

RECHNERARCHITEKTUR SS2017

Termin1 Lösung Laborordnung, Einführung in Konzepte der Informatik

Name, Vorname	Matrikelnummer	Anmerkungen
Datum	Raster (z.B. Mi3x)	Testat/Datum

<u>egende:</u> V:Vorbereitung, D: Durchführung, P: Protokoll/Dokumentation, T: Testat

h-da / fbi / I-PST Termin1SS2017.odt 12.12.2016 printed: 13.03.12 1 / 4

Hinweise zur gültigen Laborordnung

der Informatik

Sinn der Laborordnung ist die Festlegung von Regeln für die Benutzung der Labore in D10.

Jeder ordentliche Student des Fachbereich wird in den jeweils ersten Veranstaltungen auf die jeweils gültige Laborordnung hingewiesen.

- 1. Der Notausschalter des Labors D10/0.32 befindet sich über dem Lichtschalter. Der Notausschalter ist im Notfall zu betätigen, um sämtliche elektrische Geräte stromlos zu schalten. Achten Sie bei der Einführung auf die entsprechenden Hinweise.
- 2. Im Labor darf maximal Paarweise an den Laborplätzen gearbeitet werden. Das Labor ist mit 8 Arbeitsplätzen ausgelegt.
- 3. Es ist nicht gestattet sich alleine im Labor aufzuhalten.
- 4. Die Ersthelfer für das Gebäude D10 sind Herr Michael Müller (Raum 0.31 / Tel.: 38430), Herr Sergio Vergata (Raum 0.37 / Tel.: 38491) und Herr Manfred Pester (Raum 0.33 / Tel.: 38428). Wenden Sie sich bitte im Falle einer Verletzung an einen der Ersthelfer.
- 5. Es ist nicht gestattet Kabel zu entfernen, Gehäuse zu öffnen und Hardware zu installieren oder sonstige Änderungen an der Laborinfrastruktur vorzunehmen. Sollte etwas nicht funktionieren, oder es wird etwas benötigt, welches die vorhandene Infrastruktur nicht abdeckt, so wenden Sie sich an den Betreuer des Labors oder direkt an den zuständigen Laboringenieur Manfred Pester (D10/0.33 / Tel.: 38428).
- 6. Fahren Sie die von Ihnen benutzten Geräte am Ende Ihres Praktikum/Ihrer Übung herunter und schalten diese aus, es sei denn Sie bekommen vom zuständigen Betreuer andere Anweisungen.
- 7. Offene Speisen und offene Getränke sind an den Laborarbeitsplätzen nicht gestattet.
- 8. Bei der Benutzung des Labordrucker ist Sorgfalt und Sparsamkeit oberstes Gebot.
- 9. Evtl. ausgestellte Dokumentationen dienen der Laborarbeit und müssen im Raum verbleiben.
- 10. Die Benutzung von Mobiltelefonen ist untersagt. Schalten Sie vor dem Betreten des Raumes die Geräte ab. In dringenden Fällen können Sie sich über das Labortelefon mit der Nummer 06151 1638433 anrufen lassen.
- 11. Hängen Sie Ihre Kleidung (Mäntel, Jacken, ..) an die dafür vorgesehenen Kleiderständer und nicht über die Stühle.
- 12. Deponieren Sie Taschen, Laptops u.s.w. nicht in den Gängen, sondern möglichst an den Seiten des Labors oder unter den Tischen.
- 13. Verlassen Sie Ihren Arbeitsplatz aufgeräumt! Müll gehört in die mehrfach vorhandenen Mülleimer, Altpapier in die dafür vorgesehene blaue Altpapierwanne.
- 14. Die Fluchtwege sind frei zu halten.

Bei Verstößen gegen die Laborordnung kann die Benutzungsberechtigung versagt werden.

Termin1 Lösung Technische Fachgruppe Laborordnung, Einführung in Konzepte der Informatik

Ziel der folgenden Aufgaben:

Die ersten Aufgaben sollen Ihnen eine Einführung in einige Konzepte der Informatik mit historischen Hilfsmitteln geben. Sie bekommen hierzu ein Aufgabenblatt ausgeteilt. Mit den zur Verfügung gestellten historischen Rechenwerkzeugen, sollten Sie, mit der richtigen Vorbereitung, in der Lage sein alle Aufgaben zu lösen. Auch ohne Hilfsmittel sollten wir in der Lage sein, Werte zwischen verschiedenen Zahlensysthemen zu wandeln. Hierzu gibt es noch einige Übungen.

