h da

HOCHSCHULE DARMSTADT
UNIVERSITY OF APPLIED SCIENCES

.. fbi

FACHBEREICH INFORMATIK

UNIVERSITY OF APPLIED SCIENCES DARMSTADT

ASs PART OF THE WAI SEMINAR
SUMMER SEMESTER 2016

The Way to Agile Modeling and its use
in eXtreme Programming

Anwar Benhamada

supervised by
Prof. Dr. Inge SCHESTAG

June 15, 2016

Abstract

This research involves explaining the essence of Agile Modeling and how it reacts
with the agile methodologies like eXtreme Programming, Scrum and Crystal Clear. In
the case of eXtreme Programming, the challenge of Agile Modeling is to integrate the
different phases of the adopted methodology. eXtreme programming is taken as an
example of an agile methodology with the goal to clarify the common points with the
agile modeling. It is compared between the agile modeling practices and the eXtreme
programming values and practices in order find a potential fit and build a relationship
based on practical experiences from the founder of the agile modeling.

Contents
1 Introduction
2 History of AM and Agile Manifest

3 Components of Agile Modeling
3.1 Agile Modeling values
3.1.1 Communication
3.1.2 Simplicityo
3.1.3 Feedback
314 Courage oo e
3.5 Humility 0 oo
3.1.6 Beyond Motherhood and Apple Pie
3.2 Agile Modeling Principles oo L
3.2.1 CorePrinciples
3.2.2 Supplementary Principles 0 0oL
3.3 AM Practices
3.3.1 Core Practiceso
3.3.2 Supplementary Practices.

4 What is eXtreme Programming?
4.1 4.1 eXtreme Programming values, principles and practices
4.1.1 4.2. The potential fit between Agile Modeling and eXtreme Pro-
GrammMing v v vt e e e e e e e e e e e

5 Conclusion

References

2/16

11
11

12

15

15

Erklarung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstdndig verfasst und keine
anderen als die im Literaturverzeichnis angegebenen Quellen benutzt habe. Alle Stellen,
die wortlich oder sinngeméafl aus veroffentlichten oder noch nicht verdffentlichten Quellen
entnommen sind, sind als solche kenntlich gemacht. Die Zeichnungen oder Abbildungen
in dieser Arbeit sind von mir selbst erstellt worden oder mit einem entsprechenden Quel-
lennachweis versehen. Diese Arbeit ist in gleicher oder &hnlicher Form noch bei keiner
anderen Priifungsbehorde eingereicht worden.

Darmstadt, den

Unterschrift

3/16

1 Introduction

Software engineering has been going in the last two decades through tremendous changes,
not only in the way the final product is brought into being but also how the developer
deals with the internal and the external factors of his work.

“The primary goal of software development is to build systems, in the most effective and
efficient manner possible” [Marl4, p.4]. A system can be produced through the traditional
waterfall model which is based on the principle that the work progress flows from the top
to the bottom.

Another modeling procedure is the Agile modeling (AM) which I'm focusing on in this
research. Firstly what’s AM ? And why is everyone talking about?

“Agile Modeling (AM) is a practice-based methodology for effective modeling and doc-
umentation of software-based systems. At a high level AM is a collection of best practices,
depicted in the pattern language map below. At a more detailed level AM is a collection
of values, principles, and practices for modeling software that can be applied on a software
development project in an effective and light-weight manner.” [Amb14a]

Model
Storming Active Stakeholder
Test-Driven Participation
Design (TDD)
Requirements i
Envisioning Prioritized
Requirements
lteration
Modeling Architecture
Envisioning
Just Barely
Good Enough Look Ahead
/\ Modeling
Executable Document Multiple Dacument
Specifications Late Models Continuously

The Best Practices of Agile Modeling

Single Source
Information

Caopyright 2005-2011 Scatt W. Ambler
Figure 1. (Scott W.Ambler) The Best Practices Of Agile Modeling [Amb14a]

4/16

Since the meaning of the AM is understood, the question now is what’s not AM?
AM is an attitude, not a prespective process (Based on[Amb02])
AM is not a cookbook that have to be followed by word, it describes a style of modeling
and not how to model.
AM is a supplement to existing methods, it is not a complete methodology
The main focus of the AM is on modeling, the second focus is documentation. AM should
be used to support teams using agile methodologies such as eXtreme Programming, Scrum
and Crystal Clear and not as a separate methodology.
AM is effective and is about being effective
AM describes effectiveness as the absolute minimum to suffice a specific job, that means
that the team should always document only what they need and have a clear purpose for
that.

