Using as

The GNU Assembler

(GNU Arm Embedded Toolchain 10.3-2021.10)

Version 2.36.1

The Free Software Foundation Inc. thanks The Nice Computer Company of Australia for
loaning Dean Elsner to write the first (Vax) version of as for Project GNU. The proprietors,
management and staff of TNCCA thank FSF for distracting the boss while they got some

work done.

Dean Elsner, Jay Fenlason & friends

Using as
Edited by Cygnus Support

Copyright (©) 1991-2021 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free

Documentation License”.

Table of Contents

1 OVerview ...t 1
1.1 Structure of this Manual 21
1.2 The GNU Assembler....... ..o 21
1.3 Object File Formats. 21
1.4 Command Line i 21
1.5 Input Files. ... oo 22
1.6 Output (Object) File.........oooii 22
1.7 Error and Warning Messages, 23

2 Command-Line Options....................... 25
2.1 Enable Listings: —alcdghlns]o . 25
2.2 mmalternate. .o 25
2.8 D 26
2.4 Work Faster: —=f 26
2.5 .include Search Path: -I path............................... 26
2.6 Difference Tables: =K. ..ot 26
2.7 Include Local Symbols: =L ..., 26
2.8 Configuring listing output: --listing......................... 26
2.9 Assemble in MRI Compatibility Mode: =M..................... 27
2.10 Dependency Tracking: =—=MD...........coiiuiiiiiiiiiennnne... 28
2.11 Output Section Padding ..., 28
2.12 Name the Object File: —o.........coiiiiiii i 29
2.13 Join Data and Text Sections: =R, 29
2.14 Display Assembly Statistics: ——statistics 29
2.15 Compatible Output: --traditional-format................. 29
2.16 Announce Version: =vV.............eeiiuiteiiiieennneeennnn.. 29
2.17 Control Warnings: -W, --warn, —-no-warn, —-fatal-warnings

... 29
2.18 Generate Object File in Spite of Errors: =Z................... 30

3 Syntax............. 31
3.1 PreproCessingcouuuii i 31
3.2 Whitespaceo 31
3.3 CommMENtSot 31
3.4 Symbols ... 32
3.5 Statements. 32
3.6 ConStants.uu 33

3.6.1 Character Constantscooiiiiiiiiiiennna... 33
3.6. 1.1 Strings.......oiiii i e 33
3.6.1.2 Charactersoouuuiiiiii e 34

3.6.2 Number Constants, 34

3.6.2.1 INtegersoouuriiii 34

ii

3.6.2.2 Bignums ... 35
3.6.2.3 Flonumsooiiiiiiiiiii e 35

4 Sections and Relocation....................... 37
4.1 Background........ ... 37
4.2 Linker Sectionsooiuuiiiiii i 38
4.3 Assembler Internal Sections i 39
4.4 SUD-SECHIONS . ..ottt 39
4.5 DSS SECHION . o vttt 40
5 Symbols............ 43
5.1 Labels ... 43
5.2 Giving Symbols Other Valueso 43
5.3 Symbol Names. ... 43
5.4 The Special Dot Symbol 45
5.5 Symbol Attributes 45
5.5.1 Value. ... 45
0.0, 2 Iy De. et 46
5.5.3 Symbol Attributes: a.out............. i 46
5.5.3.1 Descriptor.ot 46
5.5.3.2 Other.... ..o 46

5.5.4 Symbol Attributes for COFF 46
5.5.4.1 Primary Attributes............. L. 46
5.5.4.2 Auxiliary Attributes......... i 46

5.5.5 Symbol Attributes for SOM, 46

6 Expressions................. ... 47
6.1 Empty Expressions......... ..o 47
6.2 Integer EXpressionso 47
6.2.1 Arguments............iiiiiii e 47
6.2.2 OPeratorsoouur ittt 47
6.2.3 Prefix Operator 47
6.2.4 Infix Operators.uoiiiiiini e 48
7 Assembler Directives.......................... 51
7.1 @DOTt 51
7.2 .ABORT (COFF). ... oo 51
7.3 .align [abs-expr[, abs-expr[, abs-expr]]] o1
Tod o ALlEMACTO o ettt et e 52
7.5 Lascii "string". 52
7.6 .asciz "string"... 52
7.7 .attach_to_groupname.................ouiiiiiiiiiiiiiiiin. 52
7.8 .balign[wl] [abs-exprl[, abs-exprl[, abs-exprll] 52
7.9 Bundle directives. ..o 53
7.9.1 .bundle_align_mode abs-expr.......................... 53
7.9.2 .bundle_lock and .bundle_unlock................co.... 53

7.10 .byte eXpressions...............iiiiiiiiiiiiiii 54

Using as

711 CFIdirectives 54
7.11.1 .cfi_sections section_list.......................... 54
7.11.2 .cfi_startproc [simple] 54
7.11.3 .cfi_endproC ..ottt 54
7.11.4 .cfi_personality encoding [, exp] o4
7.11.5 .cfi_personality_id id.............. ..o, 55
7.11.6 .cfi_fde_data [opcodel [, ...1]1 55
7.11.7 .cfi_lsda encoding [, exp] 95
7.11.8 .cfi_inline_lsda [align]...............cooiiiiiio.... 55
7.11.9 .cfi_def_cfa register, offset....................... 55
7.11.10 .cfi_def_cfa_register register.................... 95
7.11.11 .cfi_def_cfa_offset offset......................... 55
7.11.12 .cfi_adjust_cfa_offset offset...................... 56
7.11.13 .cfi_offset register, offset....................... 56
7.11.14 .cfi_val_offset register, offset................... o6
7.11.15 .cfi_rel_offset register, offset................... 56
7.11.16 .cfi_register registerl, register2................ o6
7.11.17 .cfi_restoreregister................coiiiiiiiin.. 56
7.11.18 .cfi_undefined register............................. 56
7.11.19 .cfi_same_value register..................cc.ooio.. o6
7.11.20 .cfi_remember_state and .cfi_restore_state....... o6
7.11.21 .cfi_return_column register........................ 57
7.11.22 .cfi_signal frame il o7
7.11.23 .cfi_window_save............l o7
7.11.24 .cfi_escape expression[, .. .J......... i 57
7.11.25 .cfi_val_encoded_addr register, encoding, label

.. o7

7.12 .comm symbol , lengthciiiiiiiiiiiiiiiii... o7

7.13 .data subsectionm...............iiiiiiii i 58

7.14 .dclsize] expressions............c..ccouiiiiiiiiiiiiiiiani.. 58

7.15 .dcblsize] number [,filll..........o iiiiiiiieon.. 59

7.16 .dslsize] number [,fill]o, 59

717 def mame ... 59

7.18 .desc symbol, abs-expression..................coiiiio... 59

T19 Ldim. .o 60

7.20 .double fIONUMSuiiiiiiiii it 60

T21 Leject .o 60

T.22 eSS 60

723 Lelseif ... 60

T24 LeDA. .o 60

7.25 endef ... 60

726 .endfunc........ ... 60

T27 Lendif ..o 60

7.28 .equ symbol, eXpressSion.............ccoiiiiiiiiiiiiiia.. 60

7.29 .equiv symbol, eXpreSSiOn...............iiiiiiiiiiiiiiinn. 61

7.30 .eqv symbol, eXpresSSIion...........oiiiiiiiiiiiiiiiaaa... 61

T3] T . 61

7.32 .error "sString" 61

iii

iv

T.33 eXABM .ot 61
T34 LeXLeIm .. i 61
7.35 .fall eXpresSIion..........oouiuiiiiiiiii i 61
T.36 cfide. i 62
7.37 .fill repeat , size , value...........oouiuuiiiiieiiiieenn.. 62
7.38 .float fIONUMS\ttt 63
7.39 .func namel[,labell......... ..ot 63
7.40 .global symbol, .globl symbol..............covviiiiiinn... 63
741 .gnu_attribute tag,value i, 63
742 .hidden names i 63
7.43 . hword eXpresSSIiOonS..........euuiiiiiiiiiiiiiiiiiaaan.. 63
TA4 Jident ..o 64
7.45 .if absolute eXpresSIOn.............coiiiiiiiiiiiiianna.. 64
7.46 .incbin "file"[,skipl[,count]].......... 65
747 .include "file" 65
748 .int eXpresSsSions............oiuiiiiiiiiii i 65
749 .internal NamesSueiiiiiiiii e 65
7.50 .irp symbol,values...couuuiiiiiiiiiiiii 66
7.51 .irpc symbol,values.ccouiiiiiiiiiiiiiiiia. 66
7.52 .lcomm symbol , length..............coiiiiiiiiiiiiiii.. 66
753 Jlflags ..o 67
7.54 .line line-number.................c.eiiiiiiiiiiiiiiinii.. 67
7.55 .linkonce [typeloiuiiiiiiiiii 67
8 T 5 = 68
7.57 ln line—number 68
7.58 .loc fileno lineno [column] [options] 68
7.59 .loc_mark_labels enable.............uiiiiiiii. 69
7.60 .local mamesS..........uuuiiiii 69
7.61 .long eXPresSSIOnS..........c.uiiiiiiiiiiiii i 69
T.62 TMACTO .ottt 69
T.63 mri val 72
7.64 n0altMACTO ..ottt ettt 72
T.6D mOLASt ..ot 72
7.66 .nop [sizel....c..oiiiiii 72
7.67 .nops sizel, control]cciiiiiiiiiii 72
7.68 .0Cta BIGOUMS . ..ottt 72
T.69 offset 10C. .. oot 73
7.70 .orgmew-1c , Ffillo it 73
7.71 .p2align[wl] [abs-expr[, abs-exprl[, abs-expr]l]] 73
T.T2 . pOPSECtion ...ooiiiii 74
T.73 PTrevVIOUS . ..o 74
774 .print string i 74
7.75 .protected mames............ ...l 75
7.76 .psize lines , COlUMNS.........coouiiiiiiiiiiiianann... 75
TA7 JPULGEM DAME.ttt 75
7.78 .pushsection name [, subsection] [, "flags"[,
@typel,arguments]]]..... ... 75

T.79 .quad DIGOUIMSottt e 75

Using as

7.80 .reloc offset, reloc_namel, expression]................. 76
T.8L .TePL COUNT ...ttt 76
7.82 .sbttl "subheading" 76
T.83 .8CL ClasSS ..ottt 76
7.84 .sectiommameiiiiiii 76
7.85 .set symbol, @XPresSSIONccuuuiuuiiiniieennieennnn.. 81
7.86 .Short expressions..............c.cooiiiiiiiiiiiiiiaaan... 81
7.87 .single fIONUMSottt 81
T.88 LBz . 81
7.89 .skip size [,fill]o .o i 81
7.90 .S1ebl28 eXpreSSionsot 82
7.91 .space size [,fill].........oiiiuuiiiiii i 82
7.92 .stabd, .stabn, .stabsci i 82
7.93 .string "str", .string8 "str", .stringl6 83
7.94 .struct expresSSion................iiiiiiiiiiii i 83
7.95 .subsectionname........... i i i 83
T96 CBYIMVET ..ot 83
T.97 .tag Structhame.............c.uiiiiuiieimiie i, 84
7.98 .text subsection........... ...l 84
7.99 .title "heading" 85
7.100 .tls_common symbol, lengthl, alignment]................ 85
0 L T v oY= P 85
7.102 .ulebl28 eXpresSSionsScouiiuiiiiiiiiiii .. 86
7103 cval addr.o 86
7.104 .version "string"........ 86
7.105 .vtable_entry table, offset, 86
7.106 .vtable_inherit child, parent.................couuuu.... 86
7.107 .warning "string"........ ... 87
7.108 weak DamesS....... ...ttt 87
7.109 .weakref alias, targetcoiiiiiiiiiiiiiii... 87
7.110 . wWord eXpreSSIONS.uuuuiiiiiii i 87
TAL1L LZ@YO0 SIZ@. .ttt e e 88
7.112 .2byte expression [, expressionl*....................... 88
7.113 .4byte expression [, expressionl*....................... 88
7.114 .8byte expression [, expressionl*....................... 88
7.115 Deprecated Directives.......... ... 88

Object Attributes............................. 89
8.1 GNU Object Attributes..........coiii ... 89

8.1.1 Common GNU attributes oL, 89

8.1.2 M680x0 Attributes. 89

8.1.3 MIPS Attributesoovuiii i 90

8.1.4 PowerPC Attributes.........o i 90

8.1.5 IBM z Systems Attributes............................... 90

8.1.6 MSP430 Attributes. ... 91

8.2 Defining New Object Attributes.....................coii... 91

vi
9 Machine Dependent Features................. 93
9.1 AArch64 Dependent Featuresooiiiiia.. 94
9.1.1 OptionSttt 94
9.1.2 Architecture Extensions.......... oL 95
0.1.3 SymbaX ...t 96
9.1.3.1 Special Characters...............cooiiiiiiiiiiiiinnn. 97
9.1.3.2 Register Names........ccooviiiiiiiiiiiiiiii... 97
9.1.3.3 Relocations...........coo i 97
9.1.4 Floating Point o i 97
9.1.5 AArch64 Machine Directives..............oiiiieiiii .. 97
9.1.6 OPeodesveeii i 99
9.1.7 Mapping Symbols........ ..o 99
9.2 Alpha Dependent Featuresccooiiiiiiiiiii... 100
9.2, 1 NOES ..ttt 100
9.2.2 OPtionS . .« vttt e 100
9.2.3 SyMbaX . ot 101
9.2.3.1 Special Charactersccooiiiiiiiiiiaan.. 101
9.2.3.2 Register Nameso, 101
9.2.3.3 Relocations 101
9.2.4 Floating Point i i 103
9.2.5 Alpha Assembler Directives, 103
9.2.6 OPCodes . ..ovunt i 106
9.3 ARC Dependent Featurescoooiiiiiiiiiiiiii... 107
9.3.1 OptIOnS . ..ottt 107
0.3.2 SYMbAX . ettt 108
9.3.2.1 Special Charactersccovviiiiiiinenn... 108
9.3.2.2 Register Names ..., 109
9.3.3 ARC Machine Directives ... 110
9.3.4 ARC Assembler Modifiers.................ccooiiii.. 114
9.3.5 ARC Pre-defined Symbols........... ...l 114
9.3.6 OPCodesot 114
9.4 ARM Dependent Features...............coiiiiiiiiiiiii.. 115
9.4.1 OpPtionS . .o vttt ettt 115
0.4.2 SYMbAX ..ttt 121
9.4.2.1 Instruction Set Syntaxc.c.ooiiiiiiia.. 121
9.4.2.2 Special Charactersccooiiiiiiiiiiain.. 122
9.4.2.3 Register Names ..., 122
9.4.2.4 ARM relocation generation......................... 122
9.4.2.5 NEON Alignment Specifiers........................ 122
9.4.3 Floating Point i 123
9.4.4 ARM Machine Directives.............ccoiiiii .. 123
9.4.5 OPCodes .. .oovn e 128
9.4.6 Mapping Symbols....... ... 129
9.4.7 Unwindingoouuiiiii e 129
9.5 AVR Dependent Featuresciiiiiin.... 132
9.5. 1 OptionS . ..ove e 132
9.5.2 SyMbaX .. 134

9.5.2.1 Special Characterscovvviiiieeniieennnn.. 134

Using as

9.5.2.2 Register Names ..., 134
9.5.2.3 Relocatable Expression Modifiers................... 134

9.5.3 OPCodes . ..o 135
9.5.4 Pseudo Instructions........... ..., 138
9.6 Blackfin Dependent Features................. L. 140
9.6.1 OptIonS. . ..ottt 140
0.6.2 SYMbAX ..ttt e 140
9.6.3 Directives.o 142
9.7 BPF Dependent Featurescooiiiiiiiiii .. 144
9.7 1 OptionS. .. .oo e 144
0.7.2 Sy M A . oottt e 144
9.7.2.1 Special Charactersc.oviiiiiiiiieennn... 144
9.7.2.2 Register Names ..., 144
9.7.2.3 Pseudo Maps.........ccoiiiiiiiiiiiiiiiiiii. 144

9.7.3 Machine Directives.......... ... i i 144
.74 OPCOdes . ..ottt e 145
9.7.4.1 Arithmetic instructions............................. 145
9.7.4.2 32-bit arithmetic instructions....................... 146
9.7.4.3 Endianness conversion instructions 146
9.7.4.4 64-bit load and pseudo maps 146
9.7.4.5 Load instructions for socket filters.................. 147
9.7.4.6 Generic load/store instructions 147
9.7.4.7 Jump instructions........... ... o i 148
9.7.4.8 Atomic instructions L. 149

9.8 CRI16 Dependent Featurescooiiiiiiiiin... 150
9.8.1 CR16 Operand Qualifiers...............cooiiiiin... 150
9.8.2 CRIB Syntax «..uvete ittt 151
9.8.2.1 Special Charactersccooiiiiiiiiiian.. 151

9.9 CRIS Dependent Features................ooooiiiiiiiiiii., 152
9.9.1 Command-line Options.c.covviiiiieiiienennn... 152
9.9.2 Instruction expansion, 153
9.9.3 Symbols 153
9.9.4 Synbaxt e 153
9.9.4.1 Special Characterscoooiiiiiiiiian.. 154
9.9.4.2 Symbols in position-independent code 154
9.9.4.3 Register names............cooiiiiiiiiiiiiiiii 155
9.9.4.4 Assembler Directivescooiiiiiiiiiiiin. 155

9.10 C-SKY Dependent Features..................oooiiiiiiiiin. 157
9.10.1 OptionS. . vttt 157
0.10.2 SYIbaAX . oo ettt 158
9.11 D10V Dependent Featuresccoiiiiiiinn... 159
9.11.1 DIOV Options . ..ovuutt et 159
9.11.2 Synbax. .ottt 159
9.11.2.1 Size Modifiers.......... .o 159
9.11.2.2 Sub-Instructionscoviiiiiiiiiian.. 159
9.11.2.3 Special Charactersccouiiiiiiiinnnn... 160
9.11.2.4 Register Names ..., 161

9.11.2.5 Addressing Modes. ..., 161

vii

viii

9.11.2.6 QWORD Modifiercooviiiiiiiiiiin.. 162
9.11.3 Floating Point i 162
9.11.4 OpPCOAES .. v vt it e 162

9.12 D30V Dependent Features, 163
9.12.1 D30V Optionsuueiiii e 163
0.12.2 SyIbaAX . o ettt e 163

9.12.2.1 Size Modifiers........ ... 163

9.12.2.2 Sub-Instructions i, 163

9.12.2.3 Special Characterso, 163

9.12.2.4 Guarded Execution..............o 165

9.12.2.5 Register Names ..., 165

9.12.2.6 Addressing Modes. ..o, 166
9.12.3 Floating Pointo i i 166
9.12.4 OPCOAES . .. v vt 166

9.13 Epiphany Dependent Features 167
9.13.1 OPLIONS . « vttt 167
9.13.2 Epiphany Syntax ... 167

9.13.2.1 Special Charactersccoveiiiiiiiinnnn... 167

9.14 HS8/300 Dependent Features..................cocooiiinn... 168
9.14. 1 OptionS. .. 168
0.14.2 SymbaX . .ottt 168

9.14.2.1 Special Charactersocoiiiiia.. 168

9.14.2.2 Register Names ..., 168

9.14.2.3 Addressing Modes. ... 168
9.14.3 Floating Point o i 169
9.14.4 H8/300 Machine Directives................coooiiiin... 170
9.14.5 OpCOAES . v vt 170

9.15 HPPA Dependent Features................cooiiiiiiii ... 171
9151 NOteS. .ottt e 171
9.15.2 OPtIONS .« vttt 171
0.15.3 SyIbaX . oottt 171
9.15.4 Floating Point 171
9.15.5 HPPA Assembler Directives.............coooviiiii ... 171
9.15.6 OPCOAES . .. vvv it 175

9.16 80386 Dependent Features............... 176
9.16.1 OPLIONS. . vttt 176
9.16.2 x86 specific Directives. ..., 181
9.16.3 1386 Syntactical Considerations......................... 181

9.16.3.1 AT&T Syntax versus Intel Syntax................. 182

9.16.3.2 Special Charactersccouiiiiiiinnn... 182
9.16.4 1386-Mnemonics.ouviiii 183

9.16.4.1 Instruction Namingooia.. 183

9.16.4.2 AT&T Mnemonic versus Intel Mnemonic.......... 184
9.16.5 Register Namingccooiiiiiiiiiiiiiiiiiin. 184
9.16.6 Instruction Prefixes............. ... 185
9.16.7 Memory References 186
9.16.8 Handling of Jump Instructions 187

9.16.9 Floating Pointo i 187

Using as

9.16.10 Intel’s MMX and AMD’s 3DNow! SIMD Operations... 188

9.16.11 AMD’s Lightweight Profiling Instructions 188
9.16.12 Bit Manipulation Instructions...................... ... 188
9.16.13 AMD’s Trailing Bit Manipulation Instructions......... 189
9.16.14 Writing 16-bit Code......... .o i 189
9.16.15 Specifying CPU Architecture.......................... 189
9.16.16 AMDG64 ISA vs. Intel64 ISA, 191
9.16.17 AT&T Syntax bugs.......oooviiiiiiiiiiiean... 191
9.16.18 NOtES. ..ttt 191
9.17 TA-64 Dependent Featuresociiiii.. 192
9.17.1 OPLIONS . « vttt 192
9.17.2 SYIMbaAX . oottt e e 193
9.17.2.1 Special Characterscovviiiiiiiinnnn... 193
9.17.2.2 Register Names ..., 193
9.17.2.3 IA-64 Processor-Status-Register (PSR) Bit Names
.. 193
9.17.2.4 Relocations 193
9.17.3 OPCOAES . v e 194
9.18 TIP2K Dependent Features..................coiiiiiiiii... 195
9.18.1 TP2K Options.oviui e 195
9.18.2 TP2K Symtax.......vuvnurieeiii it 195
9.18.2.1 Special Charactersooiiiiiiia.. 195
9.19 LMS32 Dependent Featurescoiiiiiiiinn... 196
9.19.1 OptIONS. . vttt 196
0.19.2 SyNtaX. ..ot 196
9.19.2.1 Register Names, 196
9.19.2.2 Relocatable Expression Modifiers.................. 197
9.19.2.3 Special Characters, 198
9.19.3 OpPCOAES ... vi it 198
9.20 M32C Dependent Features.............ccooiiiiiiiiinn.. 199
9.20.1 M32C Options ..o vvee ettt e 199
9.20.2 M32C Symtaxouuete et e 199
9.20.2.1 Symbolic Operand Modifiers 199
9.20.2.2 Special Characterso, 200
9.21 MS32R Dependent Features.........................oiiiiia.. 201
9.21.1 M32R Options ... uvete et e 201
9.21.2 M32R Directives.......oouiiiiiiiii i 202
9.21.3 M32R Warningsoovurriiiiiii i 203
9.22 M680x%0 Dependent Features...............c.oooiiiiiiii.. 205
9.22.1 MO680X0 Options . ..ottt 205
0.22.2 SYIMBaAX . o ettt e 208
9.22.3 Motorola Syntax...........oiiiiiiiii 209
9.22.4 Floating Point o 210
9.22.5 680x0 Machine Directivesccooiiiiiiii.n. 210
9.22.6 OPCOAES . vttt 211
9.22.6.1 Branch Improvement.............................. 211
9.22.6.2 Special Characters, 212

9.23 M68HC11 and M68HC12 Dependent Features............... 213

ix

9.23.1 M68HC11 and M68HC12 Options.........c.covvuevnn... 213
0.23.2 SYMBAX . ..ttt 214
9.23.3 Symbolic Operand Modifiers 216
9.23.4 Assembler Directives....... ...t 216
9.23.5 Floating Pointo i 217
9.23.6 OpCOAES .. v 217
9.23.6.1 Branch Improvement.............................. 217
9.24 S127 Dependent Features.............ccoiiiiiiiiii .. 219
9.24.1 S12Z OptionsS . . .vv ittt e 219
9.24.2 SYNBaX. ..ttt 219
0.24.2.1 OVEIVIEW .ottt et 219
9.24.2.2 Addressing Modes. ..., 220
9.24.2.3 Register Notation............ 221
9.25 Meta Dependent Features............o il 223
9.25.1 OptIONS. ..t v et 223
0.25.2 SyMmbaX. ...ttt 223
9.25.2.1 Special Characterscoiiiiia.. 223
9.25.2.2 Register Names ..., 223
9.26 MicroBlaze Dependent Features.................. 224
9.26.1 Directives.couuiiii e 224
9.26.2 Syntax for the MicroBlaze................. 224
9.26.2.1 Special Charactersccooiiiiiiia.. 224
9.27 MIPS Dependent Features........... ..., 225
9.27.1 Assembler options. 225
9.27.2 High-level assembly macrosooo... 233
9.27.3 Directives to override the size of symbols............... 234
9.27.4 Controlling the use of small data accesses............... 234
9.27.5 Directives to override the ISA level 235
9.27.6 Directives to control code generation 235
9.27.7 Directives for extending MIPS 16 bit instructions. 236
9.27.8 Directive to mark data as an instruction................ 236
9.27.9 Directives to control the FP ABI....................... 236
9.27.9.1 History of FP ABIs........ ... 236
9.27.9.2 Supported FP ABIs..............oo i 237
9.27.9.3 Automatic selection of FP ABL.................... 237
9.27.9.4 Linking different FP ABI variants................. 238
9.27.10 Directives to record which NaN encoding is being used
... 238
9.27.11 Directives to save and restore options 239
9.27.12 Directives to control generation of MIPS ASE instructions
... 239
9.27.13 Directives to override floating-point options 240
9.27.14 Syntactical considerations for the MIPS assembler.. ... 240
9.27.14.1 Special Characters.............ccvviiiiiiiea.n. 240
9.28 MMIX Dependent Featurescoiin... 242
9.28.1 Command-line Options..............coiiiiiiiin... 242
9.28.2 Instruction expansionc...oiiiiiiiiiiea... 243

9.28.3 Symbax. ... 243

Using as

9.28.3.1 Special Characterscoouiiiiiiinnnn... 243
9.28.3.2 Symbols 244
9.28.3.3 Registernames.............. ... i, 244
9.28.3.4 Assembler Directives.............ccoviiiiiiiin... 245
9.28.4 Differences tommixalooviiiiiiiiiiii .. 247
9.29 MSP 430 Dependent Features............................... 249
9.20.1 OPLIONS .« vttt 249
9.20.2 SyNbaX. .. 250
9.29.2.1 MaACTOS. . vttt 250
9.29.2.2 Special CharacterscooiiiiiiL. 250
9.29.2.3 Register Names ..., 251
9.29.2.4 Assembler Extensionsl 251
9.29.3 Floating Point i i i 252
9.29.4 MSP 430 Machine Directives....................cooiuit. 252
9.29.5 OPCOAES . .. v vttt 252
9.29.6 Profiling Capability 252
9.30 NDS32 Dependent Features.......................ciinin. 255
9.30.1 NDS32 Optionscoviuriiiii e 255
9.30.2 Synbax. ...t 256
9.30.2.1 Special Charactersccoovviiiiiiiiin... 256
9.30.2.2 Register Names ..., 256
9.30.2.3 Pseudo Instructions............... ..., 257

9.31 Nios II Dependent Features.................. ..., 260
9.31.1 OptIonS. ..ttt 260
0.31.2 SYIbaAX . o ettt e 260
9.31.2.1 Special Charactersooviiiiiiiinnnn... 260
9.31.3 Nios IT Machine Relocations............................ 260
9.31.4 Nios II Machine Directivescoovoi.... 261
9.31.5 OPCOAES .. vt it e 262
9.32 NS32K Dependent Features...............cooiiiiiiian... 263
0.32.1 SyIbaAX . oottt e 263
9.32.1.1 Special Charactersccovviiiiiiiinnnn... 263

9.33 OPENRISC Dependent Features............................ 264
9.33.1 OpenRISC Syntaxccoouuiiiiiiiiiiiiii e 264
9.33.1.1 Special Characterscooviviiiiiean.. 264
9.33.1.2 Register Names ..., 264
9.33.1.3 Relocations............. ..o 264
9.33.2 Floating Pointo i 266
9.33.3 OpenRISC Machine Directives 266
9.33.4 OPCOAES ..t 267
9.34 PDP-11 Dependent Features............... ..., 268
9.34.1 OPLIONS . . vttt 268
9.34.1.1 Code Generation Options 268
9.34.1.2 Instruction Set Extension Options................. 268
9.34.1.3 CPU Model Optionscovviiiiiinniannn .. 269
9.34.1.4 Machine Model Options................oooia... 269
9.34.2 Assembler Directives............ccoiiiiiiiiiii... 270

9.34.3 PDP-11 Assembly Language Syntax.................... 270

xi

xii

9.34.4 Instruction Namingccooiiiiiiiiiiienna.... 270
9.34.5 Synthetic Instructions............. 271
9.35 picoJava Dependent Features 272
0.35.1 OPtIONS .« ittt 272
9.35.2 PJ Syntax ...ttt e 272
9.35.2.1 Special Charactersccouiiiiiiiinno... 272

9.36 PowerPC Dependent Features............................... 273
9.36.1 OPLIONS. ..\ttt 273
9.36.2 PowerPC Assembler Directives..................oouv... 275
9.36.3 PowerPC Syntax..........cooiiiiiiiiiiiiiii i, 275
9.36.3.1 Special Charactersccooiiiiiiiinan... 275

9.37 PRU Dependent Features................ 276
9.37.1 OPLIONS. . vttt e 276
9.37.2 SyNbax. .. 276
9.37.2.1 Special Characterscoovviiiiiiin... 276
9.37.3 PRU Machine Relocations.......................c.o..... 276
9.37.4 PRU Machine Directivesooiiiit. 276
9.37.5 OpCOAES . ..t 277
9.38 RISC-V Dependent Features................cooooiiiiio.., 278
9.38.1 RISC-V Optionscvviiiitiii e 278
9.38.2 RISC-V Directives ...t 279
9.38.3 RISC-V Assembler Modifiers........................... 281
9.38.4 RISC-V Instruction Formats 282
9.38.5 RISC-V Object Attribute ... 286
9.39 RL78 Dependent Features................cooiiiiiiiiiiiinan. 288
9.39.1 RL78 Options.c.vviitii i 288
9.39.2 Symbolic Operand Modifiers 288
9.39.3 Assembler Directives. ...t 288
9.39.4 Syntax for the RL78o i i 289
9.39.4.1 Special Charactersccoviviiiiinann... 289

9.40 RX Dependent Features...............coiiiiiiiiiiiiiii.. 290
9.40.1 RX Options.ouuuiiii e 290
9.40.2 Symbolic Operand Modifiers 291
9.40.3 Assembler Directives...........ooiiiiiiiii i 292
9.40.4 Floating Point o i 292
9.40.5 Syntax for the RX o i 292
9.40.5.1 Special Charactersccovviiiiiiiinnnn... 292

9.41 IBM S/390 Dependent Features............................. 293
9.41.1 OpPtIONS. . vttt e 293
9.41.2 Special Characters..............ccooiiiiiiiiiiiinenn... 294
9.41.3 Instruction syntax it 294
9.41.3.1 Register naming............. ..., 294
9.41.3.2 Instruction Mnemonics..............coooiiiia.. ... 294
9.41.3.3 Instruction Operands...................ooiia... 296
9.41.3.4 Instruction Formats............................... 297
9.41.3.5 Instruction Aliases i, 301
9.41.3.6 Instruction Operand Modifier 304

9.41.3.7 Instruction Marker........ ..., 305

Using as

9.41.3.8 Literal Pool Entries............. 305
9.41.4 Assembler Directives...... ... 306
9.41.5 Floating Point 308

9.42 SCORE Dependent Features..............ocooiiiiiiiiia... 309
9.42.1 OPLIONS. . vttt 309
9.42.2 SCORE Assembler Directives 309
9.42.3 SCORE Syntaxccoiiiiiiiiiiiiiii ... 310

9.42.3.1 Special Charactersccovviiiiiiinnnn... 310

9.43 Renesas / SuperH SH Dependent Features 311
9.43.1 OpHIONS. . vttt 311
0.43.2 SyMBaX. ..ttt 311

9.43.2.1 Special Characterscooiiiiiiia.. 311

9.43.2.2 Register Names ..., 312

9.43.2.3 Addressing Modes. ... 312
9.43.3 Floating Point o i 312
9.43.4 SH Machine Directives............coiiiiiiiiii ... 313
9.43.5 OPCOAES . ..t 313

9.44 SPARC Dependent Featurest 314
9.44.1 OPLIONS. . vttt 314
9.44.2 Enforcing aligned data................. ... L. 316
9.44.3 Sparc SYyNtaxiii 316

9.44.3.1 Special Charactersccoviiiiiiiinnn... 316

9.44.3.2 Register Names ..., 316

9.44.3.3 Constants.........couiuiiiiiiiii i 318

9.44.3.4 Relocationscoviiiiiiiiiiii .. 320

9.44.3.5 Size Translations...............coiiiiiiii.. 322
9.44.4 Floating Point 323
9.44.5 Sparc Machine Directives, 323

9.45 TIC54X Dependent Features................oooiiiiiia.. 325
9.45.1 OPLIONS .« vttt 325
9.45.2 Blocking 325
9.45.3 Environment Settings................ciiiiiiii. 325
9.45.4 Constants Syntaxc.ouiiiiiiiiiii .. 325
9.45.5 String Substitution........... il 325
9.45.6 Local Labels............o o i 326
9.45.7 Math Builtins.......... 326
9.45.8 Extended Addressing..............ccooiiiiiiiiiiii. 328
9.45.9 DIrectives. ..ttt 328
9.45.10 MacCros .« oo vvi it e 333
9.45.11 Memory-mapped Registers..............., 334
9.45.12 TICHAX Syntax.......evemnet i 334

9.45.12.1 Special Characters...............cooviieeeiiinnn. 334

9.46 TIC6X Dependent Features..................oooiiiiii.. 335
9.46.1 TICEX Optionsovvuuiiiiii i 335
9.46.2 TICHEX SYNbax ...vvveeet et eeiee e, 335
9.46.3 TICH6X DireCtivesouuueeeni e 336

9.47 TILE-Gx Dependent Features.................... ...t 338

9.47.1 OPLIONS. . vttt 338

xiii

xiv

0.47.2 SYNEaX . ..ottt 338
9.47.2.1 Opcode Nameso.oiiiiiiiiiiiiiiaann. 338
9.47.2.2 Register Names ..., 338
9.47.2.3 Symbolic Operand Modifiers 339

9.47.3 TILE-Gx Directivesouviiiiiiiiiiinn.. 341

9.48 TILEPro Dependent Features............................... 343

9.48.1 OPLIONS . vttt 343

9.48.2 SYNBaAX . .ot 343
9.48.2.1 Opcode Names.........c.oviiiiiiiiiiiiiiniiean. 343
9.48.2.2 Register Names ..., 343
9.48.2.3 Symbolic Operand Modifiers 344

9.48.3 TILEPro Directives...... ..., 346

9.49 v850 Dependent Featurescoiiiiii.. 346

9.49.1 OPLIONS. . vttt 346

9.49.2 SYNbax. ...t e 348
9.49.2.1 Special Charactersc.ouuiiiiiiinnnn... 348
9.49.2.2 Register Names ..., 348

9.49.3 Floating Point 351

9.49.4 V850 Machine Directives............cooiiiiiiiiiian, 351

9.49.5 OPCOAES .. v vttt 351

9.50 VAX Dependent Features............... ..., 353

9.50.1 VAX Command-Line Optionsoo. ... 354

9.50.2 VAX Floating Point........... ..., 355

9.50.3 Vax Machine Directives.......... ... 355

9.50.4 VAX OpCOdes. ...t 355

9.50.5 VAX Branch Improvement 355

9.50.6 VAX Operandso.uiiiiiiiiiii .. 357

9.50.7 Not Supported on VAXo 357

9.50.8 VAX Syntax......o.oiiiii 357
9.50.8.1 Special Characterscooiiiiiiinann.. 358

9.51 Visium Dependent Features..................... 359

9.51.1 OptIONS . « vttt 359

9.51.2 Synbax. .. e 359
9.51.2.1 Special Characterso, 359
9.51.2.2 Register Names ..., 359

9.51.3 OpCOAES . vt 359

9.52 WebAssembly Dependent Features.......................... 360

0.52. 1 NOBES .« ettt et et e 360

9.52.2 Symbax. e 360
9.52.2.1 Special Charactersccouiiiiiiinnno... 360
9.52.2.2 Relocations 360
9.52.2.3 SIignaturesooeeiiiiiiii 360

9.52.3 Floating Point 360

9.52.4 Regular Opcodes.ccoiiiiiiniiiiiiiiii .. 360

9.52.5 WebAssembly Module Layout.......................... 360

9.53 XGATE Dependent Features................................ 362

9.53.1 XGATE OptionSueeueiit i 362

9.53.2 Symbax. .. 362

Using as

9.53.3 Assembler Directives. ... 363
9.53.4 Floating Point i 363
9.53.5 OPCOAES . v vt 364
9.54 XStormyl6 Dependent Features............................. 364
9.54.1 Synbax.t 364
9.54.1.1 Special Charactersccoviiiiiinno... 364
9.54.2 XStormyl16 Machine Directives......................... 364
9.54.3 XStormyl16 Pseudo-Opcodescooiae.. 364
9.55 Xtensa Dependent Features.................o L. 365
9.55.1 Command-line Options................ oo, 365
9.55.2 Assembler Syntax............oiiiiiiiiiii 366
9.55.2.1 Opcode Namesc.oviiiiiiiiiiiiiann. 367
9.55.2.2 Register Names ..., 367
9.55.3 Xtensa Optimizations.............ccooiiiiiiiii.. 368
9.55.3.1 Using Density Instructions 368
9.55.3.2 Automatic Instruction Alignment.................. 368
9.55.4 Xtensa Relaxation i 369
9.55.4.1 Conditional Branch Relaxation.................... 369
9.55.4.2 Function Call Relaxation.......................... 369
9.55.4.3 Jump Relaxation....................., 370
9.55.4.4 Other Immediate Field Relaxation................. 371
9.55.5 DIrectives. ...t 372
9.55.5.1 schedule 372
9.55.5.2 longcalls ... 373
9.55.5.3 transform........ i 373
9.55.5.4 literal..... ..o 373
9.55.5.5 literal_position.......... ..o it 374
9.55.5.6 literal_prefix ... 375
9.55.5.7 absolute-literalso i, 375
9.56 780 Dependent Featuresciiiiiiiiiii ... 376
9.56.1 Command-line Options.............coiiiiiiiian... 376
9.56.2 SyNbaX. .o 377
9.56.2.1 Special Characterso, 377
9.56.2.2 Register Names ..., 377
9.56.2.3 Case Sensitivityc.ooviiiiiii i 377
0.56.2.4 Labels ... 377
9.56.3 Floating Point 377
9.56.4 780 Assembler Directives..............ccooiiiinn.. 378
9.56.5 OPCOAES ... vi i 379
9.57 78000 Dependent Features.......................ciiiiii.. 380
9.57.1 OPLIONS . « vttt 380
9.57.2 SyNbaX. .ot 380
9.57.2.1 Special Characters, 380
9.57.2.2 Register Names ..., 380
9.57.2.3 Addressing Modes...........ccooiiiiiiiiiii.. 380
9.57.3 Assembler Directives for the Z8000..................... 381

9.57.4 OpPCOAES . ..t 382

XV

xVi

10 Reporting Bugs................. 383
10.1 Have You Found a Bug? i i 383
10.2 How to Report Bugs............ooiiiiii it 383

11 Acknowledgements.......................... 387

Appendix A GNU Free Documentation License
... 389

Using as

Chapter 1: Overview 1

1 Overview

This manual is a user guide to the GNU assembler as.

Here is a brief summary of how to invoke as. For details, see Chapter 2 [Command-Line
Options|, page 25.
as [-alcdghlns] [=file]] [-alternate] [-D]
[-compress-debug-sections] [-nocompress-debug-sections]
[-debug-prefix-map old=new]
[-defsym sym=vall [-f] [-g] [-gstabs]
[-gstabs+] [—gdwarf-<N>] [—gdwarf-sections]
[-gdwarf-cie-version=VERSION]
[-help] [-I dir] [-J]
[-K] [-L]1 [-listing-lhs-width=NUM]
[listing-lhs-width2=NUM] [-listing-rhs-width=NUM]
[listing-cont-lines=NUM] [-keep-locals]
[-no-pad-sections]
[-o objfile] [-R]
[-statistics]
[-v] [-version] [—version]
[-W] [-warn] [fatal-warnings] [-w] [-x]
[-Z] [@FILE]
[-sectname-subst] [-size-check=[error | warning]]
[elf-stt-common=|no | yes]]
[-generate-missing-build-notes=[no | yes]]
[-target-help] [target-options]
[-Ifiles ...]

Target AArch64 options:
[-EB|-EL]
[-mabi=ABI]

Target Alpha options:

[-mcpul
[-mdebug | -no-mdebug]
[-replace | -noreplacel

[-relax] [-g] [-Gsizel
[-F] [-32addr]

Target ARC options:
[-mcpu=cpu]
[-mA6|-mARC600|-mARC601|-mA7|-mARC700|-mEM |-mHS]
[-mcode-density]
[-mrelax]
[-EB|-EL]

Target ARM options:
[-mcpu=processor[+extension. . .]]
[-march=architecture[+extension. . .]]
[-mfpu=floating-point-format]
[-mfloat-abi=abi]

[-meabi=ver]

[-mthumb]

[-EB|-EL]

[-mapcs-32 |-mapcs-26 | -mapcs-float |
-mapcs-reentrant]
[-mthumb-interwork] [-k]

Using as

Target Blackfin options:
[-mcpu=processor[-sirevision]]
[-mfdpic]

[-mno-fdpic]
[-mnopic]

Target BPF options:

[-EL] [-EBI]
Target CRIS options:
[-underscore | —no-underscore]
[-pic] [-N]
[~emulation=criself | —emulation=crisaout]
[-march=v0_v10 | —march=v10 | —-march=v32 | —march=common_v10_v32]

Target C-SKY options:
[-march=arch] [-mcpu=cpul
[-EL] [-mlittle-endian] [-EB] [-mbig-endian]
[-fpic] [-pic]
[-mljump] [-mno-ljump]
[-force2bsr] [-mforce2bsr] [-no-force2bsr] [-mno-force2bsr]
[-jsri2bsr] [-mjsri2bsr] [-no-jsri2bsr] [-mno-jsri2bsr]
[-mnolrw] [-mno-lrw]
[-melrw] [-mno-elrw]
[-mlaf] [-mliterals-after-func]
[-mno-laf] [-mno-literals-after-func]
[-mlabr] [-mliterals-after-br]
[-mno-labr] [-mnoliterals-after-br]
[-mistack] [-mno-istack]
[-mhard-float] [-mmp] [-mcp] [-mcache]
[-msecurity] [-mtrust]
[-mdsp] [-medsp] [-mvdsp]

Target D10V options:
[-0]

Target D30V options:
[-O|-n|-N]

Target EPIPHANY options:
[-mepiphany | -mepiphany16]

Target H8/300 options:
[-h-tick-hex]

Target 1386 options:
[-32|—x32|-64] [-n]
[-march=CPU[+EXTENSION...]] [-mtune=CPU]

Target IA-64 options:
[-mconstant-gp | -mauto-pic]
[-milp32 | -milp64 |-mlp64 | -mp64]
[-mle | mbe]
[-mtune=itanium1 | -mtune=itanium2]
[-munwind-check=warning | -munwind-check=error]
[-mhint.b=o0k | -mhint.b=warning | -mhint.b=error]
[-x |-xexplicit] [-xauto] [-xdebug]

Chapter 1: Overview

Target IP2K options:
[-mip2022 | -mip2022ext]

Target M32C options:
[-m32c|-m16c] [-relax] [-h-tick-hex]

Target M32R options:
[-m32rx | -[no-]warn-explicit-parallel-conflicts |
~W/n]p]

Target M680X0 options:
[-11 [-m68000|-m68010|-m680201 .. .]

Target M68HC11 options:
[-m68hc11|-m68hcl2|-m68hcsl12|-mm9s12x |-mm9s12xg]
[-mshort |-mlong]

[-mshort-double | -mlong-double]
[force-long-branches] [-short-branches]
[-strict-direct-mode] [—print-insn-syntax]
[-print-opcodes] [-generate-example]

Target MCORE options:
[-jsri2bsr] [-sifilter] [-relax]
[-mcpu=[210340]]

Target Meta options:
[-mcpu=cpu] [-mfpu=cpul] [-mdsp=cpul
Target MICROBLAZE options:

Target MIPS options:
[-nocpp] [-EL] [-EB] [-O[optimization levell]
[-g[debug levell]l [-G num] [-KPIC] [-call_shared]
[-non_shared] [-xgot [-mvxworks-pic]
[-mabi=ABI] [-32] [-n32] [-64] [-mfp32] [-mgp32]
[-mfp64] [-mgp64] [-mfpxx]
[-modd-spreg] [-mno-odd-spreg]
[-march=CPU] [-mtune=CPU] [-mipsl] [-mips2]
[-mips3] [-mips4] [-mips5] [-mips32] [-mips32r2]
[-mips32r3] [-mips32r5] [-mips32r6] [-mips64] [-mips64r2]
[-mips64r3] [-mips64r5] [-mips64r6]
[-construct-floats] [-no-construct-floats]
[-mignore-branch-isa] [-mno-ignore-branch-isa]
[-mnan=encoding]
[-trap] [-no-break] [-break] [-no-trap]
[-mips16] [-no-mips16]
[-mmips16e2] [-mno-mipsl6e2]
[-mmicromips] [-mno-micromips]
[-msmartmips] [-mno-smartmips]
[-mips3d] [-no-mips3d]
[-mdmx] [-no-mdmx]
[-mdsp] [-mno-dsp]
[-mdspr2] [-mno-dspr2]
[-mdspr3] [-mno-dspr3]
[-mmsa] [-mno-msa]
[-mxpa] [-mno-xpa]
[-mmt] [-mno-mt]
[-mmcu] [-mno-mcu]
[-mcre] [-mno-crc]

Using as

[-mginv] [-mno-ginv]
[-mloongson-mmi] [-mno-loongson-mmi]
[-mloongson-cam] [-mno-loongson-cam]
[-mloongson-ext] [-mno-loongson-ext]
[-mloongson-ext2] [-mno-loongson-ext2]
[-minsn32] [-mno-insn32]

[-mfix7000] [-mno-fix7000]
[-mfix-rm7000] [-mno-fix-rm7000]
[-mfix-vr4120] [-mno-fix-vr4120]
[-mfix-vr4130] [-mno-fix-vr4130]
[-mfix-r5900] [-mno-fix-r5900]
[-mdebug] [-no-mdebug]

[-mpdr] [-mno-pdr]

Target MMIX options:
[fixed-special-register-names] [—globalize-symbols]
[-gnu-syntax] [-relax] [-no-predefined-symbols]
[-no-expand] [-mo-merge-gregs] [-x]
[-linker-allocated-gregs]

Target Nios II options:
[-relax-all] [-relax-section] [-no-relax]
[-EB] [-EL]

Target NDS32 options:
[-EL] [-EB] [-O] [-Os] [-mcpu=cpul
[-misa=isa] [-mabi=abi] [-mall-ext]
[-m[no-]16-bit] [-m[no-]perf-ext] [-m[no-]perf2-ext]
[-m[no-|string-ext] [-m[no-]dsp-ext] [-m[no-]mac] [-m[no-]div]
[-m[no-]audio-isa-ext] [-m[no-]fpu-sp-ext] [-m[no-]fpu-dp-ext]
[-m[no-]fpu-fmal [-mfpu-freg=FREG] [-mreduced-regs]
[-mfull-regs] [-m[no-|dx-regs] [-mpic] [-mno-relax]
[-mb2bb]

Target PDP11 options:
[-mpic|-mno-pic] [-mall] [-mno-extensions]
[-mextension|-mno-extension]
[-mcpu] [-mmachine]

Target picoJava options:
[-mb |-me]

Target PowerPC options:

[-a32]-a64]

[-mpwrx |-mpwr2 |-mpwr |-m601 |-mppc |-mppc32 |-m603 | -m604 | -m403 | -m405 |
-m440 | -m464 |-m476 | -m7400 | -m7410 | -m7450 | -m7455 | -m750cl | -mgekko |
-mbroadway |-mppc64 | -m620 | -me500 | -e500x2 | -me500mc | -me500mc64 | -me5500 |
-me6500 | -mppc64bridge | -mbooke | -mpower4 | -mpwr4 | -mpower5 | -mpwr5 | -mpwr5x |
-mpower6 | -mpwr6 | -mpower?7 | -mpwr7 |-mpower8 | -mpwr8 | -mpower9 | -mpwr9-ma2 |
-mcell|-mspe | -mspe2 | -mtitan | -me300 | -mcom]

[-many] [-maltivec|-mvsx|-mhtm |-mvle]

[-mregnames | -mno-regnames]

[-mrelocatable | -mrelocatable-lib |-K PIC] [-memb]

[-mlittle | -mlittle-endian | -le | -mbig | -mbig-endian | -be]

[-msolaris | -mno-solaris]

[-nops=count]

Target PRU options:

Chapter 1: Overview

[-link-relax]
[-mnolink-relax]
[-mno-warn-regname-label]

Target RISC-V options:
[-fpic|-fPIC|-fno-pic]
[-march=I54]

[-mabi=ABI]
[-mlittle-endian | -mbig-endian]

Target RL78 optioms:
[-mg10]
[-m32bit-doubles | -m64bit-doubles]

Target RX options:
[-mlittle-endian | -mbig-endian]
[-m32bit-doubles | -m64bit-doubles]
[-muse-conventional-section-names]
[-msmall-data-limit]
[-mpid]
[-mrelax]
[-mint-register=number]
[-mgcc-abi|-mrx-abi]

Target s390 options:
[-m31|-m64] [-mesal-mzarch] [-march=CPU]
[-mregnames | -mno-regnames]
[-mwarn-areg-zero]

Target SCORE options:
[-EB] [-EL] [-FIXDD] [-NWARN]
[-SCORES5] [-SCORE5U] [-SCORET] [-SCORE3]
[-march=score7] [-march=score3]
[-USE_R1] [-KPIC] [-00] [-G num] [-V]

Target SPARC options:

[-Av6|-AvT7|-Av8|-Aleon|-Asparclet | -Asparclite
-Av8plus|-Av8plusa|-Av8plusb |-Av8plusc|-Av8plusd
-Av8plusv|-Av8plusm|-Av9|-Av9al-AvIb|-AvIc
-Av9d|-Av9e|-Av9v|-AvIm |-Asparc|-Asparcvis
-Asparcvis2 | -Asparcfmaf| - Asparcima | - Asparcvis3
-Asparcvisr | -Asparc5]

[-xarch=v8plus|-xarch=v8plusa] |-xarch=v8plusb | -xarch=v8plusc
-xarch=v8plusd | -xarch=v8plusv | -xarch=v8plusm | -xarch=v9
-xarch=v9a|-xarch=v9b | -xarch=v9c|-xarch=v9d | -xarch=v9e
-xarch=v9v|-xarch=v9m | -xarch=sparc | -xarch=sparcvis
-xarch=sparcvis2 | -xarch=sparcfmaf | -xarch=sparcima
-xarch=sparcvis3 | -xarch=sparcvisr | -xarch=sparc5h
-bump]

[-321-64]

[-enforce-aligned-data] [-dcti-couples-detect]

Target TIC54X options:
[-mcpu=>54[123589] |-mcpu=54[56]lp] [-mfar-mode |-mf]
[-merrors-to-file <filename>|-me <filename>]

Target TIC6X options:
[-march=arch] [-mbig-endian |-mlittle-endian]

6 Using as

[-mdsbt |-mno-dsbt] [-mpid=no |-mpid=near |-mpid=far]
[-mpic | -mno-pic]

Target TILE-Gx options:
[-m32|-m64] [-EB] [-EL]

Target Visium options:
[-mtune=arch]

Target Xtensa options:
[-[no-]text-section-literals] [—[no-]auto-litpools]
[-[no-]absolute-literals]

[-[no-]target-align] [—[no-|longcalls]
[-[no-]transform]

[-rename-section oldname=newname]
[—[no-]trampolines]

[-abi-windowed | —abi-call0]

Target Z80 optioms:
[-march=CPU[-EXT][+EXT]]
[-local-prefix=PREFIX]
[-colonless]

[-sdcc]
[-fp-s=FORMAT]
[-fp-d=FORMAT]

@file Read command-line options from file. The options read are inserted in place
of the original @file option. If file does not exist, or cannot be read, then the
option will be treated literally, and not removed.

Options in file are separated by whitespace. A whitespace character may be
included in an option by surrounding the entire option in either single or double
quotes. Any character (including a backslash) may be included by prefixing the
character to be included with a backslash. The file may itself contain additional
@file options; any such options will be processed recursively.

-a[cdghlmns]
Turn on listings, in any of a variety of ways:
-ac omit false conditionals
-ad omit debugging directives
-ag include general information, like as version and options passed
-ah include high-level source
-al include assembly
-am include macro expansions
-an omit forms processing
-as include symbols

=file set the name of the listing file

Chapter 1: Overview 7

You may combine these options; for example, use ‘~aln’ for assembly listing

without forms processing. The ‘=file’ option, if used, must be the last one.
By itself, ‘-a’ defaults to ‘-ahls’.

--alternate
Begin in alternate macro mode. See Section 7.4 [.altmacrol, page 52.

--compress—-debug-sections
Compress DWARF debug sections using zlib with SHF_COMPRESSED from
the ELF ABI. The resulting object file may not be compatible with older linkers
and object file utilities. Note if compression would make a given section larger
then it is not compressed.

—--compress—-debug-sections=none

—--compress—-debug-sections=zlib

--compress—-debug-sections=zlib-gnu

--compress—-debug-sections=zlib-gabi
These options control how DWARF debug sections are compressed.
--compress-debug-sections=none is equivalent to --nocompress-debug-
sections. --compress-debug-sections=z1ib and --compress-debug-
sections=zlib-gabi are equivalent to --compress-debug-sections.
--compress-debug-sections=zlib-gnu compresses DWARF debug sections
using zlib. The debug sections are renamed to begin with ‘.zdebug’. Note if
compression would make a given section larger then it is not compressed nor
renamed.