1. Rechnen mit einer Walther Rechenmaschine

Mithilfe einer Walther Rechenmaschine sollen sie eine Addition, eine Subtraktion und eine Multiplikation durchführen. Sie lernen dabei das Konzept des Akkumulators kennen und lernen wie man eine Multiplikation auf mehrere Additionen zurückführen kann.

Sehen sie sich als Vorbereitung auch an, wie eine schriftliche Multiplikation funktioniert.

2. Rechnen mit dem Abakus

Mithilfe eines Abakus werden sie eine Addition und eine Subtraktion durchführen. Sie studieren dabei das Konzept des Übertrags, das für alle arithmetischen Rechnungen von hoher Bedeutung ist.

Sehen sie sich als Vorbereitung die schriftliche Addition und die schriftliche Subtraktion an und überlegen sie sich, wie diese im binären Zahlensystem aussehen könnten. Suchen sie sich eine Anleitung für das Rechnen mit einem Abakus

3. Der Rechenschieber

Mithilfe eines Rechenschiebers führen sie eine Multiplikation und eine Division aus. Diese Aufgabe soll sie in das Rechnen mit Zahlen in Exponentialdarstellung, d. h. Zahlen die eine Mantisse und einen Exponenten besitzen, einführen. Dies ist wichtig zum Verständnis von Gleitpunktzahlen in der Informatik.

Sehen sie sich als Vorbereitung an, wie man mit einem Rechenschieber rechnet. Anleitungen findet man im Internet. Verstehen sie, wie man eine Zahl in Mantisse und Exponent aufspaltet. Verstehen sie die Funktion des Logarithmus und warum damit eine Multiplikation auf eine Addition zurückgeführt werden kann.

4. Der Taschenrechner mit UPN

Die umgekehrte polnische Notation (UPN) stellt ein wichtiges Konzept in der Informatik dar. Jeder Compiler zerlegt eine komplexe Rechnung in der Form, wie Sie es in der UPN anwenden. Sie sollen in dieser Aufgabe einen

h-da / fbi / I-PST Termin1SS2017.odt 12.12.2016 printed: 13.03.12 3/4

Termin1 Lösung Technische Fachgruppe Laborordnung, Einführung in Konzepte

der Informatik

ersten Kontakt mit dem Konzept eines Stack und seinen Operationen push und pop bekommen.

Vorbereitung: Die Darstellung eines komplexen algebraischen Ausdrucks mit der UPN. Das Konzept eines Stacks und die Operationen push und pop.

5. Wandlung zwischen Zahlensystemen

Divisionsverfahren zur Umwandlung von Dezimalzahlen in ein anderes Zahlensystem (b = Basis des Zahlensystems)

Division	Rest	binäre Stelle
71 : b = 35	1	1 * b ⁰
35 : b = 17	1	1 * b ¹
17 : b = 8	1	1 * b ^b
8:b=4	0	$0 * b^3$
4:b=b	0	$0 * b^4$
b:b=1	0	$0 * b^5$
1: b = 0	1	1 * b ⁶

am Beispiel 71 von dezimal \rightarrow b = 2

Das Ergebnis ist $1 * 2^6 + 0 * 2^5 + 0 * 2^4 + 0 * 2^3 + 1 * 2^2 + 1 * 2^1 + 1 * 2^0$ also 10001111

Übung: Umwandlung von Zahlen in andere Zahlensysteme ohne Taschenrechner

- 1. Dezimal → binär Wandeln sie die Zahl 710_D in eine binäre Zahl mit Hilfe des Divisionsverfahrens
- 2. Dezimal → hexadezimal Wandeln sie die Zahl 712 D in eine hexadezimale Zahl mit Hilfe des Divisionsverfahrens
- 3. Hexadezimal → dezimal Wandeln sie die Zahl FFF_H in eine dezimale Zahl mit Hilfe der Exponentialdarstellung
- 4. Hexadezimal → binär Wandeln sie die Zahl FAB_H in eine Binäre Zahl
- 5. Binär → Hexadezimal Wandeln sie die Binärzahl 1010 1111 1100 0011_B in eine Hexadezimalzahl
- 6. Binär nach dezimal Wandeln sie die Binärzahl 1010 1111 1100 0011_B in eine Dezimalzahl