5/16

2 History of AM and Agile Manifest

The development of agile modeling was led by Scott Ambler starting in the autumn of
2000. It initially was called eXtreme modeling(XM) but at the suggestion of Robert
Cecil Martin was renamed to AM in the spring of 2001. The book Agile Modeling was
published in 2002 by John Wiley Press. Work on the methodology continues at The Agile
Modeling Home Page. [Wik16]

AM is based on the Agile manifest which is a bench of principles that the developer can
lay on while trying to get his job done. Following the principles is not always easy but
when the team decides to adopt them, they will master the progress of the future software.

Principle 1: Individuals and practices over processes and tools (Based on
[Amb02, pp. 6-7])
This doesn’t mean that processes and tools should be eliminated, it simply means that a
good a face to face discussion should be prioritized on rigid workflows.

Principle 2: Working software over comprehensive documentation
Traditional software development often produces extensive documentation before the pro-
gram is released for an initial testing, at the end it would be better having a program than
a book describing it.

Principle 3: Customer collaboration over contract negotiation
Initial guidelines are a good basis to start but by defining the exact details of the project
before it starts will limit the customer. Team and costumer should collaborate to find the
best solutions for the assignment.

Principle 4: Responding to changes over following a plan

Nothing goes entirely according to plan, instead of remaining on the same plan, it’s effective
to make adjustments as the situation changes.

6/16

3 Components of Agile Modeling

The challenge of the AM was to find a high-level values, principles and practices to man-
age a coherence for the Programmer adopting it. It is a difficult task to simplify those
components in a way that the reader actually understand them like they really are, that’s
one side, the other side they should be detailed to cover all aspects and commonly errors
made by users.(Based on[Amb02, p. 9])

For these reasons the founder Scott Ambler has put values regulate the work and to be
a foundation to refer to when the software modeling is not going well.

3.1 Agile Modeling values
3.1.1 Communication

It’s not easy to define communication, in the Merriam Webster’s collegiate Dictionary
10th Edition [Mer99] communication is defined as “ a process by which information is
exchanged between individuals through a common system of symbols, signs or behavior”
In the real software development world a lot of misunderstanding results from the fact that
the team members have different views and approaches to the same point or problem, so
communication will probably guarantee that same things have the same meaning by all
team members and eventually try to find a quick middle path.(Based on[Amb02])

3.1.2 Simplicity

Simplicity is certainly one of the most important values, it follows the famous rule KISS
(Keep It Simple Stupid). For that some actions must be avoided to not complicate the
software and making it harder to develop, test and maintain. These is a list of some of the
actions to avoid: - Applying complex patterns too soon - Over- architecting the system to
support potential future requirements - To develop a complex infrastructure

3.1.3 Feedback

The best way to get a serious evaluation of the software is to get an internal feedback from
the workteam or an external one throughout a survey. The internal feedback is regarding
the models, models are abstraction of how people will work with the system. In order to
obtain a feedback regarding a model, one (or more) of these methods can be used:
Develop the model as a team - review the model with your target audience - implement
the model - acceptance testing

3.1.4 Courage

Since the agile modeling or the agile software development in general is new to most people,
there will be a fear to change the current situation to adopt the agile modeling. It’s easier
to follow a hierarchy of several superiors and wait days and even weeks to accomplish a
simple task, but that’s the point of agile modeling which relays on the principles that the
members of the development team should have the courage to make decisions even if they
are not very comfortable in taking this step.

7/16

3.1.5 Humility

Agile modelers are persons who are ready to say that they don’t know everything. This
characteristic is so important so they can able to learn new skills, concepts from other team
members including the junior person on the team. They understand that every member
has more experience in coding or testing or he/she is better at requirements modeling.
The humility to ask for help when someone has no clue is required in AM. The humility
to respect of the people working with the agile modeler is also required, calling managers
or other workteam members with inappropriate names should not happen.

3.1.6 Beyond Motherhood and Apple Pie

So the agile modelers seek simplicity, always waiting for a feedback, they know how to
communicate and stay humble. Afer all the agile modelers are people, so they can’t follow
these values all the time, but they should try to set an agile mindset in their work and
build a culture that supports agile and effective development efforts. The values are used
in combination with the principles and the practices in order to achieve a sustainable
stategy to develop softwares.

