax, 150
include extension, 150
structure declaration, 150
structure extension, 150
type definitions, 151

function, inserting in database, 193

G
get

for fetching database tables, 172
synopsis, 171

get, 165, 177
212 ■ Reference Guide Red Hat Source-Navigator

H - L
glob, 174
GNU regular expression, 85, 148
gnuclient, 55
Grep, 51

search example, 84
tool, 83

GUI (graphical user interface), 136

H
hash

access routine, errors, 182
data structure
bsize, 182
cachesize, 182
ffactor, 182
hash, 182
lorder, 182
nelem, 182

database access, 181
table, 169
cachesize, 169
nelem, 169

HASHINFO, 182
Help menu, 14
hiding files from a project, 10
Hierarchy Browser, 57

preferences, 59
shortcuts, 60
starting, 57
Tools menu, 58
window, 58

hierarchy tree
diagram, 65
function call, 65
limiting, 58
traversing, 66

History menu, 13
history, viewing, 49
horizontal windows, 28
HTML

online manuals, 14
HTML, generating from project database, 146
hyper, 164

I
ifdef, 30
implementation

Class Browser, 59
Editor, 50

importing
see also adding, creating
directories

from the command line, 11
into build targets, 102

files into build targets, 102
Include Browser, 73

preferences, 75
relationships, 73
starting, 73
window, 74

include search path, 150
index, accessing symbols, 164
inheritance, 189

defined, 57
multiple, 57
tree, 62

internationalization, 28
interpreter, 206

hyper, 164
isempty, synopsis, 171

J
Java

file extension, 29
programming language, 150
type definitions, 151
using bytecode, 144

K
key/data pairs, 178
keyboard shortcuts, 3, 138

see also shortcuts
adding to Editor, 144

L
levels, subnode, 66
Library Files tab, 102
list filter buttons, 39
Red Hat Source-Navigator Reference Guide ■ 213

M - R
locking files, 91

M
macro, 30

adding, 106
compiling, 30
defining, 31
modifying, 107

make, 110, 111
makefile, 183
Member List Filter dialog box, 63
menus

adding new, 141
Help, 14
History, 13
Scope Selector, 64
Search, 49
View, 19
Windows, 14

method definition, inserting in database, 193
multiple, 189

O
Others preferences tab, 31

P
pagesize, 165
parser

adding, 153
ANSI C support, 150
C/C++ support, 150
ELF, 154
FORTRAN, 150
Java, 150
K&R C support, 150
preferences tab, 28
Tcl, 151
toolbox, 155

paths, 106
patterns, 20

special characters, 20
preferences

Class, 59
Colors & Fonts, 32
Cross-Reference Browser (Xref), 69

Editor, 51
Hierarchy, 59
Include, 75
Others, 31
Parser, 28
Project, 25, 26
Version Control, 94

preserving context, 18
printing, 21, 32
project

auto-create, 132
creating new, 132
database, 163

building applications from, 163
records, 192

deleting, 11
directory, 8
hiding files, 10
preferences, 25, 26
removing files, 11

Project Editor, 7
views, 10
window, 8

Project Editor/Viewer, 144
Project tab, 26
put

method
R_CURSOR, 172
R_NOOVERWRITE, 172
synopsis, 171

put, 165, 177

R
rc.tcl file

adding
buttons to Editor extended toolbar, 145
buttons to Symbol Browser toolbar, 140
Editor keyboard shortcuts, 144
new menu items, 141

changing Compile button behavior, 144
generating HTML from project database, 146

rc.tcl file, 138, 144
RCS (Revision Control System), 91
records, modifying, 192
Referred-by, 166
Referred-to, 65
214 ■ Reference Guide Red Hat Source-Navigator

S - T
Refers-to, 65, 166
regular expressions, 85, 88, 148, 174
removing

see also deleting
build targets, 99

files, 102
files from a project, 11
libraries, 103
version control changes, 93

reopen, 172
Replace dialog box, 50
Retriever, 79

searching patterns, 79
window, 80

reusing windows, 18
rule

auto generated paths, 106
changing default settings, 105
defined, 103
defining macros, 106
disable, 104
enable, 104
include paths, 105
modifying, 107