--nocompress—-debug-sections
Do not compress DWARF debug sections. This is usually the default for all
targets except the x86/x86_64, but a configure time option can be used to
override this.

-D Ignored. This option is accepted for script compatibility with calls to other
assemblers.

—--debug-prefix-map old=new
When assembling files in directory old, record debugging information describing
them as in new instead.

--defsym sym=value
Define the symbol sym to be value before assembling the input file. value must
be an integer constant. As in C, a leading ‘0x’ indicates a hexadecimal value,
and a leading ‘0’ indicates an octal value. The value of the symbol can be
overridden inside a source file via the use of a .set pseudo-op.

-f “fast” —skip whitespace and comment preprocessing (assume source is compiler
output).

-8

--gen-debug
Generate debugging information for each assembler source line using whichever
debug format is preferred by the target. This currently means either STABS,

8 Using as

ECOFF or DWARF2. When the debug format is DWARF then a .debug_
info and .debug_line section is only emitted when the assembly file doesn’t
generate one itself.

--gstabs Generate stabs debugging information for each assembler line. This may help
debugging assembler code, if the debugger can handle it.

--gstabs+
Generate stabs debugging information for each assembler line, with GNU exten-
sions that probably only gdb can handle, and that could make other debuggers
crash or refuse to read your program. This may help debugging assembler
code. Currently the only GNU extension is the location of the current working
directory at assembling time.

-—gdwarf-2
Generate DWARF2 debugging information for each assembler line. This may
help debugging assembler code, if the debugger can handle it. Note—this option
is only supported by some targets, not all of them.

--gdwarf-3
This option is the same as the --gdwarf-2 option, except that it allows for
the possibility of the generation of extra debug information as per version 3 of
the DWARF specification. Note - enabling this option does not guarantee the
generation of any extra information, the choice to do so is on a per target basis.

--gdwarf-4
This option is the same as the --gdwarf-2 option, except that it allows for
the possibility of the generation of extra debug information as per version 4 of
the DWARF specification. Note - enabling this option does not guarantee the
generation of any extra information, the choice to do so is on a per target basis.

--gdwarf-5
This option is the same as the —-gdwarf-2 option, except that it allows for
the possibility of the generation of extra debug information as per version 5 of
the DWARF specification. Note - enabling this option does not guarantee the
generation of any extra information, the choice to do so is on a per target basis.

--gdwarf-sections
Instead of creating a .debug_line section, create a series of .debug_line.foo sec-
tions where foo is the name of the corresponding code section. For example a
code section called .text.func will have its dwarf line number information placed
into a section called .debug_line.text.func. If the code section is just called .text
then debug line section will still be called just .debug_line without any suffix.

--gdwarf-cie-version=version
Control which version of DWARF Common Information Entries (CIEs) are
produced. When this flag is not specificed the default is version 1, though some
targets can modify this default. Other possible values for version are 3 or 4.

--size-check=error
--size-check=warning
Issue an error or warning for invalid ELF .size directive.

Chapter 1: Overview 9

--elf-stt-common=no

--elf-stt-common=yes
These options control whether the ELF assembler should generate common
symbols with the STT_COMMON type. The default can be controlled by a configure
option ——enable-elf-stt-common.

--generate-missing-build-notes=yes

--generate-missing-build-notes=no
These options control whether the ELF assembler should generate GNU Build
attribute notes if none are present in the input sources. The default can be
controlled by the —-enable-generate-build-notes configure option.

--help Print a summary of the command-line options and exit.

-—target-help
Print a summary of all target specific options and exit.

-1 dir Add directory dir to the search list for .include directives.

-J Don’t warn about signed overflow.

-K Issue warnings when difference tables altered for long displacements.
-L

--keep-locals
Keep (in the symbol table) local symbols. These symbols start with system-
specific local label prefixes, typically ‘.L’ for ELF systems or ‘L’ for traditional
a.out systems. See Section 5.3 [Symbol Names|, page 43.

--listing-lhs-width=number
Set the maximum width, in words, of the output data column for an assembler
listing to number.

--listing-lhs-width2=number
Set the maximum width, in words, of the output data column for continuation
lines in an assembler listing to number.

--listing-rhs-width=number
Set the maximum width of an input source line, as displayed in a listing, to
number bytes.

--listing-cont-lines=number
Set the maximum number of lines printed in a listing for a single line of input
to number + 1.

--no-pad-sections
Stop the assembler for padding the ends of output sections to the alignment of
that section. The default is to pad the sections, but this can waste space which
might be needed on targets which have tight memory constraints.

-o objfile
Name the object-file output from as objfile.

-R Fold the data section into the text section.

10 Using as

—--sectname-subst
Honor substitution sequences in section names. See [.section name|, page 77.

-—-statistics
Print the maximum space (in bytes) and total time (in seconds) used by assem-
bly.
--strip-local-absolute
Remove local absolute symbols from the outgoing symbol table.
-v
-version Print the as version.
--version
Print the as version and exit.
-W
--no-warn

Suppress warning messages.

--fatal-warnings
Treat warnings as errors.

--warn Don’t suppress warning messages or treat them as errors.
-w Ignored.

-x Ignored.

-Z Generate an object file even after errors.

-— | files ...

Standard input, or source files to assemble.

See Section 9.1.1 [AArch64 Options|, page 94, for the options available when as is con-
figured for the 64-bit mode of the ARM Architecture (AArch64).

See Section 9.2.2 [Alpha Options], page 100, for the options available when as is config-
ured for an Alpha processor.

The following options are available when as is configured for an ARC processor.

-mcpu=cpu
This option selects the core processor variant.

-EB | -EL Select either big-endian (-EB) or little-endian (-EL) output.

-mcode-density
Enable Code Density extension instructions.

The following options are available when as is configured for the ARM processor family.

-mcpu=processor[+extension...]
Specify which ARM processor variant is the target.

-march=architecture[+extension. . .]

Specify which ARM architecture variant is used by the target.
-mfpu=floating-point-format

Select which Floating Point architecture is the target.

Chapter 1: Overview 11

-mfloat-abi=abi
Select which floating point ABI is in use.

-mthumb Enable Thumb only instruction decoding.

-mapcs-32 | -mapcs-26 | -mapcs-float | -mapcs-reentrant
Select which procedure calling convention is in use.

-EB | -EL Select either big-endian (-EB) or little-endian (-EL) output.

-mthumb-interwork
Specify that the code has been generated with interworking between Thumb
and ARM code in mind.

-mccs Turns on CodeComposer Studio assembly syntax compatibility mode.
-k Specify that PIC code has been generated.
See Section 9.6.1 [Blackfin Options|, page 140, for the options available when as is

configured for the Blackfin processor family.

See Section 9.7.1 [BPF Options|, page 144, for the options available when as is configured
for the Linux kernel BPF processor family.

See the info pages for documentation of the CRIS-specific options.

See Section 9.10.1 [C-SKY Options|, page 157, for the options available when as is
configured for the C-SKY processor family.

The following options are available when as is configured for a D10V processor.
-0 Optimize output by parallelizing instructions.

The following options are available when as is configured for a D30V processor.

-0 Optimize output by parallelizing instructions.
-n Warn when nops are generated.
-N Warn when a nop after a 32-bit multiply instruction is generated.

The following options are available when as is configured for the Adapteva EPIPHANY
series.

See Section 9.13.1 [Epiphany Options|, page 167, for the options available when as is
configured for an Epiphany processor.

See Section 9.16.1 [i386-Options|, page 176, for the options available when as is configured
for an 1386 processor.

The following options are available when as is configured for the Ubicom IP2K series.

-mip2022ext
Specifies that the extended IP2022 instructions are allowed.

-mip2022 Restores the default behaviour, which restricts the permitted instructions to
just the basic IP2022 ones.

The following options are available when as is configured for the Renesas M32C and
M16C processors.

-m32c¢ Assemble M32C instructions.

12 Using as

-mi6¢ Assemble M16C instructions (the default).
-relax Enable support for link-time relaxations.
-h-tick-hex

Support H’00 style hex constants in addition to 0x00 style.

The following options are available when as is configured for the Renesas M32R (formerly
Mitsubishi M32R) series.

--m32rx Specify which processor in the M32R family is the target. The default is nor-
mally the M32R, but this option changes it to the M32RX.

--warn-explicit-parallel-conflicts or —-Wp
Produce warning messages when questionable parallel constructs are encoun-
tered.

--no-warn-explicit-parallel-conflicts or —-Wnp
Do not produce warning messages when questionable parallel constructs are
encountered.

The following options are available when as is configured for the Motorola 68000 series.
-1 Shorten references to undefined symbols, to one word instead of two.

-m68000 | -m68008 | -m68010 | -m68020 | -m68030

| -m68040 | -m68060 | -m68302 | -m68331 | -m68332

| -m68333 | -m68340 | -mcpu32 | -m5200
Specify what processor in the 68000 family is the target. The default is normally
the 68020, but this can be changed at configuration time.

-m68881 | -m68882 | -mno-68881 | -mno-68882
The target machine does (or does not) have a floating-point coprocessor. The
default is to assume a coprocessor for 68020, 68030, and cpu32. Although the
basic 68000 is not compatible with the 68881, a combination of the two can
be specified, since it’s possible to do emulation of the coprocessor instructions
with the main processor.

-m68851 | -mno-68851
The target machine does (or does not) have a memory-management unit co-
processor. The default is to assume an MMU for 68020 and up.

See Section 9.31.1 [Nios II Options], page 260, for the options available when as is
configured for an Altera Nios II processor.

For details about the PDP-11 machine dependent features options, see Section 9.34.1
[PDP-11-Options|, page 268.

-mpic | -mno-pic
Generate position-independent (or position-dependent) code. The default is
-mpic.

-mall
-mall-extensions
Enable all instruction set extensions. This is the default.

Chapter 1: Overview 13

-mno-extensions
Disable all instruction set extensions.

-mextension | -mno-extension
Enable (or disable) a particular instruction set extension.

-mcpu Enable the instruction set extensions supported by a particular CPU, and dis-
able all other extensions.

-mmachine
Enable the instruction set extensions supported by a particular machine model,
and disable all other extensions.

The following options are available when as is configured for a picoJava processor.
-mb Generate “big endian” format output.
-ml Generate “little endian” format output.

See Section 9.37.1 [PRU Options|, page 276, for the options available when as is config-
ured for a PRU processor.

The following options are available when as is configured for the Motorola 68HC11 or
68HC12 series.

-m68hcll | -m68hcl2 | -m68hcs12 | -mm9s12x | -mm9s12xg
Specify what processor is the target. The default is defined by the configuration
option when building the assembler.

--xgate-ramoffset
Instruct the linker to offset RAM addresses from S12X address space into
XGATE address space.

-mshort Specify to use the 16-bit integer ABI.
-mlong Specify to use the 32-bit integer ABI.

-mshort-double

Specify to use the 32-bit double ABI.

-mlong-double
Specify to use the 64-bit double ABI.

—--force-long-branches
Relative branches are turned into absolute ones. This concerns conditional
branches, unconditional branches and branches to a sub routine.

-S | -—short-branches
Do not turn relative branches into absolute ones when the offset is out of range.

--strict-direct-mode
Do not turn the direct addressing mode into extended addressing mode when
the instruction does not support direct addressing mode.

--print-insn-syntax
Print the syntax of instruction in case of error.

14 Using as

—--print-opcodes
Print the list of instructions with syntax and then exit.

--generate-example
Print an example of instruction for each possible instruction and then exit. This
option is only useful for testing as.

The following options are available when as is configured for the SPARC architecture:

-Av6 | -Av7 | -Av8 | -Asparclet | -Asparclite
-Av8plus | -Av8plusa | -Av9 | -Av9a
Explicitly select a variant of the SPARC architecture.

‘-Av8plus’ and ‘-Av8plusa’ select a 32 bit environment. ‘-Av9’ and ‘-Av9a’
select a 64 bit environment.

‘~Av8plusa’ and ‘-Av9a’ enable the SPARC V9 instruction set with Ultra-
SPARC extensions.

-xarch=v8plus | -xarch=v8plusa
For compatibility with the Solaris v9 assembler. These options are equivalent

to -Av8plus and -Av8plusa, respectively.

-bump Warn when the assembler switches to another architecture.
The following options are available when as is configured for the ’c54x architecture.

-mfar-mode
Enable extended addressing mode. All addresses and relocations will assume
extended addressing (usually 23 bits).

-mcpu=CPU_VERSION
Sets the CPU version being compiled for.

-merrors-to-file FILENAME

Redirect error output to a file, for broken systems which don’t support such
behaviour in the shell.

The following options are available when as is configured for a MIPS processor.

-G num This option sets the largest size of an object that can be referenced implicitly
with the gp register. It is only accepted for targets that use ECOFF format,
such as a DECstation running Ultrix. The default value is 8.

-EB Generate “big endian” format output.

-EL Generate “little endian” format output.

Chapter 1: Overview 15

-mipsl

-mips2

-mips3

-mips4

-mipsb

-mips32

-mips32r2

-mips32r3

-mips32rb5

-mips32r6

-mips64

-mips64r2

-mips64r3

-mips64rb

-mips64r6
Generate code for a particular MIPS Instruction Set Architecture
level. ‘-mips1’ is an alias for ‘-march=r3000’, ‘-mips2’ is an alias for
‘-march=r6000’, ‘-mips3’ is an alias for ‘-march=r4000’ and ‘-mips4’ is an
alias for ‘-march=r8000’. ‘-mipsb’, ‘-mips32’, ‘-mips32r2’, ‘-mips32r3’,
‘-mips32r5’, ‘-mips32r6’, ‘-mips64’; ‘-mips64r2’; ‘-mips64r3’, ‘-mips64rb’,
and ‘-mips64r6’ correspond to generic MIPS V, MIPS32, MIPS32 Release 2,
MIPS32 Release 3, MIPS32 Release 5, MIPS32 Release 6, MIPS64, MIPS64
Release 2, MIPS64 Release 3, MIPS64 Release 5, and MIPS64 Release 6 ISA
processors, respectively.

-march=cpu

Generate code for a particular MIPS CPU.

-mtune=cpu

Schedule and tune for a particular MIPS CPU.

-mfix7000

-mno-£ix7000
Cause nops to be inserted if the read of the destination register of an mfhi or
mflo instruction occurs in the following two instructions.

-mfix-rm7000

-mno-fix-rm7000
Cause nops to be inserted if a dmult or dmultu instruction is followed by a load
instruction.

-mfix-r5900

-mno-fix-r5900
Do not attempt to schedule the preceding instruction into the delay slot of a
branch instruction placed at the end of a short loop of six instructions or fewer
and always schedule a nop instruction there instead. The short loop bug under
certain conditions causes loops to execute only once or twice, due to a hardware
bug in the R5900 chip.

16 Using as

-mdebug

-no-mdebug
Cause stabs-style debugging output to go into an ECOFF-style .mdebug section
instead of the standard ELF .stabs sections.

-mpdr

-mno-pdr Control generation of .pdr sections.

-mgp32

-mfp32 The register sizes are normally inferred from the ISA and ABI, but these flags
force a certain group of registers to be treated as 32 bits wide at all times.
‘-mgp32’ controls the size of general-purpose registers and ‘-mfp32’ controls the
size of floating-point registers.

-mgp64

-mfp64 The register sizes are normally inferred from the ISA and ABI, but these flags
force a certain group of registers to be treated as 64 bits wide at all times.
‘-mgp64’ controls the size of general-purpose registers and ‘-mfp64’ controls the
size of floating-point registers.

-mfpxx The register sizes are normally inferred from the ISA and ABI, but using this
flag in combination with ‘-mabi=32’ enables an ABI variant which will operate
correctly with floating-point registers which are 32 or 64 bits wide.

-modd-spreg

-mno-odd-spreg
Enable use of floating-point operations on odd-numbered single-precision regis-
ters when supported by the ISA. ‘-mfpxx’ implies ‘-mno-odd-spreg’, otherwise
the default is ‘-modd-spreg’.

-mipsi16

-no-mips16
Generate code for the MIPS 16 processor. This is equivalent to putting .module
mips16 at the start of the assembly file. ‘-no-mips16’ turns off this option.

-mmipsi6e2

-mno-mipsl6e2
Enable the use of MIPS16e2 instructions in MIPS16 mode. This is equivalent to
putting .module mipsi6e2 at the start of the assembly file. ‘-mno-mipsi6e2’
turns off this option.

-mmicromips

-mno-micromips
Generate code for the microMIPS processor. This is equivalent to putting
.module micromips at the start of the assembly file. ‘-mno-micromips’ turns
off this option. This is equivalent to putting .module nomicromips at the start
of the assembly file.

-msmartmips

-mno-smartmips
Enables the SmartMIPS extension to the MIPS32 instruction set. This is
equivalent to putting .module smartmips at the start of the assembly file.
‘-mno-smartmips’ turns off this option.

Chapter 1: Overview 17

-mips3d
-no-mips3d
Generate code for the MIPS-3D Application Specific Extension. This tells the
assembler to accept MIPS-3D instructions. ‘-no-mips3d’ turns off this option.
-mdmx

-no-mdmx Generate code for the MDMX Application Specific Extension. This tells the
assembler to accept MDMX instructions. ‘-no-mdmx’ turns off this option.

-mdsp

-mno-dsp Generate code for the DSP Release 1 Application Specific Extension. This tells
the assembler to accept DSP Release 1 instructions. ‘-mno-dsp’ turns off this
option.

-mdspr2

-mno-dspr2
Generate code for the DSP Release 2 Application Specific Extension. This
option implies ‘-mdsp’. This tells the assembler to accept DSP Release 2 in-
structions. ‘-mno-dspr2’ turns off this option.

-mdspr3

-mno-dspr3
Generate code for the DSP Release 3 Application Specific Extension. This
option implies ‘-mdsp’ and ‘-mdspr2’. This tells the assembler to accept DSP
Release 3 instructions. ‘-mno-dspr3’ turns off this option.

-mmsa

-mno-msa Generate code for the MIPS SIMD Architecture Extension. This tells the as-
sembler to accept MSA instructions. ‘-mno-msa’ turns off this option.

-mxpa
-mno-xpa Generate code for the MIPS eXtended Physical Address (XPA) Extension. This
tells the assembler to accept XPA instructions. ‘-mno-xpa’ turns off this option.

-mno-mt Generate code for the MT Application Specific Extension. This tells the as-
sembler to accept MT instructions. ‘-mno-mt’ turns off this option.

-mmcu
-mno-mcu Generate code for the MCU Application Specific Extension. This tells the
assembler to accept MCU instructions. ‘-mno-mcu’ turns off this option.

-mcrc

-mno-crc Generate code for the MIPS cyclic redundancy check (CRC) Application Spe-
cific Extension. This tells the assembler to accept CRC instructions. ‘-mno-crc’
turns off this option.

-mginv

-mno-ginv
Generate code for the Global INValidate (GINV) Application Specific Exten-
sion. This tells the assembler to accept GINV instructions. ‘-mno-ginv’ turns
off this option.

18 Using as

-mloongson-mmi

-mno-loongson-mmi
Generate code for the Loongson MultiMedia extensions Instructions (MMI)
Application Specific Extension. This tells the assembler to accept MMI in-
structions. ‘-mno-loongson-mmi’ turns off this option.

-mloongson-cam

-mno-loongson-cam
Generate code for the Loongson Content Address Memory (CAM)
instructions. This tells the assembler to accept Loongson CAM instructions.
‘-mno-loongson-cam’ turns off this option.

-mloongson-ext

-mno-loongson-ext
Generate code for the Loongson EXTensions (EXT) instructions. This tells the
assembler to accept Loongson EXT instructions. ‘-mno-loongson-ext’ turns
off this option.

-mloongson-ext2

-mno-loongson-ext2
Generate code for the Loongson EXTensions R2 (EXT2) instructions. This
option implies ‘-mloongson-ext’. This tells the assembler to accept Loongson
EXT?2 instructions. ‘-mno-loongson-ext2’ turns off this option.

-minsn32

-mno-insn32
Only use 32-bit instruction encodings when generating code for the microMIPS
processor. This option inhibits the use of any 16-bit instructions. This is equiv-
alent to putting .set insn32 at the start of the assembly file. ‘-mno-insn32’
turns off this option. This is equivalent to putting .set noinsn32 at the start of
the assembly file. By default ‘-mno-insn32’ is selected, allowing all instructions
to be used.

-—construct-floats

--no-construct-floats
The ‘--no-construct-floats’ option disables the construction of double width
floating point constants by loading the two halves of the value into the two
single width floating point registers that make up the double width register.
By default ‘--construct-floats’ is selected, allowing construction of these
floating point constants.

--relax-branch

--no-relax-branch
The ‘--relax-branch’ option enables the relaxation of out-of-range branches.
By default ‘--no-relax-branch’ is selected, causing any out-of-range branches
to produce an error.

-mignore-branch-isa

-mno-ignore-branch-isa
Ignore branch checks for invalid transitions between ISA modes. The semantics
of branches does not provide for an ISA mode switch, so in most cases the ISA

Chapter 1: Overview 19

mode a branch has been encoded for has to be the same as the ISA mode of
the branch’s target label. Therefore GAS has checks implemented that verify
in branch assembly that the two ISA modes match. ‘-mignore-branch-isa’
disables these checks. By default ‘-mno-ignore-branch-isa’ is selected, caus-
ing any invalid branch requiring a transition between ISA modes to produce an
error.

-mnan=encoding
Select between the IEEE 754-2008 (-mnan=2008) or the legacy (-mnan=legacy)
NaN encoding format. The latter is the default.

-—emulation=name

This option was formerly used to switch between ELF and ECOFF output on
targets like IRIX 5 that supported both. MIPS ECOFF support was removed in
GAS 2.24, so the option now serves little purpose. It is retained for backwards
compatibility.

The available configuration names are: ‘mipself’, ‘mipslelf’ and ‘mipsbelf’.
Choosing ‘mipself’ now has no effect, since the output is always ELF.
‘mipslelf’ and ‘mipsbelf’ select little- and big-endian output respectively,
but ‘-EL’ and ‘-EB’ are now the preferred options instead.

-nocpp as ignores this option. It is accepted for compatibility with the native tools.

-—trap

—-—-no-trap

--break

--no-break
Control how to deal with multiplication overflow and division by zero. ‘--trap’
or ‘--no-break’ (which are synonyms) take a trap exception (and only work

¢

3

for Instruction Set Architecture level 2 and higher); ‘--break’ or ‘--no-trap’
(also synonyms, and the default) take a break exception.
-n When this option is used, as will issue a warning every time it generates a nop

instruction from a macro.
The following options are available when as is configured for an MCore processor.

-jsri2bsr

-nojsri2bsr
Enable or disable the JSRI to BSR transformation. By default this is enabled.
The command-line option ‘-nojsri2bsr’ can be used to disable it.

-sifilter

-nosifilter
Enable or disable the silicon filter behaviour. By default this is disabled. The
default can be overridden by the ‘-sifilter’ command-line option.

-relax Alter jump instructions for long displacements.

-mcpu=[210]340]
Select the cpu type on the target hardware. This controls which instructions
can be assembled.

20 Using as

-EB Assemble for a big endian target.
-EL Assemble for a little endian target.

See Section 9.25.1 [Meta Options|, page 223, for the options available when as is config-
ured for a Meta processor.

See the info pages for documentation of the MMIX-specific options.

See Section 9.30.1 [NDS32 Options|, page 255, for the options available when as is
configured for a NDS32 processor.

See Section 9.36.1 [PowerPC-Opts], page 273, for the options available when as is con-
figured for a PowerPC processor.

See Section 9.38.1 [RISC-V-Options|, page 278, for the options available when as is
configured for a RISC-V processor.

See the info pages for documentation of the RX-specific options.

The following options are available when as is configured for the s390 processor family.

-m31
-m64 Select the word size, either 31/32 bits or 64 bits.

—mesa

-mzarch Select the architecture mode, either the Enterprise System Architecture (esa)
or the z/Architecture mode (zarch).

-march=processor
Specify which s390 processor variant is the target, ‘g’ (or ‘arch3d’), ‘g6’,
‘2900’ (or ‘archb’), ‘z990’ (or ‘arch6’), ‘z9-109’, ‘z9-ec’ (or ‘arch7’), ‘z10’
(or ‘arch8’), ‘z196’ (or ‘arch9’), ‘zEC12’ (or ‘arch10’), ‘z13’ (or ‘archll’),
‘z14’ (or ‘arch12’), or ‘z15’ (or ‘archi1d’).

-mregnames
-mno-regnames
Allow or disallow symbolic names for registers.

-mwarn-areg-zero
Warn whenever the operand for a base or index register has been specified but
evaluates to zero.

See Section 9.46.1 [TIC6X Options|, page 335, for the options available when as is
configured for a TMS320C6000 processor.

See Section 9.47.1 [TILE-Gx Options|, page 338, for the options available when as is
configured for a TILE-Gx processor.

See Section 9.51.1 [Visium Options|, page 359, for the options available when as is
configured for a Visium processor.

See Section 9.55.1 [Xtensa Options|, page 365, for the options available when as is
configured for an Xtensa processor.

See Section 9.56.1 [Z80 Options], page 376, for the options available when as is configured
for an Z80 processor.

Chapter 1: Overview 21

1.1 Structure of this Manual

This manual is intended to describe what you need to know to use GNU as. We cover the
syntax expected in source files, including notation for symbols, constants, and expressions;
the directives that as understands; and of course how to invoke as.

This manual also describes some of the machine-dependent features of various flavors of
the assembler.

On the other hand, this manual is not intended as an introduction to programming
in assembly language—Ilet alone programming in general! In a similar vein, we make no
attempt to introduce the machine architecture; we do not describe the instruction set,
standard mnemonics, registers or addressing modes that are standard to a particular archi-
tecture. You may want to consult the manufacturer’s machine architecture manual for this
information.

1.2 The GNU Assembler

GNU as is really a family of assemblers. If you use (or have used) the GNU assembler on
one architecture, you should find a fairly similar environment when you use it on another
architecture. Each version has much in common with the others, including object file
formats, most assembler directives (often called pseudo-ops) and assembler syntax.

as is primarily intended to assemble the output of the GNU C compiler gcc for use by
the linker 1d. Nevertheless, we’ve tried to make as assemble correctly everything that other
assemblers for the same machine would assemble. Any exceptions are documented explicitly
(see Chapter 9 [Machine Dependencies|, page 93). This doesn’t mean as always uses the
same syntax as another assembler for the same architecture; for example, we know of several
incompatible versions of 680x0 assembly language syntax.

Unlike older assemblers, as is designed to assemble a source program in one pass of the
source file. This has a subtle impact on the . org directive (see Section 7.70 [.org|, page 73).

1.3 Object File Formats

The GNU assembler can be configured to produce several alternative object file formats. For
the most part, this does not affect how you write assembly language programs; but direc-
tives for debugging symbols are typically different in different file formats. See Section 5.5
[Symbol Attributes], page 45.

1.4 Command Line

After the program name as, the command line may contain options and file names. Options
may appear in any order, and may be before, after, or between file names. The order of file
names is significant.

-- (two hyphens) by itself names the standard input file explicitly, as one of the files for
as to assemble.

Except for ‘-=" any command-line argument that begins with a hyphen (‘-’) is an option.
Each option changes the behavior of as. No option changes the way another option works.
An option is a ‘=’ followed by one or more letters; the case of the letter is important. All
options are optional.

22 Using as

Some options expect exactly one file name to follow them. The file name may either
immediately follow the option’s letter (compatible with older assemblers) or it may be the
next command argument (GNU standard). These two command lines are equivalent:

as -o my-object-file.o mumble.s
as -omy-object-file.o mumble.s

1.5 Input Files

We use the phrase source program, abbreviated source, to describe the program input to
one run of as. The program may be in one or more files; how the source is partitioned into
files doesn’t change the meaning of the source.

The source program is a concatenation of the text in all the files, in the order specified.

Each time you run as it assembles exactly one source program. The source program is
made up of one or more files. (The standard input is also a file.)

You give as a command line that has zero or more input file names. The input files are
read (from left file name to right). A command-line argument (in any position) that has no
special meaning is taken to be an input file name.

If you give as no file names it attempts to read one input file from the as standard input,
which is normally your terminal. You may have to type ctl-D to tell as there is no more
program to assemble.

Use ‘==’ if you need to explicitly name the standard input file in your command line.

If the source is empty, as produces a small, empty object file.

Filenames and Line-numbers

There are two ways of locating a line in the input file (or files) and either may be used in
reporting error messages. One way refers to a line number in a physical file; the other refers
to a line number in a “logical” file. See Section 1.7 [Error and Warning Messages|, page 23.

Physical files are those files named in the command line given to as.

Logical files are simply names declared explicitly by assembler directives; they bear no
relation to physical files. Logical file names help error messages reflect the original source
file, when as source is itself synthesized from other files. as understands the ‘# directives
emitted by the gcc preprocessor. See also Section 7.36 [.file|, page 62.

1.6 Output (Object) File

Every time you run as it produces an output file, which is your assembly language program
translated into numbers. This file is the object file. Its default name is a.out. You can
give it another name by using the -o option. Conventionally, object file names end with
.0. The default name is used for historical reasons: older assemblers were capable of
assembling self-contained programs directly into a runnable program. (For some formats,
this isn’t currently possible, but it can be done for the a.out format.)

The object file is meant for input to the linker 1d. It contains assembled program code,
information to help 1d integrate the assembled program into a runnable file, and (optionally)
symbolic information for the debugger.

Chapter 1: Overview 23

1.7 Error and Warning Messages

as may write warnings and error messages to the standard error file (usually your termi-
nal). This should not happen when a compiler runs as automatically. Warnings report an
assumption made so that as could keep assembling a flawed program; errors report a grave
problem that stops the assembly.

Warning messages have the format
file_name:NNN:Warning Message Text

(where NNN is a line number). If both a logical file name (see Section 7.36 [.file], page 62)
and a logical line number (see Section 7.54 [.1line|, page 67) have been given then they will
be used, otherwise the file name and line number in the current assembler source file will
be used. The message text is intended to be self explanatory (in the grand Unix tradition).

Note the file name must be set via the logical version of the .file directive, not the
DWARF?2 version of the .file directive. For example:

.file 2 "bar.c"
error_assembler_source
.file "foo.c"
.line 30
error_c_source
produces this output:

Assembler messages:
asm.s:2: Error: no such instruction: ‘error_assembler_source’
foo.c:31: Error: no such instruction: ‘error_c_source’
Error messages have the format
file_name: N NNN:FATAL:Error Message Text

The file name and line number are derived as for warning messages. The actual message
text may be rather less explanatory because many of them aren’t supposed to happen.

Chapter 2: Command-Line Options 25

2 Command-Line Options

This chapter describes command-line options available in all versions of the GNU assembler;
see Chapter 9 [Machine Dependencies|, page 93, for options specific to particular machine
architectures.

If you are invoking as via the GNU C compiler, you can use the ‘-Wa’ option to pass
arguments through to the assembler. The assembler arguments must be separated from
each other (and the ‘-Wa’) by commas. For example:

gcc ¢ -g -0 -Wa,-alh,-L file.c

This passes two options to the assembler: ‘-alh’ (emit a listing to standard output with
high-level and assembly source) and ‘L’ (retain local symbols in the symbol table).

Usually you do not need to use this ‘-Wa’ mechanism, since many compiler command-
line options are automatically passed to the assembler by the compiler. (You can call the
GNU compiler driver with the ‘~v’ option to see precisely what options it passes to each
compilation pass, including the assembler.)

2.1 Enable Listings: -a[cdghlns]

These options enable listing output from the assembler. By itself, ‘-a’ requests high-level,
assembly, and symbols listing. You can use other letters to select specific options for the
list: ‘—ah’ requests a high-level language listing, ‘-al’ requests an output-program assembly
listing, and ‘-as’ requests a symbol table listing. High-level listings require that a compiler
debugging option like ‘-g’ be used, and that assembly listings (‘-al’) be requested also.

Use the ‘-ag’ option to print a first section with general assembly information, like as
version, switches passed, or time stamp.

Use the ‘-ac’ option to omit false conditionals from a listing. Any lines which are not
assembled because of a false .if (or .ifdef, or any other conditional), or a true . if followed
by an .else, will be omitted from the listing.

Use the ‘-ad’ option to omit debugging directives from the listing.

Once you have specified one of these options, you can further control listing output and
its appearance using the directives .1list, .nolist, .psize, .eject, .title, and .sbttl.
The ‘-an’ option turns off all forms processing. If you do not request listing output with
one of the ‘-a’ options, the listing-control directives have no effect.

The letters after ‘-a’ may be combined into one option, e.g., ‘-aln’.

Note if the assembler source is coming from the standard input (e.g., because it is being
created by gcc and the ‘-pipe’ command-line switch is being used) then the listing will not
contain any comments or preprocessor directives. This is because the listing code buffers
input source lines from stdin only after they have been preprocessed by the assembler. This
reduces memory usage and makes the code more efficient.

2.2 —--alternate

Begin in alternate macro mode, see Section 7.4 [.altmacrol, page 52.

26 Using as

2.3 -D

This option has no effect whatsoever, but it is accepted to make it more likely that scripts
written for other assemblers also work with as.

2.4 Work Faster: -f

‘~f’ should only be used when assembling programs written by a (trusted) compiler. ‘-f’
stops the assembler from doing whitespace and comment preprocessing on the input file(s)
before assembling them. See Section 3.1 [Preprocessing], page 31.

Warning: if you use ‘-f’ when the files actually need to be preprocessed (if
they contain comments, for example), as does not work correctly.

2.5 .include Search Path: -I path

Use this option to add a path to the list of directories as searches for files specified in
.include directives (see Section 7.47 [.include], page 65). You may use -I as many times
as necessary to include a variety of paths. The current working directory is always searched
first; after that, as searches any ‘~I’ directories in the same order as they were specified
(left to right) on the command line.

2.6 Difference Tables: -K

as sometimes alters the code emitted for directives of the form ‘.word symi-sym2’. See
Section 7.110 [.word], page 87. You can use the ‘-K’ option if you want a warning issued
when this is done.

4

2.7 Include Local Symbols: -L

Symbols beginning with system-specific local label prefixes, typically ‘.L’ for ELF systems or
‘L’ for traditional a.out systems, are called local symbols. See Section 5.3 [Symbol Names],
page 43. Normally you do not see such symbols when debugging, because they are intended
for the use of programs (like compilers) that compose assembler programs, not for your
notice. Normally both as and 1d discard such symbols, so you do not normally debug with
them.

This option tells as to retain those local symbols in the object file. Usually if you do
this you also tell the linker 1d to preserve those symbols.

2.8 Configuring listing output: --listing

The listing feature of the assembler can be enabled via the command-line switch ‘-a’ (see
Section 2.1 [a], page 25). This feature combines the input source file(s) with a hex dump
of the corresponding locations in the output object file, and displays them as a listing file.
The format of this listing can be controlled by directives inside the assembler source (i.e.,
.list (see Section 7.56 [List], page 68), .title (see Section 7.99 [Title], page 85), .sbttl
(see Section 7.82 [Sbttl], page 76), .psize (see Section 7.76 [Psize|, page 75), and .eject
(see Section 7.21 [Eject], page 60) and also by the following switches:

Chapter 2: Command-Line Options 27

—--listing-lhs-width="‘number’
Sets the maximum width, in words, of the first line of the hex byte dump. This
dump appears on the left hand side of the listing output.

--listing-lhs-width2="‘number’
Sets the maximum width, in words, of any further lines of the hex byte dump
for a given input source line. If this value is not specified, it defaults to being
the same as the value specified for ‘--1isting-lhs-width’. If neither switch
is used the default is to one.

--listing-rhs-width=‘number’
Sets the maximum width, in characters, of the source line that is displayed
alongside the hex dump. The default value for this parameter is 100. The
source line is displayed on the right hand side of the listing output.

--listing-cont-lines=‘number’
Sets the maximum number of continuation lines of hex dump that will be dis-
played for a given single line of source input. The default value is 4.

2.9 Assemble in MRI Compatibility Mode: -M

The -M or --mri option selects MRI compatibility mode. This changes the syntax and
pseudo-op handling of as to make it compatible with the ASM68K assembler from Microtec
Research. The exact nature of the MRI syntax will not be documented here; see the MRI
manuals for more information. Note in particular that the handling of macros and macro
arguments is somewhat different. The purpose of this option is to permit assembling existing
MRI assembler code using as.

The MRI compatibility is not complete. Certain operations of the MRI assembler de-
pend upon its object file format, and can not be supported using other object file formats.
Supporting these would require enhancing each object file format individually. These are:

e ¢lobal symbols in common section

The m68k MRI assembler supports common sections which are merged by the linker.
Other object file formats do not support this. as handles common sections by treating
them as a single common symbol. It permits local symbols to be defined within a
common section, but it can not support global symbols, since it has no way to describe
them.

e complex relocations

The MRI assemblers support relocations against a negated section address, and reloca-
tions which combine the start addresses of two or more sections. These are not support
by other object file formats.

e END pseudo-op specifying start address

The MRI END pseudo-op permits the specification of a start address. This is not
supported by other object file formats. The start address may instead be specified
using the —e option to the linker, or in a linker script.

e IDNT, .ident and NAME pseudo-ops

The MRI IDNT, .ident and NAME pseudo-ops assign a module name to the output file.
This is not supported by other object file formats.

28

Using as

ORG pseudo-op

The m68k MRI ORG pseudo-op begins an absolute section at a given address. This
differs from the usual as . org pseudo-op, which changes the location within the current
section. Absolute sections are not supported by other object file formats. The address
of a section may be assigned within a linker script.

There are some other features of the MRI assembler which are not supported by as,

typically either because they are difficult or because they seem of little consequence. Some
of these may be supported in future releases.

EBCDIC strings
EBCDIC strings are not supported.
packed binary coded decimal

Packed binary coded decimal is not supported. This means that the DC.P and DCB.P
pseudo-ops are not supported.

FEQU pseudo-op

The m68k FEQU pseudo-op is not supported.
NOOBJ pseudo-op

The m68k NOOBJ pseudo-op is not supported.
OPT branch control options

The m68k OPT branch control options—B, BRS, BRB, BRL, and BRW—are ignored. as
automatically relaxes all branches, whether forward or backward, to an appropriate
size, so these options serve no purpose.

OPT list control options

The following m68k OPT list control options are ignored: C, CEX, CL, CRE, E, G, I, M,
MEX, MC, MD, X.

other OPT options

The following m68k OPT options are ignored: NEST, 0, OLD, OP, P, PCO, PCR, PCS, R.
OPT D option is default

The m68k OPT D option is the default, unlike the MRI assembler. OPT NOD may be used
to turn it off.

XREF pseudo-op.
The m68k XREF pseudo-op is ignored.

2.10 Dependency Tracking: --MD

as

can generate a dependency file for the file it creates. This file consists of a single rule

suitable for make describing the dependencies of the main source file.

The rule is written to the file named in its argument.
This feature is used in the automatic updating of makefiles.

2.11 Output Section Padding

Normally the assembler will pad the end of each output section up to its alignment boundary.
But this can waste space, which can be significant on memory constrained targets. So the
--no-pad-sections option will disable this behaviour.

Chapter 2: Command-Line Options 29

2.12 Name the Object File: -o

There is always one object file output when you run as. By default it has the name a.out.
You use this option (which takes exactly one filename) to give the object file a different
name.

Whatever the object file is called, as overwrites any existing file of the same name.

2.13 Join Data and Text Sections: -R

-R tells as to write the object file as if all data-section data lives in the text section. This is
only done at the very last moment: your binary data are the same, but data section parts
are relocated differently. The data section part of your object file is zero bytes long because
all its bytes are appended to the text section. (See Chapter 4 [Sections and Relocation],
page 37.)

When you specify -R it would be possible to generate shorter address displacements
(because we do not have to cross between text and data section). We refrain from doing
this simply for compatibility with older versions of as. In future, -R may work this way.

When as is configured for COFF or ELF output, this option is only useful if you use
sections named ‘.text’ and ‘.data’.

-R is not supported for any of the HPPA targets. Using -R generates a warning from as.

2.14 Display Assembly Statistics: --statistics

Use ‘--statistics’ to display two statistics about the resources used by as: the maximum
amount of space allocated during the assembly (in bytes), and the total execution time
taken for the assembly (in CPU seconds).

2.15 Compatible Output: --traditional-format
For some targets, the output of as is different in some ways from the output of some existing
assembler. This switch requests as to use the traditional format instead.

For example, it disables the exception frame optimizations which as normally does by
default on gcc output.

2.16 Announce Version: -v

You can find out what version of as is running by including the option ‘-v’ (which you can
also spell as ‘-version’) on the command line.

2.17 Control Warnings: -W, --warn, ——-no-warn,
--fatal-warnings

as should never give a warning or error message when assembling compiler output. But
programs written by people often cause as to give a warning that a particular assumption
was made. All such warnings are directed to the standard error file.

If you use the -W and --no-warn options, no warnings are issued. This only affects the
warning messages: it does not change any particular of how as assembles your file. Errors,
which stop the assembly, are still reported.

30 Using as

If you use the --fatal-warnings option, as considers files that generate warnings to be
in error.

You can switch these options off again by specifying --warn, which causes warnings to
be output as usual.

2.18 Generate Object File in Spite of Errors: -Z

After an error message, as normally produces no output. If for some reason you are inter-
ested in object file output even after as gives an error message on your program, use the ‘-7’
option. If there are any errors, as continues anyways, and writes an object file after a final
warning message of the form ‘n errors, m warnings, generating bad object file.’

Chapter 3: Syntax 31

3 Syntax

This chapter describes the machine-independent syntax allowed in a source file. as syntax is
similar to what many other assemblers use; it is inspired by the BSD 4.2 assembler, except
that as does not assemble Vax bit-fields.

3.1 Preprocessing

The as internal preprocessor:

e adjusts and removes extra whitespace. It leaves one space or tab before the keywords
on a line, and turns any other whitespace on the line into a single space.

e removes all comments, replacing them with a single space, or an appropriate number
of newlines.

e converts character constants into the appropriate numeric values.

It does not do macro processing, include file handling, or anything else you may get
from your C compiler’s preprocessor. You can do include file processing with the .include
directive (see Section 7.47 [.include|, page 65). You can use the GNU C compiler driver to
get other “CPP” style preprocessing by giving the input file a ‘.8’ suffix. See the 'Options
Controlling the Kind of Output’ section of the GCC manual for more details

Excess whitespace, comments, and character constants cannot be used in the portions
of the input text that are not preprocessed.

If the first line of an input file is #NO_APP or if you use the ‘-f’ option, whitespace
and comments are not removed from the input file. Within an input file, you can ask for
whitespace and comment removal in specific portions of the by putting a line that says
#APP before the text that may contain whitespace or comments, and putting a line that
says #NO_APP after this text. This feature is mainly intend to support asm statements in
compilers whose output is otherwise free of comments and whitespace.

3.2 Whitespace

Whitespace is one or more blanks or tabs, in any order. Whitespace is used to separate
symbols, and to make programs neater for people to read. Unless within character constants
(see Section 3.6.1 [Character Constants|, page 33), any whitespace means the same as
exactly one space.

3.3 Comments

There are two ways of rendering comments to as. In both cases the comment is equivalent
to one space.

Anything from ‘/*’ through the next ‘*/’ is a comment. This means you may not nest
these comments.
/*
The only way to include a newline (’\n’) in a comment
is to use this sort of comment.

*/

/* This sort of comment does not nest. */

https://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html#Overall-Options
https://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html#Overall-Options

32 Using as

Anything from a line comment character up to the next newline is considered a comment
and is ignored. The line comment character is target specific, and some targets multiple
comment characters. Some targets also have line comment characters that only work if they
are the first character on a line. Some targets use a sequence of two characters to introduce
a line comment. Some targets can also change their line comment characters depending
upon command-line options that have been used. For more details see the Syntazr section
in the documentation for individual targets.

If the line comment character is the hash sign (‘#’) then it still has the special ability to
enable and disable preprocessing (see Section 3.1 [Preprocessing], page 31) and to specify
logical line numbers:

To be compatible with past assemblers, lines that begin with ‘#’ have a special inter-
pretation. Following the ‘#’ should be an absolute expression (see Chapter 6 [Expressions],
page 47): the logical line number of the nezt line. Then a string (see Section 3.6.1.1 [Strings],
page 33) is allowed: if present it is a new logical file name. The rest of the line, if any,
should be whitespace.

If the first non-whitespace characters on the line are not numeric, the line is ignored.
(Just like a comment.)

This is an ordinary comment.
42-6 "new_file_name" # New logical file name
This is logical line # 36.

This feature is deprecated, and may disappear from future versions of as.

3.4 Symbols

A symbol is one or more characters chosen from the set of all letters (both upper and
lower case), digits and the three characters ‘_.$’. On most machines, you can also use $
in symbol names; exceptions are noted in Chapter 9 [Machine Dependencies|, page 93. No
symbol may begin with a digit. Case is significant. There is no length limit; all characters
are significant. Multibyte characters are supported. Symbols are delimited by characters
not in that set, or by the beginning of a file (since the source program must end with a
newline, the end of a file is not a possible symbol delimiter). See Chapter 5 [Symbols],

page 43.

Symbol names may also be enclosed in double quote " characters. In such cases any
characters are allowed, except for the NUL character. If a double quote character is to be
included in the symbol name it must be preceded by a backslash \ character.

3.5 Statements

A statement ends at a newline character (‘\n’) or a line separator character. The line
separator character is target specific and described in the Syntaz section of each target’s
documentation. Not all targets support a line separator character. The newline or line
separator character is considered to be part of the preceding statement. Newlines and
separators within character constants are an exception: they do not end statements.

It is an error to end any statement with end-of-file: the last character of any input file
should be a newline.

An empty statement is allowed, and may include whitespace. It is ignored.

Chapter 3: Syntax 33

A statement begins with zero or more labels, optionally followed by a key symbol which
determines what kind of statement it is. The key symbol determines the syntax of the rest
of the statement. If the symbol begins with a dot ‘.’ then the statement is an assembler
directive: typically valid for any computer. If the symbol begins with a letter the statement
is an assembly language instruction: it assembles into a machine language instruction.
Different versions of as for different computers recognize different instructions. In fact,
the same symbol may represent a different instruction in a different computer’s assembly
language.

A label is a symbol immediately followed by a colon (:). Whitespace before a label or
after a colon is permitted, but you may not have whitespace between a label’s symbol and
its colon. See Section 5.1 [Labels|, page 43.

For HPPA targets, labels need not be immediately followed by a colon, but the definition
of a label must begin in column zero. This also implies that only one label may be defined
on each line.

label: .directive followed by something
another_label: # This is an empty statement.
instruction operand_1, operand_2, ...

3.6 Constants

A constant is a number, written so that its value is known by inspection, without knowing
any context. Like this:

.byte 74, 0112, 092, Ox4A, O0X4a, ’J, ’\J # All the same value.
.ascii "Ring the bell\7" # A string constant.
.octa 0x123456789abcdef0123456789ABCDEFO # A bignum.

.float 0£-314159265358979323846264338327\
95028841971.693993751E-40 # - pi, a flonum.

3.6.1 Character Constants

There are two kinds of character constants. A character stands for one character in one
byte and its value may be used in numeric expressions. String constants (properly called
string literals) are potentially many bytes and their values may not be used in arithmetic
expressions.

3.6.1.1 Strings

A string is written between double-quotes. It may contain double-quotes or null characters.
The way to get special characters into a string is to escape these characters: precede them
with a backslash ‘\’ character. For example ‘\\’ represents one backslash: the first \ is
an escape which tells as to interpret the second character literally as a backslash (which
prevents as from recognizing the second \ as an escape character). The complete list of
escapes follows.

\b Mnemonic for backspace; for ASCII this is octal code 010.

backslash-f
Mnemonic for FormFeed; for ASCII this is octal code 014.

\n Mnemonic for newline; for ASCII this is octal code 012.

\r Mnemonic for carriage-Return; for ASCII this is octal code 015.

34 Using as

\t Mnemonic for horizontal Tab; for ASCII this is octal code 011.
\ digit digit digit
An octal character code. The numeric code is 3 octal digits. For compatibility

with other Unix systems, 8 and 9 are accepted as digits: for example, \008 has
the value 010, and \009 the value 011.

\x hex-digits...
A hex character code. All trailing hex digits are combined. Either upper or
lower case x works.

\\ Represents one ‘\’ character.

‘o

\" Represents one character. Needed in strings to represent this character,
because an unescaped ‘"’ would end the string.

\ anything-else
Any other character when escaped by \ gives a warning, but assembles as if the
‘\’ was not present. The idea is that if you used an escape sequence you clearly
didn’t want the literal interpretation of the following character. However as
has no other interpretation, so as knows it is giving you the wrong code and
warns you of the fact.

Which characters are escapable, and what those escapes represent, varies widely among
assemblers. The current set is what we think the BSD 4.2 assembler recognizes, and is
a subset of what most C compilers recognize. If you are in doubt, do not use an escape
sequence.

3.6.1.2 Characters

A single character may be written as a single quote immediately followed by that character.
Some backslash escapes apply to characters, \b, \f, \n, \r, \t, and \" with the same
meaning as for strings, plus \’ for a single quote. So if you want to write the character
backslash, you must write >\ \ where the first \ escapes the second \. As you can see, the
quote is an acute accent, not a grave accent. A newline immediately following an acute
accent is taken as a literal character and does not count as the end of a statement. The
value of a character constant in a numeric expression is the machine’s byte-wide code for
that character. as assumes your character code is ASCII: ’A means 65, ’B means 66, and
SO on.

3.6.2 Number Constants

as distinguishes three kinds of numbers according to how they are stored in the target
machine. Integers are numbers that would fit into an int in the C language. Bignums are
integers, but they are stored in more than 32 bits. Flonums are floating point numbers,
described below.

3.6.2.1 Integers
A binary integer is ‘Ob’ or ‘OB’ followed by zero or more of the binary digits ‘01’.
An octal integer is ‘0’ followed by zero or more of the octal digits (‘01234567’).

A decimal integer starts with a non-zero digit followed by zero or more digits
(‘0123456789").

Chapter 3: Syntax 35

A hexadecimal integer is ‘0x’ or ‘0X’ followed by one or more hexadecimal digits chosen
from ‘0123456789abcdef ABCDEF’.

Integers have the usual values. To denote a negative integer, use the prefix operator ‘-’
discussed under expressions (see Section 6.2.3 [Prefix Operators|, page 47).

3.6.2.2 Bignums

A bignum has the same syntax and semantics as an integer except that the number (or its
negative) takes more than 32 bits to represent in binary. The distinction is made because
in some places integers are permitted while bignums are not.

3.6.2.3 Flonums

A flonum represents a floating point number. The translation is indirect: a decimal floating
point number from the text is converted by as to a generic binary floating point number
of more than sufficient precision. This generic floating point number is converted to a
particular computer’s floating point format (or formats) by a portion of as specialized to
that computer.

A flonum is written by writing (in order)
e The digit ‘0’. (‘0’ is optional on the HPPA.)
o A letter, to tell as the rest of the number is a flonum. e is recommended. Case is not
important.

On the H8/300 and Renesas / SuperH SH architectures, the letter must be one of the
letters ‘DFPRSX’ (in upper or lower case).

On the ARC, the letter must be one of the letters ‘DFRS’ (in upper or lower case).
On the HPPA architecture, the letter must be ‘E’ (upper case only).
e An optional sign: either ‘+’ or ‘-’
e An optional integer part: zero or more decimal digits.
e An optional fractional part: ‘.’ followed by zero or more decimal digits.
e An optional exponent, consisting of:
e An ‘E’or ‘e’.
e Optional sign: either ‘+’ or ‘-’
e One or more decimal digits.
At least one of the integer part or the fractional part must be present. The floating point
number has the usual base-10 value.

as does all processing using integers. Flonums are computed independently of any
floating point hardware in the computer running as.

Chapter 4: Sections and Relocation 37

4 Sections and Relocation

4.1 Background

Roughly, a section is a range of addresses, with no gaps; all data “in” those addresses is
treated the same for some particular purpose. For example there may be a “read only”
section.

The linker 1d reads many object files (partial programs) and combines their contents to
form a runnable program. When as emits an object file, the partial program is assumed to
start at address 0. 1d assigns the final addresses for the partial program, so that different
partial programs do not overlap. This is actually an oversimplification, but it suffices to
explain how as uses sections.

1d moves blocks of bytes of your program to their run-time addresses. These blocks
slide to their run-time addresses as rigid units; their length does not change and neither
does the order of bytes within them. Such a rigid unit is called a section. Assigning run-
time addresses to sections is called relocation. It includes the task of adjusting mentions of
object-file addresses so they refer to the proper run-time addresses. For the H8/300, and for
the Renesas / SuperH SH, as pads sections if needed to ensure they end on a word (sixteen
bit) boundary.

An object file written by as has at least three sections, any of which may be empty.
These are named text, data and bss sections.

When it generates COFF or ELF output, as can also generate whatever other named
sections you specify using the ‘.section’ directive (see Section 7.84 [.section|, page 76).
If you do not use any directives that place output in the ‘.text’ or ‘.data’ sections, these
sections still exist, but are empty.

When as generates SOM or ELF output for the HPPA, as can also generate what-
ever other named sections you specify using the ‘.space’ and ‘.subspace’ directives. See
HP9000 Series 800 Assembly Language Reference Manual (HP 92432-90001) for details on
the ‘.space’ and ‘.subspace’ assembler directives.

Additionally, as uses different names for the standard text, data, and bss sections
when generating SOM output. Program text is placed into the ‘$8CODE$’ section, data
into ‘$DATA$’, and BSS into ‘BSS’.

Within the object file, the text section starts at address 0, the data section follows, and
the bss section follows the data section.

When generating either SOM or ELF output files on the HPPA, the text section starts
at address 0, the data section at address 0x4000000, and the bss section follows the data
section.

To let 1d know which data changes when the sections are relocated, and how to change
that data, as also writes to the object file details of the relocation needed. To perform
relocation 1d must know, each time an address in the object file is mentioned:

e Where in the object file is the beginning of this reference to an address?
e How long (in bytes) is this reference?
e Which section does the address refer to? What is the numeric value of

(address) — (start-address of section)?

38 Using as

e Is the reference to an address “Program-Counter relative”?

In fact, every address as ever uses is expressed as
(section) + (offset into section)

Further, most expressions as computes have this section-relative nature. (For some object
formats, such as SOM for the HPPA, some expressions are symbol-relative instead.)