3.2 Agile Modeling Principles

When the AM values (communication, simplicity, feedback, courage, and humility) are
combined to produces the modeling principles. They are divided in core and supplementary
where in the first is indispensable and the second is good to fulfill but not a must.

3.2.1 Core Principles

Software is your primary goal (Based on[Amb02, pp. 27-43)])

The primary goal is to produce high-quality software that adapts with the requirements of
the client, writing massive documentation and drawing models can give a feeling that the
team is in progress but that’s not true, the real progress is to deliver a working software in
first place and then work to deliver a software that meets with the goals set in first place.
All activities that don’t contribute in delivering a software should be avoided.

Model With A Purpose

In the stage of modeling many developers draft their artifacts without precising a goal
behind it, so with time this operation becomes ambiguous and very difficult to manage.
What is meant by “A Purpose” is that the developers should clarify two main points,
firstly the definition of a valid purpose for creating a model, secondly define the audience
receiving that model.

Maximize Stakeholder Return on Investment

The project stakeholders are investing their money and are waiting from the developers to
fully satisfy their needs, in other words the software should have a high ROI (Return on
Investment). The stakeholders have the final say in resources investment. Other principles
of the Agile Modeling are : Enabling the next effort is your secondary goal Travel Light
Assume Simplicity Embrace Change Incremental change Multiple Models Quality Work
Rapid Feedback

8/16

3.2.2 Supplementary Principles

The supplementary principles are concepts which helps the effectiveness of the agile mod-
eling, their adoption is not required for the fully functionality of the agile software devel-
opement. The supplementary principles are:

— Content is more important than representation

Everyone can learn from everyone else
— Know your models

— Local adaptation

Open and honest communication

Work with people’s instincts

3.3 AM Practices

Pratices are what the developer or the modeler actually apply on his work, the com-
plementarity between the core and supplementary practices is the key to adopting agile
modeling.

3.3.1 Core Practices

To get a real agile modeling environement the founder Mr Scott Ambler recommand that
all core practices should be adopted if they fit well with into the organization’s culture.
Core practices are organized into four categories and have practices within them:

1.Iterative and Incremental Modeling (Based on [Amb02, pp. 44-59])

Apply the Right Artifact(s)
— Create Several Models in Parallel
— Iterate to Another Artifact

Model in Small Increments

The iterative and incremental modeling AM focuses on the goal behind the every model,
it recommends that whenever a change take place in model, all related models should be
updated automatically 2. Teamwork

— Model With Others

Active Stakeholder Participation
— Collective Ownership
— Display Models Publicity

Teamwork is a key component in AM, the interaction between the team members them-
selves or between them and the stakeholder are trivial for the AM. 3. Simplicity

9/16

— Create Simple Content
— Depict Models Simply
— Use the Simpliest Tools

AM recommands to keep both models and tools as simple as possible, all additional
aspects should not be added unless they are justifiable.
4. Validation

— Consider Testability

— Prove it With Code

Agile modelers and developers consider writing a testing for software at the early as
soon as possible, preferably before even coding. This gives the chance to control all the
aspects of the model or the software and be able to correct any existing errors.

3.3.2 Supplementary Practices

Similarily to the supplementary principles of AM, the team may adopt the supplementary
practices. Supplmentary practices are organized into four categories and have practices
within them:

1. Productivity (Based on [pp. 61-71][Amb02])
— Apply Modeling Patterns Gently
— Reuse Existing Resources

The patters should be used in such a way as to implement the minimal functionality that
the modeler need but that makes it easy to refractor. The reuse of existing resources is a
great benifit for the modeler and also for the stakeholder (Maximize Stakeholder Return
on Investment). 2. Documentation

— Discard Temporary Models
— Formalize Contact Models
— Update Only when it Hurts

The models don’t have to be perfect to provide value that is why it’s recommanded
to model only when needed. The effort of updating of the models is in most case more
painful than not having the model updated. 3. Motivation

— Model to communicate
— Model to understand

The modeler should model to explore the problem space and be able to test whether his
model satisfies the requirements of the project. Model is also the way to communicate,
the modeler should have in mind who needs the model and the goal behind that model.