S
SCCS (Source Code Control System), 91
Scope Selector menu, 64
script

cross-reference table, 166
opening table, 185
stand-alone Tcl, 164

SDK-related files, 154
searching

include path, 150
patterns, 79
restricting, 20
symbol names, 79
text patterns, 83
using Grep, 83

send, 205
seq

for fetching database tables, 172
synopsis, 173

seq, 165, 172, 177
sequences, escape, 88
sequential fetch, 173

Settings tab, 105
shortcuts

finding implementation, declaration, 50
general, 3
Hierarchy Browser, 60

sn_edit_rc, 144
sn_insert_symbol, 157
sn_rc_symbolbrowser, 140
sn_sep, 164
Software Development Kit (SDK)

adding parsers, 153
building applications, 163
customizing, 137
description, 136
other applications, 205

source files, 29
Source Files tab, 101
status line, 16
subclass, 57

Class Browser, 64
subnodes

in hierarchy tree, 66
setting levels in Cross-Reference Browser, 66

superclass, 57
symbol

accelerator combo-box, 46
list box, 40
searching for, 79
selector, 19

Symbol Browser, 37
calls sn_rc_symbolbrowser, 140
modifying the toolbar, 140

sync, 172, 178

T
tab

Build Rules, 103
Class, 59
Colors & Fonts, 32
Cross-Reference Browser (Xref), 69
Defines, 106
Editor, 51
Hierarchy, 59
Include (Browser), 75
Includes (Build), 105
Library Files, 102
Others, 31
Red Hat Source-Navigator Reference Guide ■ 215

U - W
Parser, 28
Project, 26
Settings, 105
Source Files, 101
Version Control, 94

table
btree, 169
cross-reference, 166
database, 164
formats, 184
opening, 185

Tcl
API, 164
file extensions, 29
installing additional programs, 138
script

opening table, 185
stand-alone, 164

type definitions, 151
template, 184, 185
text patterns, searching in source code, 83
toolbar, 39

extended, 48
list filter buttons, 39
modifying Editor, 144
modifying extended, 145
modifying Symbol Browser, 140

Tools menu, 58
type definitions, 151

U
UNIX

adding menu buttons, 140
customization, 137
fonts, 33
printing, 21
stand-alone Tcl scripts, 164

unlocking files, 91

V
version control, 91

checking in files, 93
checking out files, 92
command lines, 196
Diff tool, 93

discarding changes, 93
external systems, 91
integration, 195
locking files, 91
operations, 196
preferences, 94
starting, 92
tab, 94
unlocking, 91
version differences, 93
window, 92

vertical windows, 28
vi editor, 54
view

creating, 10
defined, 163
hiding files, 10
history, 49
project, 165
selecting, 10
specifying when table opened, 166

View menu, 19

W
Windows

adding menu buttons, 140
customization, 137
DOS vi executables, 54
fonts, 33
printing, 21
SNsdk, 164
stand-alone Tcl scripts, 164

windows
Class Browser, 62
Cross-Reference Browser (Xref), 66
Editor, 46
Hierarchy Browser, 58
horizontal, 28
Include Browser, 74
Project Editor, 8
Retriever, 80
reusing, 18
Version Control, 92
vertical, 28

Windows menu (toolbar), 14
216 ■ Reference Guide Red Hat Source-Navigator

X - X
X
Xref

see Cross-Reference Browser
Red Hat Source-Navigator Reference Guide ■ 217

X - X
218 ■ Reference Guide Red Hat Source-Navigator

	Source�Navigator™ Reference Guide
	How to Contact Red�Hat
	Contents
	Introduction
	About this Guide
	Document Conventions
	Mouse Conventions
	Keyboard Conventions

	Using the Project Editor
	Project Editor
	Adding Files to a Project
	Adding Directories to a Project
	Adding Another Project to a Project
	Using Views
	Creating views
	Selecting another view

	Hiding Files from a View
	Unloading Files from a Project
	Statistics for a Project
	Closing the Project Editor
	Closing Projects
	Deleting Projects
	Importing Files and Directories into a Project

	General Source�Navigator Features
	Menus
	History Menu
	Windows Menu
	Help Menu

	Symbol and Type Abbreviations
	General Window Features
	Adding a Browser to an Existing Window
	Reusing Windows
	Preserving Context Between Windows
	Adjusting Column Width Size

	Using Filters
	Symbol Selectors
	Pattern Box

	Printing from Source�Navigator
	Print Dialog
	UNIX
	Windows

	Customizing Source�Navigator
	Preferences Dialog
	General Project Preferences
	Project tab
	Parser tab
	Macro processing
	Defining and using macro files
	Others tab
	Colors & Fonts tab

	Symbol Browser
	Using the Symbol Browser
	Toolbar Buttons
	Browser buttons
	List Filter buttons