In this manual we use the notation {secname N} to mean “offset N into section secname.”

Apart from text, data and bss sections you need to know about the absolute section.
When 1d mixes partial programs, addresses in the absolute section remain unchanged. For
example, address {absolute 0} is “relocated” to run-time address 0 by 1d. Although the
linker never arranges two partial programs’ data sections with overlapping addresses after
linking, by definition their absolute sections must overlap. Address {absolute 2397} in
one part of a program is always the same address when the program is running as address
{absolute 239} in any other part of the program.

The idea of sections is extended to the undefined section. Any address whose section is
unknown at assembly time is by definition rendered {undefined U}—where U is filled in
later. Since numbers are always defined, the only way to generate an undefined address is
to mention an undefined symbol. A reference to a named common block would be such a
symbol: its value is unknown at assembly time so it has section undefined.

By analogy the word section is used to describe groups of sections in the linked program.
1d puts all partial programs’ text sections in contiguous addresses in the linked program.
It is customary to refer to the text section of a program, meaning all the addresses of all
partial programs’ text sections. Likewise for data and bss sections.

Some sections are manipulated by 1d; others are invented for use of as and have no
meaning except during assembly.

4.2 Linker Sections

14 deals with just four kinds of sections, summarized below.

named sections

text section

data section
These sections hold your program. as and 1d treat them as separate but equal
sections. Anything you can say of one section is true of another. When the pro-
gram is running, however, it is customary for the text section to be unalterable.
The text section is often shared among processes: it contains instructions, con-
stants and the like. The data section of a running program is usually alterable:
for example, C variables would be stored in the data section.

bss section
This section contains zeroed bytes when your program begins running. It is
used to hold uninitialized variables or common storage. The length of each
partial program’s bss section is important, but because it starts out containing
zeroed bytes there is no need to store explicit zero bytes in the object file. The
bss section was invented to eliminate those explicit zeros from object files.

Chapter 4: Sections and Relocation 39

absolute section
Address 0 of this section is always “relocated” to runtime address 0. This
is useful if you want to refer to an address that 1d must not change when
relocating. In this sense we speak of absolute addresses being “unrelocatable”:
they do not change during relocation.

undefined section
This “section” is a catch-all for address references to objects not in the preceding
sections.

An idealized example of three relocatable sections follows. The example uses the tradi-
tional section names ‘.text’ and ‘.data’. Memory addresses are on the horizontal axis.

Partial program #1:
text data bss
| ttttt | dddd | oo |

Partial program #2:
text data bss
't | poop | 000 |

linked program:

text data bss
T [eeeee | | daaa | ooop | 00000
addresses:

0...

4.3 Assembler Internal Sections

These sections are meant only for the internal use of as. They have no meaning at run-time.
You do not really need to know about these sections for most purposes; but they can be
mentioned in as warning messages, so it might be helpful to have an idea of their meanings
to as. These sections are used to permit the value of every expression in your assembly
language program to be a section-relative address.

ASSEMBLER-INTERNAL-LOGIC-ERROR!
An internal assembler logic error has been found. This means there is a bug in
the assembler.

expr section
The assembler stores complex expression internally as combinations of symbols.
When it needs to represent an expression as a symbol, it puts it in the expr
section.

4.4 Sub-Sections

Assembled bytes conventionally fall into two sections: text and data. You may have separate
groups of data in named sections that you want to end up near to each other in the object
file, even though they are not contiguous in the assembler source. as allows you to use
subsections for this purpose. Within each section, there can be numbered subsections with
values from 0 to 8192. Objects assembled into the same subsection go into the object file

40 Using as

together with other objects in the same subsection. For example, a compiler might want
to store constants in the text section, but might not want to have them interspersed with
the program being assembled. In this case, the compiler could issue a ‘.text 0’ before each
section of code being output, and a ‘.text 1’ before each group of constants being output.

Subsections are optional. If you do not use subsections, everything goes in subsection
number zero.

Each subsection is zero-padded up to a multiple of four bytes. (Subsections may be
padded a different amount on different flavors of as.)

Subsections appear in your object file in numeric order, lowest numbered to highest.
(All this to be compatible with other people’s assemblers.) The object file contains no
representation of subsections; 1d and other programs that manipulate object files see no
trace of them. They just see all your text subsections as a text section, and all your data
subsections as a data section.

To specify which subsection you want subsequent statements assembled into, use a nu-
meric argument to specify it, in a ‘.text expression’ or a ‘.data expression’ statement.
When generating COFF output, you can also use an extra subsection argument with arbi-
trary named sections: ‘.section name, expression’. When generating ELF output, you
can also use the .subsection directive (see Section 7.95 [SubSection], page 83) to spec-
ify a subsection: ‘.subsection expression’. Expression should be an absolute expression
(see Chapter 6 [Expressions|, page 47). If you just say ‘.text’ then ‘.text 0’ is assumed.
Likewise ‘.data’ means ‘.data 0’. Assembly begins in text 0. For instance:

.text O # The default subsection is text O anyway.
.ascii "This lives in the first text subsection. *"
.text 1

.ascii "But this lives in the second text subsection."
.data 0

.ascii "This lives in the data section,"

.ascii "in the first data subsection."

.text O

.ascii "This lives in the first text section,"

.ascii "immediately following the asterisk (*)."

Each section has a location counter incremented by one for every byte assembled into
that section. Because subsections are merely a convenience restricted to as there is no
concept of a subsection location counter. There is no way to directly manipulate a location
counter—but the .align directive changes it, and any label definition captures its current
value. The location counter of the section where statements are being assembled is said to

be the active location counter.

4.5 bss Section

The bss section is used for local common variable storage. You may allocate address space in
the bss section, but you may not dictate data to load into it before your program executes.
When your program starts running, all the contents of the bss section are zeroed bytes.

The .1lcomm pseudo-op defines a symbol in the bss section; see Section 7.52 [.1lcomm|,
page 66.

The .comm pseudo-op may be used to declare a common symbol, which is another form
of uninitialized symbol; see Section 7.12 [.comm|, page 57.

Chapter 4: Sections and Relocation 41

When assembling for a target which supports multiple sections, such as ELF or COFF,
you may switch into the .bss section and define symbols as usual; see Section 7.84
[.section|, page 76. You may only assemble zero values into the section. Typically the
section will only contain symbol definitions and .skip directives (see Section 7.89 [.skip],
page 81).

Chapter 5: Symbols 43

5 Symbols

Symbols are a central concept: the programmer uses symbols to name things, the linker
uses symbols to link, and the debugger uses symbols to debug.

Warning: as does not place symbols in the object file in the same order they
were declared. This may break some debuggers.

5.1 Labels

A label is written as a symbol immediately followed by a colon ‘:’. The symbol then
represents the current value of the active location counter, and is, for example, a suitable
instruction operand. You are warned if you use the same symbol to represent two different
locations: the first definition overrides any other definitions.

On the HPPA, the usual form for a label need not be immediately followed by a colon,
but instead must start in column zero. Only one label may be defined on a single line.
To work around this, the HPPA version of as also provides a special directive .label for
defining labels more flexibly.

5.2 Giving Symbols Other Values

A symbol can be given an arbitrary value by writing a symbol, followed by an equals sign
‘=", followed by an expression (see Chapter 6 [Expressions|, page 47). This is equivalent to
using the .set directive. See Section 7.85 [.set], page 81. In the same way, using a double
equals sign ‘="‘=" here represents an equivalent of the .eqv directive. See Section 7.30 [.eqv],
page 61.

Blackfin does not support symbol assignment with ‘=’

5.3 Symbol Names

Symbol names begin with a letter or with one of ‘. _’. On most machines, you can also use
$ in symbol names; exceptions are noted in Chapter 9 [Machine Dependencies|, page 93.
That character may be followed by any string of digits, letters, dollar signs (unless otherwise
noted for a particular target machine), and underscores.

Case of letters is significant: foo is a different symbol name than Foo.

Symbol names do not start with a digit. An exception to this rule is made for Local
Labels. See below.

Multibyte characters are supported. To generate a symbol name containing multibyte
characters enclose it within double quotes and use escape codes. cf See Section 3.6.1.1
[Strings], page 33. Generating a multibyte symbol name from a label is not currently
supported.

Each symbol has exactly one name. Each name in an assembly language program refers
to exactly one symbol. You may use that symbol name any number of times in a program.

Local Symbol Names

A local symbol is any symbol beginning with certain local label prefixes. By default, the
local label prefix is ‘.L’ for ELF systems or ‘L’ for traditional a.out systems, but each target
may have its own set of local label prefixes. On the HPPA local symbols begin with ‘L$’.

44 Using as

Local symbols are defined and used within the assembler, but they are normally not
saved in object files. Thus, they are not visible when debugging. You may use the ‘-L’
option (see Section 2.7 [Include Local Symbols|, page 26) to retain the local symbols in the
object files.

Local Labels

Local labels are different from local symbols. Local labels help compilers and programmers
use names temporarily. They create symbols which are guaranteed to be unique over the
entire scope of the input source code and which can be referred to by a simple notation.
To define a local label, write a label of the form ‘N:’ (where N represents any non-negative
integer). To refer to the most recent previous definition of that label write ‘Nb’, using the
same number as when you defined the label. To refer to the next definition of a local label,
write ‘Nf’. The ‘D’ stands for “backwards” and the ‘f’ stands for “forwards”.

There is no restriction on how you can use these labels, and you can reuse them too. So
that it is possible to repeatedly define the same local label (using the same number ‘N’),
although you can only refer to the most recently defined local label of that number (for a
backwards reference) or the next definition of a specific local label for a forward reference.
It is also worth noting that the first 10 local labels (‘0:’. . .“9:”) are implemented in a slightly
more efficient manner than the others.

Here is an example:

1: branch 1f
2: branch 1b
1: branch 2f
2: branch 1b

Which is the equivalent of:
label_1: branch label_3
label_2: Dbranch label_1
label_3: branch label_4
label_4: Dbranch label_3
Local label names are only a notational device. They are immediately transformed into
more conventional symbol names before the assembler uses them. The symbol names are
stored in the symbol table, appear in error messages, and are optionally emitted to the
object file. The names are constructed using these parts:

local label prefix
All local symbols begin with the system-specific local label prefix. Normally
both as and 1d forget symbols that start with the local label prefix. These
labels are used for symbols you are never intended to see. If you use the ‘-L’
option then as retains these symbols in the object file. If you also instruct 1d
to retain these symbols, you may use them in debugging.

number This is the number that was used in the local label definition. So if the label is
written ‘65:’ then the number is ‘55’.

C-B This unusual character is included so you do not accidentally invent a symbol
of the same name. The character has ASCII value of ‘\002’ (control-B).

ordinal number
This is a serial number to keep the labels distinct. The first definition of ‘0:’
gets the number ‘1’. The 15th definition of ‘0:’ gets the number ‘15’, and so on.

Chapter 5: Symbols 45

Likewise the first definition of ‘1:’ gets the number ‘1’ and its 15th definition
gets ‘157 as well.

So for example, the first 1: may be named .L1C-B1, and the 44th 3: may be named
.L3C-B44.

Dollar Local Labels

On some targets as also supports an even more local form of local labels called dollar labels.
These labels go out of scope (i.e., they become undefined) as soon as a non-local label is
defined. Thus they remain valid for only a small region of the input source code. Normal
local labels, by contrast, remain in scope for the entire file, or until they are redefined by
another occurrence of the same local label.

Dollar labels are defined in exactly the same way as ordinary local labels, except that
they have a dollar sign suffix to their numeric value, e.g., ‘55$:’.

They can also be distinguished from ordinary local labels by their transformed names
which use ASCII character ‘\001’ (control-A) as the magic character to distinguish them
from ordinary labels. For example, the fifth definition of ‘6$’ may be named ‘.L6C-A5’.

5.4 The Special Dot Symbol

The special symbol ‘.’ refers to the current address that as is assembling into. Thus, the
expression ‘melvin: .long .’ defines melvin to contain its own address. Assigning a value
to . is treated the same as a .org directive. Thus, the expression ‘.=.+4’ is the same as
saying ‘.space 4’.

5.5 Symbol Attributes

Every symbol has, as well as its name, the attributes “Value” and “Type”. Depending on
output format, symbols can also have auxiliary attributes.

If you use a symbol without defining it, as assumes zero for all these attributes, and
probably won’t warn you. This makes the symbol an externally defined symbol, which is
generally what you would want.

5.5.1 Value

The value of a symbol is (usually) 32 bits. For a symbol which labels a location in the
text, data, bss or absolute sections the value is the number of addresses from the start of
that section to the label. Naturally for text, data and bss sections the value of a symbol
changes as 1d changes section base addresses during linking. Absolute symbols’ values do
not change during linking: that is why they are called absolute.

The value of an undefined symbol is treated in a special way. If it is 0 then the symbol
is not defined in this assembler source file, and 1d tries to determine its value from other
files linked into the same program. You make this kind of symbol simply by mentioning a
symbol name without defining it. A non-zero value represents a . comm common declaration.
The value is how much common storage to reserve, in bytes (addresses). The symbol refers
to the first address of the allocated storage.

46 Using as

5.5.2 Type

The type attribute of a symbol contains relocation (section) information, any flag settings
indicating that a symbol is external, and (optionally), other information for linkers and
debuggers. The exact format depends on the object-code output format in use.

5.5.3 Symbol Attributes: a.out
5.5.3.1 Descriptor

This is an arbitrary 16-bit value. You may establish a symbol’s descriptor value by using a
.desc statement (see Section 7.18 [.desc]|, page 59). A descriptor value means nothing to
as.

5.5.3.2 Other

This is an arbitrary 8-bit value. It means nothing to as.

5.5.4 Symbol Attributes for COFF

The COFF format supports a multitude of auxiliary symbol attributes; like the primary
symbol attributes, they are set between .def and .endef directives.

5.5.4.1 Primary Attributes

The symbol name is set with .def; the value and type, respectively, with .val and .type.

5.5.4.2 Auxiliary Attributes

The as directives .dim, .1line, .scl, .size, .tag, and .weak can generate auxiliary symbol
table information for COFF.

5.5.5 Symbol Attributes for SOM

The SOM format for the HPPA supports a multitude of symbol attributes set with the
.EXPORT and .IMPORT directives.

The attributes are described in HP9000 Series 800 Assembly Language Reference Manual
(HP 92432-90001) under the IMPORT and EXPORT assembler directive documentation.

Chapter 6: Expressions 47

6 Expressions

An expression specifies an address or numeric value. Whitespace may precede and/or follow
an expression.

The result of an expression must be an absolute number, or else an offset into a particular
section. If an expression is not absolute, and there is not enough information when as sees
the expression to know its section, a second pass over the source program might be necessary
to interpret the expression—but the second pass is currently not implemented. as aborts
with an error message in this situation.

6.1 Empty Expressions

An empty expression has no value: it is just whitespace or null. Wherever an absolute
expression is required, you may omit the expression, and as assumes a value of (absolute)
0. This is compatible with other assemblers.

6.2 Integer Expressions

An integer expression is one or more arguments delimited by operators.

6.2.1 Arguments

Arguments are symbols, numbers or subexpressions. In other contexts arguments are some-
times called “arithmetic operands”. In this manual, to avoid confusing them with the
“instruction operands” of the machine language, we use the term “argument” to refer to
parts of expressions only, reserving the word “operand” to refer only to machine instruction
operands.

Symbols are evaluated to yield {section NNN} where section is one of text, data, bss,
absolute, or undefined. NNN is a signed, 2’s complement 32 bit integer.

Numbers are usually integers.

A number can be a flonum or bignum. In this case, you are warned that only the low
order 32 bits are used, and as pretends these 32 bits are an integer. You may write integer-
manipulating instructions that act on exotic constants, compatible with other assemblers.

Subexpressions are a left parenthesis ‘ (’ followed by an integer expression, followed by a
right parenthesis ‘)’; or a prefix operator followed by an argument.

6.2.2 Operators

Operators are arithmetic functions, like + or %. Prefix operators are followed by an argu-
ment. Infix operators appear between their arguments. Operators may be preceded and/or
followed by whitespace.

6.2.3 Prefix Operator
as has the following prefix operators. They each take one argument, which must be absolute.
- Negation. Two’s complement negation.

Complementation. Bitwise not.

48

Using as

6.2.4 Infix Operators

Infix operators take two arguments, one on either side. Operators have precedence, but
operations with equal precedence are performed left to right. Apart from + or -, both
arguments must be absolute, and the result is absolute.

1.

Highest Precedence

*

/
o
<<

>>

Multiplication.

Division. Truncation is the same as the C operator ‘/’
Remainder.

Shift Left. Same as the C operator ‘<<’.

Shift Right. Same as the C operator ‘>>’.

Intermediate precedence

Bitwise Inclusive Or.
Bitwise And.
Bitwise Exclusive Or.

Bitwise Or Not.

Low Precedence

+

Addition. If either argument is absolute, the result has the section of
the other argument. You may not add together arguments from different
sections.

Subtraction. If the right argument is absolute, the result has the section
of the left argument. If both arguments are in the same section, the result
is absolute. You may not subtract arguments from different sections.

Is Equal To

Is Not Equal To

Is Less Than

Is Greater Than

Is Greater Than Or Equal To
Is Less Than Or Equal To

The comparison operators can be used as infix operators. A true results has
a value of -1 whereas a false result has a value of 0. Note, these operators
perform signed comparisons.

Lowest Precedence

&&

Logical And.

Chapter 6: Expressions 49

|l Logical Or.

These two logical operations can be used to combine the results of sub
expressions. Note, unlike the comparison operators a true result returns a
value of 1 but a false results does still return 0. Also note that the logical
or operator has a slightly lower precedence than logical and.

In short, it’s only meaningful to add or subtract the offsets in an address; you can only
have a defined section in one of the two arguments.

Chapter 7: Assembler Directives 51

7 Assembler Directives

[

All assembler directives have names that begin with a period (‘.”). The names are case
insensitive for most targets, and usually written in lower case.

This chapter discusses directives that are available regardless of the target machine
configuration for the GNU assembler. Some machine configurations provide additional di-
rectives. See Chapter 9 [Machine Dependencies|, page 93.

7.1 .abort

This directive stops the assembly immediately. It is for compatibility with other assemblers.
The original idea was that the assembly language source would be piped into the assembler.
If the sender of the source quit, it could use this directive tells as to quit also. One day
.abort will not be supported.

7.2 .ABORT (COFF)

When producing COFF output, as accepts this directive as a synonym for ‘.abort’.

7.3 .align [abs-exprl, abs-exprl[, abs-expr]]]

Pad the location counter (in the current subsection) to a particular storage boundary. The
first expression (which must be absolute) is the alignment required, as described below. If
this expression is omitted then a default value of 0 is used, effectively disabling alignment
requirements.

The second expression (also absolute) gives the fill value to be stored in the padding
bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are normally
zero. However, on most systems, if the section is marked as containing code and the fill
value is omitted, the space is filled with no-op instructions.

The third expression is also absolute, and is also optional. If it is present, it is the
maximum number of bytes that should be skipped by this alignment directive. If doing
the alignment would require skipping more bytes than the specified maximum, then the
alignment is not done at all. You can omit the fill value (the second argument) entirely by
simply using two commas after the required alignment; this can be useful if you want the
alignment to be filled with no-op instructions when appropriate.

The way the required alignment is specified varies from system to system. For the arc,
hppa, 1386 using ELF, iq2000, m68k, orlk, s390, sparc, ticdx and xtensa, the first expression
is the alignment request in bytes. For example ‘.align 8’ advances the location counter
until it is a multiple of 8. If the location counter is already a multiple of 8, no change is
needed. For the tich4x, the first expression is the alignment request in words.

For other systems, including ppc, i386 using a.out format, arm and strongarm, it is
the number of low-order zero bits the location counter must have after advancement. For
example ‘.align 3’ advances the location counter until it is a multiple of 8. If the location
counter is already a multiple of 8, no change is needed.

This inconsistency is due to the different behaviors of the various native assemblers
for these systems which GAS must emulate. GAS also provides .balign and .p2align
directives, described later, which have a consistent behavior across all architectures (but
are specific to GAS).

52 Using as

7.4 .altmacro
Enable alternate macro mode, enabling:

LOCAL name [, ...]
One additional directive, LOCAL, is available. It is used to generate a string
replacement for each of the name arguments, and replace any instances of name
in each macro expansion. The replacement string is unique in the assembly, and
different for each separate macro expansion. LOCAL allows you to write macros
that define symbols, without fear of conflict between separate macro expansions.

String delimiters
You can write strings delimited in these other ways besides "string":

’string’ You can delimit strings with single-quote characters.
<string> You can delimit strings with matching angle brackets.

single-character string escape
To include any single character literally in a string (even if the character would
otherwise have some special meaning), you can prefix the character with ‘!’ (an
exclamation mark). For example, you can write ‘<4.3 !> 5.4!11>" to get the
literal text ‘4.3 > 5.41!".

Expression results as strings
You can write ‘%expr’ to evaluate the expression expr and use the result as a
string.

7.5 .ascii "string"...

.ascii expects zero or more string literals (see Section 3.6.1.1 [Strings], page 33) separated
by commas. It assembles each string (with no automatic trailing zero byte) into consecutive
addresses.

7.6 .asciz "string"...

[

.asciz is just like .ascii, but each string is followed by a zero byte. The “z” in ‘.asciz’
stands for “zero”. Note that multiple string arguments not separated by commas will be
concatenated together and only one final zero byte will be stored.

7.7 .attach_to_group name

Attaches the current section to the named group. This is like declaring the section with the
G attribute, but can be done after the section has been created. Note if the group section
does not exist at the point that this directive is used then it will be created.

7.8 .balign[wl] [abs-expr[, abs-expr[, abs-expr]]]

Pad the location counter (in the current subsection) to a particular storage boundary. The
first expression (which must be absolute) is the alignment request in bytes. For example
‘.balign 8’ advances the location counter until it is a multiple of 8. If the location counter
is already a multiple of 8, no change is needed. If the expression is omitted then a default
value of 0 is used, effectively disabling alignment requirements.

Chapter 7: Assembler Directives 53

The second expression (also absolute) gives the fill value to be stored in the padding
bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are normally
zero. However, on most systems, if the section is marked as containing code and the fill
value is omitted, the space is filled with no-op instructions.

The third expression is also absolute, and is also optional. If it is present, it is the
maximum number of bytes that should be skipped by this alignment directive. If doing
the alignment would require skipping more bytes than the specified maximum, then the
alignment is not done at all. You can omit the fill value (the second argument) entirely by
simply using two commas after the required alignment; this can be useful if you want the
alignment to be filled with no-op instructions when appropriate.

The .balignw and .balignl directives are variants of the .balign directive. The
.balignw directive treats the fill pattern as a two byte word value. The .balignl directives
treats the fill pattern as a four byte longword value. For example, .balignw 4,0x368d will
align to a multiple of 4. If it skips two bytes, they will be filled in with the value 0x368d
(the exact placement of the bytes depends upon the endianness of the processor). If it skips
1 or 3 bytes, the fill value is undefined.

7.9 Bundle directives

7.9.1 .bundle_align_mode abs-expr

.bundle_align_mode enables or disables aligned instruction bundle mode. In this mode,
sequences of adjacent instructions are grouped into fixed-sized bundles. If the argument
is zero, this mode is disabled (which is the default state). If the argument it not zero, it
gives the size of an instruction bundle as a power of two (as for the .p2align directive, see
Section 7.71 [P2align|, page 73).

For some targets, it’s an ABI requirement that no instruction may span a certain aligned
boundary. A bundle is simply a sequence of instructions that starts on an aligned boundary.
For example, if abs-expr is 5 then the bundle size is 32, so each aligned chunk of 32 bytes
is a bundle. When aligned instruction bundle mode is in effect, no single instruction may
span a boundary between bundles. If an instruction would start too close to the end of a
bundle for the length of that particular instruction to fit within the bundle, then the space
at the end of that bundle is filled with no-op instructions so the instruction starts in the
next bundle. As a corollary, it’s an error if any single instruction’s encoding is longer than
the bundle size.

7.9.2 .bundle_lock and .bundle_unlock

The .bundle_lock and directive .bundle_unlock directives allow explicit control over
instruction bundle padding. These directives are only valid when .bundle_align_mode
has been used to enable aligned instruction bundle mode. It’s an error if they appear
when .bundle_align_mode has not been used at all, or when the last directive was
.bundle_align_mode O.

For some targets, it’s an ABI requirement that certain instructions may appear only as
part of specified permissible sequences of multiple instructions, all within the same bundle.
A pair of .bundle_lock and .bundle_unlock directives define a bundle-locked instruc-
tion sequence. For purposes of aligned instruction bundle mode, a sequence starting with

54 Using as

.bundle_lock and ending with .bundle_unlock is treated as a single instruction. That is,
the entire sequence must fit into a single bundle and may not span a bundle boundary. If
necessary, no-op instructions will be inserted before the first instruction of the sequence so
that the whole sequence starts on an aligned bundle boundary. It’s an error if the sequence
is longer than the bundle size.

For convenience when using .bundle_lock and .bundle_unlock inside assembler macros
(see Section 7.62 [Macro|, page 69), bundle-locked sequences may be nested. That is, a
second .bundle_lock directive before the next .bundle_unlock directive has no effect
except that it must be matched by another closing .bundle_unlock so that there is the
same number of .bundle_lock and .bundle_unlock directives.

7.10 .byte expressions

.byte expects zero or more expressions, separated by commas. Each expression is assembled
into the next byte.

7.11 CFI directives

7.11.1 .cfi_sections section_list

.cfi_sections may be used to specify whether CFI directives should emit .eh_frame
section and/or .debug_frame section. If section_list is .eh_frame, .eh_frame is emitted,
if section_list is .debug_frame, .debug_frame is emitted. To emit both use .eh_frame,
.debug_frame. The default if this directive is not used is .cfi_sections .eh_frame.

On targets that support compact unwinding tables these can be generated by specifying
.eh_frame_entry instead of .eh_frame.

Some targets may support an additional name, such as .c6xabi.exidx which is used by
the target.

The .cfi_sections directive can be repeated, with the same or different arguments,
provided that CFI generation has not yet started. Once CFI generation has started however
the section list is fixed and any attempts to redefine it will result in an error.

7.11.2 .cfi_startproc [simple]

.cfi_startproc is used at the beginning of each function that should have an entry in
.eh_frame. It initializes some internal data structures. Don’t forget to close the function
by .cfi_endproc.

Unless .cfi_startproc is used along with parameter simple it also emits some archi-
tecture dependent initial CFI instructions.
7.11.3 .cfi_endproc
.cfi_endproc is used at the end of a function where it closes its unwind entry previously
opened by .cfi_startproc, and emits it to .eh_frame.
7.11.4 .cfi_personality encoding [, exp]

.cfi_personality defines personality routine and its encoding. encoding must be a con-
stant determining how the personality should be encoded. If it is 255 (DW_EH_PE_omit),

Chapter 7: Assembler Directives 55

second argument is not present, otherwise second argument should be a constant or a sym-
bol name. When using indirect encodings, the symbol provided should be the location
where personality can be loaded from, not the personality routine itself. The default after
.cfi_startproc is .cfi_personality Oxff, no personality routine.

7.11.5 .cfi_personality_id id

cfi_personality_id defines a personality routine by its index as defined in a compact un-
winding format. Only valid when generating compact EH frames (i.e. with .cfi_sections
eh_frame_entry.

7.11.6 .cfi_fde_data [opcodel [, ...]]

cfi_fde_data is used to describe the compact unwind opcodes to be used for the current
function. These are emitted inline in the .eh_frame_entry section if small enough and
there is no LSDA, or in the .gnu.extab section otherwise. Only valid when generating
compact EH frames (i.e. with .cfi_sections eh_frame_entry.

7.11.7 .cfi_lsda encoding [, exp]

.cfi_lsda defines LSDA and its encoding. encoding must be a constant determining how
the LSDA should be encoded. If it is 255 (DW_EH_PE_omit), the second argument is not
present, otherwise the second argument should be a constant or a symbol name. The default
after .cfi_startproc is .cfi_lsda Oxff, meaning that no LSDA is present.

7.11.8 .cfi_inline_lsda [align]

.cfi_inline_lsda marks the start of a LSDA data section and switches to the corre-
sponding .gnu.extab section. Must be preceded by a CFI block containing a .cfi_lsda
directive. Only valid when generating compact EH frames (i.e. with .cfi_sections eh_
frame_entry.

The table header and unwinding opcodes will be generated at this point, so that they
are immediately followed by the LSDA data. The symbol referenced by the .cfi_lsda
directive should still be defined in case a fallback FDE based encoding is used. The LSDA
data is terminated by a section directive.

The optional align argument specifies the alignment required. The alignment is specified
as a power of two, as with the .p2align directive.

7.11.9 .cfi_def_cfa register, offset

.cfi_def_cfa defines a rule for computing CFA as: take address from register and add
offset to it.

7.11.10 .cfi_def_cfa_register register

.cfi_def_cfa_register modifies a rule for computing CFA. From now on register will be
used instead of the old one. Offset remains the same.

7.11.11 .cfi_def_cfa_offset offset

.cfi_def_cfa_offset modifies a rule for computing CFA. Register remains the same, but
offset is new. Note that it is the absolute offset that will be added to a defined register to
compute CFA address.

56 Using as

7.11.12 .cfi_adjust_cfa_offset offset

Same as .cfi_def_cfa_offset but offset is a relative value that is added/subtracted from
the previous offset.

7.11.13 .cfi_offset register, offset

Previous value of register is saved at offset offset from CFA.

7.11.14 .cfi_val_offset register, offset

Previous value of register is CFA + offset.

7.11.15 .cfi_rel_offset register, offset

Previous value of register is saved at offset offset from the current CFA register. This is
transformed to .cfi_offset using the known displacement of the CFA register from the
CFA. This is often easier to use, because the number will match the code it’s annotating.

7.11.16 .cfi_register registerl, register2

Previous value of registerl is saved in register register2.

7.11.17 .cfi_restore register

.cfi_restore says that the rule for register is now the same as it was at the beginning of
the function, after all initial instruction added by .cfi_startproc were executed.

7.11.18 .cfi_undefined register

From now on the previous value of register can’t be restored anymore.

7.11.19 .cfi_same_value register

Current value of register is the same like in the previous frame, i.e. no restoration needed.

7.11.20 .cfi_remember_state and .cfi_restore_state

.cfi_remember_state pushes the set of rules for every register onto an implicit stack, while
.cfi_restore_state pops them off the stack and places them in the current row. This
is useful for situations where you have multiple .cfi_x* directives that need to be undone
due to the control flow of the program. For example, we could have something like this
(assuming the CFA is the value of rbp):

je label

popq %rbx

.cfi_restore Y%rbx

popq %4ri2
.cfi_restore %ri2
popq %rbp
.cfi_restore ’%rbp
.cfi_def_cfa Yrsp, 8
ret
label:
/* Do something else */

Here, we want the .cfi directives to affect only the rows corresponding to the instruc-
tions before label. This means we’d have to add multiple .cfi directives after label to

Chapter 7: Assembler Directives 57

recreate the original save locations of the registers, as well as setting the CFA back to the
value of rbp. This would be clumsy, and result in a larger binary size. Instead, we can
write:

je label

popq %rbx

.cfi_remember_state

.cfi_restore Yrbx

popq %4ri2
.cfi_restore %ri2

popq J%rbp
.cfi_restore ’%rbp
.cfi_def_cfa Yrsp, 8
ret
label:

.cfi_restore_state
/* Do something else */

That way, the rules for the instructions after label will be the same as before the first

.cfi_restore without having to use multiple .cfi directives.

7.11.21 .cfi_return_column register

Change return column register, i.e. the return address is either directly in register or can
be accessed by rules for register.

7.11.22 .cfi_signal_frame

Mark current function as signal trampoline.

7.11.23 .cfi_window_save
SPARC register window has been saved.

7.11.24 .cfi_escape expression|, .. .|

Allows the user to add arbitrary bytes to the unwind info. One might use this to add
OS-specific CFI opcodes, or generic CFI opcodes that GAS does not yet support.

7.11.25 .cfi_val_encoded_addr register, encoding, label

The current value of register is label. The value of label will be encoded in the output
file according to encoding; see the description of .cfi_personality for details on this
encoding.

The usefulness of equating a register to a fixed label is probably limited to the return
address register. Here, it can be useful to mark a code segment that has only one return
address which is reached by a direct branch and no copy of the return address exists in
memory or another register.

7.12 .comm symbol , length

.comm declares a common symbol named symbol. When linking, a common symbol in
one object file may be merged with a defined or common symbol of the same name in
another object file. If 1d does not see a definition for the symbol—just one or more common
symbols—then it will allocate length bytes of uninitialized memory. length must be an

58 Using as

absolute expression. If 1d sees multiple common symbols with the same name, and they do
not all have the same size, it will allocate space using the largest size.

When using ELF or (as a GNU extension) PE, the .comm directive takes an optional
third argument. This is the desired alignment of the symbol, specified for ELF as a byte
boundary (for example, an alignment of 16 means that the least significant 4 bits of the
address should be zero), and for PE as a power of two (for example, an alignment of 5
means aligned to a 32-byte boundary). The alignment must be an absolute expression, and
it must be a power of two. If 1d allocates uninitialized memory for the common symbol, it
will use the alignment when placing the symbol. If no alignment is specified, as will set the
alignment to the largest power of two less than or equal to the size of the symbol, up to a
maximum of 16 on ELF, or the default section alignment of 4 on PE!.

The syntax for .comm differs slightly on the HPPA. The syntax is ‘symbol .comm,
length’; symbol is optional.

7.13 .data subsection

.data tells as to assemble the following statements onto the end of the data subsection
numbered subsection (which is an absolute expression). If subsection is omitted, it defaults
to zero.

7.14 .dc[size] expressions

The .dc directive expects zero or more expressions separated by commas. These expressions
are evaluated and their values inserted into the current section. The size of the emitted
value depends upon the suffix to the .dc directive:

‘.a’ Emits N-bit values, where N is the size of an address on the target system.
‘.b’ Emits 8-bit values.

“.d’ Emits double precision floating-point values.

.1 Emits 32-bit values.

‘.8’ FEmits single precision floating-point values.

‘ow’ Emits 16-bit values. Note - this is true even on targets where the .word directive

would emit 32-bit values.

.x’ Emits long double precision floating-point values.

If no suffix is used then ‘.w’ is assumed.

The byte ordering is target dependent, as is the size and format of floating point values.

This is not the same as the executable image file alignment controlled by 1d’s ‘--section-alignment’
option; image file sections in PE are aligned to multiples of 4096, which is far too large an alignment for
ordinary variables. It is rather the default alignment for (non-debug) sections within object (‘x.0’) files,
which are less strictly aligned.

Chapter 7: Assembler Directives 59

7.15 .dcbl[size] number [,fill]

This directive emits number copies of fill, each of size bytes. Both number and fill are
absolute expressions. If the comma and fill are omitted, fill is assumed to be zero. The size
suffix, if present, must be one of:

‘.b’ Emits single byte values.

€.q’ Emits double-precision floating point values.

€1 Emits 4-byte values.

‘.8’ Emits single-precision floating point values.

Cow? Emits 2-byte values.

£.x’ Emits long double-precision floating point values.

If the size suffix is omitted then ‘.w’ is assumed.
The byte ordering is target dependent, as is the size and format of floating point values.

7.16 .dsl[size] number [,fill]

This directive emits number copies of fill, each of size bytes. Both number and fill are
absolute expressions. If the comma and fill are omitted, fill is assumed to be zero. The size
suffix, if present, must be one of:

‘.b’ Emits single byte values.
€.a’ Emits 8-byte values.
.1 Emits 4-byte values.
‘.p’ Emits 12-byte values.
‘.8’ Emits 4-byte values.
‘ow’ Emits 2-byte values.
“.x’ Emits 12-byte values.

Note - unlike the .dcb directive the ‘.d’, ‘.8’ and ‘.x’ suffixes do not indicate that
floating-point values are to be inserted.

If the size suffix is omitted then ‘.w’ is assumed.
The byte ordering is target dependent.

7.17 .def name

Begin defining debugging information for a symbol name; the definition extends until the
.endef directive is encountered.

7.18 .desc symbol, abs-expression

This directive sets the descriptor of the symbol (see Section 5.5 [Symbol Attributes|, page 45)
to the low 16 bits of an absolute expression.

The ‘.desc’ directive is not available when as is configured for COFF output; it is only
for a.out or b.out object format. For the sake of compatibility, as accepts it, but produces
no output, when configured for COFF.

60 Using as

7.19 .dim

This directive is generated by compilers to include auxiliary debugging information in the
symbol table. It is only permitted inside .def/.endef pairs.

7.20 .double flonums

.double expects zero or more flonums, separated by commas. It assembles floating point
numbers. The exact kind of floating point numbers emitted depends on how as is configured.
See Chapter 9 [Machine Dependencies], page 93.

7.21 .eject

Force a page break at this point, when generating assembly listings.

7.22 .else

.else is part of the as support for conditional assembly; see Section 7.45 [.if], page 64. It
marks the beginning of a section of code to be assembled if the condition for the preceding
.if was false.

7.23 .elseif

.elseif is part of the as support for conditional assembly; see Section 7.45 [.if], page 64.
It is shorthand for beginning a new .if block that would otherwise fill the entire .else
section.

7.24 .end

.end marks the end of the assembly file. as does not process anything in the file past the
.end directive.

7.25 .endef
This directive flags the end of a symbol definition begun with .def.

7.26 .endfunc

.endfunc marks the end of a function specified with .func.

7.27 .endif

.endif is part of the as support for conditional assembly; it marks the end of a block of
code that is only assembled conditionally. See Section 7.45 [.if], page 64.

7.28 .equ symbol, expression

This directive sets the value of symbol to expression. It is synonymous with ‘.set’; see
Section 7.85 [.set], page 81.

The syntax for equ on the HPPA is ‘symbol .equ expression’.

Chapter 7: Assembler Directives 61

The syntax for equ on the Z80 is ‘symbol equ expression’. On the Z80 it is an error if
symbol is already defined, but the symbol is not protected from later redefinition. Compare
Section 7.29 [Equiv], page 61.

7.29 .equiv symbol, expression

The .equiv directive is like .equ and .set, except that the assembler will signal an error
if symbol is already defined. Note a symbol which has been referenced but not actually
defined is considered to be undefined.

Except for the contents of the error message, this is roughly equivalent to

.ifdef SYM
.err

.endif

.equ SYM,VAL

plus it protects the symbol from later redefinition.

7.30 .eqv symbol, expression

The .eqv directive is like .equiv, but no attempt is made to evaluate the expression or any
part of it immediately. Instead each time the resulting symbol is used in an expression, a
snapshot of its current value is taken.

7.31 .err

If as assembles a .err directive, it will print an error message and, unless the -Z option was
used, it will not generate an object file. This can be used to signal an error in conditionally
compiled code.

7.32 .error "string"

Similarly to .err, this directive emits an error, but you can specify a string that will be emit-
ted as the error message. If you don’t specify the message, it defaults to ".error directive
invoked in source file". See Section 1.7 [Error and Warning Messages|, page 23.

.error "This code has not been assembled and tested."

7.33 .exitm

Exit early from the current macro definition. See Section 7.62 [Macro|, page 69.

7.34 .extern

.extern is accepted in the source program—for compatibility with other assemblers—but
it is ignored. as treats all undefined symbols as external.

7.35 .fail expression

Generates an error or a warning. If the value of the expression is 500 or more, as will print a
warning message. If the value is less than 500, as will print an error message. The message
will include the value of expression. This can occasionally be useful inside complex nested
macros or conditional assembly.

62 Using as

7.36 .file

There are two different versions of the .file directive. Targets that support DWARF2
line number information use the DWARF2 version of .file. Other targets use the default
version.

Default Version

This version of the .file directive tells as that we are about to start a new logical file.
The syntax is:

.file string

string is the new file name. In general, the filename is recognized whether or not it is
surrounded by quotes ‘"’; but if you wish to specify an empty file name, you must give the
quotes—"". This statement may go away in future: it is only recognized to be compatible
with old as programs.

DWARF2 Version

When emitting DWARF2 line number information, .file assigns filenames to the .debug_
line file name table. The syntax is:

.file fileno filename

The fileno operand should be a unique positive integer to use as the index of the entry
in the table. The filename operand is a C string literal enclosed in double quotes. The
filename can include directory elements. If it does, then the directory will be added to the
directory table and the basename will be added to the file table.

The detail of filename indices is exposed to the user because the filename table is shared
with the .debug_info section of the DWARF2 debugging information, and thus the user
must know the exact indices that table entries will have.

If DWARF-5 support has been enabled via the -gdwarf-5 option then an extended
version of the file is also allowed:

.file fileno [dirname] filename [md5 value]

With this version a separate directory name is allowed, although if this is used then
filename should not contain any directory components. In addtion an md5 hash value of
the contents of filename can be provided. This will be stored in the the file table as well,
and can be used by tools reading the debug information to verify that the contents of the
source file match the contents of the compiled file.

7.37 .fill repeat , size , value

repeat, size and value are absolute expressions. This emits repeat copies of size bytes.
Repeat may be zero or more. Size may be zero or more, but if it is more than 8, then it
is deemed to have the value 8, compatible with other people’s assemblers. The contents of
each repeat bytes is taken from an 8-byte number. The highest order 4 bytes are zero. The
lowest order 4 bytes are value rendered in the byte-order of an integer on the computer as
is assembling for. Each size bytes in a repetition is taken from the lowest order size bytes
of this number. Again, this bizarre behavior is compatible with other people’s assemblers.

size and value are optional. If the second comma and value are absent, value is assumed
zero. If the first comma and following tokens are absent, size is assumed to be 1.

Chapter 7: Assembler Directives 63

7.38 .float flonums

This directive assembles zero or more flonums, separated by commas. It has the same
effect as .single. The exact kind of floating point numbers emitted depends on how as is
configured. See Chapter 9 [Machine Dependencies|, page 93.

7.39 .func namel, labell

.func emits debugging information to denote function name, and is ignored unless the file
is assembled with debugging enabled. Only ‘~-gstabs[+]’ is currently supported. label is
the entry point of the function and if omitted name prepended with the ‘leading char’
is used. ‘leading char’ is usually _ or nothing, depending on the target. All functions
are currently defined to have void return type. The function must be terminated with
.endfunc.

7.40 .global symbol, .globl symbol

.global makes the symbol visible to 1d. If you define symbol in your partial program, its
value is made available to other partial programs that are linked with it. Otherwise, symbol
takes its attributes from a symbol of the same name from another file linked into the same
program.

Both spellings (‘.globl’ and ‘.global’) are accepted, for compatibility with other as-
semblers.

On the HPPA, .global is not always enough to make it accessible to other partial
programs. You may need the HPPA-only .EXPORT directive as well. See Section 9.15.5
[HPPA Assembler Directives], page 171.

7.41 .gnu_attribute tag,value
Record a GNU object attribute for this file. See Chapter 8 [Object Attributes|, page 89.

7.42 .hidden names

This is one of the ELF visibility directives. The other two are .internal (see Section 7.49
[.internall, page 65) and .protected (see Section 7.75 [.protected|, page 75).

This directive overrides the named symbols default visibility (which is set by their bind-
ing: local, global or weak). The directive sets the visibility to hidden which means that
the symbols are not visible to other components. Such symbols are always considered to be
protected as well.

7.43 .hword expressions

This expects zero or more expressions, and emits a 16 bit number for each.

This directive is a synonym for ‘.short’; depending on the target architecture, it may
also be a synonym for ‘.word’.

64 Using as

7.44 .ident

This directive is used by some assemblers to place tags in object files. The behavior of
this directive varies depending on the target. When using the a.out object file format, as
simply accepts the directive for source-file compatibility with existing assemblers, but does
not emit anything for it. When using COFF, comments are emitted to the .comment or
.rdata section, depending on the target. When using ELF, comments are emitted to the
.comment section.

7.45 .if absolute expression

.if marks the beginning of a section of code which is only considered part of the source
program being assembled if the argument (which must be an absolute expression) is non-
zero. The end of the conditional section of code must be marked by .endif (see Section 7.27
[.endif], page 60); optionally, you may include code for the alternative condition, flagged by
.else (see Section 7.22 [.else|, page 60). If you have several conditions to check, .elseif
may be used to avoid nesting blocks if/else within each subsequent .else block.

The following variants of .if are also supported:

.ifdef symbol
Assembles the following section of code if the specified symbol has been defined.
Note a symbol which has been referenced but not yet defined is considered to
be undefined.

.ifb text Assembles the following section of code if the operand is blank (empty).

.ifc stringl,string2
Assembles the following section of code if the two strings are the same. The
strings may be optionally quoted with single quotes. If they are not quoted,
the first string stops at the first comma, and the second string stops at the end
of the line. Strings which contain whitespace should be quoted. The string
comparison is case sensitive.

.ifeq absolute expression
Assembles the following section of code if the argument is zero.

.ifeqs stringl,string?2
Another form of .ifc. The strings must be quoted using double quotes.

.ifge absolute expression
Assembles the following section of code if the argument is greater than or equal
to zero.

.ifgt absolute expression
Assembles the following section of code if the argument is greater than zero.

.ifle absolute expression
Assembles the following section of code if the argument is less than or equal to
Z€ro.

.iflt absolute expression
Assembles the following section of code if the argument is less than zero.

Chapter 7: Assembler Directives 65

.ifnb text
Like .ifb, but the sense of the test is reversed: this assembles the following
section of code if the operand is non-blank (non-empty).

.ifnc stringl,string2.
Like .ifc, but the sense of the test is reversed: this assembles the following
section of code if the two strings are not the same.

.ifndef symbol

.ifnotdef symbol
Assembles the following section of code if the specified symbol has not been
defined. Both spelling variants are equivalent. Note a symbol which has been
referenced but not yet defined is considered to be undefined.

.ifne absolute expression
Assembles the following section of code if the argument is not equal to zero (in
other words, this is equivalent to .if).

.ifnes stringl,string2
Like .ifegs, but the sense of the test is reversed: this assembles the following
section of code if the two strings are not the same.

7.46 .incbin "file"[,skipl[,count]]

The incbin directive includes file verbatim at the current location. You can control the
search paths used with the ‘~-I’ command-line option (see Chapter 2 [Command-Line Op-
tions|, page 25). Quotation marks are required around file.

The skip argument skips a number of bytes from the start of the file. The count argument
indicates the maximum number of bytes to read. Note that the data is not aligned in any
way, so it is the user’s responsibility to make sure that proper alignment is provided both
before and after the incbin directive.

7.47 .include "file"

This directive provides a way to include supporting files at specified points in your source
program. The code from file is assembled as if it followed the point of the .include; when
the end of the included file is reached, assembly of the original file continues. You can control
the search paths used with the ‘-I’ command-line option (see Chapter 2 [Command-Line
Options|, page 25). Quotation marks are required around file.

7.48 .int expressions

Expect zero or more expressions, of any section, separated by commas. For each expression,
emit a number that, at run time, is the value of that expression. The byte order and bit
size of the number depends on what kind of target the assembly is for.

7.49 .internal names

This is one of the ELF visibility directives. The other two are .hidden (see Section 7.42
[.hidden]|, page 63) and .protected (see Section 7.75 [.protected], page 75).

66 Using as

This directive overrides the named symbols default visibility (which is set by their bind-
ing: local, global or weak). The directive sets the visibility to internal which means that
the symbols are considered to be hidden (i.e., not visible to other components), and that
some extra, processor specific processing must also be performed upon the symbols as well.

7.50 .irp symbol,values...

Evaluate a sequence of statements assigning different values to symbol. The sequence of
statements starts at the .irp directive, and is terminated by an .endr directive. For each
value, symbol is set to value, and the sequence of statements is assembled. If no value is
listed, the sequence of statements is assembled once, with symbol set to the null string. To
refer to symbol within the sequence of statements, use \symbol.

For example, assembling
.irp param,1,2,3
move d\param, sp@-
.endr

is equivalent to assembling
move dl,sp@-
move d2, sp@-
move d3, sp@-

For some caveats with the spelling of symbol, see also Section 7.62 [Macro|, page 69.

7.51 .irpc symbol,values...

Evaluate a sequence of statements assigning different values to symbol. The sequence of
statements starts at the .irpc directive, and is terminated by an .endr directive. For
each character in value, symbol is set to the character, and the sequence of statements is
assembled. If no value is listed, the sequence of statements is assembled once, with symbol
set to the null string. To refer to symbol within the sequence of statements, use \symbol.

For example, assembling

.irpc param, 123
move d\param, sp@-
.endr

is equivalent to assembling
move d1,sp@-
move d2,sp@-
move d3, sp@-
For some caveats with the spelling of symbol, see also the discussion at See Section 7.62
[Macro|, page 69.

7.52 .lcomm symbol , length

Reserve length (an absolute expression) bytes for a local common denoted by symbol. The
section and value of symbol are those of the new local common. The addresses are allocated
in the bss section, so that at run-time the bytes start off zeroed. Symbol is not declared
global (see Section 7.40 [.globall, page 63), so is normally not visible to 1d.

Chapter 7: Assembler Directives 67

Some targets permit a third argument to be used with .1lcomm. This argument specifies
the desired alignment of the symbol in the bss section.

The syntax for .lcomm differs slightly on the HPPA. The syntax is ‘symbol .lcomm,
length’; symbol is optional.

7.53 .lflags

as accepts this directive, for compatibility with other assemblers, but ignores it.

7.54 .line line-number

Change the logical line number. line-number must be an absolute expression. The next
line has that logical line number. Therefore any other statements on the current line (after
a statement separator character) are reported as on logical line number line-number — 1.
One day as will no longer support this directive: it is recognized only for compatibility with
existing assembler programs.

Even though this is a directive associated with the a.out or b.out object-code formats,
as still recognizes it when producing COFF output, and treats ‘.1line’ as though it were
the COFF ¢.1n’ if it is found outside a .def/.endef pair.

Inside a .def, ‘.1line’ is, instead, one of the directives used by compilers to generate
auxiliary symbol information for debugging.

7.55 .linkonce [typel

Mark the current section so that the linker only includes a single copy of it. This may be
used to include the same section in several different object files, but ensure that the linker
will only include it once in the final output file. The .linkonce pseudo-op must be used
for each instance of the section. Duplicate sections are detected based on the section name,
so it should be unique.

This directive is only supported by a few object file formats; as of this writing, the only
object file format which supports it is the Portable Executable format used on Windows
NT.

The type argument is optional. If specified, it must be one of the following strings. For
example:

.linkonce same_size

Not all types may be supported on all object file formats.
discard Silently discard duplicate sections. This is the default.
one_only Warn if there are duplicate sections, but still keep only one copy.

same_size
Warn if any of the duplicates have different sizes.

same_contents
Warn if any of the duplicates do not have exactly the same contents.

68 Using as

7.56 .list

Control (in conjunction with the .nolist directive) whether or not assembly listings are
generated. These two directives maintain an internal counter (which is zero initially).
.list increments the counter, and .nolist decrements it. Assembly listings are generated
whenever the counter is greater than zero.

By default, listings are disabled. When you enable them (with the ‘-a’ command-line
option; see Chapter 2 [Command-Line Options|, page 25), the initial value of the listing
counter is one.

7.57 .ln line-number

‘.1n’ is a synonym for ‘.1line’.

7.58 .loc fileno lineno [column] [options]

When emitting DWARF2 line number information, the .loc directive will add a row to
the .debug_line line number matrix corresponding to the immediately following assembly
instruction. The fileno, lineno, and optional column arguments will be applied to the
.debug_line state machine before the row is added. It is an error for the input assembly
file to generate a non-empty .debug_line and also use loc directives.

The options are a sequence of the following tokens in any order:

basic_block
This option will set the basic_block register in the .debug_line state machine
to true.

prologue_end
This option will set the prologue_end register in the .debug_line state ma-
chine to true.

epilogue_begin
This option will set the epilogue_begin register in the .debug_line state
machine to true.

is_stmt value
This option will set the is_stmt register in the .debug_line state machine to
value, which must be either 0 or 1.

isa value This directive will set the isa register in the .debug_line state machine to
value, which must be an unsigned integer.

discriminator value
This directive will set the discriminator register in the .debug_line state
machine to value, which must be an unsigned integer.

view value
This option causes a row to be added to .debug_line in reference to the cur-
rent address (which might not be the same as that of the following assembly
instruction), and to associate value with the view register in the .debug_line
state machine. If value is a label, both the view register and the label are set
to the number of prior .loc directives at the same program location. If value

Chapter 7: Assembler Directives 69

is the literal 0, the view register is set to zero, and the assembler asserts that
there aren’t any prior .loc directives at the same program location. If value
is the literal -0, the assembler arrange for the view register to be reset in this
row, even if there are prior .loc directives at the same program location.

7.59 .loc_mark_labels enable

When emitting DWARF2 line number information, the .loc_mark_labels directive makes
the assembler emit an entry to the .debug_line line number matrix with the basic_block
register in the state machine set whenever a code label is seen. The enable argument should
be either 1 or 0, to enable or disable this function respectively.

7.60 .local names

This directive, which is available for ELF targets, marks each symbol in the comma-
separated list of names as a local symbol so that it will not be externally visible. If the
symbols do not already exist, they will be created.

For targets where the .lcomm directive (see Section 7.52 [Lcomm]|, page 66) does not
accept an alignment argument, which is the case for most ELF targets, the .local directive
can be used in combination with . comm (see Section 7.12 [Comm], page 57) to define aligned
local common data.

7.61 .long expressions

.long is the same as ‘.int’. See Section 7.48 [.int], page 65.

7.62 .macro

The commands .macro and .endm allow you to define macros that generate assembly output.
For example, this definition specifies a macro sum that puts a sequence of numbers into
memory:

.macro sum from=0, to=5
.long \from

Lif \to-\from

sum "(\from+1)",\to
.endif

.endm

With that definition, ‘SUM 0,5’ is equivalent to this assembly input:

.long O
.long
.long
.long
.long
.long

[S2 I S GV SR

.macro macname
.Macro macname macargs . ..
Begin the definition of a macro called macname. If your macro definition re-
quires arguments, specify their names after the macro name, separated by com-

70

Using as

mas or spaces. You can qualify the macro argument to indicate whether all
invocations must specify a non-blank value (through ‘:req’), or whether it
takes all of the remaining arguments (through ‘:vararg’). You can supply a
default value for any macro argument by following the name with ‘=def1t’. You
cannot define two macros with the same macname unless it has been subject
to the .purgem directive (see Section 7.77 [Purgem], page 75) between the two
definitions. For example, these are all valid .macro statements:

.macro comm
Begin the definition of a macro called comm, which takes no argu-
ments.