10/16

4 What is eXtreme Programming?

As mentioned earlier in section 1, agile modeling is a supplement to existing methods, it
is not a complete methodology. eXtreme programming, and Crystal Clear are the widest
used among those methodologies because they showed best results and have been tested
by a large number of agile developers.

eXtreme Programming (XP) is the best-known of the agile methodology of the agile
methodolgies. It was developed by three participants of the agile-alliance meeting, Kent
Beck, Ward Cunningham and Ron Jeffries, in the late 1990s, and became popular in 1999
(first edition of [Bec04]). XP stresses customer satisfaction. The main goal of eXtreme
Programming is to reduce the cost of change. In traditional system developement meth-
ods, requirements are determined in the beginning and often fixed from that point on.
[Kur08]

4.1 4.1 eXtreme Programming values, principles and practices

The eXtreme programming values, principles are almost identical with the ones of agile
modeling so they won’t be analyzed in depth.

The eXtreme programming values are :
— Communication

— Simplicity

— Feedback

— Courage

Respect

The values of the XP and the AM are similar and represent the agile philosophy. The
value simplicity is often understood as avoiding documentation, but the documentation
here is reduced through the verbal communication betwenn team members.

Principles are :

— Humanity

— Economics

— Self-similarity
— Improvement
— Diversity

— Reflection

— Flow

— Opportunity

— Redundancy

11/16

— Failure

— Quality

— Baby steps

— Accepted responsibility

The practices are what the XP teams will be doing day-to-day. As in agile modeling
the practices are divided into core and supplementary practices.
Some of the core practices are:

— Sit together

Whole Team

Informative Workspace
— Energized Work

— Pair Programming

Stories
— Weekly Cycle

(Based on [Bec04])

4.1.1 4.2. The potential fit between Agile Modeling and eXtreme Programming

As already seen in the previous chapter, the similarity of the AM and XP are obvious but
the question is how to apply every AM practice within XP ?

12/16

AM Practice

Fit With XP

Active Stakeholder Par-
ticipation

This practice is simply a new take on XP’s On-Site Customer prac-
tice. AM uses the term project stakeholder in place of customer
and focuses on the concept of their active participation, hence
Active Stakeholder Participation and not On-Site Stakeholder.

Apply Modeling Stan-
dards

This is the AM version of XP’s Coding Standards practice.

Apply Patterns Gently

This practice reflects the YAGNI principle to the effective appli-
cation of patterns within your system, in conformance to XP’s
practice of Simple Design.

Apply the Right Arti-
fact(s)

This practice is not explicitly described by XP principles and prac-
tices although is very much aligned with XP philosophies of “if you
need it do it” and using the most appropriate tool or technique
for the job at hand.

Collective Ownership

AM has adopted XP’s Collective Ownership practice.

Create Several Models
in Parallel

This is a modeling-specific practice. XP developers can clearly
work on several models — such as CRC cards, acceptance test cases,
and sketches — if they choose to do so.

Create Simple Content

This is complementary XP’s Simple Design practice that advises
to keep your models as simple as possible.

Depict Models Simply

This is complementary XP’s Simple Design practice that suggests
that your models do not need to be fancy to be effective, perfect
examples of which are CRC cards and user stories.

Discard
Models

Temporary

This practice reflects XP’s Travel Light principle, which AM has
adopted, explicitly advising you to dispose of models that you no
longer need.

Display Models Pub- | This practice reflects XP’s (and AM’s) value of Communication,

licly principle of Open and Honest Communication (adopted by AM),
and reflects its practice of Collective Ownership.

Formalize Contract | This practice is not currently reflected within XP, well perhaps

Models in its “if you need to then do it” philosophy. This practice was

included in AM to provide guidance for how to deal with the very
common situation of integrating with other systems.

Iterate to Another Arti-
fact

This practice explicitly states, in a general form, the practice of
XP developers to iterate between working on various artifacts such
as source code, CRC cards, and tests.

Model in Small Incre-
ments

This practice supports XP’s iterative and increment approach to
development. Both XP and AM prefer an emergent approach to
development and not a big design up front (BDUF) approach.

Model With Others

This is the AM version of XP’s Pair Programming practice.

Prove it With Code

This is the AM version of XP’s Concrete Experiments principle.
In fact, it was originally called Concrete Experiments although
was renamed when it was evolved into a practice.

