// // This file is part of an OMNeT++/OMNEST simulation example. // // Copyright (C) 2003 Ahmet Sekercioglu // Copyright (C) 2003-2015 Andras Varga // // This file is distributed WITHOUT ANY WARRANTY. See the file // `license' for details on this and other legal matters. // #include #include #include #include "tictoc16_m.h" using namespace omnetpp; /** * The main problem with the previous step is that we must modify the model's * code if we want to change what statistics are gathered. Statistic calculation * is woven deeply into the model code which is hard to modify and understand. * * OMNeT++ 4.1 provides a different mechanism called 'signals' that we can use * to gather statistics. First we have to identify the events where the state * of the model changes. We can emit signals at these points that carry the value * of chosen state variables. This way the C++ code only emits signals, but how those * signals are processed are determined only by the listeners that are attached to them. * * The signals the model emits and the listeners that process them can be defined in * the NED file using the 'signal' and 'statistic' property. * * We will gather the same statistics as in the previous step, but notice that we will not need * any private member variables to calculate these values. We will use only a single signal that * is emitted when a message arrives and carries the hopcount in the message. */ class Txc16 : public cSimpleModule { private: simsignal_t arrivalSignal; protected: virtual TicTocMsg16 *generateMessage(); virtual void forwardMessage(TicTocMsg16 *msg); virtual void initialize() override; virtual void handleMessage(cMessage *msg) override; }; Define_Module(Txc16); void Txc16::initialize() { arrivalSignal = registerSignal("arrival"); // Module 0 sends the first message if (getIndex() == 0) { // Boot the process scheduling the initial message as a self-message. TicTocMsg16 *msg = generateMessage(); scheduleAt(0.0, msg); } } void Txc16::handleMessage(cMessage *msg) { TicTocMsg16 *ttmsg = check_and_cast(msg); if (ttmsg->getDestination() == getIndex()) { // Message arrived int hopcount = ttmsg->getHopCount(); // send a signal emit(arrivalSignal, hopcount); EV << "Message " << ttmsg << " arrived after " << hopcount << " hops.\n"; bubble("ARRIVED, starting new one!"); delete ttmsg; // Generate another one. EV << "Generating another message: "; TicTocMsg16 *newmsg = generateMessage(); EV << newmsg << endl; forwardMessage(newmsg); } else { // We need to forward the message. forwardMessage(ttmsg); } } TicTocMsg16 *Txc16::generateMessage() { // Produce source and destination addresses. int src = getIndex(); int n = getVectorSize(); int dest = intuniform(0, n-2); if (dest >= src) dest++; char msgname[20]; sprintf(msgname, "tic-%d-to-%d", src, dest); // Create message object and set source and destination field. TicTocMsg16 *msg = new TicTocMsg16(msgname); msg->setSource(src); msg->setDestination(dest); return msg; } void Txc16::forwardMessage(TicTocMsg16 *msg) { // Increment hop count. msg->setHopCount(msg->getHopCount()+1); // Same routing as before: random gate. int n = gateSize("gate"); int k = intuniform(0, n-1); EV << "Forwarding message " << msg << " on gate[" << k << "]\n"; send(msg, "gate$o", k); }