.macro plusil p, pl

.macro plusl p pl
FEither statement begins the definition of a macro called plusi,
which takes two arguments; within the macro definition, write ‘\p’
or ‘\pl’ to evaluate the arguments.

.macro reserve_str pl=0 p2
Begin the definition of a macro called reserve_str, with two argu-
ments. The first argument has a default value, but not the second.
After the definition is complete, you can call the macro either as
‘reserve_str a,b’ (with ‘\p1’ evaluating to a and ‘\p2’ evaluating
to b), or as ‘reserve_str ,b’ (with ‘\p1’ evaluating as the default,
in this case ‘0’, and ‘\p2’ evaluating to b).

.macro m pl:req, p2=0, p3:vararg
Begin the definition of a macro called m, with at least three ar-
guments. The first argument must always have a value specified,
but not the second, which instead has a default value. The third
formal will get assigned all remaining arguments specified at invo-
cation time.

When you call a macro, you can specify the argument values either
by position, or by keyword. For example, ‘sum 9,17’ is equivalent
to ‘sum to=17, from=9’.

Note that since each of the macargs can be an identifier exactly as any other
one permitted by the target architecture, there may be occasional problems if
the target hand-crafts special meanings to certain characters when they occur
in a special position. For example, if the colon (:) is generally permitted to
be part of a symbol name, but the architecture specific code special-cases it
when occurring as the final character of a symbol (to denote a label), then
the macro parameter replacement code will have no way of knowing that and
consider the whole construct (including the colon) an identifier, and check only
this identifier for being the subject to parameter substitution. So for example
this macro definition:

.macro label 1
\1:
.endm

Chapter 7: Assembler Directives 71

.endm
.exitm

\@

LOCAL name

might not work as expected. Invoking ‘label foo’ might not create a label
called ‘foo’ but instead just insert the text ‘\1:’ into the assembler source,
probably generating an error about an unrecognised identifier.

Similarly problems might occur with the period character (‘.’) which is often
allowed inside opcode names (and hence identifier names). So for example
constructing a macro to build an opcode from a base name and a length specifier
like this:
.macro opcode base length
\base.\length
.endm

and invoking it as ‘opcode store 1’ will not create a ‘store.l’ instruction but
instead generate some kind of error as the assembler tries to interpret the text
‘\base.\length’.

There are several possible ways around this problem:

Insert white space
If it is possible to use white space characters then this is the simplest
solution. eg:

.macro label 1
\1l :
.endm

Use ‘\()’ The string ‘\()’ can be used to separate the end of a macro argu-
ment from the following text. eg:
.macro opcode base length
\base\ () .\length
.endm

Use the alternate macro syntax mode
In the alternative macro syntax mode the ampersand character (‘&’)
can be used as a separator. eg:
.altmacro
.macro label 1
1&:
.endm

Note: this problem of correctly identifying string parameters to pseudo ops
also applies to the identifiers used in .irp (see Section 7.50 [Irp|, page 66) and
.irpc (see Section 7.51 [Irpc|, page 66) as well.

Mark the end of a macro definition.
Exit early from the current macro definition.

as maintains a counter of how many macros it has executed in this pseudo-
variable; you can copy that number to your output with ‘\@, but only within
a macro definition.

L, ...]
Warning: LOCAL is only available if you select “alternate macro syntax” with
‘~-alternate’ or .altmacro. See Section 7.4 [.altmacro|, page 52.

72 Using as

7.63 .mri val

If val is non-zero, this tells as to enter MRI mode. If val is zero, this tells as to exit MRI
mode. This change affects code assembled until the next .mri directive, or until the end of
the file. See Section 2.9 [MRI mode], page 27.

7.64 .noaltmacro

Disable alternate macro mode. See Section 7.4 [Altmacro], page 52.

7.65 .nolist

Control (in conjunction with the .list directive) whether or not assembly listings are
generated. These two directives maintain an internal counter (which is zero initially).
.list increments the counter, and .nolist decrements it. Assembly listings are generated
whenever the counter is greater than zero.

7.66 .nop [size]

This directive emits no-op instructions. It is provided on all architectures, allowing the
creation of architecture neutral tests involving actual code. The size of the generated
instruction is target specific, but if the optional size argument is given and resolves to an
absolute positive value at that point in assembly (no forward expressions allowed) then the
fewest no-op instructions are emitted that equal or exceed a total size in bytes. .nop does
affect the generation of DWARF debug line information. Some targets do not support using
.nop with size.

7.67 .nops sizel, control]

This directive emits no-op instructions. It is specific to the Intel 80386 and AMD x86-64
targets. It takes a size argument and generates size bytes of no-op instructions. size must
be absolute and positive. These bytes do not affect the generation of DWARF debug line
information.

The optional control argument specifies a size limit for a single no-op instruction. If not
provided then a value of 0 is assumed. The valid values of control are between 0 and 4 in
16-bit mode, between 0 and 7 when tuning for older processors in 32-bit mode, between 0
and 11 in 64-bit mode or when tuning for newer processors in 32-bit mode. When 0 is used,
the no-op instruction size limit is set to the maximum supported size.

7.68 .octa bignums

This directive expects zero or more bignums, separated by commas. For each bignum, it
emits a 16-byte integer.

The term “octa” comes from contexts in which a “word” is two bytes; hence octa-word
for 16 bytes.

Chapter 7: Assembler Directives 73

7.69 .offset loc

Set the location counter to loc in the absolute section. loc must be an absolute expression.
This directive may be useful for defining symbols with absolute values. Do not confuse it
with the .org directive.

7.70 .org new-1c , fill

Advance the location counter of the current section to new-Ic. new-Ic is either an absolute
expression or an expression with the same section as the current subsection. That is, you
can’t use .org to cross sections: if new-Ic has the wrong section, the .org directive is
ignored. To be compatible with former assemblers, if the section of new-Ic is absolute, as
issues a warning, then pretends the section of new-Ic is the same as the current subsection.

.org may only increase the location counter, or leave it unchanged; you cannot use .org
to move the location counter backwards.

Because as tries to assemble programs in one pass, new-Ic may not be undefined. If you
really detest this restriction we eagerly await a chance to share your improved assembler.

Beware that the origin is relative to the start of the section, not to the start of the
subsection. This is compatible with other people’s assemblers.

When the location counter (of the current subsection) is advanced, the intervening bytes
are filled with fill which should be an absolute expression. If the comma and fill are omitted,
fill defaults to zero.

7.71 .p2align[wl] [abs-exprl, abs-exprl[, abs-expr]]]

Pad the location counter (in the current subsection) to a particular storage boundary. The
first expression (which must be absolute) is the number of low-order zero bits the location
counter must have after advancement. For example ‘.p2align 3’ advances the location
counter until it is a multiple of 8. If the location counter is already a multiple of 8, no
change is needed. If the expression is omitted then a default value of 0 is used, effectively
disabling alignment requirements.

The second expression (also absolute) gives the fill value to be stored in the padding
bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are normally
zero. However, on most systems, if the section is marked as containing code and the fill
value is omitted, the space is filled with no-op instructions.

The third expression is also absolute, and is also optional. If it is present, it is the
maximum number of bytes that should be skipped by this alignment directive. If doing
the alignment would require skipping more bytes than the specified maximum, then the
alignment is not done at all. You can omit the fill value (the second argument) entirely by
simply using two commas after the required alignment; this can be useful if you want the
alignment to be filled with no-op instructions when appropriate.

The .p2alignw and .p2alignl directives are variants of the .p2align directive. The
.p2alignw directive treats the fill pattern as a two byte word value. The .p2alignl di-
rectives treats the fill pattern as a four byte longword value. For example, .p2alignw
2,0x368d will align to a multiple of 4. If it skips two bytes, they will be filled in with
the value 0x368d (the exact placement of the bytes depends upon the endianness of the
processor). If it skips 1 or 3 bytes, the fill value is undefined.

74 Using as

7.72 .popsection

This is one of the ELF section stack manipulation directives. The others are .section
(see Section 7.84 [Section|, page 76), .subsection (see Section 7.95 [SubSection]|, page 83),
.pushsection (see Section 7.78 [PushSection|, page 75), and .previous (see Section 7.73
[Previous|, page 74).

This directive replaces the current section (and subsection) with the top section (and
subsection) on the section stack. This section is popped off the stack.

7.73 .previous

This is one of the ELF section stack manipulation directives. The others are .section
(see Section 7.84 [Section|, page 76), .subsection (see Section 7.95 [SubSection], page 83),
.pushsection (see Section 7.78 [PushSection], page 75), and .popsection (see Section 7.72
[PopSection], page 74).

This directive swaps the current section (and subsection) with most recently referenced
section/subsection pair prior to this one. Multiple .previous directives in a row will flip
between two sections (and their subsections). For example:

.section A
.subsection 1
.word 0x1234
.subsection 2
.word 0x5678
.previous
.word 0x9abc

Will place 0x1234 and 0x9abc into subsection 1 and 0x5678 into subsection 2 of section
A. Whilst:

.section A

.subsection 1
Now in section A subsection 1
.word 0x1234

.section B

.subsection 0
Now in section B subsection O
.word 0x5678

.subsection 1
Now in section B subsection 1
.word 0x9abc

.previous
Now in section B subsection 0O
.word OxdefO

Will place 0x1234 into section A, 0x5678 and Oxdef0 into subsection 0 of section B and
0x9abc into subsection 1 of section B.

In terms of the section stack, this directive swaps the current section with the top section
on the section stack.

7.74 .print string

as will print string on the standard output during assembly. You must put string in double
quotes.

Chapter 7: Assembler Directives 75

7.75 .protected names

This is one of the ELF visibility directives. The other two are .hidden (see Section 7.42
[Hidden], page 63) and .internal (see Section 7.49 [Internal|, page 65).

This directive overrides the named symbols default visibility (which is set by their bind-
ing: local, global or weak). The directive sets the visibility to protected which means
that any references to the symbols from within the components that defines them must
be resolved to the definition in that component, even if a definition in another component
would normally preempt this.

7.76 .psize lines , columns

Use this directive to declare the number of lines—and, optionally, the number of columns—
to use for each page, when generating listings.

If you do not use .psize, listings use a default line-count of 60. You may omit the
comma and columns specification; the default width is 200 columns.

as generates formfeeds whenever the specified number of lines is exceeded (or whenever
you explicitly request one, using .eject).

If you specify lines as 0, no formfeeds are generated save those explicitly specified with
.eject.

7.77 .purgem name

Undefine the macro name, so that later uses of the string will not be expanded. See
Section 7.62 [Macro], page 69.

7.78 .pushsection name [, subsection] [, "flags"[,
Qtypel,arguments]]]

This is one of the ELF section stack manipulation directives. The others are .section
(see Section 7.84 [Section|, page 76), .subsection (see Section 7.95 [SubSection], page 83),
.popsection (see Section 7.72 [PopSection|, page 74), and .previous (see Section 7.73
[Previous|, page 74).

This directive pushes the current section (and subsection) onto the top of the section
stack, and then replaces the current section and subsection with name and subsection.
The optional flags, type and arguments are treated the same as in the .section (see
Section 7.84 [Section], page 76) directive.

7.79 .quad bignums

.quad expects zero or more bignums, separated by commas. For each bignum, it emits an
8-byte integer. If the bignum won’t fit in 8 bytes, it prints a warning message; and just
takes the lowest order 8 bytes of the bignum.

The term “quad” comes from contexts in which a “word” is two bytes; hence quad-word
for 8 bytes.

76 Using as

7.80 .reloc offset, reloc_namel[, expression]

Generate a relocation at offset of type reloc_name with value expression. If offset is a
number, the relocation is generated in the current section. If offset is an expression that
resolves to a symbol plus offset, the relocation is generated in the given symbol’s section.
expression, if present, must resolve to a symbol plus addend or to an absolute value, but
note that not all targets support an addend. e.g. ELF REL targets such as i386 store an
addend in the section contents rather than in the relocation. This low level interface does
not support addends stored in the section.

7.81 .rept count

Repeat the sequence of lines between the .rept directive and the next .endr directive count
times.

For example, assembling

.rept 3
.long O
.endr

is equivalent to assembling

.long O
.long O
.long O

A count of zero is allowed, but nothing is generated. Negative counts are not allowed
and if encountered will be treated as if they were zero.

7.82 .sbttl "subheading"

Use subheading as the title (third line, immediately after the title line) when generating
assembly listings.

This directive affects subsequent pages, as well as the current page if it appears within
ten lines of the top of a page.

7.83 .scl class

Set the storage-class value for a symbol. This directive may only be used inside a
.def/.endef pair. Storage class may flag whether a symbol is static or external, or it may
record further symbolic debugging information.

7.84 .section name

Use the .section directive to assemble the following code into a section named name.

This directive is only supported for targets that actually support arbitrarily named
sections; on a.out targets, for example, it is not accepted, even with a standard a.out
section name.

COFF Version

For COFF targets, the .section directive is used in one of the following ways:

Chapter 7: Assembler Directives 7

.section namel, "flags"]
.section namel[, subsection]

If the optional argument is quoted, it is taken as flags to use for the section. Each flag
is a single character. The following flags are recognized:

b bss section (uninitialized data)

n section is not loaded

W writable section

d data section

e exclude section from linking

r read-only section

X executable section

s shared section (meaningful for PE targets)

a ignored. (For compatibility with the ELF version)
y section is not readable (meaningful for PE targets)
0-9 single-digit power-of-two section alignment (GNU extension)

If no flags are specified, the default flags depend upon the section name. If the section
name is not recognized, the default will be for the section to be loaded and writable. Note
the n and w flags remove attributes from the section, rather than adding them, so if they
are used on their own it will be as if no flags had been specified at all.

If the optional argument to the .section directive is not quoted, it is taken as a sub-
section number (see Section 4.4 [Sub-Sections|, page 39).

ELF Version

This is one of the ELF section stack manipulation directives. The others are .subsection
(see Section 7.95 [SubSection], page 83), .pushsection (see Section 7.78 [PushSection],
page 75), .popsection (see Section 7.72 [PopSection], page 74), and .previous (see
Section 7.73 [Previous|, page 74).

For ELF targets, the .section directive is used like this:
.section name [, "flags"[, @typel,flag_specific_arguments]]]

If the ‘--sectname-subst’ command-line option is provided, the name argument may
contain a substitution sequence. Only %S is supported at the moment, and substitutes the
current section name. For example:

.macro exception_code
.section %S.exception
[exception code here]
.previous

.endm

.text
[code]
exception_code

[...]

78 Using as

.section .init
[init code]
exception_code
[...]

The two exception_code invocations above would create the .text.exception and
.init.exception sections respectively. This is useful e.g. to discriminate between ancillary
sections that are tied to setup code to be discarded after use from ancillary sections that
need to stay resident without having to define multiple exception_code macros just for
that purpose.

The optional flags argument is a quoted string which may contain any combination of
the following characters:

a section is allocatable

d section is a GNU_MBIND section

e section is excluded from executable and shared library.

o section references a symbol defined in another section (the linked-to section) in

the same file.

W section is writable

X section is executable

M section is mergeable

S section contains zero terminated strings
G section is a member of a section group
T section is used for thread-local-storage
?

section is a member of the previously-current section’s group, if any

R retained section (apply SHF_GNU_RETAIN to prevent linker garbage collec-
tion, GNU ELF extension)

<number> a numeric value indicating the bits to be set in the ELF section header’s flags
field. Note - if one or more of the alphabetic characters described above is also
included in the flags field, their bit values will be ORed into the resulting value.

<target specific>
some targets extend this list with their own flag characters

Note - once a section’s flags have been set they cannot be changed. There are a few
exceptions to this rule however. Processor and application specific flags can be added to an
already defined section. The .interp, .strtab and .symtab sections can have the allocate
flag (a) set after they are initially defined, and the .note-GNU-stack section may have the
executable (x) flag added. Also note that the .attach_to_group directive can be used to
add a section to a group even if the section was not originally declared to be part of that
group.

The optional type argument may contain one of the following constants:

Oprogbits
section contains data

Chapter 7: Assembler Directives 79

@nobits section does not contain data (i.e., section only occupies space)
@note section contains data which is used by things other than the program

@init_array
section contains an array of pointers to init functions

@fini_array
section contains an array of pointers to finish functions

O@preinit_array
section contains an array of pointers to pre-init functions

@<number>
a numeric value to be set as the ELF section header’s type field.

@<target specific>
some targets extend this list with their own types

Many targets only support the first three section types. The type may be enclosed in
double quotes if necessary.

Note on targets where the @ character is the start of a comment (eg ARM) then another
character is used instead. For example the ARM port uses the % character.

Note - some sections, eg .text and .data are considered to be special and have fixed
types. Any attempt to declare them with a different type will generate an error from the
assembler.

If flags contains the M symbol then the type argument must be specified as well as an
extra argument—entsize—like this:

.section name , "flags"M, Qtype, entsize

Sections with the M flag but not S flag must contain fixed size constants, each entsize
octets long. Sections with both M and S must contain zero terminated strings where each
character is entsize bytes long. The linker may remove duplicates within sections with the
same name, same entity size and same flags. entsize must be an absolute expression. For
sections with both M and S, a string which is a suffix of a larger string is considered a
duplicate. Thus "def" will be merged with "abcdef"; A reference to the first "def" will
be changed to a reference to "abcdef"+3.

If flags contains the o flag, then the type argument must be present along with an
additional field like this:
.section name,"flags"o,@type,SymbolName|SectionIndex

The SymbolName field specifies the symbol name which the section references. Alter-
natively a numeric SectionIndex can be provided. This is not generally a good idea as
section indicies are rarely known at assembly time, but the facility is provided for testing
purposes. An index of zero is allowed. It indicates that the linked-to section has already
been discarded.

Note: If both the M and o flags are present, then the fields for the Merge flag should
come first, like this:

.section name,"flags"Mo,@type,entsize,SymbolName

If flags contains the G symbol then the type argument must be present along with an
additional field like this:

80 Using as

.section name , "flags"G, @type, GroupNamel, linkage]

The GroupName field specifies the name of the section group to which this particular
section belongs. The optional linkage field can contain:

comdat indicates that only one copy of this section should be retained

.gnu.linkonce
an alias for comdat

Note: if both the M and G flags are present then the fields for the Merge flag should
come first, like this:

.section name , "flags"MG, @type, entsize, GroupName[, linkage]

If both o flag and G flag are present, then the SymbolName field for o comes first, like
this:
.section name,"flags"oG,Qtype, SymbolName,GroupName[,linkagel

If flags contains the 7 symbol then it may not also contain the G symbol and the Group-
Name or linkage fields should not be present. Instead, ? says to consider the section that’s
current before this directive. If that section used G, then the new section will use G with
those same GroupName and linkage fields implicitly. If not, then the ? symbol has no effect.

The optional unique,<number> argument must come last. It assigns <number> as a unique
section ID to distinguish different sections with the same section name like these:

.section name,"flags",Q@type,unique,<number>
.section name,"flags"G,Q@type,GroupName, [1inkage] ,unique,<number>
.section name,"flags"MG,Qtype,entsize,GroupName[,linkage] ,unique,<number>

The valid values of <number> are between 0 and 4294967295.

If no flags are specified, the default flags depend upon the section name. If the section
name is not recognized, the default will be for the section to have none of the above flags:
it will not be allocated in memory, nor writable, nor executable. The section will contain
data.

For ELF targets, the assembler supports another type of .section directive for compat-
ibility with the Solaris assembler:
.section "name"[, flags...]

Note that the section name is quoted. There may be a sequence of comma separated
flags:

#alloc section is allocatable
#write section is writable
#execinstr

section is executable
#exclude section is excluded from executable and shared library.
#tls section is used for thread local storage

This directive replaces the current section and subsection. See the contents of the gas
testsuite directory gas/testsuite/gas/elf for some examples of how this directive and
the other section stack directives work.

Chapter 7: Assembler Directives 81

7.85 .set symbol, expression

Set the value of symbol to expression. This changes symbol’s value and type to conform to
expression. If symbol was flagged as external, it remains flagged (see Section 5.5 [Symbol
Attributes|, page 45).

You may .set a symbol many times in the same assembly provided that the values given
to the symbol are constants. Values that are based on expressions involving other symbols
are allowed, but some targets may restrict this to only being done once per assembly. This
is because those targets do not set the addresses of symbols at assembly time, but rather
delay the assignment until a final link is performed. This allows the linker a chance to
change the code in the files, changing the location of, and the relative distance between,
various different symbols.

If you .set a global symbol, the value stored in the object file is the last value stored
into it.

On Z80 set is a real instruction, use .set or ‘symbol defl expression’ instead.

7.86 .short expressions

.short is normally the same as ‘.word’. See Section 7.110 [.word], page 87.

In some configurations, however, .short and .word generate numbers of different
lengths. See Chapter 9 [Machine Dependencies|, page 93.

7.87 .single flonums

This directive assembles zero or more flonums, separated by commas. It has the same
effect as .float. The exact kind of floating point numbers emitted depends on how as is
configured. See Chapter 9 [Machine Dependencies|, page 93.

7.88 .size

This directive is used to set the size associated with a symbol.

COFF Version

For COFF targets, the .size directive is only permitted inside .def/.endef pairs. It is
used like this:

.size expression

ELF Version
For ELF targets, the .size directive is used like this:

.size name , expression
This directive sets the size associated with a symbol name. The size in bytes is computed
from expression which can make use of label arithmetic. This directive is typically used to
set the size of function symbols.

7.89 .skip size [,fill]

This directive emits size bytes, each of value fill. Both size and fill are absolute expressions.
If the comma and fill are omitted, fill is assumed to be zero. This is the same as ‘.space’.

82 Using as

7.90 .slebl28 expressions

sleb128 stands for “signed little endian base 128.” This is a compact, variable length rep-
resentation of numbers used by the DWARF symbolic debugging format. See Section 7.102
[.uleb128], page 86.

7.91 .space size [,fill]

This directive emits size bytes, each of value fill. Both size and fill are absolute expressions.
If the comma and fill are omitted, fill is assumed to be zero. This is the same as *.skip’.

Warning: .space has a completely different meaning for HPPA targets; use
.block as a substitute. See HP9000 Series 800 Assembly Language Refer-
ence Manual (HP 92432-90001) for the meaning of the .space directive. See
Section 9.15.5 [HPPA Assembler Directives|, page 171, for a summary.

7.92 .stabd, .stabn, .stabs

There are three directives that begin ‘.stab’. All emit symbols (see Chapter 5 [Symbols],
page 43), for use by symbolic debuggers. The symbols are not entered in the as hash table:
they cannot be referenced elsewhere in the source file. Up to five fields are required:

string This is the symbol’s name. It may contain any character except ‘\000’, so
is more general than ordinary symbol names. Some debuggers used to code
arbitrarily complex structures into symbol names using this field.

type An absolute expression. The symbol’s type is set to the low 8 bits of this
expression. Any bit pattern is permitted, but 1d and debuggers choke on silly
bit patterns.

other An absolute expression. The symbol’s “other” attribute is set to the low 8 bits
of this expression.

desc An absolute expression. The symbol’s descriptor is set to the low 16 bits of this
expression.
value An absolute expression which becomes the symbol’s value.

If a warning is detected while reading a .stabd, .stabn, or .stabs statement, the
symbol has probably already been created; you get a half-formed symbol in your object file.
This is compatible with earlier assemblers!

.stabd type , other , desc
The “name” of the symbol generated is not even an empty string. It is a null
pointer, for compatibility. Older assemblers used a null pointer so they didn’t
waste space in object files with empty strings.
The symbol’s value is set to the location counter, relocatably. When your
program is linked, the value of this symbol is the address of the location counter
when the .stabd was assembled.

.stabn type , other , desc , value
The name of the symbol is set to the empty string "".

.stabs string , type , other , desc , value
All five fields are specified.

Chapter 7: Assembler Directives 83

7.93 .string "str", .string8 "str", .stringl6

"str", .string32 "str", .string64 "str"

Copy the characters in str to the object file. You may specify more than one string
to copy, separated by commas. Unless otherwise specified for a particular machine, the
assembler marks the end of each string with a 0 byte. You can use any of the escape
sequences described in Section 3.6.1.1 [Strings]|, page 33.

The variants string16, string32 and string64 differ from the string pseudo opcode
in that each 8-bit character from str is copied and expanded to 16, 32 or 64 bits respectively.
The expanded characters are stored in target endianness byte order.

Example:

.string32 "BYE"

expands to:

.string "B\O\O\OY\O\O\OE\O\O\O" /* On little endian targets. */
.string "\O\O\OB\O\O\OY\O\O\OE" /% On big endian targets. */

7.94 .struct expression

Switch to the absolute section, and set the section offset to expression, which must be an
absolute expression. You might use this as follows:

.struct 0O
fieldl:

.struct fieldl + 4
field2:

.struct field2 + 4
field3:

This would define the symbol fieldl to have the value 0, the symbol field2 to have
the value 4, and the symbol field3 to have the value 8. Assembly would be left in the
absolute section, and you would need to use a .section directive of some sort to change to
some other section before further assembly.

7.95 .subsection name

This is one of the ELF section stack manipulation directives. The others are .section (see
Section 7.84 [Section], page 76), .pushsection (see Section 7.78 [PushSection|, page 75),
.popsection (see Section 7.72 [PopSection|, page 74), and .previous (see Section 7.73
[Previous|, page 74).

This directive replaces the current subsection with name. The current section is not
changed. The replaced subsection is put onto the section stack in place of the then current
top of stack subsection.

7.96 .symver

Use the .symver directive to bind symbols to specific version nodes within a source file.
This is only supported on ELF platforms, and is typically used when assembling files to be
linked into a shared library. There are cases where it may make sense to use this in objects
to be bound into an application itself so as to override a versioned symbol from a shared
library.

For ELF targets, the .symver directive can be used like this:

84 Using as

.symver name, name2@nodenamel[,visibility]

If the original symbol name is defined within the file being assembled, the .symver
directive effectively creates a symbol alias with the name name2@nodename, and in fact
the main reason that we just don’t try and create a regular alias is that the @ character
isn’t permitted in symbol names. The name2 part of the name is the actual name of the
symbol by which it will be externally referenced. The name name itself is merely a name of
convenience that is used so that it is possible to have definitions for multiple versions of a
function within a single source file, and so that the compiler can unambiguously know which
version of a function is being mentioned. The nodename portion of the alias should be the
name of a node specified in the version script supplied to the linker when building a shared
library. If you are attempting to override a versioned symbol from a shared library, then
nodename should correspond to the nodename of the symbol you are trying to override.
The optional argument visibility updates the visibility of the original symbol. The valid
visibilities are local, hidden, and remove. The local visibility makes the original symbol
a local symbol (see Section 7.60 [Local], page 69). The hidden visibility sets the visibility
of the original symbol to hidden (see Section 7.42 [Hidden|, page 63). The remove visibility
removes the original symbol from the symbol table. If visibility isn’t specified, the original
symbol is unchanged.

If the symbol name is not defined within the file being assembled, all references to name
will be changed to name2@nodename. If no reference to name is made, name2@nodename
will be removed from the symbol table.

Another usage of the .symver directive is:

.symver name, name2@@nodename

In this case, the symbol name must exist and be defined within the file being assembled.
It is similar to name2@nodename. The difference is name2@@nodename will also be used
to resolve references to name2 by the linker.

The third usage of the .symver directive is:

.symver name, name2@@@nodename

When name is not defined within the file being assembled, it is treated as
name2@nodename. When name is defined within the file being assembled, the symbol
name, name, will be changed to name2@@nodename.

7.97 .tag structname

This directive is generated by compilers to include auxiliary debugging information in the
symbol table. It is only permitted inside .def/.endef pairs. Tags are used to link structure
definitions in the symbol table with instances of those structures.

7.98 .text subsection

Tells as to assemble the following statements onto the end of the text subsection numbered
subsection, which is an absolute expression. If subsection is omitted, subsection number
zero is used.

Chapter 7: Assembler Directives 85

7.99 .title "heading"

Use heading as the title (second line, immediately after the source file name and pagenum-
ber) when generating assembly listings.

This directive affects subsequent pages, as well as the current page if it appears within
ten lines of the top of a page.

7.100 .tls_common symbol, lengthl, alignment]

This directive behaves in the same way as the .comm directive (see Section 7.12 [Comm],
page 57) except that symbol has type of STT_TLS instead of STT_OBJECT.

7.101 .type
This directive is used to set the type of a symbol.

COFF Version

For COFF targets, this directive is permitted only within .def/.endef pairs. It is used
like this:

.type int
This records the integer int as the type attribute of a symbol table entry.

ELF Version
For ELF targets, the .type directive is used like this:

.type name , type description

This sets the type of symbol name to be either a function symbol or an object symbol.
There are five different syntaxes supported for the type description field, in order to provide
compatibility with various other assemblers.

Because some of the characters used in these syntaxes (such as ‘@’ and ‘#’) are comment
characters for some architectures, some of the syntaxes below do not work on all architec-
tures. The first variant will be accepted by the GNU assembler on all architectures so that
variant should be used for maximum portability, if you do not need to assemble your code
with other assemblers.

The syntaxes supported are:

.type <name> STT_<TYPE_IN_UPPER_CASE>
.type <name>,#<type>
.type <name>,@<type>
.type <name>,’<type>
.type <name>,"<type>"

The types supported are:

STT_FUNC
function Mark the symbol as being a function name.

STT_GNU_IFUNC

gnu_indirect_function
Mark the symbol as an indirect function when evaluated during reloc processing.
(This is only supported on assemblers targeting GNU systems).

86 Using as

STT_OBJECT
object Mark the symbol as being a data object.

STT_TLS
tls_object
Mark the symbol as being a thread-local data object.

STT_COMMON
common Mark the symbol as being a common data object.

STT_NOTYPE
notype Does not mark the symbol in any way. It is supported just for completeness.

gnu_unique_object
Marks the symbol as being a globally unique data object. The dynamic linker
will make sure that in the entire process there is just one symbol with this
name and type in use. (This is only supported on assemblers targeting GNU
systems).

Changing between incompatible types other than from/to STT_-NOTYPE will result in
a diagnostic. An intermediate change to STT_NOTYPE will silence this.

Note: Some targets support extra types in addition to those listed above.

7.102 .ulebl128 expressions

uleb128 stands for “unsigned little endian base 128.” This is a compact, variable length
representation of numbers used by the DWARF symbolic debugging format. See Section 7.90
[.s1eb128], page 82.

7.103 .val addr

This directive, permitted only within .def/.endef pairs, records the address addr as the
value attribute of a symbol table entry.

7.104 .version "string"

This directive creates a .note section and places into it an ELF formatted note of type
NT_VERSION. The note’s name is set to string.

7.105 .vtable_entry table, offset

This directive finds or creates a symbol table and creates a VTABLE_ENTRY relocation for
it with an addend of offset.

7.106 .vtable_inherit child, parent

This directive finds the symbol child and finds or creates the symbol parent and then
creates a VTABLE_INHERIT relocation for the parent whose addend is the value of the child
symbol. As a special case the parent name of 0 is treated as referring to the *ABS* section.

Chapter 7: Assembler Directives 87

7.107 .warning "string"

Similar to the directive .error (see Section 7.32 [.error "string"|, page 61), but just
emits a warning.

7.108 .weak names

This directive sets the weak attribute on the comma separated list of symbol names. If the
symbols do not already exist, they will be created.

On COFF targets other than PE, weak symbols are a GNU extension. This directive
sets the weak attribute on the comma separated list of symbol names. If the symbols do
not already exist, they will be created.

On the PE target, weak symbols are supported natively as weak aliases. When a weak
symbol is created that is not an alias, GAS creates an alternate symbol to hold the default
value.

7.109 .weakref alias, target

This directive creates an alias to the target symbol that enables the symbol to be referenced
with weak-symbol semantics, but without actually making it weak. If direct references or
definitions of the symbol are present, then the symbol will not be weak, but if all references
to it are through weak references, the symbol will be marked as weak in the symbol table.

The effect is equivalent to moving all references to the alias to a separate assembly source
file, renaming the alias to the symbol in it, declaring the symbol as weak there, and running
a reloadable link to merge the object files resulting from the assembly of the new source file
and the old source file that had the references to the alias removed.

The alias itself never makes to the symbol table, and is entirely handled within the
assembler.

7.110 .word expressions

This directive expects zero or more expressions, of any section, separated by commas.

The size of the number emitted, and its byte order, depend on what target computer
the assembly is for.

Warning: Special Treatment to support Compilers

Machines with a 32-bit address space, but that do less than 32-bit addressing, require
the following special treatment. If the machine of interest to you does 32-bit addressing
(or doesn’t require it; see Chapter 9 [Machine Dependencies|, page 93), you can ignore this
issue.

In order to assemble compiler output into something that works, as occasionally does
strange things to ‘.word’ directives. Directives of the form ‘.word symi-sym2’ are often
emitted by compilers as part of jump tables. Therefore, when as assembles a directive of
the form ‘.word syml-sym2’, and the difference between sym1 and sym2 does not fit in 16
bits, as creates a secondary jump table, immediately before the next label. This secondary
jump table is preceded by a short-jump to the first byte after the secondary table. This
short-jump prevents the flow of control from accidentally falling into the new table. Inside

88 Using as

the table is a long-jump to sym2. The original ‘.word’ contains syml minus the address of
the long-jump to sym2.

If there were several occurrences of ‘.word syml-sym2’ before the secondary jump table,
all of them are adjusted. If there was a ‘.word sym3-sym4’, that also did not fit in sixteen
bits, a long-jump to sym4 is included in the secondary jump table, and the .word directives
are adjusted to contain sym3 minus the address of the long-jump to sym4; and so on, for as
many entries in the original jump table as necessary.

7.111 .zero size

This directive emits size 0-valued bytes. size must be an absolute expression. This directive
is actually an alias for the ‘.skip’ directive so it can take an optional second argument of
the value to store in the bytes instead of zero. Using ‘.zero’ in this way would be confusing
however.

7.112 .2byte expression [, expression]*

This directive expects zero or more expressions, separated by commas. If there are no
expressions then the directive does nothing. Otherwise each expression is evaluated in turn
and placed in the next two bytes of the current output section, using the endian model of
the target. If an expression will not fit in two bytes, a warning message is displayed and
the least significant two bytes of the expression’s value are used. If an expression cannot
be evaluated at assembly time then relocations will be generated in order to compute the
value at link time.

This directive does not apply any alignment before or after inserting the values. As a
result of this, if relocations are generated, they may be different from those used for inserting
values with a guaranteed alignment.

This directive is only available for ELF targets,

7.113 .4byte expression [, expression]*

Like the .2byte directive, except that it inserts unaligned, four byte long values into the
output.

7.114 .8byte expression [, expression]*
Like the .2byte directive, except that it inserts unaligned, eight byte long bignum values
into the output.

7.115 Deprecated Directives

One day these directives won’t work. They are included for compatibility with older assem-
blers.

.abort

.line

Chapter 8: Object Attributes 89

8 Object Attributes

as assembles source files written for a specific architecture into object files for that architec-
ture. But not all object files are alike. Many architectures support incompatible variations.
For instance, floating point arguments might be passed in floating point registers if the
object file requires hardware floating point support—or floating point arguments might be
passed in integer registers if the object file supports processors with no hardware floating
point unit. Or, if two objects are built for different generations of the same architecture,
the combination may require the newer generation at run-time.

This information is useful during and after linking. At link time, 1d can warn about
incompatible object files. After link time, tools like gdb can use it to process the linked file
correctly.

Compatibility information is recorded as a series of object attributes. Each attribute has
a vendor, tag, and value. The vendor is a string, and indicates who sets the meaning of the
tag. The tag is an integer, and indicates what property the attribute describes. The value
may be a string or an integer, and indicates how the property affects this object. Missing
attributes are the same as attributes with a zero value or empty string value.

Object attributes were developed as part of the ABI for the ARM Architecture. The file
format is documented in ELF for the ARM Architecture.

8.1 GNU Object Attributes

The .gnu_attribute directive records an object attribute with vendor ‘gnu’.

Except for ‘Tag_compatibility’, which has both an integer and a string for its value,
GNU attributes have a string value if the tag number is odd and an integer value if the tag
number is even. The second bit (tag & 2 is set for architecture-independent attributes and
clear for architecture-dependent ones.

8.1.1 Common GNU attributes

These attributes are valid on all architectures.

Tag_compatibility (32)
The compatibility attribute takes an integer flag value and a vendor name. If
the flag value is 0, the file is compatible with other toolchains. If it is 1, then
the file is only compatible with the named toolchain. If it is greater than 1, the

file can only be processed by other toolchains under some private arrangement
indicated by the flag value and the vendor name.

8.1.2 M680x0 Attributes
Tag GNU_M68K_ABI_FP (4)
The floating-point ABI used by this object file. The value will be:
e 0 for files not affected by the floating-point ABI.
e 1 for files using double-precision hardware floating-point ABI.

e 2 for files using the software floating-point ABI.

90

Using as

8.1.3 MIPS Attributes

Tag-GNU_MIPS_ABI_FP (4)
The floating-point ABI used by this object file. The value will be:

0 for files not affected by the floating-point ABI.

1 for files using the hardware floating-point ABI with a standard double-
precision FPU.

2 for files using the hardware floating-point ABI with a single-precision
FPU.

3 for files using the software floating-point ABI.

4 for files using the deprecated hardware floating-point ABI which used 64-
bit floating-point registers, 32-bit general-purpose registers and increased
the number of callee-saved floating-point registers.

5 for files using the hardware floating-point ABI with a double-precision
FPU with either 32-bit or 64-bit floating-point registers and 32-bit general-
purpose registers.

6 for files using the hardware floating-point ABI with 64-bit floating-point
registers and 32-bit general-purpose registers.

7 for files using the hardware floating-point ABI with 64-bit floating-point

registers, 32-bit general-purpose registers and a rule that forbids the direct
use of odd-numbered single-precision floating-point registers.

8.1.4 PowerPC Attributes

Tag_ GNU_Power_ABI_FP (4)
The floating-point ABI used by this object file. The value will be:

0 for files not affected by the floating-point ABI.
1 for files using double-precision hardware floating-point ABI.
2 for files using the software floating-point ABI.

3 for files using single-precision hardware floating-point ABI.

Tag_GNU_Power_ABI_Vector (8)
The vector ABI used by this object file. The value will be:

0 for files not affected by the vector ABI.
1 for files using general purpose registers to pass vectors.
2 for files using AltiVec registers to pass vectors.

3 for files using SPE registers to pass vectors.

8.1.5 IBM z Systems Attributes

Tag_ GNU_S390_ABI_Vector (8)
The vector ABI used by this object file. The value will be:

0 for files not affected by the vector ABI.
1 for files using software vector ABI.

2 for files using hardware vector ABI.

Chapter 8: Object Attributes 91

8.1.6 MSP430 Attributes

Tag_GNU_MSP430_Data_Region (4)
The data region used by this object file. The value will be:

e 0 for files not using the large memory model.

e 1 for files which have been compiled with the condition that all data is in
the lower memory region, i.e. below address 0x10000.

e 2 for files which allow data to be placed in the full 20-bit memory range.

8.2 Defining New Object Attributes

If you want to define a new GNU object attribute, here are the places you will need to
modify. New attributes should be discussed on the ‘binutils’ mailing list.

e This manual, which is the official register of attributes.
e The header for your architecture include/elf, to define the tag.

e The bfd support file for your architecture, to merge the attribute and issue any appro-
priate link warnings.

e Test cases in 1d/testsuite for merging and link warnings.
e binutils/readelf.c to display your attribute.

e GCC, if you want the compiler to mark the attribute automatically.

Chapter 9: Machine Dependent Features 93

9 Machine Dependent Features

The machine instruction sets are (almost by definition) different on each machine where as
runs. Floating point representations vary as well, and as often supports a few additional
directives or command-line options for compatibility with other assemblers on a particu-
lar platform. Finally, some versions of as support special pseudo-instructions for branch
optimization.

This chapter discusses most of these differences, though it does not include details on
any machine’s instruction set. For details on that subject, see the hardware manufacturer’s
manual.

94

Using as

9.1 AArch64 Dependent Features

9.1.1 Options

-EB

-EL

-mabi=abi

This option specifies that the output generated by the assembler should be
marked as being encoded for a big-endian processor.

This option specifies that the output generated by the assembler should be
marked as being encoded for a little-endian processor.

Specify which ABI the source code uses. The recognized arguments are: i1p32
and 1p64, which decides the generated object file in ELF32 and ELF64 format
respectively. The default is 1p64.

-mcpu=processor[+extension. . .]

This option specifies the target processor. The assembler will issue an
error message if an attempt is made to assemble an instruction which will
not execute on the target processor. The following processor names are
recognized: cortex-a34, cortex-a3b, cortex-ab3, cortex—-abb, cortex-ab7,
cortex-a6b, cortex-a6bae, cortex-a72, cortex-a73, cortex-ar7b,
cortex-a76, cortex-a76ae, cortex-a77, cortex—-a78, cortex—a78ae,
cortex—-a78c, ares, exynos-ml, falkor, neoverse-nl, neoverse-n2,
neoverse-el, neoverse-vl, qdf24xx, saphira, thunderx, vulcan, xgenel
xgene?2, cortex-r82, and cortex-x1. The special name all may be used to
allow the assembler to accept instructions valid for any supported processor,
including all optional extensions.

In addition to the basic instruction set, the assembler can be told to ac-
cept, or restrict, various extension mnemonics that extend the processor. See
Section 9.1.2 [AArch64 Extensions], page 95.

If some implementations of a particular processor can have an extension, then
then those extensions are automatically enabled. Consequently, you will not
normally have to specify any additional extensions.

-march=architecture[+extension...]

-mverbose-

This option specifies the target architecture. The assembler will issue an er-
ror message if an attempt is made to assemble an instruction which will not
execute on the target architecture. The following architecture names are rec-
ognized: armv8-a, armv8.1-a, armv8.2-a, armv8.3-a, armv8.4-a armv8.5-a,
armv8.6-a, armv8.7-a, and armv8-r.

If both -mcpu and -march are specified, the assembler will use the setting for
-mcpu. If neither are specified, the assembler will default to -mcpu=all.

The architecture option can be extended with the same instruction set extension
options as the -mcpu option. Unlike -mcpu, extensions are not always enabled
by default, See Section 9.1.2 [AArch64 Extensions|, page 95.

error
This option enables verbose error messages for AArch64 gas. This option is
enabled by default.

Chapter 9: Machine Dependent Features

-mno-verbose-error

9.1.2 Architecture Extensions

95

This option disables verbose error messages in AArch64 gas.

The table below lists the permitted architecture extensions that are supported by the as-
sembler and the conditions under which they are automatically enabled.

Multiple extensions may be specified, separated by a +. Extension mnemonics may also
be removed from those the assembler accepts. This is done by prepending no to the option
that adds the extension. Extensions that are removed must be listed after all extensions
that have been added.

Enabling an extension that requires other extensions will automatically cause those ex-
tensions to be enabled. Similarly, disabling an extension that is required by other extensions
will automatically cause those extensions to be disabled.

Extension
i8mm
£32mm
f£64mm
bf16
compnum
crc
crypto
aes

sha2

sha3

smé
fp
fpl6
lor

1se

Minimum
Architecture
ARMvS8.2-A
ARMvS8.2-A
ARMvS8.2-A
ARMv8.2-A
ARMvS8.2-A
ARMvS8-A
ARMvS8-A
ARMvS8-A
ARMv&-A

ARMv8.2-A

ARMv8.2-A

ARMvS-A

ARMv8.2-A

ARMvS8-A

ARMvS-A

Enabled by
default
ARMvS.6-A
or later

No

No
ARMvS.6-A
or later
ARMvS8.3-A
or later
ARMvS8.1-A
or later

No

No

ARMvS-A or
later
ARMvS.2-A
or later
ARMvS.1-A
or later
ARMvS.1-A
or later

Description
Enable Int8 Matrix Multiply extension.

Enable F32 Matrix Multiply extension.
Enable F64 Matrix Multiply extension.
Enable BFloat16 extension.

Enable the complex number SIMD extensions.
This implies fp16 and simd.
Enable CRC instructions.

Enable cryptographic extensions. This implies
fp, simd, aes and sha?2.

Enable the AES cryptographic extensions.
This implies fp and simd.

Enable the SHA2 cryptographic extensions.
This implies fp and simd.

Enable the ARMv8.2-A SHA2 and SHAS cryp-
tographic extensions. This implies fp, simd
and sha?2.

Enable the ARMv8.2-A SM3 and SM4 crypto-
graphic extensions. This implies fp and simd.
Enable floating-point extensions.

Enable ARMv8.2 16-bit floating-point support.
This implies fp.

Enable Limited Ordering Regions extensions.

Enable Large System extensions.

96

pan ARMvS8-A
profile ARMv8.2-A
ras ARMvS-A
rcpe ARMv8.2-A
rdma ARMvS8-A
simd ARMvS8-A
sve ARMv8.2-A
dotprod ARMv8.2-A
fp16fml ARMv8.2-A
sb ARMvS-A
predres ARMvS8-A
rng ARMv8.5-A
ssbs ARMvS8-A
memtag ARMvVS.5-A
tme ARMvS-A
sve2 ARMvS-A
sve2-bitper’ARMv8-A
sve2-sm4 ARMv8-A
sve2-aes ARMvVS8-A

sve2-sha3 ARMvS-A

flagm
1s64

pauth

ARMv8-A

ARMv8.6-A

ARMvS8-A

9.1.3 Syntax

ARMvS8.1-A
or later

No
ARMvS8.2-A
or later
ARMvS.3-A
or later
ARMvS.1-A
or later

ARMvS8-A or
later

No

ARMvS8.4-A
or later
ARMvS8.4-A
or later
ARMvS.5-A
or later
ARMvS.5-A
or later

No

ARMvS8.5-A
or later

ARMvS8.4-A
or later
ARMvS.7-A
or later

No

Using as

Enable Privileged Access Never support.

Enable statistical profiling extensions.

Enable the Reliability, Availability and Ser-
viceability extension.

Enable the weak release consistency extension.

Enable ARMv8.1 Advanced SIMD extensions.
This implies simd.

Enable Advanced SIMD extensions. This im-
plies fp.

Enable the Scalable Vector Extensions.
implies fp16, simd and compnum.
Enable the Dot Product extension. This im-
plies simd.

Enable ARMvS8.2 16-bit floating-point multi-
plication variant support. This implies fp16.
Enable the speculation barrier instruction sb.

This

Enable the Execution and Data and Prediction
instructions.
Enable ARMvS8.5-A
instructions.

random number
Enable Speculative Store Bypassing Safe state
read and write.

Enable ARMv8.5-A Memory
Extensions.

Tagging

Enable Transactional Memory Extensions.
Enable the SVE2 Extension.

Enable SVE2 BITPERM Extension.

Enable SVE2 SM4 Extension.

Enable SVE2 AES Extension. This also en-
ables the .Q->.B form of the pmullt and
pmullb instructions.

Enable SVE2 SHA3 Extension.

Enable Flag Manipulation instructions.

Enable 64 Byte Loads/Stores.

Enable Pointer Authentication.

Chapter 9: Machine Dependent Features 97

9.1.3.1 Special Characters

The presence of a ‘//’ on a line indicates the start of a comment that extends to the end of
the current line. If a ‘#" appears as the first character of a line, the whole line is treated as
a comment.

The ¢;’ character can be used instead of a newline to separate statements.

The ‘#’ can be optionally used to indicate immediate operands.

9.1.3.2 Register Names

Please refer to the section ‘4.4 Register Names’ of ‘ARMv8 Instruction Set Overview’,
which is available at http://infocenter.arm. com.

9.1.3.3 Relocations

Relocations for ‘MOVZ’ and ‘MOVK’ instructions can be generated by prefixing the label with
‘#:abs_g2:’ etc. For example to load the 48-bit absolute address of foo into x0:

movz x0, #:abs_g2:foo // bits 32-47, overflow check
movk x0, #:abs_gl_nc:foo // bits 16-31, no overflow check
movk x0, #:abs_gO_nc:foo // bits 0-15, no overflow check

Relocations for ‘ADRP’, and ‘ADD’, ‘LDR’ or ‘STR’ instructions can be generated by prefixing
the label with ‘:pg_hi21:” and ‘#:1012:’ respectively.

For example to use 33-bit (+/-4GB) pc-relative addressing to load the address of foo into
x0:

adrp x0, :pg_hi21:foo
add x0, x0, #:1o012:foo

Or to load the value of foo into x0:

adrp x0, :pg_hi2l:foo
1dr x0, [x0, #:1012:foo0]

Note that ‘:pg_hi21:’ is optional.
adrp x0, foo

is equivalent to
adrp x0, :pg_hi2l:foo

9.1.4 Floating Point

The AArch64 architecture uses IEEE floating-point numbers.

9.1.5 AArch64 Machine Directives

.arch name
Select the target architecture. Valid values for name are the same as for the
-march command-line option.

Specifying .arch clears any previously selected architecture extensions.

.arch_extension name
Add or remove an architecture extension to the target architecture. Valid values
for name are the same as those accepted as architectural extensions by the -mcpu
command-line option.
.arch_extension may be used multiple times to add or remove extensions
incrementally to the architecture being compiled for.

http://infocenter.arm.com

98 Using as

.bss This directive switches to the .bss section.

.cpu name Set the target processor. Valid values for name are the same as those accepted
by the -mcpu= command-line option.

.dword expressions
The .dword directive produces 64 bit values.

.even The .even directive aligns the output on the next even byte boundary.

.float16 value [,...,value_n]
Place the half precision floating point representation of one or more floating-
point values into the current section. The format used to encode the floating
point values is always the IEEE 754-2008 half precision floating point format.

.inst expressions
Inserts the expressions into the output as if they were instructions, rather than
data.

.ltorg This directive causes the current contents of the literal pool to be dumped into
the current section (which is assumed to be the .text section) at the current
location (aligned to a word boundary). GAS maintains a separate literal pool
for each section and each sub-section. The .1torg directive will only affect the
literal pool of the current section and sub-section. At the end of assembly all
remaining, un-empty literal pools will automatically be dumped.

Note - older versions of GAS would dump the current literal pool any time

a section change occurred. This is no longer done, since it prevents accurate
control of the placement of literal pools.

.pool This is a synonym for .ltorg.

name .req register name
This creates an alias for register name called name. For example:

foo .req w0

ip0, ipl, Ir and fp are automatically defined to alias to X16, X17, X30 and X29
respectively.

.tlsdescadd
Emits a TLSDESC_ADD reloc on the next instruction.

.tlsdesccall
Emits a TLSDESC_CALL reloc on the next instruction.

.tlsdescldr
Emits a TLSDESC_LDR reloc on the next instruction.

.unreq alias—name

This undefines a register alias which was previously defined using the req di-
rective. For example:

foo .req wO

.unreq foo
An error occurs if the name is undefined. Note - this pseudo op can be used to
delete builtin in register name aliases (eg 'w0’). This should only be done if it
is really necessary.

Chapter 9: Machine Dependent Features 99

.variant_pcs symbol
This directive marks symbol referencing a function that may follow a variant
procedure call standard with different register usage convention from the base
procedure call standard.

.xword expressions
The .xword directive produces 64 bit values. This is the same as the .dword
directive.

.cfi_b_key_frame
The .cfi_b_key_frame directive inserts a 'B’ character into the CIE corre-
sponding to the current frame’s FDE, meaning that its return address has been
signed with the B-key. If two frames are signed with differing keys then they
will not share the same CIE. This information is intended to be used by the
stack unwinder in order to properly authenticate return addresses.

9.1.6 Opcodes

GAS implements all the standard AArch64 opcodes. It also implements several pseudo
opcodes, including several synthetic load instructions.

LDR =

1ldr <register> , =<expression>

The constant expression will be placed into the nearest literal pool (if it not
already there) and a PC-relative LDR instruction will be generated.

For more information on the AArch64 instruction set and assembly language notation,

see ‘ARMv8 Instruction Set Overview’ available at http://infocenter.arm.com.

9.1.7 Mapping Symbols

The AArch64 ELF specification requires that special symbols be inserted into object files
to mark certain features:

$x At the start of a region of code containing AArch64 instructions.

$d At the start of a region of data.

http://infocenter.arm.com

100 Using as

9.2 Alpha Dependent Features

9.2.1 Notes

The documentation here is primarily for the ELF object format. as also supports the
ECOFF and EVAX formats, but features specific to these formats are not yet documented.

9.2.2 Options

-mcpu This option specifies the target processor. If an attempt is made to assemble an
instruction which will not execute on the target processor, the assembler may
either expand the instruction as a macro or issue an error message. This option
is equivalent to the .arch directive.

The following processor names are recognized: 21064, 21064a, 21066, 21068,
21164, 21164a, 21164pc, 21264, 21264a, 21264b, ev4, evb, 1cadb, evb, ev56,
pcab6, ev6, ev67, ev68. The special name all may be used to allow the
assembler to accept instructions valid for any Alpha processor.

In order to support existing practice in OSF /1 with respect to .arch, and exist-
ing practice within MILO (the Linux ARC bootloader), the numbered processor
names (e.g. 21064) enable the processor-specific PALcode instructions, while
the “electro-vlasic” names (e.g. ev4) do not.

-mdebug

-no-mdebug
Enables or disables the generation of .mdebug encapsulation for stabs directives
and procedure descriptors. The default is to automatically enable .mdebug
when the first stabs directive is seen.

-relax This option forces all relocations to be put into the object file, instead of saving
space and resolving some relocations at assembly time. Note that this option
does not propagate all symbol arithmetic into the object file, because not all
symbol arithmetic can be represented. However, the option can still be useful
in specific applications.

-replace

-noreplace
Enables or disables the optimization of procedure calls, both at assemblage and
at link time. These options are only available for VMS targets and -replace
is the default. See section 1.4.1 of the OpenVMS Linker Utility Manual.

-g This option is used when the compiler generates debug information. When gcc
is using mips-tfile to generate debug information for ECOFF, local labels
must be passed through to the object file. Otherwise this option has no effect.

-Gsize A local common symbol larger than size is placed in .bss, while smaller symbols
are placed in .sbss.