Reuse Re-

sources

Existing

This concept is not explicitly included in XP, although it clearly
isn’t excluded either. XP developers are practical, if there is some-
thing available that can be appropriately reused then they will
likely choose to do so.

Single Source Informa-
tion

The goal of storing information in a single place reflects the XP
concept of traveling light.

Update Only When it
Hurts

This practice reflects AM and XP’s Travel Light principle, advising
that you sholﬁ(i]@hly update an artifact only when you desperately
need to.

Table 1. Applicability of AM Practices on an eXtreme Programming Project.[Amb14b)]
The above table shows the possility how to apply agile modeling practices on a project

which already adopted eXtreme programming as a methodology. Not all practices of AM
reflect in XP but they are all most likely reflected in the XP philosophy.

14/16

5 Conclusion

From the above sections, it’s made clear that the agile modeling can be a moving factor
in the software development process, the adoption of its values, principles and practices
are the key for its success. The supplementary principles and practices will participate
in the effectiveness of the process but can be not adopted if they do not match with the
organization’s culture of the agile modelers or developers team. The values of the agile
modeling are inspired from the agile manifest and come to support an agile methodology
and not as a seperate one. The XP advices to reduce the effort in documentation and
concentrating on producing a working software as soon as possible, the AM advices to
be more effective when documenting and modeling. The agile modeling has showed a
compatibilty with the eXtreme programming which proves that AM can be a great support
for the XP.

15/16

References

[Amb02]

[Amb14a]

[Amb14b]

[Bec04]

[Kur08]

[Mar14]

[Mer99]

[Wik16]

Scott W. Ambler. Agile modeling. Effective practices for eXtreme programming
and the unified process. Wiley computer publishing. New York: J. Wiley, 2002.
xvi, 384. ISBN: 9780471202820 (cit. on pp. 5-10).

Scott W. Ambler. Agile Modeling (AM) Home Page: Effective Practices for
Modeling and Documentation. 9.10.2014. URL: http://agilemodeling. com/
(visited on 06/14/2016) (cit. on p. 4).

Scott W. Ambler. Agile Modeling and eXtreme Programming (XP). 9.10.2014.
URL: http://agilemodeling.com/essays/agileModelingXP .htm (visited
on 06/14/2016) (cit. on p. 14).

Kent Beck. Eztreme Programming Fxplained: Embrace Change: Embracing
Change. Addison Wesley, 2004. 1SBN: 978-0321278654 (cit. on pp. 11 sq.).

Karl Kurbel. The making of information systems. Software engineering and
management in o globalized world. Berlin: Springer, 2008. 1 online resource
(xii, 591. 1SBN: 3540792600 (cit. on p. 11).

Robert C. Martin. Agile software development, principles, patterns, and prac-
tices. Pearson new international ed. Martin, Robert C., (author.) Harlow, Es-
sex: Pearson, 2014. 1 online resource (iv, 524. 1SBN: 9781292025940 (cit. on
p. 4).

Merriam Webster. Merriam-Webster’s collegiate dictionary. 10th ed. Spring-
field, Mass.: Merriam-Webster, 1999. 38a, 1559. 1SBN: 9780877797135 (cit. on
p. 7).

Wikipedia, ed. Agile modeling - Wikipedia, the free encyclopedia. 6.06.2016.
URL: https://en.wikipedia.org/w/index.php?01did=723991649 (visited
on 06/14/2016) (cit. on p. 6).

16/16

http://agilemodeling.com/
http://agilemodeling.com/essays/agileModelingXP.htm
https://en.wikipedia.org/w/index.php?oldid=723991649

	1 Introduction
	2 History of AM and Agile Manifest
	3 Components of Agile Modeling
	3.1 Agile Modeling values
	3.1.1 Communication
	3.1.2 Simplicity
	3.1.3 Feedback
	3.1.4 Courage
	3.1.5 Humility
	3.1.6 Beyond Motherhood and Apple Pie

	3.2 Agile Modeling Principles
	3.2.1 Core Principles
	3.2.2 Supplementary Principles

	3.3 AM Practices
	3.3.1 Core Practices
	3.3.2 Supplementary Practices

	4 What is eXtreme Programming?
	4.1 4.1 eXtreme Programming values, principles and practices
	4.1.1 4.2. The potential fit between Agile Modeling and eXtreme Programming

	5 Conclusion
	References