	Symbol Filters
	Column Filters

	Editor
	The Editor Window
	Symbol Accelerator Combo-box
	Find Box
	Pattern Searching
	The Extended Toolbar

	View History
	Search Menu
	Find dialog
	Replace dialog
	Find Declaration, Implementation
	Grep
	Go To menu

	Editor Preferences

	Using Emacs as your Editor
	To Start a New Emacs Process
	To Communicate with an Already Running Emacs Process

	Hierarchy Browser
	Using the Hierarchy Browser
	Tools Menu
	Class/Hierarchy Preferences
	Hierarchy Browser Shortcut Keys

	Class Browser
	Using the Class Browser
	Class Name
	Member List
	Inheritance Tree
	Member List Filter Dialog
	Scope Selector

	Cross-Reference Browser
	Using the Cross-Reference Browser
	Cross-Reference Filter
	Cross-Reference Browser Details
	Cross-Reference Preferences

	Include Browser
	Using the Include Browser
	Reducing Displayed Information
	Include Preferences

	Retriever
	Using the Retriever
	Retriever Filter

	Retriever with the Cross-Reference Browser

	Grep
	Using Grep
	GNU Regular Expressions
	Ordinary Characters
	Special Characters
	Predefined Sets of Characters
	Repetition
	Escape Sequences

	Version Control Systems
	Using Version Control
	Checking Out a File
	Checking In a File
	Discarding Changes to a File
	Show Differences

	Version Control Preferences

	Building Programs
	The Building Process
	make
	Build Targets
	Creating a New Build Target
	Modifying Build Targets
	Editing a Target
	Edit Target tabs
	Source Files tab
	Library Files tab
	Build Rules tab
	Editing a rule
	Modifying macro definitions
	Link Rules tab

	Compiling Build Targets
	Internal build systems
	External build systems
	Modifying the Build
	Build types
	Debugging the build target
	Executing the application

	Build Tutorial
	Creating the Project
	Creating the monop Target
	Debugging the monop build target
	Creating the lint macro
	Rebuilding the monop build target
	Creating the _PATH_CARDS macro
	Performing a clean build

	Creating the initdeck Target
	Debugging the initdeck build target
	Creating the lint and _PATH_CARDS macros
	Performing a clean build

	Command Line Options
	Example: Creating a New Project in devo-files
	Example: Creating a New Project in the Current Directory
	Example: Auto-Create Dialog

	Introduction
	Software Development Kit

	Customization
	The profile File
	Configurable Settings

	The rc.tcl Start-up File
	Adding Events to the rc.tcl File
	Changing Functionality Within the Symbol Browser
	Example: adding a DOS shell or xterm toolbar button

	Adding Menus and Submenus
	Example: adding an Extras menu

	Changing Functionality Within the Editor
	Example: adding or changing Editor keyboard shortcuts
	Example: changing behavior of Editor toolbar buttons
	Example: adding a button to the Editor’s extended toolbar
	Example: generating an HTML file of the project database

	Error Formats

	Predefined Language Conventions
	Predefined Parsers
	The C and C++ Parser
	The FORTRAN Parser
	The COBOL Parser
	The Tcl and [incr Tcl] Parser
	The Java Parser
	The PowerPC Assembly Parser

	Adding Parsers
	The Parser Toolbox Library
	Project Database Calls
	sn_insert_symbol
	Examples

	sn_insert_xref
	Examples

	sn_insert_comment

	Integration with Source�Navigator

	Database API
	Introduction
	Structure
	Views
	Using Views

	Cross-Reference Tables
	Tcl API Functions
	dbopen for Tcl
	Methods
	close
	del
	exclude
	get
	isempty
	put
	reopen
	seq
	sync

	Fetching Tables
	Fetch Methods
	seq

	C Programming API Functions
	dbopen for C
	Key/Data pairs
	Errors
	Limitations

	btree Database Access Method
	Errors

	Hash Database Access Method
	Errors

	Simple Query Tool

	Database Table Structures
	Database API Program Examples
	Database Application Examples
	Scripts
	multicludes.tcl
	diamonds.tcl
	call-freq.tk
	clobber.tcl
	constants.tcl
	unimp-methods.tcl
	unused.tcl

	Database Utilities
	dbdump
	dbcp
	dbimp
	Limitations

	Integrating with Version Control Systems
	Basics
	Version Control Operations
	The Configuration File
	Options

	Patterns
	Replacements
	Scripts
	Example

	Interapplication Communication
	The Tk send Command
	Multiple Source�Navigator Interpreters

	Index