-F

-32addr These options are ignored for backward compatibility.

Chapter 9: Machine Dependent Features 101

9.2.3 Syntax

The assembler syntax closely follow the Alpha Reference Manual; assembler directives and
general syntax closely follow the OSF/1 and OpenVMS syntax, with a few differences for

ELF.

9.2.3.1 Special Characters

‘#’ is the line comment character. Note that if ‘#" is the first character on a line then
it can also be a logical line number directive (see Section 3.3 [Comments|, page 31) or a
preprocessor control command (see Section 3.1 [Preprocessing], page 31).

‘;7 can be used instead of a newline to separate statements.

9.2.3.2 Register Names

The 32 integer registers are referred to as ‘$n’ or ‘$rn’. In addition, registers 15, 28, 29,
and 30 may be referred to by the symbols ‘$fp’, ‘$at’, ‘$gp’, and ‘$sp’ respectively.

The 32 floating-point registers are referred to as ‘$fn’.

9.2.3.3 Relocations

Some of these relocations are available for ECOFF, but mostly only for ELF. They are
modeled after the relocation format introduced in Digital Unix 4.0, but there are additions.

The format is ‘! tag’ or ‘! tag!number’ where tag is the name of the relocation. In some
cases number is used to relate specific instructions.

The relocation is placed at the end of the instruction like so:

ldah $0,a($29) lgprelhigh

lda $0,a($%0) lgprellow

ldg $1,b($29) literal!100

1dl $2,0(%1) Ilituse_base!100
Iliteral
Iliteral!N

Used with an 1dq instruction to load the address of a symbol from the GOT.

A sequence number N is optional, and if present is used to pair lituse relo-
cations with this literal relocation. The lituse relocations are used by the
linker to optimize the code based on the final location of the symbol.

Note that these optimizations are dependent on the data flow of the program.
Therefore, if any lituse is paired with a literal relocation, then all uses of
the register set by the literal instruction must also be marked with lituse
relocations. This is because the original 1literal instruction may be deleted or
transformed into another instruction.

Also note that there may be a one-to-many relationship between 1literal and
lituse, but not a many-to-one. That is, if there are two code paths that load
up the same address and feed the value to a single use, then the use may not
use a lituse relocation.

102 Using as

Ilituse_base!N
Used with any memory format instruction (e.g. 1d1) to indicate that the literal
is used for an address load. The offset field of the instruction must be zero.
During relaxation, the code may be altered to use a gp-relative load.

!lituse_jsr!N
Used with a register branch format instruction (e.g. jsr) to indicate that the
literal is used for a call. During relaxation, the code may be altered to use a
direct branch (e.g. bsr).

Ilituse_jsrdirect!N
Similar to lituse_jsr, but also that this call cannot be vectored through a
PLT entry. This is useful for functions with special calling conventions which
do not allow the normal call-clobbered registers to be clobbered.

Ilituse_bytoff!N
Used with a byte mask instruction (e.g. extbl) to indicate that only the low 3
bits of the address are relevant. During relaxation, the code may be altered to
use an immediate instead of a register shift.

Ilituse_addr!N
Used with any other instruction to indicate that the original address is in fact
used, and the original 1dq instruction may not be altered or deleted. This is
useful in conjunction with lituse_jsr to test whether a weak symbol is defined.
1dq $27,foo($29) !literal!l
beq $27,is_undef Ilituse_addr!1l
jsr $26,($27),foo !lituse_jsr!l

Ilituse_tlsgd!N
Used with a register branch format instruction to indicate that the literal is
the call to __tls_get_addr used to compute the address of the thread-local

storage variable whose descriptor was loaded with !tlsgd!N.

Ilituse_tlsldm!N
Used with a register branch format instruction to indicate that the literal is the
call to __tls_get_addr used to compute the address of the base of the thread-
local storage block for the current module. The descriptor for the module must
have been loaded with !tlsldm!N.

lgpdisp!N
Used with 1dah and 1da to load the GP from the current address, a-la the 1dgp
macro. The source register for the 1dah instruction must contain the address
of the 1dah instruction. There must be exactly one 1da instruction paired with
the 1dah instruction, though it may appear anywhere in the instruction stream.
The immediate operands must be zero.

bsr $26,foo
ldah $29,0($26) lgpdisp!1
lda $29,0($29) lgpdisp!1
lgprelhigh
Used with an 1dah instruction to add the high 16 bits of a 32-bit displacement
from the GP.

Chapter 9: Machine Dependent Features 103

lgprellow

lgprel

I samegp

Itlsgd
Itlsgd!N

Itlsldm
Itlsldm!N

lgotdtprel

ldtprelhi
ldtprello
ldtprel

lgottprel

Itprelhi
Itprello
Itprel

Used with any memory format instruction to add the low 16 bits of a 32-bit
displacement from the GP.

Used with any memory format instruction to add a 16-bit displacement from
the GP.

Used with any branch format instruction to skip the GP load at the target
address. The referenced symbol must have the same GP as the source object
file, and it must be declared to either not use $27 or perform a standard GP
load in the first two instructions via the .prologue directive.

Used with an 1lda instruction to load the address of a TLS descriptor for a
symbol in the GOT.

The sequence number N is optional, and if present it used to pair the descriptor
load with both the 1iteral loading the address of the __t1ls_get_addr function
and the lituse_tlsgd marking the call to that function.

For proper relaxation, both the tlsgd, literal and lituse relocations must
be in the same extended basic block. That is, the relocation with the lowest
address must be executed first at runtime.

Used with an 1da instruction to load the address of a TLS descriptor for the
current module in the GOT.

Similar in other respects to tlsgd.

Used with an 1dq instruction to load the offset of the TLS symbol within its
module’s thread-local storage block. Also known as the dynamic thread pointer
offset or dtp-relative offset.

Like gprel relocations except they compute dtp-relative offsets.
Used with an 1dq instruction to load the offset of the TLS symbol from the

thread pointer. Also known as the tp-relative offset.

Like gprel relocations except they compute tp-relative offsets.

9.2.4 Floating Point
The Alpha family uses both IEEE and VAX floating-point numbers.

9.2.5 Alpha Assembler Directives

as for the Alpha supports many additional directives for compatibility with the native
assembler. This section describes them only briefly.

104 Using as

These are the additional directives in as for the Alpha:

.arch cpu Specifies the target processor. This is equivalent to the -mcpu command-line
option. See Section 9.2.2 [Alpha Options|, page 100, for a list of values for cpu.

.ent function[, n]
Mark the beginning of function. An optional number may follow for compat-
ibility with the OSF/1 assembler, but is ignored. When generating .mdebug
information, this will create a procedure descriptor for the function. In ELF,
it will mark the symbol as a function a-la the generic .type directive.

.end function
Mark the end of function. In ELF, it will set the size of the symbol a-la the
generic .size directive.

.mask mask, offset
Indicate which of the integer registers are saved in the current function’s stack
frame. mask is interpreted a bit mask in which bit n set indicates that register
n is saved. The registers are saved in a block located offset bytes from the
canonical frame address (CFA) which is the value of the stack pointer on entry
to the function. The registers are saved sequentially, except that the return
address register (normally $26) is saved first.

This and the other directives that describe the stack frame are currently only
used when generating .mdebug information. They may in the future be used
to generate DWARF2 .debug_frame unwind information for hand written as-
sembly.

.fmask mask, offset
Indicate which of the floating-point registers are saved in the current stack
frame. The mask and offset parameters are interpreted as with .mask.

.frame framereg, frameoffset, retregl, argoffset]
Describes the shape of the stack frame. The frame pointer in use is framereg;
normally this is either $fp or $sp. The frame pointer is frameoffset bytes
below the CFA. The return address is initially located in retreg until it is saved
as indicated in .mask. For compatibility with OSF/1 an optional argoffset
parameter is accepted and ignored. It is believed to indicate the offset from the
CFA to the saved argument registers.

.prologue n

Indicate that the stack frame is set up and all registers have been spilled. The
argument n indicates whether and how the function uses the incoming procedure
vector (the address of the called function) in $27. 0 indicates that $27 is not
used; 1 indicates that the first two instructions of the function use $27 to
perform a load of the GP register; 2 indicates that $27 is used in some non-
standard way and so the linker cannot elide the load of the procedure vector
during relaxation.

.usepv function, which
Used to indicate the use of the $27 register, similar to .prologue, but without
the other semantics of needing to be inside an open .ent/.end block.

Chapter 9: Machine Dependent Features 105

The which argument should be either no, indicating that $27 is not used, or
std, indicating that the first two instructions of the function perform a GP
load.

One might use this directive instead of .prologue if you are also using dwarf2
CFI directives.

.gprel32 expression
Computes the difference between the address in expression and the GP for the
current object file, and stores it in 4 bytes. In addition to being smaller than a
full 8 byte address, this also does not require a dynamic relocation when used
in a shared library.

.t_floating expression
Stores expression as an IEEE double precision value.

.s_floating expression
Stores expression as an IEEE single precision value.

.f_floating expression
Stores expression as a VAX F format value.

.g_floating expression
Stores expression as a VAX G format value.

.d_floating expression
Stores expression as a VAX D format value.

.set feature
Enables or disables various assembler features. Using the positive name of the
feature enables while using ‘nofeature’ disables.

at Indicates that macro expansions may clobber the assembler tem-
porary ($at or $28) register. Some macros may not be expanded
without this and will generate an error message if noat is in effect.
When at is in effect, a warning will be generated if $at is used by
the programmer.

macro Enables the expansion of macro instructions. Note that variants of
real instructions, such as br label vs br $31,1abel are considered
alternate forms and not macros.

move

reorder

volatile These control whether and how the assembler may re-order instruc-
tions. Accepted for compatibility with the OSF/1 assembler, but
as does not do instruction scheduling, so these features are ignored.

The following directives are recognized for compatibility with the OSF /1 assembler but
are ignored.

.proc .aproc
.reguse .livereg
.option .aent
.ugen .eflag

.alias .noalias

106 Using as

9.2.6 Opcodes

For detailed information on the Alpha machine instruction set, see the Alpha Architecture
Handbook located at

ftp://ftp.digital.com/pub/Digital/info/semiconductor/literature/alphaahb.pdf

Chapter 9: Machine Dependent Features 107

9.3 ARC Dependent Features

9.3.1 Options

The following options control the type of CPU for which code is assembled, and generic
constraints on the code generated:

-mcpu=cpu

Set architecture type and register usage for cpu. There are also shortcut alias
options available for backward compatibility and convenience. Supported values
for cpu are

arc600 Assemble for ARC 600. Aliases: -mA6, -mARC600.

arc600_norm
Assemble for ARC 600 with norm instructions.

arc600_mul64d
Assemble for ARC 600 with mul64 instructions.

arc600_mul32x16
Assemble for ARC 600 with mul32x16 instructions.

arc601 Assemble for ARC 601. Alias: -mARC601.

arc601_norm
Assemble for ARC 601 with norm instructions.

arc601_mulé4d
Assemble for ARC 601 with mul64 instructions.

arc601_mul32x16
Assemble for ARC 601 with mul32x16 instructions.

arc700 Assemble for ARC 700. Aliases: -mA7, -mARC700.
arcem Assemble for ARC EM. Aliases: -mEM

em Assemble for ARC EM, identical as arcem variant.
em4 Assemble for ARC EM with code-density instructions.
em4_dmips

Assemble for ARC EM with code-density instructions.
em4_fpus Assemble for ARC EM with code-density instructions.

em4_fpuda
Assemble for ARC EM with code-density, and double-precision as-
sist instructions.

quarkse_em
Assemble for QuarkSE-EM cpu.

archs Assemble for ARC HS. Aliases: -mHS, -mav2hs.
hs Assemble for ARC HS.
hs34 Assemble for ARC HS34.

108

-EL

Using as

hs38 Assemble for ARC HS38.

hs38_linux
Assemble for ARC HS38 with floating point support on.

nps400 Assemble for ARC 700 with NPS-400 extended instructions.

Note: the .cpu directive (see Section 9.3.3 [ARC Directives|, page 110) can to
be used to select a core variant from within assembly code.

This option specifies that the output generated by the assembler should be
marked as being encoded for a big-endian processor.

This option specifies that the output generated by the assembler should be
marked as being encoded for a little-endian processor - this is the default.

-mcode-density

-mrelax

-mnps400
-mspfp
-mdpfp
-mfpuda

This option turns on Code Density instructions. Only valid for ARC EM pro-
Cessors.

Enable support for assembly-time relaxation. The assembler will replace a
longer version of an instruction with a shorter one, whenever it is possible.

Enable support for NPS-400 extended instructions.
Enable support for single-precision floating point instructions.
Enable support for double-precision floating point instructions.

Enable support for double-precision assist floating point instructions. Only
valid for ARC EM processors.

9.3.2 Syntax

9.3.2.1 Special Characters

T

A register name can optionally be prefixed by a ‘%’ character. So register %r0
is equivalent to rO in the assembly code.

The presence of a ‘#’ character within a line (but not at the start of a line)
indicates the start of a comment that extends to the end of the current line.

Note: if a line starts with a ‘#’ character then it can also be a logical line num-
ber directive (see Section 3.3 [Comments], page 31) or a preprocessor control
command (see Section 3.1 [Preprocessing|, page 31).

Prefixing an operand with an ‘@’ specifies that the operand is a symbol and not
a register. This is how the assembler disambiguates the use of an ARC register
name as a symbol. So the instruction

mov rO, @ro0

moves the address of symbol r0 into register r0.
The ‘¢’ (backtick) character is used to separate statements on a single line.

Used as a separator to obtain a sequence of commands from a C preprocessor
macro.

Chapter 9: Machine Dependent Features 109

9.3.2.2 Register Names
The ARC assembler uses the following register names for its core registers:

r0-r31 The core general registers. Registers r26 through r31 have special functions,
and are usually referred to by those synonyms.

gp The global pointer and a synonym for r26.
fp The frame pointer and a synonym for r27.
sp The stack pointer and a synonym for r28.

ilink1 For ARC 600 and ARC 700, the level 1 interrupt link register and a synonym
for r29. Not supported for ARCv2.

ilink For ARCv2, the interrupt link register and a synonym for r29. Not supported
for ARC 600 and ARC 700.

ilink2 For ARC 600 and ARC 700, the level 2 interrupt link register and a synonym
for r30. Not supported for ARC v2.

blink The link register and a synonym for r31.
r32-r59 The extension core registers.

lp_count The loop count register.

pcl The word aligned program counter.

In addition the ARC processor has a large number of auziliary registers. The precise
set depends on the extensions being supported, but the following baseline set are always
defined:

identity Processor Identification register. Auxiliary register address 0x4.
pc Program Counter. Auxiliary register address 0x6.

status32 Status register. Auxiliary register address 0x0a.

bta Branch Target Address. Auxiliary register address 0x412.

ecr Exception Cause Register. Auxiliary register address 0x403.

int_vector_base
Interrupt Vector Base address. Auxiliary register address 0x25.

status32_p0
Stored STATUS32 register on entry to level PO interrupts. Auxiliary register
address Oxb.

aux_user_sp
Saved User Stack Pointer. Auxiliary register address 0xd.

eret Exception Return Address. Auxiliary register address 0x400.
erbta BTA saved on exception entry. Auxiliary register address 0x401.
erstatus STATUS32 saved on exception. Auxiliary register address 0x402.

ber_ver Build Configuration Registers Version. Auxiliary register address 0x60.

110 Using as

bta_link_build
Build configuration for: BTA Registers. Auxiliary register address 0x63.

vecbase_ac_build
Build configuration for: Interrupts. Auxiliary register address 0x68.

rf_build Build configuration for: Core Registers. Auxiliary register address 0xG6e.

dccm_build
DCCM RAM Configuration Register. Auxiliary register address Oxcl.

Additional auxiliary register names are defined according to the processor architecture
version and extensions selected by the options.

9.3.3 ARC Machine Directives
The ARC version of as supports the following additional machine directives:

.lcomm symbol, length[, alignment]

Reserve length (an absolute expression) bytes for a local common denoted by
symbol. The section and value of symbol are those of the new local common.
The addresses are allocated in the bss section, so that at run-time the bytes
start off zeroed. Since symbol is not declared global, it is normally not visible
to 1d. The optional third parameter, alignment, specifies the desired alignment
of the symbol in the bss section, specified as a byte boundary (for example, an
alignment of 16 means that the least significant 4 bits of the address should be
zero). The alignment must be an absolute expression, and it must be a power of
two. If no alignment is specified, as will set the alignment to the largest power
of two less than or equal to the size of the symbol, up to a maximum of 16.

.lcommon symbol, length[, alignment]
The same as 1comm directive.

.cpu cpu The .cpu directive must be followed by the desired core version. Permitted
values for CPU are:

ARC600 Assemble for the ARC600 instruction set.

arc600_norm
Assemble for ARC 600 with norm instructions.

arc600_mul6é4
Assemble for ARC 600 with mul64 instructions.

arc600_mul32x16
Assemble for ARC 600 with mul32x16 instructions.

arc601 Assemble for ARC 601 instruction set.

arc601_norm
Assemble for ARC 601 with norm instructions.

arc601_mulé4d
Assemble for ARC 601 with mul64 instructions.

arc601_mul32x16
Assemble for ARC 601 with mul32x16 instructions.

Chapter 9: Machine Dependent Features 111

ARC700 Assemble for the ARC700 instruction set.
NPS400 Assemble for the NPS400 instruction set.

EM Assemble for the ARC EM instruction set.

arcem Assemble for ARC EM instruction set

emé Assemble for ARC EM with code-density instructions.
em4_dmips

Assemble for ARC EM with code-density instructions.
em4_fpus Assemble for ARC EM with code-density instructions.

em4_fpuda
Assemble for ARC EM with code-density, and double-precision as-
sist instructions.

quarkse_em
Assemble for QuarkSE-EM instruction set.

HS Assemble for the ARC HS instruction set.
archs Assemble for ARC HS instruction set.

hs Assemble for ARC HS instruction set.
hs34 Assemble for ARC HS34 instruction set.
hs38 Assemble for ARC HS38 instruction set.
hs38_linux

Assemble for ARC HS38 with floating point support on.

Note: the .cpu directive overrides the command-line option -mcpu=cpu; a warn-
ing is emitted when the version is not consistent between the two.

.extAuxRegister name, addr, mode
Auxiliary registers can be defined in the assembler source code by using this
directive. The first parameter, name, is the name of the new auxiliary register.
The second parameter, addr, is address the of the auxiliary register. The third
parameter, mode, specifies whether the register is readable and/or writable and

is one of:

r Read only;

W Write only;

rlw Read and write.

For example:
.extAuxRegister mulhi, Ox12, w
specifies a write only extension auxiliary register, mulhi at address 0x12.
.extCondCode suffix, val
ARC supports extensible condition codes. This directive defines a new condition

code, to be known by the suffix, suffix and will depend on the value, val in the
condition code.

For example:

112 Using as

.extCondCode is_busy,0x14
add.is_busy rl1,r2,r3

will only execute the add instruction if the condition code value is 0x14.

.extCoreRegister name, regnum, mode, shortcut
Specifies an extension core register named name as a synonym for the register
numbered regnum. The register number must be between 32 and 59. The third
argument, mode, indicates whether the register is readable and /or writable and

is one of:

r Read only;

W Write only;

rlw Read and write.

The final parameter, shortcut indicates whether the register has a short cut in
the pipeline. The valid values are:

can_shortcut
The register has a short cut in the pipeline;

cannot_shortcut
The register does not have a short cut in the pipeline.
For example:
.extCoreRegister mlo, 57, r , can_shortcut
defines a read only extension core register, mlo, which is register 57, and can
short cut the pipeline.

.extInstruction name, opcode, subopcode, suffixclass, syntaxclass
ARC allows the user to specify extension instructions. These extension in-
structions are not macros; the assembler creates encodings for use of these
instructions according to the specification by the user.
The first argument, name, gives the name of the instruction.
The second argument, opcode, is the opcode to be used (bits 31:27 in the
encoding).
The third argument, subopcode, is the sub-opcode to be used, but the correct
value also depends on the fifth argument, syntaxclass

The fourth argument, suffixclass, determines the kinds of suffixes to be allowed.
Valid values are:

SUFFIX_NONE
No suffixes are permitted;

SUFFIX_COND
Conditional suffixes are permitted;

SUFFIX_FLAG
Flag setting suffixes are permitted.

SUFFIX_COND|SUFFIX_FLAG
Both conditional and flag setting suffices are permitted.

Chapter 9: Machine Dependent Features 113

The fifth and final argument, syntaxclass, determines the syntax class for the
instruction. It can have the following values:

SYNTAX_20P
Two Operand Instruction;

SYNTAX_30P
Three Operand Instruction.

SYNTAX_10P
One Operand Instruction.

SYNTAX_NOP
No Operand Instruction.

The syntax class may be followed by ‘|’ and one of the following modifiers.

OP1_MUST_BE_IMM
Modifies syntax class SYNTAX_30P, specifying that the first operand
of a three-operand instruction must be an immediate (i.e., the result
is discarded). This is usually used to set the flags using specific
instructions and not retain results.

0P1_IMM_IMPLIED
Modifies syntax class SYNTAX_20P, specifying that there is an im-
plied immediate destination operand which does not appear in the
syntax.

For example, if the source code contains an instruction like:
inst r1,r2

the first argument is an implied immediate (that is, the result is
discarded). This is the same as though the source code were: inst
0,rl,r2.

For example, defining a 64-bit multiplier with immediate operands:

.extInstruction mp64, 0x07, 0x2d, SUFFIX_COND|SUFFIX_FLAG,
SYNTAX_30P|0P1_MUST_BE_IMM
which specifies an extension instruction named mp64 with 3 operands. It sets
the flags and can be used with a condition code, for which the first operand is
an immediate, i.e. equivalent to discarding the result of the operation.

A two operands instruction variant would be:

.extInstruction mul64, 0x07, 0x2d, SUFFIX_COND,
SYNTAX_20P|0P1_IMM_IMPLIED

which describes a two operand instruction with an implicit first immediate
operand. The result of this operation would be discarded.

.arc_attribute tag, value
Set the ARC object attribute tag to value.

The tag is either an attribute number, or one of the following: Tag_ARC_PCS_
config, Tag_ARC_CPU_base, Tag_ARC_CPU_variation, Tag_ARC_CPU_name,

114 Using as

Tag_ARC_ABI_rf16, Tag_ ARC_ABI_osver, Tag_ARC_ABI_sda, Tag_ARC_ABI_
pic, Tag_ARC_ABI_tls, Tag_ARC_ABI_enumsize, Tag_ARC_ABI_exceptions,
Tag_ARC_ABI_double_size, Tag_ARC_ISA_config, Tag_ARC_ISA_apex,
Tag_ARC_ISA_mpy_option

The value is either a number, "string", or number, "string" depending on
the tag.

9.3.4 ARC Assembler Modifiers

The following additional assembler modifiers have been added for position-independent
code. These modifiers are available only with the ARC 700 and above processors and
generate relocation entries, which are interpreted by the linker as follows:

@pcl (symbol)
Relative distance of symbol’s from the current program counter location.

Q@gotpc (symbol)
Relative distance of symbol’s Global Offset Table entry from the current pro-
gram counter location.

Q@gotoff (symbol)
Distance of symbol from the base of the Global Offset Table.

@plt (symbol)
Distance of symbol’s Procedure Linkage Table entry from the current program
counter. This is valid only with branch and link instructions and PC-relative
calls.

@sda(symbol)
Relative distance of symbol from the base of the Small Data Pointer.

9.3.5 ARC Pre-defined Symbols

The following assembler symbols will prove useful when developing position-independent
code. These symbols are available only with the ARC 700 and above processors.

__GLOBAL_QFFSET_TABLE__
Symbol referring to the base of the Global Offset Table.

__DYNAMIC__
An alias for the Global Offset Table Base__GLOBAL_OFFSET_TABLE__. It can
be used only with @gotpc modifiers.

9.3.6 Opcodes

For information on the ARC instruction set, see ARC Programmers Reference Manual,
available where you download the processor IP library.

Chapter 9: Machine Dependent Features

9.4 ARM Dependent Features

9.4.1 Options

-mcpu=processor [+extension. . .]

115

This option specifies the target processor. The assembler will issue an
error message if an attempt is made to assemble an instruction which will
not execute on the target processor. The following processor names are
recognized: arml, arm2, arm250, arm3, arm6, arm60, arm600, arm610, arm620,
arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700, arm700i,
arm710, arm710t, arm720, arm720t, arm740t, arm710c, arm7100, arm7500,
arm7500fe, arm7t, arm7tdmi, arm7tdmi-s, arm8, arm810, strongarm,
strongarml, strongarml110, strongarml1100, strongarml1110, arm9,
arm920, arm920t, arm922t, arm940t, arm9tdmi, fab526 (Faraday FA526
processor), fa626 (Faraday FA626 processor), arm9e, arm926e, arm926ej-s,
arm946e-r0, arm946e, arm946e-s, arm966e-r0, arm966e, arm966e-s,
arm968e-s, armlOt, armlOtdmi, armlOe, arm1020, arm1020t, arml1020e,
arm1022e, arm1026ej-s, fa606te (Faraday FAG606TE processor), fa616te
(Faraday FAG616TE processor), fa626te (Faraday FAG626TE processor),
fmp626 (Faraday FMP626 processor), fa726te (Faraday FA726TE processor),
arm1136j-s, arml1136jf-s, arml156t2-s, arml156t2f-s, armll76jz-s,
arml1176jzf-s, mpcore, mpcorenovfp, cortex-ab5, cortex-a7, cortex-a8,
cortex-a9, cortex—alb, cortex-al7, cortex—a32, cortex-a35, cortex—ab3,
cortex-abb, cortex-ab7, cortex-a72, cortex-a73, cortex-a7h,
cortex-a76, cortex-a76ae, cortex-a77, cortex—-a78, cortex—a78ae,
cortex-a78c, ares, cortex-r4, cortex-r4f, cortex-r5, cortex-r7,
cortex-r8, cortex-rb52, cortex-m35p, cortex-m33, cortex-m23, cortex-m7,
cortex-m4, cortex-m3, cortex-ml, cortex-mO, cortex-mOplus, cortex-x1,
exynos-ml, marvell-pj4, marvell-whitney, neoverse-nl, neoverse-n2,
neoverse-vl, xgenel, xgene2, ep9312 (ARMO920 with Cirrus Maverick
coprocessor), 180200 (Intel XScale processor) iwmmxt (Intel XScale processor
with Wireless MMX technology coprocessor) and xscale. The special name
all may be used to allow the assembler to accept instructions valid for any
ARM processor.

In addition to the basic instruction set, the assembler can be told to accept
various extension mnemonics that extend the processor using the co-processor
instruction space. For example, -mcpu=arm920+maverick is equivalent to spec-
ifying -mcpu=ep9312.

Multiple extensions may be specified, separated by a +. The extensions should

be specified in ascending alphabetical order.

Some extensions may be restricted to particular architectures; this is docu-
mented in the list of extensions below.

Extension mnemonics may also be removed from those the assembler accepts.
This is done be prepending no to the option that adds the extension.
Extensions that are removed should be listed after all extensions which

116 Using as

have been added, again in ascending alphabetical order. For example,
-mcpu=ep9312+nomaverick is equivalent to specifying -mcpu=arm920.

The following extensions are currently supported: bf16 (BFloatl6 extensions
for v8.6-A architecture), i8mm (Int8 Matrix Multiply extensions for v8.6-A archi-
tecture), crc crypto (Cryptography Extensions for v8-A architecture, implies
fp+simd), dotprod (Dot Product Extensions for v8.2-A architecture, implies
fp+simd), fp (Floating Point Extensions for v8-A architecture), fp16 (FP16
Extensions for v8.2-A architecture, implies fp), fp16fml (FP16 Floating Point
Multiplication Variant Extensions for v8.2-A architecture, implies fp16), idiv
(Integer Divide Extensions for v7-A and v7-R architectures), iwmmxt, iwmmxt2,
xscale, maverick, mp (Multiprocessing Extensions for v7-A and v7-R architec-
tures), os (Operating System for v6M architecture), predres (Execution and
Data Prediction Restriction Instruction for v8-A architectures, added by de-
fault from v8.5-A), sb (Speculation Barrier Instruction for v8-A architectures,
added by default from v8.5-A), sec (Security Extensions for v6K and v7-A
architectures), simd (Advanced SIMD Extensions for v8-A architecture, im-
plies fp), virt (Virtualization Extensions for v7-A architecture, implies idiv),
pan (Privileged Access Never Extensions for v8-A architecture), ras (Relia-
bility, Availability and Serviceability extensions for v8-A architecture), rdma
(ARMv8.1 Advanced SIMD extensions for v8-A architecture, implies simd) and
xscale.

-march=architecture[+extension. . .]

This option specifies the target architecture. The assembler will issue an
error message if an attempt is made to assemble an instruction which will
not execute on the target architecture. The following architecture names are
recognized: armvl, armv2, armv2a, armv2s, armv3, armv3m, armv4, armv4xm,
armv4t, armv4txm, armvb, armvbt, armvbtxm, armvbte, armvbtexp, armve6,
armv6j, armv6k, armv6z, armv6kz, armv6-m, armv6s-m, armv/, armv/-a,
armv7ve, armv/-r, armv/-m, armv/e-m, armv8-a, armv8.l-a, armv8.2-a,
armv8.3-a, armv8-r, armv8.4-a, armv8.5-a, armv8-m.base, armv8-m.main,
armv8.1l-m.main, armv8.6-a, iwmmxt, iwmmxt2 and xscale. If both -mcpu
and -march are specified, the assembler will use the setting for -mcpu.

The architecture option can be extended with a set extension options. These
extensions are context sensitive, i.e. the same extension may mean different
things when used with different architectures. When used together with a -mfpu
option, the union of both feature enablement is taken. See their availability and
meaning below:

For armvbte, armvbtexp, armvbtej, armv6, armv6j, armvek, armv6z, armvékz,
armv6zk, armv6t2, armv6kt2 and armv6zt2:

+fp: Enables VFPv2 instructions. +nofp: Disables all FPU instrunctions.
For armv7:

+fp: Enables VFPv3 instructions with 16 double-word registers. +nofp: Dis-
ables all FPU instructions.

For armv7-a:

Chapter 9: Machine Dependent Features 117

+fp: Enables VFPv3 instructions with 16 double-word registers. +vfpv3-d1é:
Alias for +fp. +vfpv3: Enables VFPv3 instructions with 32 double-word reg-
isters. +vfpv3-d16-fpl16: Enables VFPv3 with half precision floating-point
conversion instructions and 16 double-word registers. +vfpv3-fp16: Enables
VFPv3 with half precision floating-point conversion instructions and 32 double-
word registers. +vfpv4-d16: Enables VFPv4 instructions with 16 double-word
registers. +vfpv4: Enables VFPv4 instructions with 32 double-word registers.
+simd: Enables VFPv3 and NEONv1 instructions with 32 double-word regis-
ters. +neon: Alias for +simd. +neon-vfpv3: Alias for +simd. +neon-fp16: En-
ables VEPv3, half precision floating-point conversion and NEONv1 instructions
with 32 double-word registers. +neon-vfpv4: Enables VFPv4 and NEONv1
with Fused-MAC instructions and 32 double-word registers. +mp: Enables Mul-
tiprocessing Extensions. +sec: Enables Security Extensions. +nofp: Disables
all FPU and NEON instructions. +nosimd: Disables all NEON instructions.

For armv7ve:

+fp: Enables VFPv4 instructions with 16 double-word registers. +vfpv4-d16:
Alias for +fp. +vfpv3-d16: Enables VFPv3 instructions with 16 double-word
registers. +vfpv3: Enables VFPv3 instructions with 32 double-word registers.
+vfpv3-d16-fp16: Enables VFPv3 with half precision floating-point conver-
sion instructions and 16 double-word registers. +vfpv3-fp16: Enables VFPv3
with half precision floating-point conversion instructions and 32 double-word
registers. +vifpv4: Enables VFPv4 instructions with 32 double-word registers.
+simd: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
double-word registers. +neon-vfpv4: Alias for +simd. +neon: Enables VFPv3
and NEONv1 instructions with 32 double-word registers. +neon-vfpv3: Alias
for +neon. +neon-fp16: Enables VFPv3, half precision floating-point conver-
sion and NEONv1 instructions with 32 double-word registers. double-word
registers. +nofp: Disables all FPU and NEON instructions. +nosimd: Disables
all NEON instructions.

For armv7-r:

+fp.sp: Enables single-precision only VFPv3 instructions with 16 double-word
registers. +vfpv3xd: Alias for +fp.sp. +fp: Enables VFPv3 instructions with
16 double-word registers. +vfpv3-d16: Alias for +fp. +vfpv3xd-fp16: Enables
single-precision only VFPv3 and half floating-point conversion instructions with
16 double-word registers. +vfpv3-d16-fp16: Enables VEPv3 and half precision
floating-point conversion instructions with 16 double-word registers. +idiv:
Enables integer division instructions in ARM mode. +nofp: Disables all FPU
instructions.

For armv7e-m:

+fp: Enables single-precision only VFPv4 instructions with 16 double-word
registers. +vfpvf4-sp-d16: Alias for +fp. +fpv5: Enables single-precision only
VFPv5 instructions with 16 double-word registers. +fp.dp: Enables VFPv5

instructions with 16 double-word registers. +fpv5-d16": Alias for +fp.dp.
+nofp: Disables all FPU instructions.

For armv8-m.main:

118

Using as

+dsp: Enables DSP Extension. +fp: Enables single-precision only VFPv5 in-
structions with 16 double-word registers. +fp.dp: Enables VFPv5 instructions
with 16 double-word registers. +cdecp0 (CDE extensions for v8-m architec-
ture with coprocessor 0), +cdecpl (CDE extensions for v8-m architecture with
coprocessor 1), +cdecp2 (CDE extensions for v8-m architecture with coproces-
sor 2), +cdecp3 (CDE extensions for v8-m architecture with coprocessor 3),
+cdecp4 (CDE extensions for v8-m architecture with coprocessor 4), +cdecp5
(CDE extensions for v8-m architecture with coprocessor 5), +cdecp6 (CDE ex-
tensions for v8-m architecture with coprocessor 6), +cdecp7 (CDE extensions
for v8-m architecture with coprocessor 7), +nofp: Disables all FPU instructions.
+nodsp: Disables DSP Extension.

For armv8.1-m.main:

+dsp: Enables DSP Extension. +fp: Enables single and half precision scalar
Floating Point Extensions for Armv8.1-M Mainline with 16 double-word reg-
isters. +fp.dp: Enables double precision scalar Floating Point Extensions for
Armv8.1-M Mainline, implies +fp. +mve: Enables integer only M-profile Vector
Extension for Armv8.1-M Mainline, implies +dsp. +mve.fp: Enables Floating
Point M-profile Vector Extension for Armv8.1-M Mainline, implies +mve and
+fp. +nofp: Disables all FPU instructions. +nodsp: Disables DSP Extension.
+nomve: Disables all M-profile Vector Extensions.

For armv8-a:

+crc: Enables CRC32 Extension. +simd: Enables VFP and NEON for Armv8-
A. +crypto: Enables Cryptography Extensions for Armv8-A, implies +simd.
+sb: Enables Speculation Barrier Instruction for Armv8-A. +predres: Enables
Execution and Data Prediction Restriction Instruction for Armv8-A. +nofp:
Disables all FPU, NEON and Cryptography Extensions. +nocrypto: Disables
Cryptography Extensions.

For armv8.1-a:

+simd: Enables VFP and NEON for Armv8.1-A. +crypto: Enables Cryptogra-
phy Extensions for Armv8-A, implies +simd. +sb: Enables Speculation Barrier
Instruction for Armv8-A. +predres: Enables Execution and Data Prediction
Restriction Instruction for Armv8-A. +nofp: Disables all FPU, NEON and
Cryptography Extensions. +nocrypto: Disables Cryptography Extensions.

For armv8.2-a and armv8.3-a:

+simd: Enables VFP and NEON for Armv8.1-A. +fp16: Enables FP16 Exten-
sion for Armv8.2-A, implies +simd. +fp16fml: Enables FP16 Floating Point
Multiplication Variant Extensions for Armv8.2-A, implies +fp16. +crypto:
Enables Cryptography Extensions for Armv8-A, implies +simd. +dotprod: En-
ables Dot Product Extensions for Armv8.2-A, implies +simd. +sb: Enables
Speculation Barrier Instruction for Armv8-A. +predres: Enables Execution
and Data Prediction Restriction Instruction for Armv8-A. +nofp: Disables all
FPU, NEON, Cryptography and Dot Product Extensions. +nocrypto: Disables
Cryptography Extensions.

For armv8.4-a:

Chapter 9: Machine Dependent Features 119

+simd: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions
for Armv8.2-A. +fp16: Enables FP16 Floating Point and Floating Point Mul-
tiplication Variant Extensions for Armv8.2-A, implies +simd. +crypto: En-
ables Cryptography Extensions for Armv8-A, implies +simd. +sb: Enables
Speculation Barrier Instruction for Armv8-A. +predres: Enables Execution
and Data Prediction Restriction Instruction for Armv8-A. +nofp: Disables all
FPU, NEON, Cryptography and Dot Product Extensions. +nocryptp: Disables
Cryptography Extensions.

For armv8.5-a:

+simd: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions
for Armv8.2-A. +fp16: Enables FP16 Floating Point and Floating Point Multi-
plication Variant Extensions for Armv8.2-A, implies +simd. +crypto: Enables
Cryptography Extensions for Armv8-A, implies +simd. +nofp: Disables all
FPU, NEON, Cryptography and Dot Product Extensions. +nocryptp: Dis-
ables Cryptography Extensions.

-mfpu=floating-point-format

This option specifies the floating point format to assemble for. The assembler
will issue an error message if an attempt is made to assemble an instruction
which will not execute on the target floating point unit. The following
format options are recognized: softfpa, fpe, fpe2, fpe3, fpa, fpall,
fpall, arm7500fe, softvfp, softvfp+vfp, vfp, vEfplO, vEfpl0-r0, v£fp9,
vipxd, vfpv2, vipv3, vifpv3-fpl6, vipv3-d16, vifpv3-d16-fpl6, vipv3xd,
vipv3xd-d16, vipv4, vipv4-dil6, fpv4-sp-di6, fpvb-sp-di16, fpv5-di6,
fp-armv8, arm1020t, arm1020e, arm1136jf-s, maverick, neon, neon-vipv3,
neon-fpié6, neon-vipvé4, neon-fp-armv§, crypto—neon-fp-armvs8,
neon-fp-armv8.1 and crypto-neon-fp-armv8.1.

In addition to determining which instructions are assembled, this option also
affects the way in which the .double assembler directive behaves when assem-
bling little-endian code.

The default is dependent on the processor selected. For Architecture 5 or later,

the default is to assemble for VFP instructions; for earlier architectures the
default is to assemble for FPA instructions.

-mfpl6-format=format

-mthumb

This option specifies the half-precision floating point format to use when assem-
bling floating point numbers emitted by the .float16 directive. The following
format options are recognized: ieee, alternative. If ieee is specified then the
IEEE 754-2008 half-precision floating point format is used, if alternative is
specified then the Arm alternative half-precision format is used. If this option
is set on the command line then the format is fixed and cannot be changed
with the float16_format directive. If this value is not set then the IEEE 754-
2008 format is used until the format is explicitly set with the float16_format
directive.

This option specifies that the assembler should start assembling Thumb in-
structions; that is, it should behave as though the file starts with a .code 16
directive.

120 Using as

-mthumb-interwork
This option specifies that the output generated by the assembler should be
marked as supporting interworking. It also affects the behaviour of the ADR and
ADRL pseudo opcodes.

-mimplicit-it=never

-mimplicit-it=always

-mimplicit-it=arm

-mimplicit-it=thumb
The -mimplicit-it option controls the behavior of the assembler when con-
ditional instructions are not enclosed in IT blocks. There are four possible
behaviors. If never is specified, such constructs cause a warning in ARM code
and an error in Thumb-2 code. If always is specified, such constructs are ac-
cepted in both ARM and Thumb-2 code, where the IT instruction is added
implicitly. If arm is specified, such constructs are accepted in ARM code and
cause an error in Thumb-2 code. If thumb is specified, such constructs cause
a warning in ARM code and are accepted in Thumb-2 code. If you omit this
option, the behavior is equivalent to -mimplicit-it=arm.

-mapcs-26

-mapcs-32
These options specify that the output generated by the assembler should be
marked as supporting the indicated version of the Arm Procedure. Calling
Standard.

-matpcs This option specifies that the output generated by the assembler should be
marked as supporting the Arm/Thumb Procedure Calling Standard. If enabled
this option will cause the assembler to create an empty debugging section in
the object file called .arm.atpcs. Debuggers can use this to determine the ABI
being used by.

-mapcs—float
This indicates the floating point variant of the APCS should be used. In this
variant floating point arguments are passed in FP registers rather than integer
registers.

-mapcs-reentrant
This indicates that the reentrant variant of the APCS should be used. This
variant supports position independent code.

-mfloat-abi=abi
This option specifies that the output generated by the assembler should be
marked as using specified floating point ABI. The following values are recog-
nized: soft, softfp and hard.

-meabi=ver
This option specifies which EABI version the produced object files should con-
form to. The following values are recognized: gnu, 4 and 5.

-EB This option specifies that the output generated by the assembler should be
marked as being encoded for a big-endian processor.

Chapter 9: Machine Dependent Features 121

Note: If a program is being built for a system with big-endian data and little-
endian instructions then it should be assembled with the -EB option, (all of
it, code and data) and then linked with the --be8 option. This will reverse
the endianness of the instructions back to little-endian, but leave the data as
big-endian.

-EL This option specifies that the output generated by the assembler should be
marked as being encoded for a little-endian processor.

-k This option specifies that the output of the assembler should be marked as
position-independent code (PIC).

—-—fix-v4bx
Allow BX instructions in ARMv4 code. This is intended for use with the linker
option of the same name.

-mwarn-deprecated

-mno-warn-deprecated
Enable or disable warnings about using deprecated options or features. The
default is to warn.

-mccs Turns on CodeComposer Studio assembly syntax compatibility mode.

-mwarn-syms

—~Mno-warn-syms
Enable or disable warnings about symbols that match the names of ARM in-
structions. The default is to warn.

9.4.2 Syntax

9.4.2.1 Instruction Set Syntax

Two slightly different syntaxes are support for ARM and THUMB instructions. The default,
divided, uses the old style where ARM and THUMB instructions had their own, separate
syntaxes. The new, unified syntax, which can be selected via the .syntax directive, and
has the following main features:

e Immediate operands do not require a # prefix.

e The IT instruction may appear, and if it does it is validated against subsequent condi-
tional affixes. In ARM mode it does not generate machine code, in THUMB mode it
does.

e For ARM instructions the conditional affixes always appear at the end of the instruc-
tion. For THUMB instructions conditional affixes can be used, but only inside the
scope of an IT instruction.

e All of the instructions new to the V6T2 architecture (and later) are available. (Only a
few such instructions can be written in the divided syntax).

e The .N and .W suffixes are recognized and honored.

e All instructions set the flags if and only if they have an s affix.

122 Using as

9.4.2.2 Special Characters

i

The presence of a ‘@ anywhere on a line indicates the start of a comment that extends to

the end of that line.

If a ‘#’ appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 31).

The ;’ character can be used instead of a newline to separate statements.

Either ‘4’ or ‘$’ can be used to indicate immediate operands.

TODO Explain about /data modifier on symbols.

9.4.2.3 Register Names
TODO Explain about ARM register naming, and the predefined names.

9.4.2.4 ARM relocation generation

Specific data relocations can be generated by putting the relocation name in parentheses
after the symbol name. For example:
.word foo(TARGET1)

This will generate an ‘R_ARM_TARGET1’ relocation against the symbol foo. The following
relocations are supported: GOT, GOTOFF, TARGET1, TARGET2, SBREL, TLSGD, TLSLDM, TLSLDO,
TLSDESC, TLSCALL, GOTTPOFF, GOT_PREL and TPOFF.

For compatibility with older toolchains the assembler also accepts (PLT) after branch
targets. On legacy targets this will generate the deprecated ‘R_ARM_PLT32’ relocation.
On EABI targets it will encode either the ‘R_ARM_CALL’ or ‘R_ARM_JUMP24’ relocation, as
appropriate.

Relocations for ‘MOVW and ‘MOVT’ instructions can be generated by prefixing the value
with ‘#:1ower16:’ and ‘#:upper16’ respectively. For example to load the 32-bit address of
foo into r0:

MOVW r0O, #:lowerl6:foo
MOVT rO, #:upperl6:foo

Relocations ‘R_ARM_THM_ALU_ABS_GO_NC’, ‘R_ARM_THM_ALU_ABS_G1_NC’,
‘R_ARM_THM_ALU_ABS_G2_NC’ and ‘R_ARM_THM_ALU_ABS_G3_NC’ can be generated
by prefixing the value with ‘#:lower0_7:#’, ‘#:lower8_15:#’, ‘#:upper0_7:# and
‘#:upper8_15:#’ respectively. For example to load the 32-bit address of foo into r0:

MOVS r0O, #:upper8_15:#foo
LSLS r0O, rO, #8
ADDS rO, #:upperO_7:#foo
LSLS r0, r0O, #8
ADDS r0O, #:lower8_15:#foo
LSLS r0O, r0O, #8
ADDS r0O, #:lowerO_7:#foo

9.4.2.5 NEON Alignment Specifiers

Some NEON load/store instructions allow an optional address alignment qualifier. The
ARM documentation specifies that this is indicated by ‘@ align’. However GAS already

Chapter 9: Machine Dependent Features 123

interprets the ‘@ character as a "line comment" start, so

example:

: align’ is used instead. For

v1ld1.8 {q0}, [rO, :128]

9.4.3 Floating Point

The ARM family uses IEEE floating-point numbers.

9.4.4 ARM Machine Directives

.align expression [, expression]
This is the generic .align directive. For the ARM however if the first argument
is zero (ie no alignment is needed) the assembler will behave as if the argument
had been 2 (ie pad to the next four byte boundary). This is for compatibility
with ARM’s own assembler.

.arch name
Select the target architecture. Valid values for name are the same as for the
-march command-line option without the instruction set extension.

Specifying .arch clears any previously selected architecture extensions.

.arch_extension name
Add or remove an architecture extension to the target architecture. Valid values
for name are the same as those accepted as architectural extensions by the -mcpu
and -march command-line options.

.arch_extension may be used multiple times to add or remove extensions
incrementally to the architecture being compiled for.

.arm This performs the same action as .code 32.
.bss This directive switches to the .bss section.
.cantunwind

Prevents unwinding through the current function. No personality routine or
exception table data is required or permitted.

.code [16(32]
This directive selects the instruction set being generated. The value 16 selects
Thumb, with the value 32 selecting ARM.

.cpu name Select the target processor. Valid values for name are the same as for the -mcpu
command-line option without the instruction set extension.

Specifying .cpu clears any previously selected architecture extensions.

name .dn register name [.typel [[index]]

name .qn register name [.typel [[index]]
The dn and qgn directives are used to create typed and/or indexed register aliases
for use in Advanced SIMD Extension (Neon) instructions. The former should
be used to create aliases of double-precision registers, and the latter to create
aliases of quad-precision registers.
If these directives are used to create typed aliases, those aliases can be used
in Neon instructions instead of writing types after the mnemonic or after each
operand. For example:

124

Using as

x .dn d2.£32

y .dn d3.£32

z .dn d4.£32[1]
vmul x,y,z

This is equivalent to writing the following;:
vmul.£32 d2,d3,d4[1]

Aliases created using dn or qn can be destroyed using unreq.

.eabi_attribute tag, value

.even

Set the EABI object attribute tag to value.

The tag is either an attribute number, or one of the following: Tag_
CPU_raw_name, Tag_CPU_name, Tag_CPU_arch, Tag_CPU_arch_profile,
Tag_ARM_ISA_use, Tag_THUMB_ISA_use, Tag_FP_arch, Tag_WMMX_
arch, Tag_Advanced_SIMD_arch, Tag_MVE_arch, Tag_PCS_config,
Tag_ABI_PCS_R9_use, Tag_ABI_PCS_RW_data, Tag_ABI_PCS_RO_data,
Tag_ABI_PCS_GOT_use, Tag_ABI_PCS_wchar_t, Tag_ABI_FP_rounding, Tag_
ABI_FP_denormal, Tag_ABI_FP_exceptions, Tag_ABI_FP_user_exceptions,
Tag_ABI_FP_number_model, Tag_ABI_align_needed, Tag_ABI_align_
preserved, Tag_ABI_enum_size, Tag_ABI_HardFP_use, Tag_ABI_VFP_args,
Tag_ABI_WMMX_args, Tag_ABI_optimization_goals, Tag_ABI_FP_
optimization_goals, Tag_compatibility, Tag_CPU_unaligned_access,
Tag_FP_HP_extension, Tag_ABI_FP_16bit_format, Tag_MPextension_
use, Tag_DIV_use, Tag_nodefaults, Tag_also_compatible_with,
Tag_conformance, Tag_T2EE_use, Tag_Virtualization_use

The value is either a number, "string", or number, "string" depending on
the tag.

Note - the following legacy values are also accepted by tag: Tag_VFP_arch, Tag_
ABI_align8_needed, Tag_ABI_align8_preserved, Tag_VFP_HP_extension,

This directive aligns to an even-numbered address.

.extend expression [, expression]*
.ldouble expression [, expression] *

These directives write 12byte long double floating-point values to the output
section. These are not compatible with current ARM processors or ABIs.

.float16 value [,...,value_n]

Place the half precision floating point representation of one or more floating-
point values into the current section. The exact format of the encoding is
specified by .float16_format. If the format has not been explicitly set yet
(either via the .float16_format directive or the command line option) then
the IEEE 754-2008 format is used.

.float16_format format

Set the format to use when encoding float16 values emitted by the .float16
directive. Once the format has been set it cannot be changed. format should be
one of the following: ieee (encode in the IEEE 754-2008 half precision format)
or alternative (encode in the Arm alternative half precision format).

Chapter 9: Machine Dependent Features 125

.fnend Marks the end of a function with an unwind table entry. The unwind index
table entry is created when this directive is processed.

If no personality routine has been specified then standard personality routine
0 or 1 will be used, depending on the number of unwind opcodes required.

.fnstart Marks the start of a function with an unwind table entry.

.force_thumb
This directive forces the selection of Thumb instructions, even if the target
processor does not support those instructions

.fpu name Select the floating-point unit to assemble for. Valid values for name are the
same as for the -mfpu command-line option.

.handlerdata
Marks the end of the current function, and the start of the exception table entry
for that function. Anything between this directive and the .fnend directive will
be added to the exception table entry.

Must be preceded by a .personality or .personalityindex directive.

.inst opcode [, ...]
.inst.n opcode [, ...]
.inst.w opcode [, ...]

Generates the instruction corresponding to the numerical value opcode.
.inst.n and .inst.w allow the Thumb instruction size to be specified
explicitly, overriding the normal encoding rules.

.ldouble expression [, expression]*
See .extend.

.ltorg This directive causes the current contents of the literal pool to be dumped into
the current section (which is assumed to be the .text section) at the current
location (aligned to a word boundary). GAS maintains a separate literal pool
for each section and each sub-section. The .1torg directive will only affect the
literal pool of the current section and sub-section. At the end of assembly all
remaining, un-empty literal pools will automatically be dumped.

Note - older versions of GAS would dump the current literal pool any time a
section change occurred. This is no longer done, since it prevents accurate
control of the placement of literal pools.

.movsp reg [, #offset]
Tell the unwinder that reg contains an offset from the current stack pointer. If
offset is not specified then it is assumed to be zero.

.object_arch name
Override the architecture recorded in the EABI object attribute section. Valid
values for name are the same as for the .arch directive. Typically this is useful
when code uses runtime detection of CPU features.

.packed expression [, expression]*
This directive writes 12-byte packed floating-point values to the output section.
These are not compatible with current ARM processors or ABIs.

126 Using as

.pad #count
Generate unwinder annotations for a stack adjustment of count bytes. A posi-
tive value indicates the function prologue allocated stack space by decrementing
the stack pointer.

.personality name
Sets the personality routine for the current function to name.

.personalityindex index
Sets the personality routine for the current function to the EABI standard
routine number index

.pool This is a synonym for .ltorg.

name .req register name
This creates an alias for register name called name. For example:

foo .req r0

.save reglist

Generate unwinder annotations to restore the registers in reglist. The format
of reglist is the same as the corresponding store-multiple instruction.
core registers

.save {r4, r5, r6, 1lr}

stmfd sp!, {r4, r5, r6, 1r}
FPA registers

.save f4, 2

sfmfd f4, 2, [sp]!
VFP registers

.save {d8, d9, 410}

fstmdx sp!, {d8, 49, d10}
1WMMXt registers

.save {wr10, wrii}

wstrd wrll, [sp, #-8]!

wstrd wrl0, [sp, #-8]!

or

.save wrll

wstrd wrll, [sp, #-8]!

.save wrl0

wstrd wrl0, [sp, #-8]!

.setfp fpreg, spreg [, #offset]
Make all unwinder annotations relative to a frame pointer. Without this the
unwinder will use offsets from the stack pointer.

The syntax of this directive is the same as the add or mov instruction used to set
the frame pointer. spreg must be either sp or mentioned in a previous .movsp
directive.

.movsp ip
mov ip, sp

:éétfp fp, ip, #4
add fp, ip, #4
.secrel32 expression [, expression]*
This directive emits relocations that evaluate to the section-relative offset of
each expression’s symbol. This directive is only supported for PE targets.

Chapter 9: Machine Dependent Features 127

.syntax [unified | divided]
This directive sets the Instruction Set Syntax as described in the Section 9.4.2.1
[ARM-Instruction-Set], page 121 section.

.thumb This performs the same action as .code 16.

.thumb_func
This directive specifies that the following symbol is the name of a Thumb en-
coded function. This information is necessary in order to allow the assembler
and linker to generate correct code for interworking between Arm and Thumb
instructions and should be used even if interworking is not going to be per-
formed. The presence of this directive also implies .thumb

This directive is not necessary when generating EABI objects. On these targets
the encoding is implicit when generating Thumb code.

.thumb_set
This performs the equivalent of a .set directive in that it creates a symbol
which is an alias for another symbol (possibly not yet defined). This directive
also has the added property in that it marks the aliased symbol as being a
thumb function entry point, in the same way that the .thumb_func directive
does.

.tlsdescseq tls-variable
This directive is used to annotate parts of an inlined TLS descriptor trampoline.
Normally the trampoline is provided by the linker, and this directive is not
needed.

.unreq alias—name

This undefines a register alias which was previously defined using the req, dn
or gn directives. For example:

foo .req r0

.unreq foo
An error occurs if the name is undefined. Note - this pseudo op can be used to
delete builtin in register name aliases (eg 'r0’). This should only be done if it
is really necessary.

.unwind_raw offset, bytel, ...
Insert one of more arbitrary unwind opcode bytes, which are known to adjust
the stack pointer by offset bytes.

For example .unwind_raw 4, 0xbl, 0x01 is equivalent to .save {r0}

.vsave vfp-reglist
Generate unwinder annotations to restore the VFP registers in vip-reglist using
FLDMD. Also works for VEPv3 registers that are to be restored using VLDM.
The format of vip-reglist is the same as the corresponding store-multiple in-
struction.

VEP registers
.vsave {d8, 49, di0}
fstmdd sp!, {d8, 49, d10}
VEPv3 registers
.vsave {d15, di6, d4di7}

128

Using as

vstm sp!, {d15, di6, 417}

Since FLDMX and FSTMX are now deprecated, this directive should be used
in favour of .save for saving VFP registers for ARMv6 and above.

9.4.5 Opcodes

as implements all the standard ARM opcodes. It also implements several pseudo opcodes,
including several synthetic load instructions.

NOP

LDR

ADR

ADRL

nop

This pseudo op will always evaluate to a legal ARM instruction that does noth-
ing. Currently it will evaluate to MOV r0, r0.

1dr <register> , = <expression>

If expression evaluates to a numeric constant then a MOV or MVN instruction
will be used in place of the LDR instruction, if the constant can be generated
by either of these instructions. Otherwise the constant will be placed into the
nearest literal pool (if it not already there) and a PC relative LDR instruction
will be generated.

adr <register> <label>

This instruction will load the address of label into the indicated register. The
instruction will evaluate to a PC relative ADD or SUB instruction depending
upon where the label is located. If the label is out of range, or if it is not
defined in the same file (and section) as the ADR instruction, then an error will
be generated. This instruction will not make use of the literal pool.

If label is a thumb function symbol, and thumb interworking has been enabled
via the -mthumb-interwork option then the bottom bit of the value stored into
register will be set. This allows the following sequence to work as expected:

adr r0, thumb_function
blx r0

adrl <register> <label>

This instruction will load the address of label into the indicated register. The
instruction will evaluate to one or two PC relative ADD or SUB instructions
depending upon where the label is located. If a second instruction is not needed
a NOP instruction will be generated in its place, so that this instruction is
always 8 bytes long.

If the label is out of range, or if it is not defined in the same file (and section)
as the ADRL instruction, then an error will be generated. This instruction will
not make use of the literal pool.

If label is a thumb function symbol, and thumb interworking has been enabled
via the -mthumb-interwork option then the bottom bit of the value stored into
register will be set.

Chapter 9: Machine Dependent Features 129

For information on the ARM or Thumb instruction sets, see ARM Software Development
Toolkit Reference Manual, Advanced RISC Machines Ltd.
9.4.6 Mapping Symbols

The ARM ELF specification requires that special symbols be inserted into object files to
mark certain features:

$a At the start of a region of code containing ARM instructions.
$t At the start of a region of code containing THUMB instructions.
$d At the start of a region of data.

The assembler will automatically insert these symbols for you - there is no need to code
them yourself. Support for tagging symbols ($b, $f, $p and $m) which is also mentioned
in the current ARM ELF specification is not implemented. This is because they have been
dropped from the new EABI and so tools cannot rely upon their presence.

9.4.7 Unwinding

The ABI for the ARM Architecture specifies a standard format for exception unwind infor-
mation. This information is used when an exception is thrown to determine where control
should be transferred. In particular, the unwind information is used to determine which
function called the function that threw the exception, and which function called that one,
and so forth. This information is also used to restore the values of callee-saved registers in
the function catching the exception.

If you are writing functions in assembly code, and those functions call other functions
that throw exceptions, you must use assembly pseudo ops to ensure that appropriate ex-
ception unwind information is generated. Otherwise, if one of the functions called by your
assembly code throws an exception, the run-time library will be unable to unwind the stack
through your assembly code and your program will not behave correctly.

To illustrate the use of these pseudo ops, we will examine the code that G++ generates
for the following C++ input:

void callee (int *);

int

caller ()

{
int 1i;
callee (&i);
return i;

}

This example does not show how to throw or catch an exception from assembly code.
That is a much more complex operation and should always be done in a high-level language,
such as C++, that directly supports exceptions.

The code generated by one particular version of G++ when compiling the example above
is:

_Z6callerv:

130 Using as

.fnstart
.LFB2:
@ Function supports interworking.
@ args = 0, pretend = 0, frame = 8
@ frame_needed = 1, uses_anonymous_args = 0
stmfd sp!, {fp, 1lr}
.save {fp, 1lr}
.LCFIO:
.setfp fp, sp, #4
add fp, sp, #4
.LCFI1:
.pad #8
sub sp, sp, #8
.LCFI2:
sub r3, fp, #8
mov r0, r3
bl _Z6calleePi
ldr r3, [fp, #-8]
mov r0, r3
sub sp, fp, #4
ldmfd sp!, {fp, 1lr}
bx 1r
.LFE2:
.fnend

Of course, the sequence of instructions varies based on the options you pass to GCC
and on the version of GCC in use. The exact instructions are not important since we are
focusing on the pseudo ops that are used to generate unwind information.

An important assumption made by the unwinder is that the stack frame does not change
during the body of the function. In particular, since we assume that the assembly code does
not itself throw an exception, the only point where an exception can be thrown is from a
call, such as the bl instruction above. At each call site, the same saved registers (including
1r, which indicates the return address) must be located in the same locations relative to
the frame pointer.

The .fnstart (see [.fnstart pseudo op|, page 125) pseudo op appears immediately before
the first instruction of the function while the .fnend (see [.fnend pseudo op], page 124)
pseudo op appears immediately after the last instruction of the function. These pseudo ops
specify the range of the function.

Only the order of the other pseudos ops (e.g., .setfp or .pad) matters; their exact
locations are irrelevant. In the example above, the compiler emits the pseudo ops with
particular instructions. That makes it easier to understand the code, but it is not required
for correctness. It would work just as well to emit all of the pseudo ops other than .fnend
in the same order, but immediately after .fnstart.

The .save (see [.save pseudo opl, page 126) pseudo op indicates registers that have been
saved to the stack so that they can be restored before the function returns. The argument to
the .save pseudo op is a list of registers to save. If a register is “callee-saved” (as specified
by the ABI) and is modified by the function you are writing, then your code must save

Chapter 9: Machine Dependent Features 131

the value before it is modified and restore the original value before the function returns.
If an exception is thrown, the run-time library restores the values of these registers from
their locations on the stack before returning control to the exception handler. (Of course, if
an exception is not thrown, the function that contains the .save pseudo op restores these
registers in the function epilogue, as is done with the 1dmfd instruction above.)

You do not have to save callee-saved registers at the very beginning of the function and
you do not need to use the .save pseudo op immediately following the point at which the
registers are saved. However, if you modify a callee-saved register, you must save it on the
stack before modifying it and before calling any functions which might throw an exception.
And, you must use the .save pseudo op to indicate that you have done so.

The .pad (see [.pad], page 125) pseudo op indicates a modification of the stack pointer
that does not save any registers. The argument is the number of bytes (in decimal) that
are subtracted from the stack pointer. (On ARM CPUs, the stack grows downwards, so
subtracting from the stack pointer increases the size of the stack.)

The .setfp (see [.setfp pseudo opl|, page 126) pseudo op indicates the register that
contains the frame pointer. The first argument is the register that is set, which is typically
fp. The second argument indicates the register from which the frame pointer takes its value.
The third argument, if present, is the value (in decimal) added to the register specified by
the second argument to compute the value of the frame pointer. You should not modify
the frame pointer in the body of the function.

If you do not use a frame pointer, then you should not use the .setfp pseudo op. If you
do not use a frame pointer, then you should avoid modifying the stack pointer outside of
the function prologue. Otherwise, the run-time library will be unable to find saved registers
when it is unwinding the stack.

The pseudo ops described above are sufficient for writing assembly code that calls func-
tions which may throw exceptions. If you need to know more about the object-file format
used to represent unwind information, you may consult the Exception Handling ABI for
the ARM Architecture available from http://infocenter.arm. com.

http://infocenter.arm.com

132

Using as

9.5 AVR Dependent Features

9.5.1 Options

—mmcu=mcu

Specify ATMEL AVR instruction set or MCU type.

Instruction set avrl is for the minimal AVR core, not supported by the C com-
piler, only for assembler programs (MCU types: at90s1200, attiny11, attiny12,
attiny15, attiny28).

Instruction set avr2 (default) is for the classic AVR core with up to 8K
program memory space (MCU types: at90s2313, at90s2323, at90s2333,
at90s2343, attiny22, attiny26, at90s4414, at90s4433, at90s4434, at90s8515,
at90c8534, at90s8535).

Instruction set avr25 is for the classic AVR core with up to 8K program mem-
ory space plus the MOVW instruction (MCU types: attinyl3, attinyl3a, at-
tiny2313, attiny2313a, attiny24, attiny24a, attiny4313, attiny44, attiny44a,
attiny84, attiny84a, attiny25, attiny4b, attiny85, attiny261, attiny26la, at-
tiny461, attiny46la, attiny861, attiny861la, attiny87, attiny43u, attiny48, at-
tiny88, attiny828, at86rf401, ata6289, ata5272).

Instruction set avr3 is for the classic AVR core with up to 128K program mem-
ory space (MCU types: at43usb355, at76¢711).

Instruction set avr3l is for the classic AVR core with exactly 128K program
memory space (MCU types: atmegal(03, at43usb320).

Instruction set avr35 is for classic AVR core plus MOVW, CALL, and JMP
instructions (MCU types: attinyl67, attiny1634, at90usb82, at90usb162, at-
mega8u2, atmegal6u2, atmega32u2, ata5505).

Instruction set avr4 is for the enhanced AVR core with up to 8K program
memory space (MCU types: atmega48, atmegad8a, atmegad8pa, atmegad8p,
atmega8, atmega8a, atmega88, atmega88a, atmega88p, atmega88pa,
atmega8515, atmega8535, atmega8hva, at90pwml, at90pwm2, at90pwm2b,
at90pwm3, at90pwm3b, at90pwm81, ata6285, ata6286).

Instruction set avrd is for the enhanced AVR core with up to 128K program
memory space (MCU types: at90pwml61, atmegal6, atmegal6a, atmegal61,
atmegal62, atmegal63, atmegal64a, atmegal64p, atmegal64pa, atmegal6s,
atmegal6ba, atmegal6dp, atmegal6bpa, atmegal68, atmegal68a, atmegal68p,
atmegal68pa, atmegal69, atmegal69a, atmegal69p, atmegal69pa, atmegad?2,
atmega3d23, atmega3d24a, atmega324p, atmega3d24pa, atmega3d2h, atmega3d25a,
atmegad2, atmegad2a, atmega3d23, atmega3d24a, atmegad24p, atmegad24pa,
atmega3d2h, atmegad25a, atmegad25p, atmega3d25p, atmegald25pa, atmega3d250,
atmega3d2b0a, atmega3d250p, atmega3d250pa, atmegad28, atmegald28p,
atmegad29, atmegad29a, atmegad29p, atmegad29pa, atmega3d290a, at-
megad290p, atmegad290pa, atmegad(06, atmegab4, atmegabda, atmegab4rfr2,
atmegab44rfr2, atmega640, atmega644, atmegab44a, atmega644p, at-
megab44pa, atmega645, atmegab4ba, atmegab45p, atmega6450, atmegat450a,
atmega6450p, atmega649, atmega649a, atmega649p, atmega6490, at-
mega6490a, atmega6490p, atmegal6Ghva, atmegalGhva2, atmegalGhvb,

Chapter 9: Machine Dependent Features 133

atmegal6hvbrevb, atmegad2hvb, atmega3d2hvbrevb, atmega64hve, at90can32,
at90can64, at90pwml161, at90pwm216, at90pwm316, atmegad2cl, atmegabdcl,
atmegalbml, atmega3d2ml, atmegab64ml, atmegal6ud, atmega3d2u4,
atmega32u6, at90usb646, at90usb647, at94k, at90scrl00, ata5790, ata5795).

Instruction set avr51 is for the enhanced AVR core with exactly 128K
program memory space (MCU types: atmegal28, atmegal28a, atmegal280,
atmegal281, atmegal284, atmegal284p, atmegal28rfal, atmegal28rfr2,
atmegal284rfr2, at90can128, at90usb1286, at90usb1287, m3000).

Instruction set avr6 is for the enhanced AVR core with a 3-byte PC (MCU
types: atmega2560, atmega2561, atmega256rfr2, atmega2564rfr2).

Instruction set avrxmega2 is for the XMEGA AVR core with 8K to
64K program memory space and less than 64K data space (MCU types:
atxmegal6ad, atxmegalbadu, atxmegal6cd, atxmegal6d4, atxmegal6xl,
atxmegad2ad, atxmega3d2adu, atxmega3d2c4, atxmega3d2d4, atxmegal6eb,
atxmega8ebh, atxmega32eh, atxmega32x1).

Instruction set avrxmegad is for the XMEGA AVR core with up to 64K of
combined program memory and RAM, and with program memory visible in the
RAM address space (MCU types: attiny212, attiny214, attiny412, attiny414,
attiny416, attiny417, attiny814, attiny816, attiny817, attiny1614, attinyl1616,
attiny1617, attiny3214, attiny3216, attiny3217).

Instruction set avrxmegad is for the XMEGA AVR core with up to
64K program memory space and less than 64K data space (MCU types:
atxmegab4a3, atxmega64adu, atxmega64adu, atxmega64bl, atxmega64b3,
atxmega64c3, atxmega64d3, atxmega64d4).

Instruction set avrxmegab is for the XMEGA AVR core with up to 64K program
memory space and greater than 64K data space (MCU types: atxmega64al,
atxmega64alu).

Instruction set avrxmegab is for the XMEGA AVR core with larger than
64K program memory space and less than 64K data space (MCU types:
atxmegal28a3d, atxmegal28a3du, atxmegal28c3, atxmegal28d3, atxmegal28d4,
atxmegal92a3, atxmegal92a3du, atxmegal28bl, atxmegal28b3, atxmegal92c3,

atxmegal92d3, atxmega256a3, atxmega256a3u, atxmega256a3b,
atxmega2b6a3dbu, atxmega256¢3, atxmega256d3, atxmega3d84c3,
atxmega256d3).

Instruction set avrxmega7 is for the XMEGA AVR core with larger than
64K program memory space and greater than 64K data space (MCU types:
atxmegal28al, atxmegal28alu, atxmegal28adu).

Instruction set avrtiny is for the ATtiny4/5/9/10/20/40 microcontrollers.

-mall-opcodes

-mno-skip-

-mno-wrap

Accept all AVR opcodes, even if not supported by -mmcu.

bug
This option disable warnings for skipping two-word instructions.

This option reject rjmp/rcall instructions with 8K wrap-around.

134 Using as

-mrmw Accept Read-Modify-Write (XCH,LAC,LAS,LAT) instructions.

-mlink-relax
Enable support for link-time relaxation. This is now on by default and this flag
no longer has any effect.

-mno-link-relax
Disable support for link-time relaxation. The assembler will resolve relocations
when it can, and may be able to better compress some debug information.
-mgcc-isr
Enable the __gcc_isr pseudo instruction.

9.5.2 Syntax
9.5.2.1 Special Characters

The presence of a ‘;’ anywhere on a line indicates the start of a comment that extends to
the end of that line.

If a ‘#” appears as the first character of a line, the whole line is treated as a comment, but
in this case the line can also be a logical line number directive (see Section 3.3 [Comments]
page 31) or a preprocessor control command (see Section 3.1 [Preprocessing], page 31).

)

The ‘$’ character can be used instead of a newline to separate statements.

9.5.2.2 Register Names

The AVR has 32 x 8-bit general purpose working registers ‘r0’, ‘r1’, ... ‘r31’. Six of the
32 registers can be used as three 16-bit indirect address register pointers for Data Space
addressing. One of the these address pointers can also be used as an address pointer for
look up tables in Flash program memory. These added function registers are the 16-bit ‘X’,
‘Y’ and ‘Z’ - registers.

X = r26:r27
Y = r28:r29
Z = r30:r31

9.5.2.3 Relocatable Expression Modifiers

The assembler supports several modifiers when using relocatable addresses in AVR instruc-
tion operands. The general syntax is the following:

modifier(relocatable-expression)
108
This modifier allows you to use bits 0 through 7 of an address expression as an
8 bit relocatable expression.
hi8
This modifier allows you to use bits 7 through 15 of an address expression as

an 8 bit relocatable expression. This is useful with, for example, the AVR ‘1di’
instruction and ‘108’ modifier.

For example

1di r26, lo8(sym+10)
1di r27, hi8(sym+10)

Chapter 9: Machine Dependent Features 135

hh8

hlo8

hhi8

pm_lo8

pm_hi8

pm_hh8

This modifier allows you to use bits 16 through 23 of an address expression as
an 8 bit relocatable expression. Also, can be useful for loading 32 bit constants.

Synonym of ‘hh8’.

This modifier allows you to use bits 24 through 31 of an expression as an 8
bit expression. This is useful with, for example, the AVR ‘1di’ instruction and
‘1o8’, ‘hi8’, ‘h108’, ‘hhi8’, modifier.

For example

1di r26, 108(285774925)
1di r27, hi8(285774925)
1di r28, hl1o8(285774925)
1di r29, hhi8(285774925)
; r29,r28,r27,r26 = 285774925

This modifier allows you to use bits 0 through 7 of an address expression as
an 8 bit relocatable expression. This modifier is useful for addressing data or
code from Flash/Program memory by two-byte words. The use of ‘pm_108’ is
similar to ‘108’.

This modifier allows you to use bits 8 through 15 of an address expression as
an 8 bit relocatable expression. This modifier is useful for addressing data or
code from Flash/Program memory by two-byte words.

For example, when setting the AVR ‘Z’ register with the ‘1di’ instruction for
subsequent use by the ‘ijmp’ instruction:

1di r30, pm_lo8(sym)
1di r31, pm_hi8(sym)
ijmp

This modifier allows you to use bits 15 through 23 of an address expression as
an 8 bit relocatable expression. This modifier is useful for addressing data or
code from Flash/Program memory by two-byte words.

9.5.3 Opcodes

For detailed information on the AVR machine instruction set, see www .atmel . com/
products/AVR.

as implements all the standard AVR opcodes. The following table summarizes the AVR
opcodes, and their arguments.

Legend:

r

s p < Q

any register

‘1di’ register (r16-r31)

‘movw’ even register (r0, r2, ..., r28, r30)
‘fmul’ register (r16-r23)

‘adiw’ register (r24,r26,r28,r30)

www.atmel.com/products/AVR
www.atmel.com/products/AVR

136

pointer registers (X,Y,Z)

base pointer register and displacement ([YZ]+disp)

Z pointer register (for [e]lpm Rd,Z[+])

immediate value from 0 to 255

immediate value from 0 to 255 (n = "M). Relocation impossible
immediate value from 0 to 7

Port address value from 0 to 63. (in, out)

Port address value from 0 to 31. (cbi, sbi, sbic, sbis)

immediate value from 0 to 63 (used in ‘adiw’, ‘sbiw’)

immediate value

signed pc relative offset from -64 to 63

signed pc relative offset from -2048 to 2047

absolute code address (call, jmp)

immediate value from 0 to 7 (S = s << 4)

use this opcode entry if no parameters, else use next opcode entry

NP PP RTY YT B RN T O

1001010010001000 clc
1001010011011000 clh
1001010011111000 cli
1001010010101000 cln
1001010011001000 cls
1001010011101000 clt
1001010010111000 clv
1001010010011000 clz
1001010000001000 sec
1001010001011000 seh
1001010001111000 sei
1001010000101000 sen
1001010001001000 ses
1001010001101000 set
1001010000111000 sev
1001010000011000 sez
100101001SSS1000 bclr S
1001010008551000 bset S
1001010100001001 icall
1001010000001001 ijmp
1001010111001000 1pm ?
1001000ddddd010+ 1lpm r,z
1001010111011000 elpm ?
1001000ddddd011+ elpm r
0000000000000000 nop
1001010100001000 ret
1001010100011000 reti
1001010110001000 sleep
1001010110011000 break
1001010110101000 wdr
1001010111101000 spm

000111rdddddrrrr adc r,r
000011rdddddrrrr add r,r
001000rdddddrrrr and r,r
000101rdddddrrrr cp r,r
000001rdddddrrrr cpc r,r
000100rdddddrrrr cpse r,r
001001rdddddrrrr eor r,r
001011rdddddrrrr mov r,r
100111rdddddrrrr mul r,r
001010rdddddrrrr or r,r

000010rdddddrrrr sbc r,r

Chapter 9: Machine Dependent Features 137

000110rdddddrrrr sub
001001rdddddrrrr clr
000011rdddddrrrr 1sl
000111rdddddrrrr rol
001000rdddddrrrr tst
0111KKKKddddKKKK andi
0111KKKKddddKKKK cbr
1110KKKKddddKKKK 1di
11101111dddd1111 ser

o]

QAR R KR ARKR
=B =

0110KKKKddddKKKK ori ,M
0110KKKKddddKKKK sbr ,M
0011KKKKddddKKKK cpi d,M
0100KKKKddddKKKK sbci d,M
0101KKKKddddKKKK subi d,M
1111110rrrrrOsss sbrc r,s

1111111rrrrrOsss sbrs
1111100dddddOsss bld
1111101ddddd0sss bst
10110PPdddddPPPP in
10111PPrrrrrPPPP out
10010110KKddKKKK adiw
10010111KKddKKKK sbiw
10011000pppppsss cbi
10011010pppppsss sbi
10011001pppppsss sbic
10011011pppppsss sbis
1111011111111000 brcc
1111001111111000 brcs
1111001111111001 breq
1111011111111100 brge
1111011111111101 brhc
1111001111111101 brhs
1111011111111111 brid
1111001111111111 brie
1111001111111000 brlo
1111001111111100 brlt
1111001111111010 brmi
1111011111111001 brne
1111011111111010 brpl
1111011111111000 brsh
1111011111111110 brtc
1111001111111110 brts
1111011111111011 brvc
1111001111111011 brvs
1111011111111sss brbc
1111001111111sss brbs
1101LLLLLLLLLLLL rcall
1100LLLLLLLLLLLL rjmp
1001010hhhhh111h call
1001010hhhhh110h jmp
1001010rrrrr0101 asr
1001010rrrrr0000 com
1001010rrrrr1010 dec
1001010rrrrr0011 inc
1001010rrrrr0110 1sr
1001010rrrrr0001 neg
1001000rrrrriii1l pop
1001001rrrrr1111 push

n n nn XK 9n non

=

HRRRRRAARYYIYPEFEFCOCFHFonsoHFFRFFRFFFRFHFFFFFAFRFRFFHFRFHFEFEFHARPODODODOD £ £ "9 R B KR

138 Using as

1001010rrrrr0111 ror r

1001010rrrrr0010 swap r

00000001ddddrrrr movw v,V
00000010ddddrrrr muls d,d
000000110dddO0rrr mulsu a,a
000000110ddd1rrr fmul a,a
000000111dddOrrr fmuls a,a
000000111dddirrr fmulsu a,a
1001001ddddd0000 sts i,r
1001000ddddd0000 1ds r,i
1000000dddddbooo 1dd r,b
100!000dddddee-+ 1d r,e
1000oolrrrrrbooo std b,r
100!'001rrrrree—-+ st e,r

1001010100011001 eicall
1001010000011001 eijmp

9.5.4 Pseudo Instructions

The only available pseudo-instruction __gcc_isr can be activated by option -mgcc-isr.

__gcc_isr 1
Emit code chunk to be used in avr-gcc ISR prologue. It will expand to at most
six 1-word instructions, all optional: push of tmp_reg, push of SREG, push and
clear of zero_reg, push of Reg.

__gecc_isr 2
Emit code chunk to be used in an avr-gcc ISR epilogue. It will expand to at
most five 1-word instructions, all optional: pop of Reg, pop of zero_reg, pop
of SREG, pop of tmp_reg.

__gcc_isr 0, Reg
Finish avr-gcc ISR function. Scan code since the last prologue for usage of
SREG, tmp_reg, zero_reg. Prologue chunk and epilogue chunks will be replaced
by appropriate code to save / restore SREG, tmp_reg, zero_reg and Reg.

Example input:

__vectorl:
__gcc_isr 1
1lds r24, var
inc r24
sts var, r24
__gecc_isr 2
reti
__gcc_isr 0, r24

Example output:
00000000 <__vectoril>:

0: 8f 93 push r24

2: 8f b7 in r24, 0x3f

4: 8f 93 push r24

6: 80 91 60 00 lds r24, 0x0060 ; 0x800060 <var>
a 83 95 inc r24

Chapter 9: Machine Dependent Features

10:
12:
14:
16:

80 93 60 00
8f 91
8f bf
8f 91
18 95

sts
pop
out
pop
reti

0x0060, r24
r24

0x3f, r24
r24

J

0x800060 <var>

139

140

Using as

9.6 Blackfin Dependent Features

9.6.1 Options

-mcpu=processor|-sirevision|

-mfdpic

-mno-fdpic

-mnopic

This option specifies the target processor. The optional sirevision is not used
in assembler. It’s here such that GCC can easily pass down its -mcpu= option.
The assembler will issue an error message if an attempt is made to assemble
an instruction which will not execute on the target processor. The following
processor names are recoghized: bf504, bf506, bf512, bf514, bf516, bf518,
bfb522, b£523, b£524, bf525, b£526, b£527, b£531, b£532, bf533, b£534, b£f535
(not implemented yet), bf536, bf537, bf538, bf539, bf542, bf542m, bf544,
bf544m, bf547, bf547m, bf548, bf548m, bf549, bf549m, bf561, and bf592.

Assemble for the FDPIC ABI.

Disable -mfdpic.

9.6.2 Syntax

Special Characters

Assembler input is free format and may appear anywhere on the line. One
instruction may extend across multiple lines or more than one instruction may
appear on the same line. White space (space, tab, comments or newline) may
appear anywhere between tokens. A token must not have embedded spaces.
Tokens include numbers, register names, keywords, user identifiers, and also
some multicharacter special symbols like "+=","/*" or "||".

Comments are introduced by the ‘#’ character and extend to the end of the
current line. If the ‘#” appears as the first character of a line, the whole line is
treated as a comment, but in this case the line can also be a logical line num-
ber directive (see Section 3.3 [Comments], page 31) or a preprocessor control
command (see Section 3.1 [Preprocessing], page 31).

Instruction Delimiting

A semicolon must terminate every instruction. Sometimes a complete instruc-
tion will consist of more than one operation. There are two cases where this
occurs. The first is when two general operations are combined. Normally a
comma separates the different parts, as in

a0= r3.h * r2.1, al = r3.1 * r2.h ;
The second case occurs when a general instruction is combined with one or two

memory references for joint issue. The latter portions are set off by a "||"
token.

a0 = r3.h * r2.1 || r1 = [p3++] || rd = [i2++];

Multiple instructions can occur on the same line. Each must be terminated by
a semicolon character.

Chapter 9: Machine Dependent Features 141

Register Names
The assembler treats register names and instruction keywords in a case insensi-
tive manner. User identifiers are case sensitive. Thus, R3.1, R3.L, r3.1 and r3.L
are all equivalent input to the assembler.

Register names are reserved and may not be used as program identifiers.

Some operations (such as "Move Register") require a register pair. Register
pairs are always data registers and are denoted using a colon, eg., R3:2. The
larger number must be written firsts. Note that the hardware only supports
odd-even pairs, eg., R7:6, R5:4, R3:2, and R1:0.

Some instructions (such as —SP (Push Multiple)) require a group of adjacent
registers. Adjacent registers are denoted in the syntax by the range enclosed
in parentheses and separated by a colon, eg., (R7:3). Again, the larger number
appears first.

Portions of a particular register may be individually specified. This is written
with a dot (".") following the register name and then a letter denoting the
desired portion. For 32-bit registers, ".H" denotes the most significant ("High")
portion. ".L" denotes the least-significant portion. The subdivisions of the 40-
bit registers are described later.

Accumulators
The set of 40-bit registers Al and A0 that normally contain data that is being
manipulated. Each accumulator can be accessed in four ways.

one 40-bit register
The register will be referred to as Al or AOQ.

one 32-bit register
The registers are designated as A1.W or A0.W.

two 16-bit registers
The registers are designated as A1.H, A1.L, AO.H or A0.L.

one 8-bit register
The registers are designated as A1.X or A0.X for the bits that
extend beyond bit 31.

Data Registers
The set of 32-bit registers (RO, R1, R2, R3, R4, R5, R6 and R7) that normally
contain data for manipulation. These are abbreviated as D-register or Dreg.
Data registers can be accessed as 32-bit registers or as two independent 16-bit
registers. The least significant 16 bits of each register is called the "low" half
and is designated with ".L" following the register name. The most significant
16 bits are called the "high" half and is designated with ".H" following the
name.
R7.L, r2.h, r4.L, RO.H

Pointer Registers
The set of 32-bit registers (PO, P1, P2, P3, P4, P5, SP and FP) that normally
contain byte addresses of data structures. These are abbreviated as P-register
or Preg.

142 Using as

p2, p5, fp, sp

Stack Pointer SP
The stack pointer contains the 32-bit address of the last occupied byte location
in the stack. The stack grows by decrementing the stack pointer.

Frame Pointer FP
The frame pointer contains the 32-bit address of the previous frame pointer in
the stack. It is located at the top of a frame.

Loop Top LTO and LT1. These registers contain the 32-bit address of the top of a zero
overhead loop.

Loop Count
LCO and LC1. These registers contain the 32-bit counter of the zero overhead
loop executions.

Loop Bottom
LBO and LB1. These registers contain the 32-bit address of the bottom of a
zero overhead loop.

Index Registers
The set of 32-bit registers (10, I1, 12, I3) that normally contain byte addresses
of data structures. Abbreviated I-register or Ireg.

Modify Registers
The set of 32-bit registers (M0, M1, M2, M3) that normally contain offset values
that are added and subtracted to one of the index registers. Abbreviated as
Mreg.

Length Registers
The set of 32-bit registers (L0, L1, L2, L3) that normally contain the length
in bytes of the circular buffer. Abbreviated as Lreg. Clear the Lreg to disable
circular addressing for the corresponding Ireg.

Base Registers
The set of 32-bit registers (B0, B1, B2, B3) that normally contain the base
address in bytes of the circular buffer. Abbreviated as Breg.

Floating Point
The Blackfin family has no hardware floating point but the .float directive gen-
erates ieee floating point numbers for use with software floating point libraries.

Blackfin Opcodes
For detailed information on the Blackfin machine instruction set, see the Black-
fin Processor Instruction Set Reference.

9.6.3 Directives
The following directives are provided for compatibility with the VDSP assembler.

.byte2 Initializes a two byte data object.

This maps to the .short directive.

Chapter 9:

.byted

.db

.dw

.dd

.var

Machine Dependent Features

Initializes a four byte data object.

This maps to the .int directive.

Initializes a single byte data object.

This directive is a synonym for .byte.

Initializes a two byte data object.

This directive is a synonym for .byte2.

Initializes a four byte data object.

This directive is a synonym for .byte4.

Define and initialize a 32 bit data object.

143

144 Using as

9.7 BPF Dependent Features

9.7.1 Options
-EB This option specifies that the assembler should emit big-endian eBPF.
-EL This option specifies that the assembler should emit little-endian eBPF.

Note that if no endianness option is specified in the command line, the host endianness
is used.

9.7.2 Syntax

9.7.2.1 Special Characters

The presence of a ‘;’ on a line indicates the start of a comment that extends to the end of
the current line. If a ‘#" appears as the first character of a line, the whole line is treated as
a comment.

Statements and assembly directives are separated by newlines.

9.7.2.2 Register Names

The eBPF processor provides ten general-purpose 64-bit registers, which are read-write,
and a read-only frame pointer register:

‘%r0 .. %hr9’
General-purpose registers.

‘%r10’ Frame pointer register.
Some registers have additional names, to reflect their role in the eBPF ABI:
‘ha’ This is ‘%r0’.
‘hetx’ This is ‘%r6’.
‘“%htp’ This is ‘%r10’.
9.7.2.3 Pseudo Maps

The ‘LDDW’ instruction can take a literal pseudo map file descriptor as its second argument.
This uses the syntax ‘Ymap_£fd (N)’ where ‘N’ is a signed number.

For example, to load the address of the pseudo map with file descriptor ‘2’ in register
‘r1’ we would do:
lddw %rl, Ymap_£fd(2)

9.7.3 Machine Directives

The BPF version of as supports the following additional machine directives:
.word The .half directive produces a 16 bit value.

.word The .word directive produces a 32 bit value.

.dword The .dword directive produces a 64 bit value.

Chapter 9: Machine Dependent Features 145

9.7.4 Opcodes

In the instruction descriptions below the following field descriptors are used:

Al Destination general-purpose register whose role is to be destination of an oper-
ation.

%s Source general-purpose register whose role is to be the source of an operation.

displ6 16-bit signed PC-relative offset, measured in number of 64-bit words, minus
one.

disp32 32-bit signed PC-relative offset, measured in number of 64-bit words, minus
one.

offset16 Signed 16-bit immediate.
imm32 Signed 32-bit immediate.
imm64 Signed 64-bit immediate.

9.7.4.1 Arithmetic instructions

The destination register in these instructions act like an accumulator.

add %d, (%sl|imm32)
64-bit arithmetic addition.

sub %d, (%s|imm32)
64-bit arithmetic subtraction.

mul %d, (%s|imm32)
64-bit arithmetic multiplication.

div %d, (%s|imm32)
64-bit arithmetic integer division.

mod %d, (%s|imm32)
64-bit integer remainder.

and %d, (%s|imm32)
64-bit bit-wise “and” operation.
or %d, (%sl|imm32)
64-bit bit-wise “or” operation.
xor %d, (%s|imm32)
64-bit bit-wise exclusive-or operation.

1sh %d, (%s|imm32)
64-bit left shift, by %s or imm32 bits.

rsh %d, (%s|imm32)
64-bit right logical shift, by %s or imm32 bits.

arsh %d, (%s|imm32)
64-bit right arithmetic shift, by %s or imm32 bits.

neg %d 64-bit arithmetic negation.

mov %d, (%s|imm32)
Move the 64-bit value of %s in %d, or load imm32 in %d.

146 Using as

9.7.4.2 32-bit arithmetic instructions

The destination register in these instructions act as an accumulator.

add32 %d, (%sl|imm32)
32-bit arithmetic addition.

sub32 %d, (%s|imm32)
32-bit arithmetic subtraction.

mul32 %d, (%s|imm32)
32-bit arithmetic multiplication.

div32 %d, (%s|imm32)
32-bit arithmetic integer division.

mod32 %d, (%s|imm32)
32-bit integer remainder.

and32 %d, (%s|imm32)

32-bit bit-wise “and” operation.
or32 %d, (%s|imm32)

32-bit bit-wise “or” operation.
xor32 %d, (%s|imm32)

32-bit bit-wise exclusive-or operation.

1sh32 %d, (%s|imm32)
32-bit left shift, by %s or imm32 bits.

rsh32 %d, (%s|imm32)
32-bit right logical shift, by %s or imm32 bits.

arsh32 %d, (%s|imm32)
32-bit right arithmetic shift, by %s or imm32 bits.

neg32 %d 32-bit arithmetic negation.
mov32 %d, (%s|imm32)
Move the 32-bit value of %s in %d, or load imm32 in %d.

9.7.4.3 Endianness conversion instructions
endle %d, (8116]32)

Convert the 8-bit, 16-bit or 32-bit value in %d to little-endian.
endbe %d, (8116]32)

Convert the 8-bit, 16-bit or 32-bit value in %d to big-endian.

9.7.4.4 64-bit load and pseudo maps

1ddw %d, imm64
Load the given signed 64-bit immediate, or pseudo map descriptor, to the des-
tination register %d.

1ddw %d, %map_£d(N)
Load the address of the given pseudo map fd N to the destination register %d.

Chapter 9: Machine Dependent Features 147

9.7.4.5 Load instructions for socket filters

The following instructions are intended to be used in socket filters, and are therefore not
general-purpose: they make assumptions on the contents of several registers. See the file
Documentation/networking/filter.txt in the Linux kernel source tree for more infor-
mation.

Absolute loads:

ldabsdw imm32
Absolute 64-bit load.

ldabsw imm32
Absolute 32-bit load.

ldabsh imm32
Absolute 16-bit load.

ldabsb imm32
Absolute 8-bit load.

Indirect loads:

1dinddw %s, imm32
Indirect 64-bit load.

ldindw %s, imm32
Indirect 32-bit load.

1dindh %s, imm32
Indirect 16-bit load.

1dindb %s, imm32
Indirect 8-bit load.

9.7.4.6 Generic load/store instructions
General-purpose load and store instructions are provided for several word sizes.

Load to register instructions:

ldxdw %d, [%s+offset16]
Generic 64-bit load.

ldxw %d, [%s+offset16]
Generic 32-bit load.

1dxh %d, [%s+offsetl6]
Generic 16-bit load.

1dxb %d, [%s+offsetl6]
Generic 8-bit load.

Store from register instructions:

stxdw [fd+offsetl6], %s
Generic 64-bit store.

148 Using as

stxw [id+offset16], %s
Generic 32-bit store.

stxh [%d+offset16], %s
Generic 16-bit store.

stxb [fd+offset16], %s
Generic 8-bit store.

Store from immediates instructions:

stddw [%d+offsetl16], imm32
Store immediate as 64-bit.

stdw [Yd+offset16], imm32
Store immediate as 32-bit.

stdh [/d+offset16], imm32
Store immediate as 16-bit.

stdb [Jid+offset16], imm32
Store immediate as 8-bit.

9.7.4.7 Jump instructions

eBPF provides the following compare-and-jump instructions, which compare the values of
the two given registers, or the values of a register and an immediate, and perform a branch
in case the comparison holds true.

ja %d, (%s|imm32) ,disp16
Jump-always.

jeq %d, (%s|imm32) ,displ6
Jump if equal.
jet %hd, (hs|imm32) ,displ6
Jump if greater.
jge %d, (%s|imm32) ,displ6
Jump if greater or equal.

j1t %d, (%s|imm32) ,disp16
Jump if lesser.

jle %d, (%s|imm32) ,displ6
Jump if lesser or equal.

jset %d, (%s|imm32) ,displ6
Jump if signed equal.

jne %d, (%s|imm32) ,disp16
Jump if not equal.
jsgt %d, (%s|imm32) ,displ6
Jump if signed greater.
jsge %d, (%s|imm32) ,displ6
Jump if signed greater or equal.

Chapter 9: Machine Dependent Features 149

jslt %d, (%s|imm32) ,displ6
Jump if signed lesser.

jsle %d, (%s|imm32) ,displ6
Jump if signed lesser or equal.

A call instruction is provided in order to perform calls to other eBPF functions, or to
external kernel helpers:

call (disp32|imm32)
Jump and link to the offset disp32, or to the kernel helper function identified
by tmm32.

Finally:

exit Terminate the eBPF program.

9.7.4.8 Atomic instructions

Atomic exchange-and-add instructions are provided in two flavors: one for swapping 64-bit
quantities and another for 32-bit quantities.

xadddw [%d+offset16],%s
Exchange-and-add a 64-bit value at the specified location.

xaddw [Y%d+offset16],%s
Exchange-and-add a 32-bit value at the specified location.

150 Using as

9.8 CR16 Dependent Features

9.8.1 CR16 Operand Qualifiers

The National Semiconductor CR16 target of as has a few machine dependent operand
qualifiers.

Operand expression type qualifier is an optional field in the instruction operand, to deter-

mines the type of the expression field of an operand. The @ is required. CR16 architecture
uses one of the following expression qualifiers:

S - Specifies expression operand type as small
m - Specifies expression operand type as medium
- Specifies expression operand type as large

C - Specifies the CR16 Assembler generates a relocation entry for
the operand, where pc has implied bit, the expression is adjusted
accordingly. The linker uses the relocation entry to update the
operand address at link time.

got/GOT - Specifies the CR16 Assembler generates a relocation entry for
the operand, offset from Global Offset Table. The linker uses this
relocation entry to update the operand address at link time

cgot/cGOT
- Specifies the CompactRISC Assembler generates a relocation entry
for the operand, where pc has implied bit, the expression is adjusted
accordingly. The linker uses the relocation entry to update the
operand address at link time.

CR16 target operand qualifiers and its size (in bits):

‘Immediate Operand: s’
4 bits.
‘Immediate Operand: m’

16 bits, for movb and movw instructions.

‘Immediate Operand: m’
20 bits, movd instructions.

‘Immediate Operand: 1’
32 bits.

‘Absolute Operand: s’
Illegal specifier for this operand.

‘Absolute Operand: m’
20 bits, movd instructions.

‘Displacement Operand: s’
8 bits.

‘Displacement Operand: m’
16 bits.

Chapter 9: Machine Dependent Features 151

‘Displacement Operand: 1’
24 bits.
For example:

1 movw $_myfun@c,ril
This loads the address of _myfun, shifted right by 1, into rl.
2 movd $_myfun@c, (r2,r1)

This loads the address of _myfun, shifted right by 1, into register-
pair r2-ri.

3 _myfun_ptr:
.long _myfun@c
loadd _myfun_ptr, (rl,r0)
jal (r1,r0)

This .long directive, the address of _myfunc, shifted right by 1 at link time.
4 loadd _datal@GOT(r12), (r1,r0)

This loads the address of _datal, into global offset table (ie GOT) and its off-
set value from GOT loads into register—pair r2-ril.

5 loadd _myfunc@cGOT(r12), (ri1,r0)

This loads the address of _myfun, shifted right by 1, into global off-
set table (ie GOT) and its offset value from GOT loads into register-pair ri-
r0.

9.8.2 CR16 Syntax
9.8.2.1 Special Characters

The presence of a ‘#’ on a line indicates the start of a comment that extends to the end
of the current line. If the ‘#" appears as the first character of a line, the whole line is
treated as a comment, but in this case the line can also be a logical line number directive
(see Section 3.3 [Comments|, page 31) or a preprocessor control command (see Section 3.1
[Preprocessing], page 31).

The ¢;’ character can be used to separate statements on the same line.

152 Using as

9.9 CRIS Dependent Features

9.9.1 Command-line Options
The CRIS version of as has these machine-dependent command-line options.

The format of the generated object files can be either ELF or a.out, specified by the
command-line options -—emulation=crisaout and --emulation=criself. The default is
ELF (criself), unless as has been configured specifically for a.out by using the configuration
name cris—-axis-aout.

There are two different link-incompatible ELF object file variants for CRIS, for use in
environments where symbols are expected to be prefixed by a leading ‘_’ character and for
environments without such a symbol prefix. The variant used for GNU/Linux port has no
symbol prefix. Which variant to produce is specified by either of the options ——underscore
and --no-underscore. The default is ——underscore. Since symbols in CRIS a.out objects
are expected to have a ‘_’ prefix, specifying -—-no-underscore when generating a.out objects
is an error. Besides the object format difference, the effect of this option is to parse register
names differently (see [crisnous], page 155). The --no-underscore option makes a ‘§’
register prefix mandatory.

The option --pic must be passed to as in order to recognize the symbol syntax used
for ELF (SVR4 PIC) position-independent-code (see [crispic], page 154). This will also
affect expansion of instructions. The expansion with —-pic will use PC-relative rather than
(slightly faster) absolute addresses in those expansions. This option is only valid when
generating ELF format object files.

The option --march=architecture specifies the recognized instruction set and recog-
nized register names. It also controls the architecture type of the object file. Valid values
for architecture are:

v0_v10 All instructions and register names for any architecture variant in the set
v0...v10 are recognized. This is the default if the target is configured as cris-*.

v10 Only instructions and register names for CRIS v10 (as found in ETRAX 100
LX) are recognized. This is the default if the target is configured as crisv10-*.

v32 Only instructions and register names for CRIS v32 (code name Guinness) are
recognized. This is the default if the target is configured as crisv32-*. This
value implies --no-mul-bug-abort. (A subsequent --mul-bug-abort will turn
it back on.)

common_v10_v32
Only instructions with register names and addressing modes with opcodes com-
mon to the v10 and v32 are recognized.

When -N is specified, as will emit a warning when a 16-bit branch instruction is expanded
into a 32-bit multiple-instruction construct (see Section 9.9.2 [CRIS-Expand], page 153).

Some versions of the CRIS v10, for example in the Etrax 100 LX, contain a bug that
causes destabilizing memory accesses when a multiply instruction is executed with certain
values in the first operand just before a cache-miss. When the --mul-bug-abort command-
line option is active (the default value), as will refuse to assemble a file containing a multiply
instruction at a dangerous offset, one that could be the last on a cache-line, or is in a

Chapter 9: Machine Dependent Features 153

section with insufficient alignment. This placement checking does not catch any case where
the multiply instruction is dangerously placed because it is located in a delay-slot. The
--mul-bug-abort command-line option turns off the checking.

9.9.2 Instruction expansion

as will silently choose an instruction that fits the operand size for ‘[register+constant]’
operands. For example, the offset 127 in move.d [r3+127],r4 fits in an instruction using
a signed-byte offset. Similarly, move.d [r2+32767],r1 will generate an instruction using a
16-bit offset. For symbolic expressions and constants that do not fit in 16 bits including the
sign bit, a 32-bit offset is generated.

For branches, as will expand from a 16-bit branch instruction into a sequence of in-
structions that can reach a full 32-bit address. Since this does not correspond to a single
instruction, such expansions can optionally be warned about. See Section 9.9.1 [CRIS-Opts]
page 152.

J

If the operand is found to fit the range, a lapc mnemonic will translate to a lapcq
instruction. Use lapc.d to force the 32-bit lapc instruction.

Similarly, the addo mnemonic will translate to the shortest fitting instruction of addoq,
addo.w and addo.d, when used with a operand that is a constant known at assembly time.

9.9.3 Symbols

Some symbols are defined by the assembler. They're intended to be used in conditional
assembly, for example:

.if ..asm.arch.cris.v32

code for CRIS v32

.elseif ..asm.arch.cris.common_v10_v32
code common to CRIS v32 and CRIS v10

.elseif ..asm.arch.cris.v10 | ..asm.arch.cris.any_vO_v10
code for v10

.else

.error "Code needs to be added here."

.endif

These symbols are defined in the assembler, reflecting command-line options, either when
specified or the default. They are always defined, to 0 or 1.

..asm.arch.cris.any_vO0_v10
This symbol is non-zero when --march=v0_v10 is specified or the default.

..asm.arch.cris.common_v10_v32
Set according to the option --march=common_v10_v32.

..asm.arch.cris.v10
Reflects the option ——march=v10.

..asm.arch.cris.v32
Corresponds to ——march=v10.

Speaking of symbols, when a symbol is used in code, it can have a suffix modifying its
value for use in position-independent code. See Section 9.9.4.2 [CRIS-Pic|, page 154.

9.9.4 Syntax
There are different aspects of the CRIS assembly syntax.

154 Using as

9.9.4.1 Special Characters

The character ‘#’ is a line comment character. It starts a comment if and only if it is placed
at the beginning of a line.

A *;’ character starts a comment anywhere on the line, causing all characters up to the
end of the line to be ignored.

A ‘@ character is handled as a line separator equivalent to a logical new-line character
(except in a comment), so separate instructions can be specified on a single line.

9.9.4.2 Symbols in position-independent code

When generating position-independent code (SVR4 PIC) for use in cris-axis-linux-gnu or
crisv32-axis-linux-gnu shared libraries, symbol suffixes are used to specify what kind of
run-time symbol lookup will be used, expressed in the object as different relocation types.
Usually, all absolute symbol values must be located in a table, the global offset table, leaving
the code position-independent; independent of values of global symbols and independent of
the address of the code. The suffix modifies the value of the symbol, into for example an
index into the global offset table where the real symbol value is entered, or a PC-relative
value, or a value relative to the start of the global offset table. All symbol suffixes start
with the character ‘:’ (omitted in the list below). Every symbol use in code or a read-only
section must therefore have a PIC suffix to enable a useful shared library to be created.
Usually, these constructs must not be used with an additive constant offset as is usually
allowed, i.e. no 4 as in symbol + 4 is allowed. This restriction is checked at link-time, not
at assembly-time.

GOT

Attaching this suffix to a symbol in an instruction causes the symbol to be
entered into the global offset table. The value is a 32-bit index for that sym-
bol into the global offset table. The name of the corresponding relocation is
‘R_CRIS_32_GOT’. Example: move.d [$rO+extsym:GOT],$r9

GOT16

Same as for ‘GOT’, but the value is a 16-bit index into the global offset ta-
ble. The corresponding relocation is ‘R_CRIS_16_GOT’. Example: move.d
[$r0+asymbol:GOT16],$r10

PLT

This suffix is used for function symbols. It causes a procedure linkage table,
an array of code stubs, to be created at the time the shared object is created
or linked against, together with a global offset table entry. The value is a pc-
relative offset to the corresponding stub code in the procedure linkage table.
This arrangement causes the run-time symbol resolver to be called to look up
and set the value of the symbol the first time the function is called (at latest;
depending environment variables). It is only safe to leave the symbol unresolved
this way if all references are function calls. The name of the relocation is
‘R_CRIS_32_PLT_PCREL’. Example: add.d fnname:PLT, $pc

PLTG

Chapter 9: Machine Dependent Features 155

Like PLT, but the value is relative to the beginning of the global offset
table. The relocation is ‘R_CRIS_32_PLT_GOTREL’. Example: move.d
fnname:PLTG, $r3

GOTPLT

Similar to ‘PLT’, but the value of the symbol is a 32-bit index into the global
offset table. This is somewhat of a mix between the effect of the ‘GOT’ and
the ‘PLT’ suffix; the difference to ‘GOT’ is that there will be a procedure linkage
table entry created, and that the symbol is assumed to be a function entry
and will be resolved by the run-time resolver as with ‘PLT’. The relocation is
‘R_CRIS_32_GOTPLT . Example: jsr [$rO+fnname:GOTPLT]

GOTPLT16

A variant of ‘GOTPLT’ giving a 16-bit value. Its relocation name is
‘R_CRIS_16_GOTPLT’. Example: jsr [$rO+fnname:GOTPLT16]

GOTOFF

This suffix must only be attached to a local symbol, but may be used in an
expression adding an offset. The value is the address of the symbol relative to
the start of the global offset table. The relocation name is ‘R_CRIS_32_GOTREL’.
Example: move.d [$rO+localsym:GOTOFF],r3

9.9.4.3 Register names

A ‘$’ character may always prefix a general or special register name in an instruction
operand but is mandatory when the option --no-underscore is specified or when the
.syntax register_prefix directive is in effect (see [crisnous|, page 155). Register names
are case-insensitive.

9.9.4.4 Assembler Directives

There are a few CRIS-specific pseudo-directives in addition to the generic ones. See
Chapter 7 [Pseudo Ops|, page 51. Constants emitted by pseudo-directives are in little-
endian order for CRIS. There is no support for floating-point-specific directives for CRIS.

.dword EXPRESSIONS
The .dword directive is a synonym for .int, expecting zero or more EXPRES-
SIONS, separated by commas. For each expression, a 32-bit little-endian con-
stant is emitted.

.syntax ARGUMENT
The .syntax directive takes as ARGUMENT one of the following case-sensitive
choices.

no_register_prefix
The .syntax no_register_prefix directive makes a ‘$’ character
prefix on all registers optional. It overrides a previous setting, in-
cluding the corresponding effect of the option -—-no-underscore.
If this directive is used when ordinary symbols do not have a ‘_’
character prefix, care must be taken to avoid ambiguities whether
an operand is a register or a symbol; using symbols with names the

same as general or special registers then invoke undefined behavior.

156 Using as

register_prefix
This directive makes a ‘$’ character prefix on all registers manda-
tory. It overrides a previous setting, including the corresponding
effect of the option --underscore.

leading_underscore
This is an assertion directive, emitting an error if the
--no-underscore option is in effect.

no_leading_underscore
This is the opposite of the .syntax leading_underscore directive
and emits an error if the option ——underscore is in effect.

.arch ARGUMENT
This is an assertion directive, giving an error if the specified ARGUMENT is
not the same as the specified or default value for the ——march=architecture
option (see [march-option|, page 152).

Chapter 9: Machine Dependent Features 157

9.10 C-SKY Dependent Features

9.10.1 Options

-march=archname
Assemble for architecture archname. The --help option lists valid values for
archname.

-mcpu=cpuname
Assemble for architecture cpuname. The --help option lists valid values for
cpuname.

-EL
-mlittle-endian
Generate little-endian output.

-EB
-mbig-endian
Generate big-endian output.

-fpic
-pic Generate position-independent code.

-mljump

-mno-1jump
Enable/disable transformation of the short branch instructions jbf, jbt, and
jbr to jmpi. This option is for V2 processors only. It is ignored on CK801 and
CK802 targets, which do not support the jmpi instruction, and is enabled by
default for other processors.

-mbranch-stub

-mno-branch-stub
Pass through R_CKCORE_PCREL_IMM26BY2 relocations for bsr instructions to the
linker.

This option is only available for bare-metal C-SKY V2 ELF targets, where it is
enabled by default. It cannot be used in code that will be dynamically linked
against shared libraries.

—-force2bsr

-mforce2bsr

-no-force2bsr

-mno-force2bsr
Enable/disable transformation of jbsr instructions to bsr. This option is al-
ways enabled (and -mno-force2bsr is ignored) for CK801/CK802 targets. It
is also always enabled when -mbranch-stub is in effect.

-jsri2bsr

-mjsri2bsr

-no-jsri2bsr

-mno-jsri2bsr
Enable/disable transformation of jsri instructions to bsr. This option is en-
abled by default.

158 Using as

—mnolrw
-mno-1rw Enable/disable transformation of 1rw instructions into a movih/ori pair.

-melrw

-mno-elrw
Enable/disable extended lrw instructions. This option is enabled by default for
CK800-series processors.

-mlaf
-mliterals-after-func
-mno-laf
-mno-literals—-after-func
Enable/disable placement of literal pools after each function.

-mlabr

-mliterals-after-br

-mno-labr

-mnoliterals-after-br
Enable/disable placement of literal pools after unconditional branches. This
option is enabled by default.

-mistack

-mno-istack
Enable/disable interrupt stack instructions. This option is enabled by default
on CK801, CK802, and CK802 processors.

The following options explicitly enable certain optional instructions. These features are
also enabled implicitly by using -mcpu= to specify a processor that supports it.

-mhard-float
Enable hard float instructions.

-mmp Enable multiprocessor instructions.
-mcp Enable coprocessor instructions.
-mcache Enable cache prefetch instruction.

-msecurity
Enable C-SKY security instructions.

-mtrust Enable C-SKY trust instructions.

-mdsp Enable DSP instructions.
-medsp Enable enhanced DSP instructions.
-mvdsp Enable vector DSP instructions.

9.10.2 Syntax

as implements the standard C-SKY assembler syntax documented in the C-SKY V2 CPU
Applications Binary Interface Standards Manual.

Chapter 9: Machine Dependent Features 159

9.11 D10V Dependent Features

9.11.1 D10V Options

The Mitsubishi D10V version of as has a few machine dependent options.

‘-0’ The D10V can often execute two sub-instructions in parallel. When this option
is used, as will attempt to optimize its output by detecting when instructions
can be executed in parallel.

‘~-nowarnswap’
To optimize execution performance, as will sometimes swap the order of in-
structions. Normally this generates a warning. When this option is used, no
warning will be generated when instructions are swapped.

‘--gstabs-packing’

‘--no-gstabs-packing’
as packs adjacent short instructions into a single packed instruction.
‘-—no-gstabs-packing’ turns instruction packing off if ‘--gstabs’ is specified
as well; ‘--gstabs-packing’ (the default) turns instruction packing on even
when ‘--gstabs’ is specified.

9.11.2 Syntax

The D10V syntax is based on the syntax in Mitsubishi’s D10V architecture manual. The
differences are detailed below.

9.11.2.1 Size Modifiers

The D10V version of as uses the instruction names in the D10V Architecture Manual.
However, the names in the manual are sometimes ambiguous. There are instruction names
that can assemble to a short or long form opcode. How does the assembler pick the correct
form? as will always pick the smallest form if it can. When dealing with a symbol that
is not defined yet when a line is being assembled, it will always use the long form. If you
need to force the assembler to use either the short or long form of the instruction, you can
append either ‘.s’ (short) or ‘.1’ (long) to it. For example, if you are writing an assembly
program and you want to do a branch to a symbol that is defined later in your program, you
can write ‘bra.s foo’. Objdump and GDB will always append ‘.s’ or ‘.1’ to instructions
which have both short and long forms.

9.11.2.2 Sub-Instructions

The D10V assembler takes as input a series of instructions, either one-per-line, or in the
special two-per-line format described in the next section. Some of these instructions will
be short-form or sub-instructions. These sub-instructions can be packed into a single in-
struction. The assembler will do this automatically. It will also detect when it should not
pack instructions. For example, when a label is defined, the next instruction will never be
packaged with the previous one. Whenever a branch and link instruction is called, it will
not be packaged with the next instruction so the return address will be valid. Nops are
automatically inserted when necessary.

160 Using as

If you do not want the assembler automatically making these decisions, you can control
the packaging and execution type (parallel or sequential) with the special execution symbols
described in the next section.

9.11.2.3 Special Characters

]

A semicolon (‘;’) can be used anywhere on a line to start a comment that extends to the
end of the line.

If a ‘#’ appears as the first character of a line, the whole line is treated as a comment, but
in this case the line could also be a logical line number directive (see Section 3.3 [Comments],
page 31) or a preprocessor control command (see Section 3.1 [Preprocessing], page 31).

Sub-instructions may be executed in order, in reverse-order, or in parallel. Instructions
listed in the standard one-per-line format will be executed sequentially. To specify the
executing order, use the following symbols:

=>? Sequential with instruction on the left first.
‘<=’ Sequential with instruction on the right first.

g0 Parallel

The D10V syntax allows either one instruction per line, one instruction per line with the
execution symbol, or two instructions per line. For example

abs al -> abs r0
Execute these sequentially. The instruction on the right is in the right container
and is executed second.

abs r0 <- abs al
Execute these reverse-sequentially. The instruction on the right is in the right
container, and is executed first.

1d2w r2,0r8+ || mac a0,r0,r7
Execute these in parallel.

1d2w r2,0r8+ ||
mac a0,r0,r7
Two-line format. Execute these in parallel.

1d2w r2,0r8+

mac a0,r0,r7
Two-line format. Execute these sequentially. Assembler will put them in the
proper containers.

1d2w r2,0r8+ ->

mac a0,r0,r7
Two-line format. Execute these sequentially. Same as above but second in-
struction will always go into right container.

Since ‘$’ has no special meaning, you may use it in symbol names.

Chapter 9: Machine Dependent Features 161

9.11.2.4 Register Names

You can use the predefined symbols ‘r0’ through ‘ri15’ to refer to the D10V registers. You
can also use ‘sp’ as an alias for ‘r15’. The accumulators are ‘a0’ and ‘al’. There are special
register-pair names that may optionally be used in opcodes that require even-numbered
registers. Register names are not case sensitive.

Register Pairs
rO0-ril
r2-r3
r4-rb5
r6-r7
r8-r9
r10-ri1
ri2-ri3
r1l4-rib
The D10V also has predefined symbols for these control registers and status bits:

psw Processor Status Word
bpsw Backup Processor Status Word
pc Program Counter

bpc Backup Program Counter
rpt_c Repeat Count

rpt_s Repeat Start address
rpt_e Repeat End address
mod_s Modulo Start address
mod_e Modulo End address

iba Instruction Break Address
f0 Flag 0

f1 Flag 1

c Carry flag

9.11.2.5 Addressing Modes

as understands the following addressing modes for the D10V. Rn in the following refers to
any of the numbered registers, but not the control registers.

Rn Register direct
©@Rn Register indirect

@Rn+ Register indirect with post-increment

162 Using as

©@Rn- Register indirect with post-decrement
@-SP Register indirect with pre-decrement

@(disp, Rn)
Register indirect with displacement

addr PC relative address (for branch or rep).

#imm Immediate data (the ‘#’ is optional and ignored)

9.11.2.6 @QWORD Modifier

Any symbol followed by @word will be replaced by the symbol’s value shifted right by 2.
This is used in situations such as loading a register with the address of a function (or any
other code fragment). For example, if you want to load a register with the location of the
function main then jump to that function, you could do it as follows:

1di r2, main@word
jmp r2

9.11.3 Floating Point

The D10V has no hardware floating point, but the .float and .double directives generates
IEEE floating-point numbers for compatibility with other development tools.

9.11.4 Opcodes

For detailed information on the D10V machine instruction set, see D10V Architecture: A
VLIW Microprocessor for Multimedia Applications (Mitsubishi Electric Corp.). as imple-
ments all the standard D10V opcodes. The only changes are those described in the section
on size modifiers

Chapter 9: Machine Dependent Features 163

9.12 D30V Dependent Features

9.12.1 D30V Options

The Mitsubishi D30V version of as has a few machine dependent options.

-0’ The D30V can often execute two sub-instructions in parallel. When this option
is used, as will attempt to optimize its output by detecting when instructions
can be executed in parallel.

‘-n’ When this option is used, as will issue a warning every time it adds a nop
instruction.
-N When this option is used, as will issue a warning if it needs to insert a nop

after a 32-bit multiply before a load or 16-bit multiply instruction.

9.12.2 Syntax

The D30V syntax is based on the syntax in Mitsubishi’s D30V architecture manual. The
differences are detailed below.

9.12.2.1 Size Modifiers

The D30V version of as uses the instruction names in the D30V Architecture Manual.
However, the names in the manual are sometimes ambiguous. There are instruction names
that can assemble to a short or long form opcode. How does the assembler pick the correct
form? as will always pick the smallest form if it can. When dealing with a symbol that
is not defined yet when a line is being assembled, it will always use the long form. If you
need to force the assembler to use either the short or long form of the instruction, you can
append either ‘.s’ (short) or ‘.1’ (long) to it. For example, if you are writing an assembly
program and you want to do a branch to a symbol that is defined later in your program, you
can write ‘bra.s foo’. Objdump and GDB will always append ‘.8’ or ‘.1’ to instructions
which have both short and long forms.

9.12.2.2 Sub-Instructions

The D30V assembler takes as input a series of instructions, either one-per-line, or in the
special two-per-line format described in the next section. Some of these instructions will
be short-form or sub-instructions. These sub-instructions can be packed into a single in-
struction. The assembler will do this automatically. It will also detect when it should not
pack instructions. For example, when a label is defined, the next instruction will never be
packaged with the previous one. Whenever a branch and link instruction is called, it will
not be packaged with the next instruction so the return address will be valid. Nops are
automatically inserted when necessary.

If you do not want the assembler automatically making these decisions, you can control
the packaging and execution type (parallel or sequential) with the special execution symbols
described in the next section.

9.12.2.3 Special Characters

A semicolon (‘;’) can be used anywhere on a line to start a comment that extends to the
end of the line.

164 Using as

If a ‘#’ appears as the first character of a line, the whole line is treated as a comment, but
in this case the line could also be a logical line number directive (see Section 3.3 [Comments],
page 31) or a preprocessor control command (see Section 3.1 [Preprocessing], page 31).

Sub-instructions may be executed in order, in reverse-order, or in parallel. Instructions
listed in the standard one-per-line format will be executed sequentially unless you use the
‘-0’ option.

To specify the executing order, use the following symbols:

‘=>’ Sequential with instruction on the left first.
<=’ Sequential with instruction on the right first.

17 Parallel

The D30V syntax allows either one instruction per line, one instruction per line with the
execution symbol, or two instructions per line. For example

abs r2,r3 -> abs r4,r5
Execute these sequentially. The instruction on the right is in the right container
and is executed second.

abs r2,r3 <- abs r4,r5
Execute these reverse-sequentially. The instruction on the right is in the right
container, and is executed first.

abs r2,r3 || abs r4,r5
Execute these in parallel.

ldw r2,0(r3,r4) ||
mulx r6,r8,r9
Two-line format. Execute these in parallel.

mulx a0,r8,r9

stw r2,0(r3,r4)
Two-line format. Execute these sequentially unless ‘-0’ option is used. If the
‘-0’ option is used, the assembler will determine if the instructions could be
done in parallel (the above two instructions can be done in parallel), and if so,
emit them as parallel instructions. The assembler will put them in the proper
containers. In the above example, the assembler will put the ‘stw’ instruction
in left container and the ‘mulx’ instruction in the right container.

stw r2,0(r3,rd) —>

mulx a0,r8,r9
Two-line format. Execute the ‘stw’ instruction followed by the ‘mulx’ instruc-
tion sequentially. The first instruction goes in the left container and the second
instruction goes into right container. The assembler will give an error if the
machine ordering constraints are violated.

stw r2,0(r3,r4) <-

mulx a0,r8,r9
Same as previous example, except that the ‘mulx’ instruction is executed before
the ‘stw’ instruction.

Since ‘$’ has no special meaning, you may use it in symbol names.

Chapter 9: Machine Dependent Features 165

9.12.2.4 Guarded Execution

as supports the full range of guarded execution directives for each instruction. Just append
the directive after the instruction proper. The directives are:

/tx’ Execute the instruction if flag f0 is true.

/Ex Execute the instruction if flag f0 is false.

‘/xt’ Execute the instruction if flag f1 is true.

‘/xf’ Execute the instruction if flag f1 is false.

/tt’ Execute the instruction if both flags fO and f1 are true.
/et Execute the instruction if flag fO is true and flag f1 is false.

9.12.2.5 Register Names

You can use the predefined symbols ‘r0’ through ‘r63’ to refer to the D30V registers. You
can also use ‘sp’ as an alias for ‘r63’ and ‘1link’ as an alias for ‘r62’. The accumulators are
‘a0’ and ‘al’.

The D30V also has predefined symbols for these control registers and status bits:

psw Processor Status Word

bpsw Backup Processor Status Word
pc Program Counter

bpc Backup Program Counter
rpt_c Repeat Count

rpt_s Repeat Start address

rpt_e Repeat End address

mod_s Modulo Start address

mod_e Modulo End address

iba Instruction Break Address

f0 Flag 0

f1 Flag 1

f2 Flag 2

£3 Flag 3

fa Flag 4

f5 Flag 5

f6 Flag 6

£7 Flag 7

s Same as flag 4 (saturation flag)

v Same as flag 5 (overflow flag)

166 Using as

va Same as flag 6 (sticky overflow flag)
c Same as flag 7 (carry/borrow flag)
b Same as flag 7 (carry/borrow flag)

9.12.2.6 Addressing Modes

as understands the following addressing modes for the D30V. Rz in the following refers to
any of the numbered registers, but not the control registers.

Rn Register direct

©@Rn Register indirect

@Rn+ Register indirect with post-increment
©@Rn- Register indirect with post-decrement
©@-SP Register indirect with pre-decrement

@(disp, Rn)
Register indirect with displacement

addr PC relative address (for branch or rep).

#imm Immediate data (the ‘#’ is optional and ignored)

9.12.3 Floating Point

The D30V has no hardware floating point, but the .float and .double directives generates
IEEE floating-point numbers for compatibility with other development tools.

9.12.4 Opcodes

For detailed information on the D30V machine instruction set, see D30V Architecture: A
VLIW Microprocessor for Multimedia Applications (Mitsubishi Electric Corp.). as imple-
ments all the standard D30V opcodes. The only changes are those described in the section
on size modifiers

Chapter 9: Machine Dependent Features 167

9.13 Epiphany Dependent Features

9.13.1 Options

as has two additional command-line options for the Epiphany architecture.

-mepiphany
Specifies that the both 32 and 16 bit instructions are allowed. This is the default
behavior.

-mepiphanyl6
Restricts the permitted instructions to just the 16 bit set.

9.13.2 Epiphany Syntax
9.13.2.1 Special Characters

The presence of a ;’ on a line indicates the start of a comment that extends to the end of
the current line.

If a ‘#’ appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 31).

The ‘¢’ character can be used to separate statements on the same line.

168 Using as

9.14 H8/300 Dependent Features

9.14.1 Options
The Renesas H8/300 version of as has one machine-dependent option:

-h-tick-hex
Support H’00 style hex constants in addition to 0x00 style.

-mach=name
Sets the H8300 machine variant. The following machine names are recognised:
h8300h, h8300hn, h8300s, h8300sn, h8300sx and h8300sxn.

9.14.2 Syntax
9.14.2.1 Special Characters

‘;7 is the line comment character.

‘$’ can be used instead of a newline to separate statements. Therefore you may not use
$’7 in symbol names on the H8/300.

9.14.2.2 Register Names

You can use predefined symbols of the form ‘rnh’ and ‘rnl’ to refer to the H8/300 registers
as sixteen 8-bit general-purpose registers. n is a digit from ‘0’ to ‘7’); for instance, both
‘rOh’ and ‘r71’ are valid register names.

You can also use the eight predefined symbols ‘rn’ to refer to the H8/300 registers as
16-bit registers (you must use this form for addressing).

On the H8/300H, you can also use the eight predefined symbols ‘ern’ (‘er0’ ... ‘er?’)
to refer to the 32-bit general purpose registers.

The two control registers are called pc (program counter; a 16-bit register, except on
the H8/300H where it is 24 bits) and ccr (condition code register; an 8-bit register). r7 is
used as the stack pointer, and can also be called sp.

9.14.2.3 Addressing Modes
as understands the following addressing modes for the H8/300:
rn Register direct

@rn Register indirect

e(d, rn)

@(d:16, rn)

@(d:24, rn)
Register indirect: 16-bit or 24-bit displacement d from register n. (24-bit dis-
placements are only meaningful on the H8/300H.)

Qrn+ Register indirect with post-increment

@-rn Register indirect with pre-decrement

Chapter 9: Machine Dependent Features 169

Qaa

Qaa:8

Qaa: 16

Qaa:24 Absolute address aa. (The address size ‘: 24’ only makes sense on the H8/300H.)

#xx

#xx:8

#xx:16

#xx:32 Immediate data xx. You may specify the ‘:8’, ‘:16’, or ‘:32’ for clarity, if you
wish; but as neither requires this nor uses it—the data size required is taken
from context.

Q@Qaa
@Qaa:8 Memory indirect. You may specify the ‘:8’ for clarity, if you wish; but as
neither requires this nor uses it.

9.14.3 Floating Point

The H8/300 family has no hardware floating point, but the .float directive generates IEEE
floating-point numbers for compatibility with other development tools.

170 Using as

9.14.4 H8/300 Machine Directives
as has the following machine-dependent directives for the H8/300:

.h8300h Recognize and emit additional instructions for the H8/300H variant, and also
make .int emit 32-bit numbers rather than the usual (16-bit) for the H8/300
family.

.h8300s Recognize and emit additional instructions for the H8S variant, and also make
.int emit 32-bit numbers rather than the usual (16-bit) for the H8/300 family.

.h8300hn Recognize and emit additional instructions for the H8/300H variant in normal
mode, and also make .int emit 32-bit numbers rather than the usual (16-bit)
for the H8/300 family.

.h8300sn Recognize and emit additional instructions for the H8S variant in normal mode,
and also make .int emit 32-bit numbers rather than the usual (16-bit) for the
H8/300 family.

On the H8/300 family (including the H8/300H) ‘.word’ directives generate 16-bit num-
bers.

9.14.5 Opcodes

For detailed information on the H8/300 machine instruction set, see H8/300 Series Program-
ming Manual. For information specific to the H8/300H, see H8/300H Series Programming
Manual (Renesas).

as implements all the standard H8/300 opcodes. No additional pseudo-instructions are
needed on this family.

Four H8/300 instructions (add, cmp, mov, sub) are defined with variants using the suffixes
“.b’, .w’, and ‘.1’ to specify the size of a memory operand. as supports these suffixes, but
does not require them; since one of the operands is always a register, as can deduce the
correct size.

For example, since r0 refers to a 16-bit register,

mov r0,@foo0
is equivalent to
mov.w r0,Q@fo0

If you use the size suffixes, as issues a warning when the suffix and the register size do
not match.

Chapter 9: Machine Dependent Features 171

9.15 HPPA Dependent Features

9.15.1 Notes

As a back end for GNU cC as has been thoroughly tested and should work extremely well.
We have tested it only minimally on hand written assembly code and no one has tested it
much on the assembly output from the HP compilers.

The format of the debugging sections has changed since the original as port (version
1.3X) was released; therefore, you must rebuild all HPPA objects and libraries with the new
assembler so that you can debug the final executable.

The HPPA as port generates a small subset of the relocations available in the SOM
and ELF object file formats. Additional relocation support will be added as it becomes
necessary.

9.15.2 Options

as has no machine-dependent command-line options for the HPPA.

9.15.3 Syntax

The assembler syntax closely follows the HPPA instruction set reference manual; assembler
directives and general syntax closely follow the HPPA assembly language reference manual,
with a few noteworthy differences.

First, a colon may immediately follow a label definition. This is simply for compatibility
with how most assembly language programmers write code.

Some obscure expression parsing problems may affect hand written code which uses the
spop instructions, or code which makes significant use of the ! line separator.

as is much less forgiving about missing arguments and other similar oversights than the
HP assembler. as notifies you of missing arguments as syntax errors; this is regarded as a
feature, not a bug.

Finally, as allows you to use an external symbol without explicitly importing the symbol.
Warning: in the future this will be an error for HPPA targets.

Special characters for HPPA targets include:
‘;7 is the line comment character.
‘1’ can be used instead of a newline to separate statements.

Since ‘$’ has no special meaning, you may use it in symbol names.

9.15.4 Floating Point
The HPPA family uses IEEE floating-point numbers.

9.15.5 HPPA Assembler Directives

as for the HPPA supports many additional directives for compatibility with the native
assembler. This section describes them only briefly. For detailed information on HPPA-
specific assembler directives, see HP9000 Series 800 Assembly Language Reference Manual
(HP 92432-90001).

as does not support the following assembler directives described in the HP manual:

172

Using as

.endm .liston
.enter .locct
.leave .macro
.listoff

Beyond those implemented for compatibility, as supports one additional assembler di-
rective for the HPPA: .param. It conveys register argument locations for static functions.
Its syntax closely follows the .export directive.

These are the additional directives in as for the HPPA:

.block n
.blockz n
.call

.callinfo

.code

Reserve n bytes of storage, and initialize them to zero.

Mark the beginning of a procedure call. Only the special case with no arguments
is allowed.

[param=value, ...] [flag, ...]

Specify a number of parameters and flags that define the environment for a
procedure.

param may be any of ‘frame’ (frame size), ‘entry_gr’ (end of general regis-
ter range), ‘entry_fr’ (end of float register range), ‘entry_sr’ (end of space
register range).

The values for flag are ‘calls’ or ‘caller’ (proc has subroutines), ‘no_calls’
(proc does not call subroutines), ‘save_rp’ (preserve return pointer), ‘save_sp’
(proc preserves stack pointer), ‘no_unwind’ (do not unwind this proc),
‘hpux_int’ (proc is interrupt routine).

Assemble into the standard section called ‘$TEXT$’, subsection ‘$CODE$’.

.copyright "string"

In the SOM object format, insert string into the object code, marked as a
copyright string.

.copyright "string"

.enter
.entry

.exit

In the ELF object format, insert string into the object code, marked as a version
string.

Not yet supported; the assembler rejects programs containing this directive.
Mark the beginning of a procedure.

Mark the end of a procedure.

.export name [,typ] [,param=r]

Make a procedure name available to callers. typ, if present, must be one
of ‘absolute’, ‘code’ (ELF only, not SOM), ‘data’, ‘entry’, ‘data’, ‘entry’,
‘millicode’, ‘plabel’, ‘pri_prog’, or ‘sec_prog’.

param, if present, provides either relocation information for the procedure ar-
guments and result, or a privilege level. param may be ‘argwn’ (where n ranges
from 0 to 3, and indicates one of four one-word arguments); ‘rtnval’ (the pro-
cedure’s result); or ‘priv_lev’ (privilege level). For arguments or the result, r
specifies how to relocate, and must be one of ‘no’ (not relocatable), ‘gr’ (argu-
ment is in general register), ‘fr’ (in floating point register), or ‘fu’ (upper half
of float register). For ‘priv_lev’, r is an integer.

Chapter 9: Machine Dependent Features 173

.half n Define a two-byte integer constant n; synonym for the portable as directive
.short.

.import name [,typ]
Converse of .export; make a procedure available to call. The arguments use
the same conventions as the first two arguments for .export.

.label name
Define name as a label for the current assembly location.

.leave Not yet supported; the assembler rejects programs containing this directive.

.origin lc
Advance location counter to lc. Synonym for the as portable directive .org.

.param name [,typ] [,param=r]
Similar to .export, but used for static procedures.

.proc Use preceding the first statement of a procedure.
.procend Use following the last statement of a procedure.

label .reg expr
Synonym for .equ; define label with the absolute expression expr as its value.

.space secname [,params]
Switch to section secname, creating a new section by that name if necessary.
You may only use params when creating a new section, not when switching
to an existing one. secname may identify a section by number rather than by
name.

If specified, the list params declares attributes of the section, identified by key-
words. The keywords recognized are ‘spnum=exp’ (identify this section by the
number exp, an absolute expression), ‘sort=exp’ (order sections according to
this sort key when linking; exp is an absolute expression), ‘unloadable’ (sec-
tion contains no loadable data), ‘notdefined’ (this section defined elsewhere),
and ‘private’ (data in this section not available to other programs).

.spnum secnam
Allocate four bytes of storage, and initialize them with the section number of
the section named secnam. (You can define the section number with the HPPA
.space directive.)

.string "str"
Copy the characters in the string str to the object file. See Section 3.6.1.1
[Strings], page 33, for information on escape sequences you can use in as strings.

Warning! The HPPA version of .string differs from the usual as definition:
it does not write a zero byte after copying str.

.stringz "str"
Like .string, but appends a zero byte after copying str to object file.

174 Using as

.subspa name [,params]

.nsubspa name [,params]
Similar to .space, but selects a subsection name within the current section.
You may only specify params when you create a subsection (in the first instance
of .subspa for this name).

If specified, the list params declares attributes of the subsection, identified
by keywords. The keywords recognized are ‘quad=expr’ (“quadrant” for this
subsection), ‘align=expr’ (alignment for beginning of this subsection; a power
of two), ‘access=expr’ (value for “access rights” field), ‘sort=expr’ (sorting
order for this subspace in link), ‘code_only’ (subsection contains only code),
‘unloadable’ (subsection cannot be loaded into memory), ‘comdat’ (subsection
is comdat), ‘common’ (subsection is common block), ‘dup_comm’ (subsection may

have duplicate names), or ‘zero’ (subsection is all zeros, do not write in object
file).

.nsubspa always creates a new subspace with the given name, even if one with
the same name already exists.

‘comdat’, ‘common’ and ‘dup_comm’ can be used to implement various flavors of
one-only support when using the SOM linker. The SOM linker only supports
specific combinations of these flags. The details are not documented. A brief
description is provided here.

‘comdat’ provides a form of linkonce support. It is useful for both code and data
subspaces. A ‘comdat’ subspace has a key symbol marked by the ‘is_comdat’
flag or ‘ST_COMDAT’. Only the first subspace for any given key is selected. The
key symbol becomes universal in shared links. This is similar to the behavior
of ‘secondary_def’ symbols.

‘common’ provides Fortran named common support. It is only useful for data
subspaces. Symbols with the flag ‘is_common’ retain this flag in shared links.
Referencing a ‘is_common’ symbol in a shared library from outside the library
doesn’t work. Thus, ‘is_common’ symbols must be output whenever they are
needed.

‘common’ and ‘dup_comm’ together provide Cobol common support. The sub-
spaces in this case must all be the same length. Otherwise, this support is
similar to the Fortran common support.

‘dup_comm’ by itself provides a type of one-only support for code. Only the
first ‘dup_comm’ subspace is selected. There is a rather complex algorithm
to compare subspaces. Code symbols marked with the ‘dup_common’ flag are
hidden. This support was intended for "C++ duplicate inlines".

A simplified technique is used to mark the flags of symbols based on the
flags of their subspace. A symbol with the scope SS_.UNIVERSAL and type
ST_ENTRY, ST_-CODE or ST_DATA is marked with the corresponding set-
tings of ‘comdat’, ‘common’ and ‘dup_comm’ from the subspace, respectively.
This avoids having to introduce additional directives to mark these symbols.
The HP assembler sets ‘is_common’ from ‘common’. However, it doesn’t set the
‘dup_common’ from ‘dup_comm’. It doesn’t have ‘comdat’ support.

Chapter 9: Machine Dependent Features 175

.version "str"
Write str as version identifier in object code.

9.15.6 Opcodes

For detailed information on the HPPA machine instruction set, see PA-RISC Architecture
and Instruction Set Reference Manual (HP 09740-90039).

176

Using as

9.16 80386 Dependent Features

The 1386 version as supports both the original Intel 386 architecture in both 16 and 32-bit
mode as well as AMD x86-64 architecture extending the Intel architecture to 64-bits.

9.16.1 Options

The i386 version of as has a few machine dependent options:

--32 | --x32 | --64

-n

—--divide

Select the word size, either 32 bits or 64 bits. ‘--32’ implies Intel i386 archi-
tecture, while ‘--x32’ and ‘--64’ imply AMD x86-64 architecture with 32-bit
or 64-bit word-size respectively.

These options are only available with the ELF object file format, and require
that the necessary BFD support has been included (on a 32-bit platform you
have to add —enable-64-bit-bfd to configure enable 64-bit usage and use x86-64
as target platform).

By default, x86 GAS replaces multiple nop instructions used for alignment
within code sections with multi-byte nop instructions such as leal
0(%esi,1),%esi. This switch disables the optimization if a single byte nop
(0x90) is explicitly specified as the fill byte for alignment.

On SVR4-derived platforms, the character ‘/’ is treated as a comment character,
which means that it cannot be used in expressions. The ‘--divide’ option turns
‘/’ into a normal character. This does not disable ¢/’ at the beginning of a line
starting a comment, or affect using ‘#’ for starting a comment.

-march=CPU[+EXTENSION. . .]

This option specifies the target processor. The assembler will issue an error
message if an attempt is made to assemble an instruction which will not ex-
ecute on the target processor. The following processor names are recognized:
18086, 1186, 1286, 1386, 1486, 1586, 1686, pentium, pentiumpro, pentiumii,
pentiumiii, pentium4, prescott, nocona, core, core2, corei7, 11lom, klom,
iamcu, k6, k6_2, athlon, opteron, k8, amdfam10, bdverl, bdver2, bdver3,
bdver4, znverl, znver2, znver3, btverl, btver2, generic32 and generic64.

In addition to the basic instruction set, the assembler can be told to
accept various extension mnemonics. For example, -march=i686+sse4+vmx
extends 1686 with sse4 and vmx. The following extensions are currently
supported: 8087, 287, 387, 687, no87, no287, no387, no687, cmov, nocmov,
fxsr, nofxsr, mmx, nommx, sse, sse2, sse3, sseda, ssse3, ssed.l,
sse4.2, sse4, nosse, nosse2, nosse3d, nossed4a, nossse3, nossed.l,
nosse4.2, nosse4, avx, avx2, noavx, noavx2, adx, rdseed, prfchw, smap,
mpx, sha, rdpid, ptwrite, cet, gfni, vaes, vpclmulqdq, prefetchwtl,
clflushopt, sel, clwb, movdiri, movdir64b, enqcmd, serialize, tsxldtrk,
k1, nokl, widekl, nowidekl, hreset, avxb12f, avxbl2cd, avxbl2er,
avxb12pf, avxb12vl, avxb512bw, avxbl2dq, avxbl2ifma, avx512vbmi,
avx512_4fmaps, avxbl12_4vnniw, avxbl2_vpopcntdq, avx512_vbmi2,
avxbl2_vnni, avxbl2_bitalg, avxbl2_vp2intersect, tdx, avxb512_bfl6,
avx_vnni, noavxb12f, noavxb12cd, noavxbl2er, noavxb12pf, noavxb12vl,

Chapter 9: Machine Dependent Features 177

noavx512bw, noavx512dq, noavxb512ifma, noavx512vbmi, noavx512_4fmaps,
noavx512_4vnniw, noavx512_vpopcntdq, noavxb512_vbmi2, noavx512_vnni,
noavxb12_bitalg, noavxb12_vp2intersect, notdx, noavxb512_bf16,
noavx_vnni, noenqcmd, noserialize, notsxldtrk, amx_int8, noamx_int8,
amx_bf16, noamx_bfl16, amx_tile, noamx_tile, nouintr, nohreset, vmx,
vmfunc, smx, xsave, xsaveopt, xsavec, xsaves, aes, pclmul, fsgsbase,
rdrnd, f16c, bmi2, fma, movbe, ept, lzcnt, popcnt, hle, rtm, invpcid,
clflush, mwaitx, clzero, wbnoinvd, pconfig, waitpkg, uintr, cldemote,
rdpru, mcommit, sev_es, lwp, fma4, xop, cx16, syscall, rdtscp, 3dnow,
3dnowa, sseda, sseb, snp, invlpgb, tlbsync, svme and padlock. Note
that rather than extending a basic instruction set, the extension mnemonics
starting with no revoke the respective functionality.

When the .arch directive is used with -march, the .arch directive will take
precedent.

-mtune=CPU

-msse2avx

This option specifies a processor to optimize for. When used in conjunction with
the —march option, only instructions of the processor specified by the -march
option will be generated.

Valid CPU values are identical to the processor list of -march=CPU.

This option specifies that the assembler should encode SSE instructions with
VEX prefix.

-msse—-check=none
-msse-check=warning
-msse—-check=error

These options control if the assembler should check SSE instructions. -msse-
check=none will make the assembler not to check SSE instructions, which is
the default. -msse-check=warning will make the assembler issue a warning
for any SSE instruction. -msse-check=error will make the assembler issue an
error for any SSE instruction.

-mavxscalar=128
-mavxscalar=256

-mvexwig=0
-mvexwig=1

These options control how the assembler should encode scalar AVX instruc-
tions. -mavxscalar=128 will encode scalar AVX instructions with 128bit vec-
tor length, which is the default. -mavxscalar=256 will encode scalar AVX
instructions with 256bit vector length.

WARNING: Don’t use this for production code - due to CPU errata the result-
ing code may not work on certain models.

These options control how the assembler should encode VEX.W-ignored (WIG)
VEX instructions. -mvexwig=0 will encode WIG VEX instructions with vex.w
= 0, which is the default. -mvexwig=1 will encode WIG EVEX instructions
with vex.w = 1.

178 Using as

WARNING: Don’t use this for production code - due to CPU errata the result-
ing code may not work on certain models.

-mevexlig=128

-mevexlig=256

-mevexlig=512
These options control how the assembler should encode length-ignored (LIG)
EVEX instructions. -mevex1lig=128 will encode LIG EVEX instructions with
128bit vector length, which is the default. -mevexlig=256 and -mevexlig=512
will encode LIG EVEX instructions with 256bit and 512bit vector length, re-
spectively.

-mevexwig=0

-mevexwig=1
These options control how the assembler should encode w-ignored (WIG) EVEX
instructions. -mevexwig=0 will encode WIG EVEX instructions with evex.w =
0, which is the default. -mevexwig=1 will encode WIG EVEX instructions with
evex.w = 1.

-mmnemonic=att

-mmnemonic=intel
This option specifies instruction mnemonic for matching instructions. The
.att_mnemonic and .intel_mnemonic directives will take precedent.

-msyntax=att

-msyntax=intel
This option specifies instruction syntax when processing instructions. The
.att_syntax and .intel_syntax directives will take precedent.

-mnaked-reg
This option specifies that registers don’t require a ‘%’ prefix. The .att_syntax
and .intel_syntax directives will take precedent.

-madd-bnd-prefix
This option forces the assembler to add BND prefix to all branches, even if such
prefix was not explicitly specified in the source code.

-mno-shared
On ELF target, the assembler normally optimizes out non-PLT relocations
against defined non-weak global branch targets with default visibility. The
‘-mshared’ option tells the assembler to generate code which may go into a
shared library where all non-weak global branch targets with default visibility
can be preempted. The resulting code is slightly bigger. This option only affects
the handling of branch instructions.

-mbig-obj
On PE/COFF target this option forces the use of big object file format, which
allows more than 32768 sections.

-momit-lock-prefix=no

-momit-lock-prefix=yes
These options control how the assembler should encode lock prefix. This option
is intended as a workaround for processors, that fail on lock prefix. This option

Chapter 9: Machine Dependent Features 179

can only be safely used with single-core, single-thread computers —-momit-lock-
prefix=yes will omit all lock prefixes. -momit-lock-prefix=no will encode
lock prefix as usual, which is the default.

-mfence-as-lock-add=no

-mfence-as-lock-add=yes
These options control how the assembler should encode lfence, mfence and
sfence. -mfence-as-lock-add=yes will encode lfence, mfence and sfence as
‘lock addl $0x0, (%rsp)’in 64-bit mode and ‘lock addl $0x0, (%esp)’in 32-
bit mode. -mfence-as-lock-add=no will encode lfence, mfence and sfence as
usual, which is the default.

-mrelax-relocations=no

-mrelax-relocations=yes
These options control whether the assembler should generate relax
relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
R_X86_64_REX_GOTPCRELX, in 64-bit mode. -mrelax-relocations=yes
will generate relax relocations. -mrelax-relocations=no will not generate
relax relocations. The default can be controlled by a configure option
--enable-x86-relax-relocations.

-malign-branch-boundary=NUM
This option controls how the assembler should align branches with segment
prefixes or NOP. NUM must be a power of 2. It should be 0 or no less than
16. Branches will be aligned within NUM byte boundary. -malign-branch-
boundary=0, which is the default, doesn’t align branches.

-malign-branch=TYPE[+TYPE. . .]
This option specifies types of branches to align. TYPFE is combination of ‘jcc’,
which aligns conditional jumps, ‘fused’, which aligns fused conditional jumps,
‘jmp’, which aligns unconditional jumps, ‘call’ which aligns calls, ‘ret’; which
aligns rets, ‘indirect’, which aligns indirect jumps and calls. The default is
-malign-branch=jcc+fused+jmp.

-malign-branch-prefix-size=NUM
This option specifies the maximum number of prefixes on an instruction to align

branches. NUM should be between 0 and 5. The default NUM is 5.

-mbranches-within-32B-boundaries
This option aligns conditional jumps, fused conditional jumps and
unconditional jumps within 32 byte boundary with up to 5 segment prefixes
on an instruction. It is equivalent to -malign-branch-boundary=32
-malign-branch=jcc+fused+jmp -malign-branch-prefix-size=b. The
default doesn’t align branches.

-mlfence-after-load=no

-mlfence-after-load=yes
These options control whether the assembler should generate lfence after load in-
structions. -mlfence-after-load=yes will generate lfence. -mlfence-after-
load=no will not generate lfence, which is the default.

180 Using as

-mlfence-before-indirect-branch=none

-mlfence-before-indirect-branch=all

-mlfence-before-indirect-branch=register

-mlfence-before-indirect-branch=memory
These options control whether the assembler should generate lfence before in-
direct near branch instructions. -mlfence-before-indirect-branch=all will
generate lfence before indirect near branch via register and issue a warning
before indirect near branch via memory. It also implicitly sets -mlfence-
before-ret=shl when there’s no explicit -mlfence-before-ret=. -mlfence-
before-indirect-branch=register will generate lfence before indirect near
branch via register. -mlfence-before-indirect-branch=memory will issue a
warning before indirect near branch via memory. -mlfence-before-indirect-
branch=none will not generate lfence nor issue warning, which is the default.
Note that lfence won’t be generated before indirect near branch via register with
-mlfence-after-load=yes since lfence will be generated after loading branch
target register.

-mlfence-before-ret=none

-mlfence-before-ret=shl

-mlfence-before-ret=or

-mlfence-before-ret=yes

-mlfence-before-ret=not
These options control whether the assembler should generate lfence before
ret. -mlfence-before-ret=or will generate generate or instruction with
lfence. -mlfence-before-ret=shl/yes will generate shl instruction with
Ifence. -mlfence-before-ret=not will generate not instruction with lfence
-mlfence-before-ret=none will not generate lfence, which is the default.

-mx86-used-note=no

-mx86-used-note=yes
These options control whether the assembler should generate
GNU_PROPERTY _X86_ISA_1_USED and GNU_PROPERTY _X86_FEATURE_2_USED
GNU property notes. The default can be controlled by the --enable-x86-
used-note configure option.

-mevexrcig=rne

-mevexrcig=rd

-mevexrcig=ru

-mevexrcig=rz
These options control how the assembler should encode SAE-only EVEX in-
structions. -mevexrcig=rne will encode RC bits of EVEX instruction with 00,
which is the default. -mevexrcig=rd, -mevexrcig=ru and -mevexrcig=rz will
encode SAE-only EVEX instructions with 01, 10 and 11 RC bits, respectively.

-mamd64

-mintel64
This option specifies that the assembler should accept only AMDG64 or Intel64
ISA in 64-bit mode. The default is to accept common, Intel64 only and AMD64
ISAs.

Chapter 9: Machine Dependent Features 181

-00 | -0 | -01] -02 | -0s

Optimize instruction encoding with smaller instruction size. ‘-0’ and ‘-01’
encode 64-bit register load instructions with 64-bit immediate as 32-bit reg-
ister load instructions with 31-bit or 32-bits immediates, encode 64-bit regis-
ter clearing instructions with 32-bit register clearing instructions, encode 256-
bit/512-bit VEX/EVEX vector register clearing instructions with 128-bit VEX
vector register clearing instructions, encode 128-bit/256-bit EVEX vector reg-
ister load/store instructions with VEX vector register load/store instructions,
and encode 128-bit/256-bit EVEX packed integer logical instructions with 128-
bit/256-bit VEX packed integer logical.

‘-02’ includes ‘-01’ optimization plus encodes 256-bit/512-bit EVEX vector
register clearing instructions with 128-bit EVEX vector register clearing in-
structions. In 64-bit mode VEX encoded instructions with commutative source
operands will also have their source operands swapped if this allows using the
2-byte VEX prefix form instead of the 3-byte one. Certain forms of AND as
well as OR with the same (register) operand specified twice will also be changed
to TEST.

‘~0s’ includes ‘-02’ optimization plus encodes 16-bit, 32-bit and 64-bit register
tests with immediate as 8-bit register test with immediate. ‘=00’ turns off this
optimization.

9.16.2 x86 specific Directives

.lcomm symbol , lengthl, alignment]
Reserve length (an absolute expression) bytes for a local common denoted by
symbol. The section and value of symbol are those of the new local common.
The addresses are allocated in the bss section, so that at run-time the bytes
start off zeroed. Since symbol is not declared global, it is normally not visible
to 1d. The optional third parameter, alignment, specifies the desired alignment
of the symbol in the bss section.

This directive is only available for COFF based x86 targets.

.largecomm symbol , lengthl, alignment]
This directive behaves in the same way as the comm directive except that the
data is placed into the .Ibss section instead of the .bss section Section 7.12
[Comm], page 57.

The directive is intended to be used for data which requires a large amount of
space, and it is only available for ELF based x86_64 targets.

.value expression [, expression]
This directive behaves in the same way as the .short directive, taking a series
of comma separated expressions and storing them as two-byte wide values into
the current section.

9.16.3 1386 Syntactical Considerations

182 Using as

9.16.3.1 AT&T Syntax versus Intel Syntax

as now supports assembly using Intel assembler syntax. .intel_syntax selects Intel mode,
and .att_syntax switches back to the usual AT&T mode for compatibility with the output
of gcc. FEither of these directives may have an optional argument, prefix, or noprefix
specifying whether registers require a ‘%’ prefix. AT&T System V/386 assembler syntax is
quite different from Intel syntax. We mention these differences because almost all 80386
documents use Intel syntax. Notable differences between the two syntaxes are:

e AT&T immediate operands are preceded by ‘$’; Intel immediate operands are undelim-
ited (Intel ‘push 4’ is AT&T ‘pushl $47). AT&T register operands are preceded by ‘%’;
Intel register operands are undelimited. AT&T absolute (as opposed to PC relative)
jump/call operands are prefixed by ‘*’; they are undelimited in Intel syntax.

e AT&T and Intel syntax use the opposite order for source and destination operands.
Intel ‘add eax, 4’ is ‘addl $4, %eax’. The ‘source, dest’ convention is maintained
for compatibility with previous Unix assemblers. Note that ‘bound’, ‘invlpga’, and
instructions with 2 immediate operands, such as the ‘enter’ instruction, do not have
reversed order. Section 9.16.17 [i386-Bugs|, page 191.

e In AT&T syntax the size of memory operands is determined from the last character
of the instruction mnemonic. Mnemonic suffixes of ‘b’, ‘w’, ‘1’ and ‘q’ specify byte
(8-bit), word (16-bit), long (32-bit) and quadruple word (64-bit) memory references.
Mnemonic suffixes of ‘x’, ‘y’ and ‘z’ specify xmm (128-bit vector), ymm (256-bit vec-
tor) and zmm (512-bit vector) memory references, only when there’s no other way
to disambiguate an instruction. Intel syntax accomplishes this by prefixing memory
operands (not the instruction mnemonics) with ‘byte ptr’, ‘word ptr’, ‘dword ptr’,
‘qword ptr’, ‘xmmword ptr’, ‘ymmword ptr’ and ‘zmmword ptr’. Thus, Intel syntax ‘mov
al, byte ptr foo’ is ‘movb foo, %al’ in AT&T syntax. In Intel syntax, ‘fword ptr’,
‘tbyte ptr’ and ‘oword ptr’ specify 48-bit, 80-bit and 128-bit memory references.

In 64-bit code, ‘movabs’ can be used to encode the ‘mov’ instruction with the 64-bit
displacement or immediate operand.

e Immediate form long jumps and calls are ‘1call/ljmp $section, $offset’ in AT&T
syntax; the Intel syntax is ‘call/jmp far section:offset’. Also, the far return in-
struction is ‘lret $stack-adjust’ in AT&T syntax; Intel syntax is ‘ret far stack-
adjust’.

e The AT&T assembler does not provide support for multiple section programs. Unix
style systems expect all programs to be single sections.

9.16.3.2 Special Characters

The presence of a ‘#’ appearing anywhere on a line indicates the start of a comment that
extends to the end of that line.

If a ‘4’ appears as the first character of a line then the whole line is treated as a com-
ment, but in this case the line can also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 31).

If the --divide command-line option has not been specified then the ‘/’ character ap-
pearing anywhere on a line also introduces a line comment.

The ¢;’ character can be used to separate statements on the same line.

Chapter 9: Machine Dependent Features 183

9.16.4 1i386-Mnemonics

9.16.4.1 Instruction Naming

Instruction mnemonics are suffixed with one character modifiers which specify the size of
operands. The letters ‘b’, ‘w’, ‘1’ and ‘q’ specify byte, word, long and quadruple word
operands. If no suffix is specified by an instruction then as tries to fill in the missing
suffix based on the destination register operand (the last one by convention). Thus, ‘mov
%ax, %bx’ is equivalent to ‘movw %ax, %bx’; also, ‘mov $1, %bx’ is equivalent to ‘movw $1,
bx’. Note that this is incompatible with the AT&T Unix assembler which assumes that a
missing mnemonic suffix implies long operand size. (This incompatibility does not affect
compiler output since compilers always explicitly specify the mnemonic suffix.)

When there is no sizing suffix and no (suitable) register operands to deduce the size of
memory operands, with a few exceptions and where long operand size is possible in the first
place, operand size will default to long in 32- and 64-bit modes. Similarly it will default to
short in 16-bit mode. Noteworthy exceptions are

e Instructions with an implicit on-stack operand as well as branches, which default to
quad in 64-bit mode.

e Sign- and zero-extending moves, which default to byte size source operands.

e Floating point insns with integer operands, which default to short (for perhaps historical
reasons).

e CRC32 with a 64-bit destination, which defaults to a quad source operand.

Different encoding options can be specified via pseudo prefixes:
e ‘{disp8} — prefer 8-bit displacement.
e ‘{disp32}’ — prefer 32-bit displacement.
e ‘{disp16}’ — prefer 16-bit displacement.
e ‘{load}’ — prefer load-form instruction.
o ‘{store}’ — prefer store-form instruction.
o ‘{vex}’ — encode with VEX prefix.
e ‘{vex3} — encode with 3-byte VEX prefix.
e ‘{evex}’ — encode with EVEX prefix.

o ‘{rex}’ — prefer REX prefix for integer and legacy vector instructions (x86-64 only).
Note that this differs from the ‘rex’ prefix which generates REX prefix unconditionally.

e ‘{nooptimize}’ — disable instruction size optimization.
Mnemonics of Intel VNNI instructions are encoded with the EVEX prefix by default.

The pseudo ‘{vex}’ prefix can be used to encode mnemonics of Intel VNNI instructions
with the VEX prefix.

The Intel-syntax conversion instructions

e ‘cbw’ — sign-extend byte in ‘%al’ to word in ‘%ax’,
e ‘cwde’ — sign-extend word in ‘%ax’ to long in ‘%eax’,
e ‘cwd’ — sign-extend word in ‘%ax’ to long in ‘%dx:%ax’,

e ‘cdq’ — sign-extend dword in ‘Y,eax’ to quad in ‘Yedx:%eax’,

184 Using as

e ‘cdge’ — sign-extend dword in ‘Yjeax’ to quad in ‘%rax’ (x86-64 only),

e ‘cqo’ — sign-extend quad in ‘)rax’ to octuple in ‘%rdx:%rax’ (x86-64 only),
are called ‘cbtw’, ‘cwtl’, ‘cwtd’, ‘cltd’, ‘cltq’, and ‘cqto’ in AT&T naming. as accepts
either naming for these instructions.

The Intel-syntax extension instructions

e ‘movsx’ — sign-extend ‘reg8/mem8’ to ‘reglf’.

e ‘movsx’ — sign-extend ‘reg8/mem8’ to ‘reg32’.

e ‘movsx’ — sign-extend ‘reg8/mem8’ to ‘regf4’ (x86-64 only).

e ‘movsx’ — sign-extend ‘regl6/meml6’ to ‘reg32’

e ‘movsx’ — sign-extend ‘regl6/mem16’ to ‘regb4’ (x86-64 only).

e ‘movsxd’ — sign-extend ‘reg32/mem32’ to ‘reg64’ (x86-64 only).

e ‘movzx’ — zero-extend ‘reg8/mem8’ to ‘regl6’.

e ‘movzx’ — zero-extend ‘reg8/mem8’ to ‘reg32’.

e ‘movzx’ — zero-extend ‘reg8/mem8’ to ‘regb4’ (x86-64 only).

e ‘movzx’ — zero-extend ‘regl6/meml6’ to ‘reg32’

e ‘movzx’ — zero-extend ‘regl6/mem16’ to ‘reg64’ (x86-64 only).
are called ‘movsbw/movsxb/movsx’, ‘movsbl/movsxb/movsx’, ‘movsbg/movsb/movsx’,
‘movswl/movsxw’, ‘movswq/movsxw’, ‘movslq/movsxl’ ‘movzbw/movzxb/movzx’,

‘movzbl/movzxb/movzx’, ‘movzbq/movzxb/movzx’, ‘movzwl/movzxw’ and ‘movzwq/movziw’
in AT&T syntax.

Far call/jump instructions are ‘lcall’ and ‘1jmp’ in AT&T syntax, but are ‘call far’
and ‘jump far’ in Intel convention.

9.16.4.2 AT&T Mnemonic versus Intel Mnemonic

as supports assembly using Intel mnemonic. .intel_mnemonic selects Intel mnemonic with
Intel syntax, and .att_mnemonic switches back to the usual AT&T mnemonic with AT&T
syntax for compatibility with the output of gcc. Several x87 instructions, ‘fadd’, ‘fdiv’,
‘fdivp’, ‘fdivr’, ‘fdivrp’, ‘fmul’, ‘fsub’, ‘fsubp’, ‘fsubr’ and ‘fsubrp’, are implemented
in AT&T System V /386 assembler with different mnemonics from those in Intel IA32 spec-
ification. gcc generates those instructions with AT&T mnemonic.

e ‘movslq’ with AT&T mnemonic only accepts 64-bit destination register. ‘movsxd’
should be used to encode 16-bit or 32-bit destination register with both AT&T and
Intel mnemonics.

9.16.5 Register Naming
Register operands are always prefixed with ‘%’. The 80386 registers consist of
e the 8 32-bit registers ‘Y,eax’ (the accumulator), ‘%ebx’, ‘hecx’, ‘hedx’, ‘%hedi’, ‘%esi’,
‘%ebp’ (the frame pointer), and ‘%esp’ (the stack pointer).
e the 8 16-bit low-ends of these: ‘%ax’, ‘%bx’, ‘%hex’, ‘%hdx’, ‘%di’, ‘%si’, ‘%bp’, and ‘%sp’.

e the 8 8-bit registers: ‘%ah’, ‘%al’, ‘%bh’, ‘%bl’, ‘%ich’, ‘%cl’, ‘%dh’, and ‘%dl’ (These are
the high-bytes and low-bytes of ‘jax’, ‘%bx’, ‘%cx’, and ‘%dx’)

Chapter 9: Machine Dependent Features 185

e the 6 section registers ‘%cs’ (code section), ‘%ds’ (data section), ‘%ss’ (stack section),
‘hes’, ‘%fs’, and ‘%gs’.

e the 5 processor control registers ‘%cr0’, ‘%cr2’, ‘%cr3’, ‘icrd’, and ‘Ycr8’.

e the 6 debug registers ‘%db0’, ‘%dbl’, ‘%db2’, ‘%db3’, ‘%db6’, and ‘%db7’.

e the 2 test registers ‘%tr6’ and ‘%tr7’.

e the 8 floating point register stack ‘%st’ or equivalently ‘%st(0)’, ‘%st(1)’, ‘%st(2)’,
“%hst(3)7, ‘%hst(4)’, ‘%st(B)’, ‘%st(6)’, and ‘%st(7)’. These registers are overloaded
by 8 MMX registers ‘%mm0’, ‘%mm1’, ‘%mm2’, ‘%mm3’, ‘%mm4’, ‘%mm5’, ‘%mm6’ and ‘%mm7’.

e the 8 128-bit SSE registers registers ‘%xmm0’, ‘%xmm1’, ‘%xmm2’, ‘%xmm3’, ‘xmm4’, ‘%xmm5’,
‘%xmm6’ and ‘%xmm7’.
The AMD x86-64 architecture extends the register set by:

e enhancing the 8 32-bit registers to 64-bit: ‘%rax’ (the accumulator), ‘%rbx’, ‘Yircx’,
“Y%rdx’, ‘%rdi’, ‘%hrsi’, ‘%rbp’ (the frame pointer), ‘%rsp’ (the stack pointer)

e the 8 extended registers ‘%r8—%r15’.

e the 8 32-bit low ends of the extended registers: ‘%r8d’—%r15d’.
e the 8 16-bit low ends of the extended registers: ‘%r8w'—%ribw’.
e the 8 8-bit low ends of the extended registers: ‘%r8b—%ri5b’.
e the 4 8-bit registers: ‘%sil’, ‘%dil’, ‘%bpl’, ‘%spl’.

e the 8 debug registers: ‘%db8—%db15’.

e the 8 128-bit SSE registers: ‘¥%xmm8’—%xmm15’.

With the AVX extensions more registers were made available:

e the 16 256-bit SSE ‘/ymm0’—%ymm15’ (only the first 8 available in 32-bit mode). The
bottom 128 bits are overlaid with the ‘xmm0’—‘xmm15’ registers.

The AVX512 extensions added the following registers:

e the 32 512-bit registers ‘%zmm0’—‘%zmm31’ (only the first 8 available in 32-bit mode).
The bottom 128 bits are overlaid with the ‘/%xmm0’—%xmm31’ registers and the first 256
bits are overlaid with the ‘/ymm0’—‘%ymm31’ registers.

e the 8 mask registers ‘%k0—‘%k7’.

9.16.6 Instruction Prefixes

Instruction prefixes are used to modify the following instruction. They are used to re-
peat string instructions, to provide section overrides, to perform bus lock operations, and
to change operand and address sizes. (Most instructions that normally operate on 32-bit
operands will use 16-bit operands if the instruction has an “operand size” prefix.) Instruc-
tion prefixes are best written on the same line as the instruction they act upon. For example,
the ‘scas’ (scan string) instruction is repeated with:

repne scas hes: (fedi),%al

You may also place prefixes on the lines immediately preceding the instruction, but this
circumvents checks that as does with prefixes, and will not work with all prefixes.

Here is a list of instruction prefixes:

e Section override prefixes ‘cs’, ‘ds’, ‘ss’, ‘es’, ‘fs’, ‘gs’. These are automatically added
by specifying using the section:memory-operand form for memory references.

186 Using as

e Operand/Address size prefixes ‘datal6’ and ‘addr16’ change 32-bit operands/addresses
into 16-bit operands/addresses, while ‘data32’ and ‘addr32’ change 16-bit ones (in a
.codel6 section) into 32-bit operands/addresses. These prefixes must appear on the
same line of code as the instruction they modify. For example, in a 16-bit .codel6
section, you might write:

addr32 jmpl *(%ebx)

e The bus lock prefix ‘lock’ inhibits interrupts during execution of the instruction it
precedes. (This is only valid with certain instructions; see a 80386 manual for details).

e The wait for coprocessor prefix ‘wait’ waits for the coprocessor to complete the current
instruction. This should never be needed for the 80386/80387 combination.

e The ‘rep’, ‘repe’, and ‘repne’ prefixes are added to string instructions to make them
repeat ‘%hecx’ times (‘%cx’ times if the current address size is 16-bits).

e The ‘rex’ family of prefixes is used by x86-64 to encode extensions to i386 instruction
set. The ‘rex’ prefix has four bits — an operand size overwrite (64) used to change
operand size from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
register set.

You may write the ‘rex’ prefixes directly. The ‘rex64xyz’ instruction emits ‘rex’ prefix
with all the bits set. By omitting the 64, x, y or z you may write other prefixes as well.
Normally, there is no need to write the prefixes explicitly, since gas will automatically
generate them based on the instruction operands.

9.16.7 Memory References

An Intel syntax indirect memory reference of the form

section: [base + index*scale + disp]

is translated into the AT&T syntax

section:disp(base, index, scale)

where base and index are the optional 32-bit base and index registers, disp is the optional
displacement, and scale, taking the values 1, 2, 4, and 8, multiplies index to calculate the
address of the operand. If no scale is specified, scale is taken to be 1. section specifies
the optional section register for the memory operand, and may override the default section
register (see a 80386 manual for section register defaults). Note that section overrides in
AT&T syntax must be preceded by a ‘%’. If you specify a section override which coincides
with the default section register, as does not output any section register override prefixes
to assemble the given instruction. Thus, section overrides can be specified to emphasize
which section register is used for a given memory operand.

Here are some examples of Intel and AT&T style memory references:

AT&T: ‘-4 (%ebp)’, Intel: ‘[ebp - 4]’
base is ‘%ebp’; disp is ‘-4’. section is missing, and the default section is used
(‘%hss’ for addressing with ‘%ebp’ as the base register). index, scale are both
missing.

AT&T: ‘foo(,%eax,4)’, Intel: ‘[foo + eax*4]’
index is ‘,eax’ (scaled by a scale 4); disp is ‘foo’. All other fields are missing.
The section register here defaults to ‘%ds’.

Chapter 9: Machine Dependent Features 187

AT&T: ‘foo(,1)’; Intel ‘[foo]’
This uses the value pointed to by ‘foo’ as a memory operand. Note that base
[

and index are both missing, but there is only one ¢,”. This is a syntactic
exception.

AT&T: “gs:foo’; Intel ‘gs:foo’
This selects the contents of the variable ‘foo’ with section register section being
C%gs7'

Absolute (as opposed to PC relative) call and jump operands must be prefixed with ‘*’.
If no ‘¥’ is specified, as always chooses PC relative addressing for jump/call labels.

Any instruction that has a memory operand, but no register operand, must specify its
size (byte, word, long, or quadruple) with an instruction mnemonic suffix (‘b’, ‘w’, ‘1’ or ‘q’,
respectively).

The x86-64 architecture adds an RIP (instruction pointer relative) addressing. This
addressing mode is specified by using ‘rip’ as a base register. Only constant offsets are
valid. For example:

AT&T: ‘1234 (%rip)’, Intel: ‘[rip + 1234]’
Points to the address 1234 bytes past the end of the current instruction.

AT&T: ‘symbol (Y%rip)’, Intel: ‘[rip + symbol]’
Points to the symbol in RIP relative way, this is shorter than the default abso-
lute addressing.

Other addressing modes remain unchanged in x86-64 architecture, except registers used
are 64-bit instead of 32-bit.

9.16.8 Handling of Jump Instructions

Jump instructions are always optimized to use the smallest possible displacements. This is
accomplished by using byte (8-bit) displacement jumps whenever the target is sufficiently
close. If a byte displacement is insufficient a long displacement is used. We do not support
word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump instruction with
the ‘datal6’ instruction prefix), since the 80386 insists upon masking ‘%eip’ to 16 bits after
the word displacement is added. (See also see Section 9.16.15 [i386-Arch|, page 189)

9

Note that the ‘jcxz’, ‘jecxz’, ‘loop’, ‘loopz’, ‘loope’, ‘loopnz’ and ‘loopne’ instruc-
tions only come in byte displacements, so that if you use these instructions (gcc does not
use them) you may get an error message (and incorrect code). The AT&T 80386 assembler
tries to get around this problem by expanding ‘jcxz foo’ to

jcxz cx_zero

jmp cx_nonzero
cx_zero: jmp foo
cxX_nonzero:

9.16.9 Floating Point

All 80387 floating point types except packed BCD are supported. (BCD support may
be added without much difficulty). These data types are 16-, 32-, and 64- bit integers,
and single (32-bit), double (64-bit), and extended (80-bit) precision floating point. Each
supported type has an instruction mnemonic suffix and a constructor associated with it.

188 Using as

Instruction mnemonic suffixes specify the operand’s data type. Constructors build these
data types into memory.

¢

e Floating point constructors are ‘.float’ or ‘.single’, ‘.double’, and ‘.tfloat’ for
32-, 64-, and 80-bit formats. These correspond to instruction mnemonic suffixes ‘s’,
‘1’, and ‘t’. ‘t’ stands for 80-bit (ten byte) real. The 80387 only supports this format
via the ‘£1dt’ (load 80-bit real to stack top) and ‘fstpt’ (store 80-bit real and pop
stack) instructions.

e Integer constructors are ‘.word’, ‘.long’ or ‘.int’, and ‘.quad’ for the 16-, 32-, and

64-bit integer formats. The corresponding instruction mnemonic suffixes are ‘s’ (short),
‘1’ (long), and ‘q’ (quad). As with the 80-bit real format, the 64-bit ‘q’ format is only
present in the ‘fildq’ (load quad integer to stack top) and ‘fistpq’ (store quad integer
and pop stack) instructions.

Register to register operations should not use instruction mnemonic suffixes. ‘fstl %st,
%st (1)’ will give a warning, and be assembled as if you wrote ‘fst %st, %st(1)’, since all
register to register operations use 80-bit floating point operands. (Contrast this with ‘fstl
%st, mem’, which converts ‘%st’ from 80-bit to 64-bit floating point format, then stores the
result in the 4 byte location ‘mem’)

9.16.10 Intel’s MMX and AMD’s 3DNow! SIMD Operations

as supports Intel’s MMX instruction set (SIMD instructions for integer data), available on
Intel’s Pentium MMX processors and Pentium II processors, AMD’s K6 and K6-2 proces-
sors, Cyrix’ M2 processor, and probably others. It also supports AMD’s 3DNow! instruction
set (SIMD instructions for 32-bit floating point data) available on AMD’s K6-2 processor
and possibly others in the future.

Currently, as does not support Intel’s floating point SIMD, Katmai (KNT).

The eight 64-bit MMX operands, also used by 3DNow!, are called ‘/mmO’, ‘%4mm1’, ...
“%mm7’. They contain eight 8-bit integers, four 16-bit integers, two 32-bit integers, one 64-
bit integer, or two 32-bit floating point values. The MMX registers cannot be used at the
same time as the floating point stack.

See Intel and AMD documentation, keeping in mind that the operand order in instruc-
tions is reversed from the Intel syntax.

9.16.11 AMD'’s Lightweight Profiling Instructions

as supports AMD’s Lightweight Profiling (LWP) instruction set, available on AMD’s Family
15h (Orochi) processors.

LWP enables applications to collect and manage performance data, and react to per-
formance events. The collection of performance data requires no context switches. LWP
runs in the context of a thread and so several counters can be used independently across
multiple threads. LWP can be used in both 64-bit and legacy 32-bit modes.

For detailed information on the LWP instruction set, see the AMD Lightweight Profiling
Specification available at Lightweight Profiling Specification.

9.16.12 Bit Manipulation Instructions
as supports the Bit Manipulation (BMI) instruction set.

http://developer.amd.com/cpu/LWP

Chapter 9: Machine Dependent Features 189

BMI instructions provide several instructions implementing individual bit manipulation
operations such as isolation, masking, setting, or resetting.

9.16.13 AMD'’s Trailing Bit Manipulation Instructions

as supports AMD’s Trailing Bit Manipulation (TBM) instruction set, available on AMD’s
BDVER2 processors (Trinity and Viperfish).

TBM instructions provide instructions implementing individual bit manipulation op-
erations such as isolating, masking, setting, resetting, complementing, and operations on
trailing zeros and ones.

9.16.14 Writing 16-bit Code

While as normally writes only “pure” 32-bit i386 code or 64-bit x86-64 code depending
on the default configuration, it also supports writing code to run in real mode or in 16-bit
protected mode code segments. To do this, put a ‘. codel6’ or ‘. codel6gcc’ directive before
the assembly language instructions to be run in 16-bit mode. You can switch as to writing
32-bit code with the ‘.code32’ directive or 64-bit code with the ‘.code64’ directive.

‘.codel6gcc’ provides experimental support for generating 16-bit code from gcc, and
differs from ‘.code16’ in that ‘call’, ‘ret’, ‘enter’, ‘leave’, ‘push’, ‘pop’, ‘pusha’, ‘popa’,
‘pushf’; and ‘popf’ instructions default to 32-bit size. This is so that the stack pointer is
manipulated in the same way over function calls, allowing access to function parameters at
the same stack offsets as in 32-bit mode. ‘.codel6gcc’ also automatically adds address size
prefixes where necessary to use the 32-bit addressing modes that gcc generates.

The code which as generates in 16-bit mode will not necessarily run on a 16-bit pre-
80386 processor. To write code that runs on such a processor, you must refrain from using
any 32-bit constructs which require as to output address or operand size prefixes.

Note that writing 16-bit code instructions by explicitly specifying a prefix or an instruc-
tion mnemonic suffix within a 32-bit code section generates different machine instructions
than those generated for a 16-bit code segment. In a 32-bit code section, the following code
generates the machine opcode bytes ‘66 6a 04’, which pushes the value ‘4’ onto the stack,
decrementing ‘Yesp’ by 2.

pushw $4

The same code in a 16-bit code section would generate the machine opcode bytes ‘6a 04’
(i.e., without the operand size prefix), which is correct since the processor default operand
size is assumed to be 16 bits in a 16-bit code section.

9.16.15 Specifying CPU Architecture

as may be told to assemble for a particular CPU (sub-)architecture with the .arch cpu_
type directive. This directive enables a warning when gas detects an instruction that is not
supported on the CPU specified. The choices for cpu_type are:

‘18086’ ‘1186’ ‘1286’ ‘1386’
‘1486’ ‘1586’ ‘1686’ ‘pentium’
‘pentiumpro’ ‘pentiumii’ ‘pentiumiii’ ‘pentiumé’
‘prescott’ ‘nocona’ ‘core’ ‘core2’
‘corei?’ ‘llom’ ‘klom’ ‘iamcu’

‘k6’ ‘k6_2’ ‘athlon’ ‘k8’

Using as

‘bdver2’ ‘bdver3d’
‘znver?2’ ‘znver3’
‘generic32’ ‘generic64’
‘. mmx’

‘.ssed ‘.sseda’
‘.ssed.2’ ‘.ssed’

‘. smx’ ‘.ept’
‘.xsave’ ‘.xsaveopt’
‘. fma’ ‘.fsgsbase’
‘Lavx2’ ‘. bmi2’
‘.invpcid’ ‘. vmfunc’
‘.rdseed’ ‘.prfchw’
‘.sha’ ‘.prefetchwtl’
‘.xsaves’ ‘.sel’
‘.avxb12er’ ‘.avx512pf’
‘.avxb12dq’ ‘.avxb12ifma’

190

‘amdfam10’ ‘bdver?’
‘bdverd’ ‘znverl’
‘btver?l’ ‘btver?2’

‘. cmov’ ‘. fxsr’
‘.sse’ ‘.sse?2’
‘.sssed ‘.ssed.?l’
‘.avx’ ‘. vmx’
‘.clflush’ ‘.movbe’
‘.aes’ ‘.pclmul’
‘.rdrnd’ ‘.fi16c’
‘.1zcnt’ ‘.popcnt’
‘.hle’

‘.rtm’ ‘.adx’
‘.smap’ ‘. mpx’
‘.clflushopt’ ‘.xsavec’
‘.avxb12f’ ‘.avxb12cd’
‘.avxb512vl’ ‘.avx512bw’
‘.avxb512vbmi’ ‘.avxb12_4fmaps’‘.

.avx512_vpopcntdd’.
‘.avxb12_bitalg’ .

avxb512_vbmi2’ ‘.
avxb12_bfi16’ ‘.

avxb12_4vnniw’
avx512_vnni’
avx512_vp2intersect’

[4

‘otdx’ .avx_vnni’

‘.clwb’ ‘.rdpid’ ‘.ptwrite’

‘.ibt’

‘.wbnoinvd’ ‘.pconfig’ ‘.waitpkg’ ‘.cldemote’
‘.shstk’ ‘.gfni’ ‘.vaes’ ‘.vpclmulqdq’
‘.movdiri’ ‘.movdir64b’ ‘.enqcmd’ ‘.tsxldtrk’
‘.amx_int8’ ‘.amx_bf16’ ‘.amx_tile’

CkD ‘.widekl’ ‘.uintr’ ‘.hreset’
‘. 3dnow’ ‘.3dnowa’ ‘.sseda’ ‘.sseb’
‘.syscall’ ‘.rdtscp’ ‘.svme’

‘. lwp’ ‘. fmad’ ‘.xop’ ‘.cx16’
‘.padlock’ ‘.clzero’ ‘. mwaitx’ ‘.rdpru’
‘.mcommit’ ‘.sev_es’ ‘.snp’ ‘.invlpgb’
‘.tlbsync’

Apart from the warning, there are only two other effects on as operation; Firstly, if you
specify a CPU other than ‘i486’, then shift by one instructions such as ‘sarl $1, %eax’
will automatically use a two byte opcode sequence. The larger three byte opcode sequence
is used on the 486 (and when no architecture is specified) because it executes faster on
the 486. Note that you can explicitly request the two byte opcode by writing ‘sarl %eax’.
Secondly, if you specify ‘18086, ‘1186, or ‘1286, and ‘.codel6’ or ‘.codel6gcc’ then byte
offset conditional jumps will be promoted when necessary to a two instruction sequence
consisting of a conditional jump of the opposite sense around an unconditional jump to the
target.

Following the CPU architecture (but not a sub-architecture, which are those starting with
a dot), you may specify ‘jumps’ or ‘nojumps’ to control automatic promotion of conditional
jumps. ‘jumps’ is the default, and enables jump promotion; All external jumps will be of

Chapter 9: Machine Dependent Features 191

the long variety, and file-local jumps will be promoted as necessary. (see Section 9.16.8
[i386-Jumps|, page 187) ‘nojumps’ leaves external conditional jumps as byte offset jumps,
and warns about file-local conditional jumps that as promotes. Unconditional jumps are
treated as for ‘jumps’.

For example
.arch i18086,nojumps

9.16.16 AMDG64 ISA vs. Intel64 ISA

There are some discrepancies between AMDG64 and Intel64 ISAs.

e For ‘movsxd’ with 16-bit destination register, AMD64 supports 32-bit source operand
and Intel64 supports 16-bit source operand.

e For far branches (with explicit memory operand), both ISAs support 32- and 16-bit
operand size. Intel64 additionally supports 64-bit operand size, encoded as ‘1jmpq’ and
‘lcallq’ in AT&T syntax and with an explicit ‘tbyte ptr’ operand size specifier in
Intel syntax.

e ‘1fs’, ‘1gs’, and ‘lss’ similarly allow for 16- and 32-bit operand size (32- and 48-bit
memory operand) in both ISAs, while Intel64 additionally supports 64-bit operand sise
(80-bit memory operands).

9.16.17 AT&T Syntax bugs

The UnixWare assembler, and probably other AT&T derived ix86 Unix assemblers, generate
floating point instructions with reversed source and destination registers in certain cases.
Unfortunately, gcc and possibly many other programs use this reversed syntax, so we're
stuck with it.

For example
fsub %st,%st(3)

results in ‘%st(3)’ being updated to ‘%st - %st(3)’ rather than the expected ‘%st(3) -
%st’. This happens with all the non-commutative arithmetic floating point operations
with two register operands where the source register is ‘%st’ and the destination register is
Yhst (1)

9.16.18 Notes

There is some trickery concerning the ‘mul’ and ‘imul’ instructions that deserves mention.
The 16-, 32-, 64- and 128-bit expanding multiplies (base opcode ‘0x£6’; extension 4 for ‘mul’
and 5 for ‘imul’) can be output only in the one operand form. Thus, ‘imul %ebx, %eax’
does not select the expanding multiply; the expanding multiply would clobber the ‘%edx’
register, and this would confuse gcc output. Use ‘imul %ebx’ to get the 64-bit product in
‘hedx: feax’.

We have added a two operand form of ‘imul’ when the first operand is an immediate
mode expression and the second operand is a register. This is just a shorthand, so that,
multiplying ‘%eax’ by 69, for example, can be done with ‘imul $69, %eax’ rather than ‘imul
$69, %eax, heax’.

192 Using as

9.17 IA-64 Dependent Features

9.17.1 Options

-mconstant-gp
This option instructs the assembler to mark the resulting object file as using the
“constant GP” model. With this model, it is assumed that the entire program
uses a single global pointer (GP) value. Note that this option does not in any
fashion affect the machine code emitted by the assembler. All it does is turn
on the EF_TA_64_CONS_GP flag in the ELF file header.

-mauto-pic

This option instructs the assembler to mark the resulting object file as using
the “constant GP without function descriptor” data model. This model is like
the “constant GP” model, except that it additionally does away with function
descriptors. What this means is that the address of a function refers directly
to the function’s code entry-point. Normally, such an address would refer to
a function descriptor, which contains both the code entry-point and the GP-
value needed by the function. Note that this option does not in any fashion
affect the machine code emitted by the assembler. All it does is turn on the
EF_TA_64_NOFUNCDESC_CONS_GP flag in the ELF file header.

-milp32

-milp64

-mlp64

-mp64 These options select the data model. The assembler defaults to -m1p64 (LP64
data model).

-mle

-mbe These options select the byte order. The -mle option selects little-endian byte

order (default) and -mbe selects big-endian byte order. Note that IA-64 machine
code always uses little-endian byte order.

-mtune=itaniuml

-mtune=itanium?2
Tune for a particular IA-64 CPU, itaniuml or itanium2. The default is
itanium?2.

-munwind-check=warning

-munwind-check=error
These options control what the assembler will do when performing consistency
checks on unwind directives. -munwind-check=warning will make the assem-
bler issue a warning when an unwind directive check fails. This is the default.
-munwind-check=error will make the assembler issue an error when an unwind
directive check fails.

-mhint.b=0ok

-mhint.b=warning

-mhint.b=error
These options control what the assembler will do when the ‘hint.Db’
instruction is used. -mhint.b=ok will make the assembler accept ‘hint.Db’.

Chapter 9: Machine Dependent Features 193

-mint.b=warning will make the assembler issue a warning when ‘hint.b’ is
used. -mhint.b=error will make the assembler treat ‘hint.b’ as an error,
which is the default.

-X

-xexplicit
These options turn on dependency violation checking.

-xauto This option instructs the assembler to automatically insert stop bits where
necessary to remove dependency violations. This is the default mode.

-xnone This option turns off dependency violation checking.

-xdebug This turns on debug output intended to help tracking down bugs in the depen-
dency violation checker.

-xdebugn This is a shortcut for -xnone -xdebug.

-xdebugx This is a shortcut for -xexplicit -xdebug.

9.17.2 Syntax
The assembler syntax closely follows the IA-64 Assembly Language Reference Guide.

9.17.2.1 Special Characters
‘//’ is the line comment token.

‘;” can be used instead of a newline to separate statements.

9.17.2.2 Register Names

The 128 integer registers are referred to as ‘rn’. The 128 floating-point registers are referred
to as ‘fn’. The 128 application registers are referred to as ‘arn’. The 128 control registers
are referred to as ‘crn’. The 64 one-bit predicate registers are referred to as ‘pn’. The
8 branch registers are referred to as ‘bn’. In addition, the assembler defines a number of
aliases: ‘gp’ (‘r1’), ‘sp’ (‘r12’), ‘rp’ (‘D0’), ‘ret0’ (‘r8’), ‘retl’ (‘r9’), ‘ret2’ (‘r10’), ‘retd’
(‘r9’), ‘fargn’ (‘£8+n’), and ‘fretn’ (‘£8+n’).

For convenience, the assembler also defines aliases for all named application and con-
trol registers. For example, ‘ar.bsp’ refers to the register backing store pointer (‘ar17’).
Similarly, ‘cr.eoi’ refers to the end-of-interrupt register (‘cr67’).

9.17.2.3 TA-64 Processor-Status-Register (PSR) Bit Names

The assembler defines bit masks for each of the bits in the IA-64 processor status register.
For example, ‘psr.ic’ corresponds to a value of 0x2000. These masks are primarily intended
for use with the ‘ssm’/‘sum’ and ‘rsm’/‘rum’ instructions, but they can be used anywhere
else where an integer constant is expected.

9.17.2.4 Relocations

In addition to the standard IA-64 relocations, the following relocations are implemented by
as:

194 Using as

@slotcount (V)
Convert the address offset V into a slot count. This pseudo function is available
only on VMS. The expression V must be known at assembly time: it can’t
reference undefined symbols or symbols in different sections.

9.17.3 Opcodes

For detailed information on the IA-64 machine instruction set, see the 1A-64 Assembly
Language Reference Guide available at

http://developer.intel.com/design/itanium/arch_spec.htm

Chapter 9: Machine Dependent Features 195

9.18 IP2K Dependent Features

9.18.1 IP2K Options

The Ubicom IP2K version of as has a few machine dependent options:

-mip2022ext
as can assemble the extended IP2022 instructions, but it will only do so if this
is specifically allowed via this command line option.

-mip2022 This option restores the assembler’s default behaviour of not permitting the
extended IP2022 instructions to be assembled.

9.18.2 TP2K Syntax
9.18.2.1 Special Characters

The presence of a ;’ on a line indicates the start of a comment that extends to the end of
the current line.

If a ‘#’ appears as the first character of a line, the whole line is treated as a comment, but
in this case the line can also be a logical line number directive (see Section 3.3 [Comments],
page 31) or a preprocessor control command (see Section 3.1 [Preprocessing], page 31).

The IP2K assembler does not currently support a line separator character.

196

9.19 LM32 Dependent Features

9.19.1 Options

-mmultiply-enabled
Enable multiply instructions.

-mdivide—-enabled
Enable divide instructions.

-mbarrel-shift-enabled
Enable barrel-shift instructions.

-msign-extend-enabled
Enable sign extend instructions.

-muser—-enabled
Enable user defined instructions.

-micache-enabled
Enable instruction cache related CSRs.

-mdcache—-enabled
Enable data cache related CSRs.

-mbreak-enabled
Enable break instructions.

-mall-enabled
Enable all instructions and CSRs.

9.19.2 Syntax

9.19.2.1 Register Names
LM32 has 32 x 32-bit general purpose registers ‘r0’, ‘r1’, ... ‘r31’.

The following aliases are defined: ‘gp’ - ‘r26’, ‘fp’ - ‘r27’, ‘sp’ -

- ‘r30’, ‘ba’ - ‘r31’.
LM32 has the following Control and Status Registers (CSRs).

1IE Interrupt enable.

M Interrupt mask.

IpP Interrupt pending.

ICC Instruction cache control.
DCC Data cache control.

CC Cycle counter.

CFG Configuration.

EBA Exception base address.

DC Debug control.

‘r28’, ‘ra’ -

Using as

‘r29’, ‘ea’

Chapter 9: Machine Dependent Features 197

DEBA
JTX
JRX
BPO
BP1
BP2
BP3
WPO
WP1
WP2
WP3

Debug exception base address.
JTAG transmit.
JTAG receive.
Breakpoint 0.
Breakpoint 1.
Breakpoint 2.
Breakpoint 3.
Watchpoint 0.
Watchpoint 1.
Watchpoint 2.
Watchpoint 3.

9.19.2.2 Relocatable Expression Modifiers

The assembler supports several modifiers when using relocatable addresses in LM32 instruc-
tion operands. The general syntax is the following:

1o

hi

gp

got

gotofflol6

gotoffhil6

modifier(relocatable-expression)

This modifier allows you to use bits 0 through 15 of an address expression as
16 bit relocatable expression.

This modifier allows you to use bits 16 through 23 of an address expression as
16 bit relocatable expression.

For example

ori r4, r4, lo(sym+10)
orhi r4, r4, hi(sym+10)

This modified creates a 16-bit relocatable expression that is the offset of the
symbol from the global pointer.
mva r4, gp(sym)

This modifier places a symbol in the GOT and creates a 16-bit relocatable
expression that is the offset into the GOT of this symbol.
1w r4, (gpt+got(sym))

This modifier allows you to use the bits 0 through 15 of an address which is an
offset from the GOT.

This modifier allows you to use the bits 16 through 31 of an address which is
an offset from the GOT.

orhi r4, r4, gotoffhil6(lsym)
addi r4, r4, gotofflol6(lsym)

198 Using as

9.19.2.3 Special Characters

The presence of a ‘#’ on a line indicates the start of a comment that extends to the end of the
current line. Note that if a line starts with a ‘#’ character then it can also be a logical line
number directive (see Section 3.3 [Comments|, page 31) or a preprocessor control command
(see Section 3.1 [Preprocessing], page 31).

A semicolon (‘;’) can be used to separate multiple statements on the same line.

9.19.3 Opcodes

For detailed information on the LM32 machine instruction set, see http: / /www .
latticesemi.com/products/intellectualproperty/ipcores/mico32/.

as implements all the standard LM32 opcodes.

http://www.latticesemi.com/products/intellectualproperty/ipcores/mico32/
http://www.latticesemi.com/products/intellectualproperty/ipcores/mico32/

Chapter 9: Machine Dependent Features 199

9.20 M32C Dependent Features

as can assemble code for several different members of the Renesas M32C family. Normally
the default is to assemble code for the M16C microprocessor. The -m32c option may be
used to change the default to the M32C microprocessor.

9.20.1 M32C Options

The Renesas M32C version of as has these machine-dependent options:

-m32c¢ Assemble M32C instructions.

-m16¢ Assemble M16C instructions (default).
-relax Enable support for link-time relaxations.
-h-tick-hex

Support H’00 style hex constants in addition to 0x00 style.

9.20.2 M32C Syntax

9.20.2.1 Symbolic Operand Modifiers

The assembler supports several modifiers when using symbol addresses in M32C instruction
operands. The general syntax is the following:

#modifier (symbol)
%dsp8
%dsp16
These modifiers override the assembler’s assumptions about how big a sym-
bol’s address is. Normally, when it sees an operand like ‘sym[a0]’ it assumes
‘sym’ may require the widest displacement field (16 bits for ‘-m16c¢’, 24 bits for
‘-m32c¢’). These modifiers tell it to assume the address will fit in an 8 or 16 bit
(respectively) unsigned displacement. Note that, of course, if it doesn’t actually
fit you will get linker errors. Example:
mov.w %dsp8(sym) [a0],r1l
mov.b #0,%dsp8(sym) [a0]
%hi8
This modifier allows you to load bits 16 through 23 of a 24 bit address into an
8 bit register. This is useful with, for example, the M16C ‘smovf’ instruction,
which expects a 20 bit address in ‘rih’ and ‘a0’. Example:
mov.b #4hi8(sym),r1h
mov.w #)1016(sym) ,a0
smovf.b
%lo16
Likewise, this modifier allows you to load bits 0 through 15 of a 24 bit address
into a 16 bit register.
%hil6

This modifier allows you to load bits 16 through 31 of a 32 bit address into
a 16 bit register. While the M32C family only has 24 bits of address space,

200 Using as

it does support addresses in pairs of 16 bit registers (like ‘ala0’ for the ‘lde’
instruction). This modifier is for loading the upper half in such cases. Example:

mov.w #%hi16(sym),al
mov.w #)1016(sym),a0

lde.w [ala0l],rl

9.20.2.2 Special Characters
The presence of a ‘;’ character on a line indicates the start of a comment that extends to
the end of that line.

If a ‘#’ appears as the first character of a line, the whole line is treated as a comment, but
in this case the line can also be a logical line number directive (see Section 3.3 [Comments],
page 31) or a preprocessor control command (see Section 3.1 [Preprocessing], page 31).

The ‘|’ character can be used to separate statements on the same line.

Chapter 9: Machine Dependent Features 201

9.21 M32R Dependent Features

9.21.1 M32R Options

The Renesas M32R version of as has a few machine dependent options:

-m32rx

-m32r2
-m32r

-little
-EL
-big
-EB

-KPIC

-parallel

as can assemble code for several different members of the Renesas M32R, fam-
ily. Normally the default is to assemble code for the M32R microprocessor.
This option may be used to change the default to the M32RX microprocessor,
which adds some more instructions to the basic M32R instruction set, and some
additional parameters to some of the original instructions.

This option changes the target processor to the M32R2 microprocessor.

This option can be used to restore the assembler’s default behaviour of assem-
bling for the M32R microprocessor. This can be useful if the default has been
changed by a previous command-line option.

This option tells the assembler to produce little-endian code and data. The
default is dependent upon how the toolchain was configured.

This is a synonym for -little.
This option tells the assembler to produce big-endian code and data.
This is a synonym for -big.

This option specifies that the output of the assembler should be marked as
position-independent code (PIC).

This option tells the assembler to attempts to combine two sequential instruc-
tions into a single, parallel instruction, where it is legal to do so.

-no-parallel

This option disables a previously enabled -parallel option.

-no-bitinst

This option disables the support for the extended bit-field instructions provided
by the M32R2. If this support needs to be re-enabled the -bitinst switch can
be used to restore it.

This option tells the assembler to attempt to optimize the instructions that it
produces. This includes filling delay slots and converting sequential instructions
into parallel ones. This option implies -parallel.

-warn-explicit-parallel-conflicts

Instructs as to produce warning messages when questionable parallel instruc-
tions are encountered. This option is enabled by default, but gcc disables
it when it invokes as directly. Questionable instructions are those whose be-
haviour would be different if they were executed sequentially. For example the
code fragment ‘mv r1, r2 || mv r3, r1l’ produces a different result from ‘mv
rl, r2 \nmv r3, r1’ since the former moves rl into r3 and then r2 into rl,
whereas the later moves r2 into rl1 and r3.

This is a shorter synonym for the -warn-explicit-parallel-conflicts option.

202 Using as

-no-warn-explicit-parallel-conflicts
Instructs as not to produce warning messages when questionable parallel in-
structions are encountered.

-Wnp This is a shorter synonym for the -no-warn-explicit-parallel-conflicts option.

—-ignore-parallel-conflicts
This option tells the assembler’s to stop checking parallel instructions for con-
straint violations. This ability is provided for hardware vendors testing chip
designs and should not be used under normal circumstances.

-no-ignore-parallel-conflicts
This option restores the assembler’s default behaviour of checking parallel in-
structions to detect constraint violations.

-Ip This is a shorter synonym for the -ignore-parallel-conflicts option.
-nlp This is a shorter synonym for the -no-ignore-parallel-conflicts option.

-warn-unmatched-high
This option tells the assembler to produce a warning message if a .high pseudo
op is encountered without a matching .low pseudo op. The presence of such
an unmatched pseudo op usually indicates a programming error.

-no-warn-unmatched-high
Disables a previously enabled -warn-unmatched-high option.

-Wuh This is a shorter synonym for the -warn-unmatched-high option.

-Wnuh This is a shorter synonym for the -no-warn-unmatched-high option.

9.21.2 M32R Directives
The Renesas M32R version of as has a few architecture specific directives:

low expression
The low directive computes the value of its expression and places the lower
16-bits of the result into the immediate-field of the instruction. For example:

or3 r0, rO, #low(0x12345678) ; compute rO = rO | 0x5678
add3, r0, r0, #low(fred) ; compute rO = r0 + low 16-bits of address of fred

high expression
The high directive computes the value of its expression and places the upper

16-bits of the result into the immediate-field of the instruction. For example:

seth r0, #high(0x12345678) ; compute rO = 0x12340000
seth, r0, #high(fred) ; compute rO = upper 16-bits of address of fred

shigh expression

The shigh directive is very similar to the high directive. It also computes
the value of its expression and places the upper 16-bits of the result into the
immediate-field of the instruction. The difference is that shigh also checks to
see if the lower 16-bits could be interpreted as a signed number, and if so it
assumes that a borrow will occur from the upper-16 bits. To compensate for
this the shigh directive pre-biases the upper 16 bit value by adding one to it.
For example:

For example:

Chapter 9: Machine Dependent Features 203

.m32r

.m32rx

.m32r2

.little

.big

0x12340000
0x00010000

seth r0, #shigh(0x12345678) ; compute r0 =
seth r0, #shigh(0x00008000) ; compute r0Q =
In the second example the lower 16-bits are 0x8000. If these are treated as a
signed value and sign extended to 32-bits then the value becomes 0xffff8000. If

this value is then added to 0x00010000 then the result is 0x00008000.

This behaviour is to allow for the different semantics of the or3 and add3
instructions. The or3 instruction treats its 16-bit immediate argument as un-
signed whereas the add3 treats its 16-bit immediate as a signed value. So for
example:

seth r0, #shigh(0x00008000)

add3 r0, r0, #low(0x00008000)
Produces the correct result in r0, whereas:

seth r0, #shigh(0x00008000)

or3 r0, r0, #low(0x00008000)
Stores 0xffff8000 into r0.

Note - the shigh directive does not know where in the assembly source code
the lower 16-bits of the value are going set, so it cannot check to make sure
that an or3 instruction is being used rather than an add3 instruction. It is up
to the programmer to make sure that correct directives are used.

The directive performs a similar thing as the -m32r command line option. It
tells the assembler to only accept M32R instructions from now on. An instruc-
tions from later M32R architectures are refused.

The directive performs a similar thing as the -m32rz command line option. It
tells the assembler to start accepting the extra instructions in the M32RX ISA
as well as the ordinary M32R ISA.

The directive performs a similar thing as the -m32r2 command line option. It
tells the assembler to start accepting the extra instructions in the M32R2 ISA
as well as the ordinary M32R ISA.

The directive performs a similar thing as the -little command line option. It
tells the assembler to start producing little-endian code and data. This option
should be used with care as producing mixed-endian binary files is fraught with
danger.

The directive performs a similar thing as the -big command line option. It
tells the assembler to start producing big-endian code and data. This option
should be used with care as producing mixed-endian binary files is fraught with
danger.

9.21.3 M32R Warnings

There are several warning and error messages that can be produced by as which are specific

to the M32R:

output of 1st instruction is the same as an input to 2nd instruction - is this
intentional 7

This message is only produced if warnings for explicit parallel conflicts have
been enabled. It indicates that the assembler has encountered a parallel in-
struction in which the destination register of the left hand instruction is used

204 Using as

as an input register in the right hand instruction. For example in this code
fragment ‘mv r1, r2 || neg r3, rl’ register rl is the destination of the move
instruction and the input to the neg instruction.

output of 2nd instruction is the same as an input to 1st instruction - is this

intentional 7
This message is only produced if warnings for explicit parallel conflicts have
been enabled. It indicates that the assembler has encountered a parallel in-
struction in which the destination register of the right hand instruction is used
as an input register in the left hand instruction. For example in this code
fragment ‘mv rl, r2 || neg r2, r3’ register r2 is the destination of the neg
instruction and the input to the move instruction.

instruction ‘...’ is for the M32RX only
This message is produced when the assembler encounters an instruction which
is only supported by the M32Rx processor, and the ‘-m32rx’ command-line flag
has not been specified to allow assembly of such instructions.

unknown instruction ‘...’

This message is produced when the assembler encounters an instruction which
it does not recognize.

only the NOP instruction can be issued in parallel on the m32r
This message is produced when the assembler encounters a parallel instruc-
tion which does not involve a NOP instruction and the ‘-m32rx’ command-line
flag has not been specified. Only the M32Rx processor is able to execute two
instructions in parallel.

instruction ‘...’ cannot be executed in parallel.

This message is produced when the assembler encounters a parallel instruction
which is made up of one or two instructions which cannot be executed in parallel.

Instructions share the same execution pipeline
This message is produced when the assembler encounters a parallel instruction
whose components both use the same execution pipeline.

Instructions write to the same destination register.
This message is produced when the assembler encounters a parallel instruction
where both components attempt to modify the same register. For example these
code fragments will produce this message: ‘mv r1, r2 || neg r1, r3’ ‘j1 r0 ||
mv ri4, r1’ ‘st r2, @-rl || mv rl, r3’ ‘mvrl, r2 || 1d r0, @ri+ ‘cmp ri,
r2 || addx r3, r4’ (Both write to the condition bit)

Chapter 9: Machine Dependent Features 205

9.22 M680x0 Dependent Features

9.22.1 M680x0 Options

The Motorola 680x0 version of as has a few machine dependent options:

‘-march=architecture’

‘-mcpu=cpu’

This option specifies a target architecture. The following architectures are rec-
ognized: 68000, 68010, 68020, 68030, 68040, 68060, cpu32, isaa, isaaplus,
isab, isac and cfvie.

This option specifies a target cpu. When used in conjunction with the -march
option, the cpu must be within the specified architecture. Also, the generic
features of the architecture are used for instruction generation, rather than
those of the specific chip.

‘-m[no-]168851’
‘-m[no-168881’
‘-m[no-]div’
‘-m[no-Jusp’
‘-m[no-]float’
‘-m[no-]mac’
‘-m[no-]emac’

Enable or disable various architecture specific features. If a chip or architec-
ture by default supports an option (for instance -march=isaaplus includes the
-mdiv option), explicitly disabling the option will override the default.

You can use the ‘-1’ option to shorten the size of references to undefined sym-
bols. If you do not use the ‘-1’ option, references to undefined symbols are wide
enough for a full long (32 bits). (Since as cannot know where these symbols
end up, as can only allocate space for the linker to fill in later. Since as does
not know how far away these symbols are, it allocates as much space as it can.)
If you use this option, the references are only one word wide (16 bits). This
may be useful if you want the object file to be as small as possible, and you
know that the relevant symbols are always less than 17 bits away.

‘--register-prefix-optional’

For some configurations, especially those where the compiler normally does not
prepend an underscore to the names of user variables, the assembler requires
a ‘%’ before any use of a register name. This is intended to let the assembler
distinguish between C variables and functions named ‘a0’ through ‘a7’; and so
on. The ‘%4 is always accepted, but is not required for certain configurations,
notably ‘sun3’. The ‘--register-prefix-optional’ option may be used to
permit omitting the ‘%’ even for configurations for which it is normally required.
If this is done, it will generally be impossible to refer to C variables and functions
with the same names as register names.

‘——bitwise-or’

Normally the character ‘|’ is treated as a comment character, which means that
it can not be used in expressions. The ‘--bitwise-or’ option turns ‘|’ into a

206

Using as

normal character. In this mode, you must either use C style comments, or start
comments with a ‘#’ character at the beginning of a line.

‘—-base-size-default-16 --base-size-default-32’

If you use an addressing mode with a base register without specifying
the size, as will normally use the full 32 bit value. For example, the
addressing mode ‘%a0@(%d0)’ is equivalent to ‘%a0@(%d0:1)’. You may use
the ‘--base-size-default-16’ option to tell as to default to using the 16 bit
value. In this case, ‘%a0@(%d0)’ is equivalent to ‘%a0@(%d0:w)’. You may use
the ‘--base-size-default-32’ option to restore the default behaviour.

‘-—disp-size-default-16 --disp-size-default-32’

‘——pcrel’

‘-m68000’

If you use an addressing mode with a displacement, and the value of the dis-
placement is not known, as will normally assume that the value is 32 bits. For
example, if the symbol ‘disp’ has not been defined, as will assemble the ad-
dressing mode ‘%a0@(disp,%d0)’ as though ‘disp’ is a 32 bit value. You may
use the ‘--disp-size-default-16’ option to tell as to instead assume that
the displacement is 16 bits. In this case, as will assemble ‘%a0@(disp,%d0)’ as
though ‘disp’ is a 16 bit value. You may use the ‘--disp-size-default-32’
option to restore the default behaviour.

Always keep branches PC-relative. In the M680x0 architecture all branches are
defined as PC-relative. However, on some processors they are limited to word
displacements maximum. When as needs a long branch that is not available,
it normally emits an absolute jump instead. This option disables this substitu-
tion. When this option is given and no long branches are available, only word
branches will be emitted. An error message will be generated if a word branch
cannot reach its target. This option has no effect on 68020 and other processors
that have long branches. see Section 9.22.6.1 [Branch Improvement|, page 211.

as can assemble code for several different members of the Motorola 680x0 family.
The default depends upon how as was configured when it was built; normally,
the default is to assemble code for the 68020 microprocessor. The following
options may be used to change the default. These options control which in-
structions and addressing modes are permitted. The members of the 680x0
family are very similar. For detailed information about the differences, see the
Motorola manuals.

‘-m68000’

‘-m68ec000’

‘-m68hc000’

‘-m68hc001’

‘-m68008’

‘-m68302’

‘-m68306’

‘-m68307’

‘-m68322’

‘-m68356° Assemble for the 68000. ‘-m68008’, ‘-m68302’, and so on are syn-
onyms for ‘-m68000°, since the chips are the same from the point
of view of the assembler.

Chapter 9: Machine Dependent Features 207

‘-m68010’

‘-m68020’
‘-m68ec020’

‘-m68030’
‘-m68ec030’

‘-m68040’
‘-m68ec040’

‘-m68060’
‘-m68ec060’

‘-mcpu32’
‘-m68330’
‘-m68331’
‘-m68332’
‘-m68333’
‘-m68334’
‘-m68336’
‘-m68340’
‘-m68341’
‘-m68349’
‘-m68360’

‘-m5200’
‘-m5202’
‘-m5204’
‘-m5206’
‘-m5206e’
‘-m521x’
‘-m5249’
‘-m528%’
‘-m5307’
‘-m5407’
‘-m547x’
‘-m548x’
‘-mcfvd’
‘-mcfvie’

‘-m68881’
‘-m68882’

Assemble for the 68010.

Assemble for the 68020. This is normally the default.

Assemble for the 68030.

Assemble for the 68040.

Assemble for the 68060.

Assemble for the CPU32 family of chips.

Assemble for the ColdFire family of chips.

Assemble 68881 floating point instructions. This is the default for
the 68020, 68030, and the CPU32. The 68040 and 68060 always
support floating point instructions.

208 Using as

‘-mno-68881’
Do not assemble 68881 floating point instructions. This is the de-
fault for 68000 and the 68010. The 68040 and 68060 always support
floating point instructions, even if this option is used.

‘-m68851° Assemble 68851 MMU instructions. This is the default for the
68020, 68030, and 68060. The 68040 accepts a somewhat different
set of MMU instructions; ‘-m68851’ and ‘-m68040’ should not be
used together.

‘-mno-68851’
Do not assemble 68851 MMU instructions. This is the default for
the 68000, 68010, and the CPU32. The 68040 accepts a somewhat
different set of MMU instructions.

9.22.2 Syntax
This syntax for the Motorola 680x0 was developed at MIT.

The 680x0 version of as uses instructions names and syntax compatible with the Sun
assembler. Intervening periods are ignored; for example, ‘movl’ is equivalent to ‘mov.1’.

In the following table apc stands for any of the address registers (‘%4a0’ through ‘%a7’),
the program counter (‘%pc’), the zero-address relative to the program counter (‘%zpc’), a
suppressed address register (‘%4za0’ through ‘%za7’), or it may be omitted entirely. The use
of size means one of ‘w’ or ‘1’, and it may be omitted, along with the leading colon, unless
a scale is also specified. The use of scale means one of ‘1’, ‘2, ‘4’ or ‘8’, and it may always
be omitted along with the leading colon.

The following addressing modes are understood:

Immediate
‘#number’

Data Register
‘%d0’ through ‘%d7’

Address Register
“%a0’ through ‘%a7’
“%a7’ is also known as ‘%sp’, i.e., the Stack Pointer. %a6 is also known as ‘%fp’,
the Frame Pointer.

Address Register Indirect
‘%a0@’ through ‘%a7@’

Address Register Postincrement
‘%a0@+’ through ‘%a7@+’

Address Register Predecrement
‘%a0@-’ through ‘%a7@-’

Indirect Plus Offset
‘apc@(number)’

Index ‘apc@(number,register:size:scale)’

The number may be omitted.

Chapter 9: Machine Dependent Features 209

Postindex ‘apc@(number)@(onumber,register:size:scale)’

The onumber or the register, but not both, may be omitted.

Preindex ‘apc@(number,register:size:scale)@(onumber)’

The number may be omitted. Omitting the register produces the Postindex
addressing mode.

Absolute ‘symbol’, or ‘digits’, optionally followed by ‘:b’, ‘:w’, or ‘:1".

9.22.3 Motorola Syntax

The standard Motorola syntax for this chip differs from the syntax already discussed (see
Section 9.22.2 [Syntax|, page 208). as can accept Motorola syntax for operands, even if
MIT syntax is used for other operands in the same instruction. The two kinds of syntax are
fully compatible.

In the following table apc stands for any of the address registers (‘%4a0’ through ‘%a7’),
the program counter (‘%pc’), the zero-address relative to the program counter (‘%zpc’), or
a suppressed address register (‘%za0’ through ‘%za7’). The use of size means one of ‘w’ or
‘l’, and it may always be omitted along with the leading dot. The use of scale means one
of ‘1’7, ‘2’ ‘4’ or ‘8’, and it may always be omitted along with the leading asterisk.

The following additional addressing modes are understood:

Address Register Indirect
‘(%a0)’ through (%a7)’
“%a7’ is also known as ‘Ysp’, i.e., the Stack Pointer. %a6 is also known as ‘%fp’,
the Frame Pointer.

Address Register Postincrement
‘(%a0)+’ through ‘(%a7)+’

Address Register Predecrement
‘~(%a0)’ through ‘- (%a7)’

Indirect Plus Offset
‘number(%a0)’ through ‘number(7%a7)’, or ‘number(Jpc)’.

The number may also appear within the parentheses, as in ‘(number, %a0)’.
When used with the pe, the number may be omitted (with an address register,
omitting the number produces Address Register Indirect mode).

Index ‘number(apc,register.size*xscale)’

The number may be omitted, or it may appear within the parentheses. The
apc may be omitted. The register and the apc may appear in either order. If
both apc and register are address registers, and the size and scale are omitted,
then the first register is taken as the base register, and the second as the index
register.

Postindex ‘([number,apc] ,register.size*scale,onumber)’

The onumber, or the register, or both, may be omitted. Either the number or
the apc may be omitted, but not both.

210

Preindex

Using as

‘([number, apc,register.size*scale] ,onumber)’

The number, or the apc, or the register, or any two of them, may be omitted.
The onumber may be omitted. The register and the apc may appear in either
order. If both apc and register are address registers, and the size and scale are
omitted, then the first register is taken as the base register, and the second as
the index register.

9.22.4 Floating Point
Packed decimal (P) format floating literals are not supported. Feel free to add the code!

The floating point formats generated by directives are these.

.float

.double

.extend
.1ldouble

Single precision floating point constants.

Double precision floating point constants.

Extended precision (long double) floating point constants.

9.22.5 680x0 Machine Directives

In order to be compatible with the Sun assembler the 680x0 assembler understands the
following directives.

.datal

.data2

.even

.skip

.arch name

.Cpu name

This directive is identical to a .data 1 directive.
This directive is identical to a .data 2 directive.

This directive is a special case of the .align directive; it aligns the output to
an even byte boundary.

This directive is identical to a .space directive.

Select the target architecture and extension features. Valid values for name
are the same as for the -march command-line option. This directive cannot
be specified after any instructions have been assembled. If it is given multiple
times, or in conjunction with the -march option, all uses must be for the same
architecture and extension set.

Select the target cpu. Valid values for name are the same as for the -mcpu
command-line option. This directive cannot be specified after any instructions
have been assembled. If it is given multiple times, or in conjunction with the
-mopt option, all uses must be for the same cpu.

Chapter 9: Machine Dependent Features 211

9.22.6 Opcodes

9.22.6.1 Branch Improvement

Certain pseudo opcodes are permitted for branch instructions. They expand to the shortest
branch instruction that reach the target. Generally these mnemonics are made by substi-
tuting ‘j’ for ‘b’ at the start of a Motorola mnemonic.

The following table summarizes the pseudo-operations. A * flags cases that are more
fully described after the table:

jbsr
jra

jXX

Displacement
fmm e — —
| 68020 68000/10, not PC-relative OK
Pseudo-Op |BYTE WORD LONG ABSOLUTE LONG JUMP *ok
o — S
jbsr |bsrs bsrw bsrl jsr
jra |bras braw bral jmp
jXX |bXXs bXXw bXX1 bNXs ; jmp
dbXX | N/A dbXXw dbXX;bras;bral dbXX;bras;jmp
fjXX | N/A fbXXw fbXX1 N/A
condition

NX: negative of condition XX

x—see full description below
xx—this expansion mode is disallowed by ‘--pcrel’

These are the simplest jump pseudo-operations; they always map to one partic-
ular machine instruction, depending on the displacement to the branch target.
This instruction will be a byte or word branch is that is sufficient. Otherwise,
a long branch will be emitted if available. If no long branches are available
and the ‘--pcrel’ option is not given, an absolute long jump will be emitted
instead. If no long branches are available, the ‘-—pcrel’ option is given, and a
word branch cannot reach the target, an error message is generated.

In addition to standard branch operands, as allows these pseudo-operations to
have all operands that are allowed for jsr and jmp, substituting these instruc-
tions if the operand given is not valid for a branch instruction.

Here, ‘jXX’ stands for an entire family of pseudo-operations, where XX is a
conditional branch or condition-code test. The full list of pseudo-ops in this
family is:

jhi jls jcc jcs jne jeq jvc

jvs jpl jmi jge jlt jgt jle
Usually, each of these pseudo-operations expands to a single branch instruction.
However, if a word branch is not sufficient, no long branches are available, and
the ‘~-pcrel’ option is not given, as issues a longer code fragment in terms of
NX, the opposite condition to XX. For example, under these conditions:

jXX foo

gives

212

dbXX

£jXX

Using as

bNXs oof
jmp foo
oof:

The full family of pseudo-operations covered here is

dbhi dbls dbcc dbcs dbne dbeq dbvc
dbvs dbpl dbmi dbge dblt dbgt dble
dbf dbra dbt

Motorola ‘dbXX’ instructions allow word displacements only. When a word
displacement is sufficient, each of these pseudo-operations expands to the cor-
responding Motorola instruction. When a word displacement is not sufficient
and long branches are available, when the source reads ‘dbXX foo’, as emits

dbXX ool

bras o002
ool:bral foo
002:

3

If, however, long branches are not available and the ‘--pcrel’ option is not
given, as emits
dbXX ool
bras o002
ool:jmp foo
002:

This family includes

fjne fjeq fjge £jlt fjgt fjle fjf

fjt fjgl fjgle fjnge £fjngl £fjngle fjngt

fjnle fjnlt fjoge <£fjogl £fjogt £fjole £fjolt

fjor fjseq fjsf fjsne £fjst fjueq £fjuge

fjugt fjule £fjult £fjun
Fach of these pseudo-operations always expands to a single Motorola coproces-
sor branch instruction, word or long. All Motorola coprocessor branch instruc-
tions allow both word and long displacements.

9.22.6.2 Special Characters

Line comments are introduced by the ‘|’ character appearing anywhere on a line, unless
the --bitwise-or command-line option has been specified.

An asterisk (‘*’) as the first character on a line marks the start of a line comment as

well.

A hash character (‘#’) as the first character on a line also marks the start of a line
comment, but in this case it could also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 31). If the hash character appears elsewhere on a line it is used to introduce an
immediate value. (This is for compatibility with Sun’s assembler).

Multiple statements on the same line can appear if they are separated by the *;’ character.

Chapter 9: Machine Dependent Features 213

9.23 M68HC11 and M68HC12 Dependent Features

9.23.1 M68HC11 and M68HC12 Options
The Motorola 68HC11 and 68HC12 version of as have a few machine dependent options.

-m68hcll

-m68hc12

-m68hcs12

-mm9s12x

-mm9s12xg

This option switches the assembler into the M68HC11 mode. In this mode, the
assembler only accepts 68HC11 operands and mnemonics. It produces code for
the 68HC11.

This option switches the assembler into the M68HC12 mode. In this mode,
the assembler also accepts 68HC12 operands and mnemonics. It produces code
for the 68HC12. A few 68HCI11 instructions are replaced by some 68HC12
instructions as recommended by Motorola specifications.

This option switches the assembler into the M68HCS12 mode. This mode is
similar to ‘-m68hc12’ but specifies to assemble for the 68HCS12 series. The
only difference is on the assembling of the ‘movb’ and ‘movw’ instruction when
a PC-relative operand is used.

This option switches the assembler into the M9S12X mode. This mode is similar
to ‘-m68hc12’ but specifies to assemble for the S12X series which is a superset
of the HCS12.

This option switches the assembler into the XGATE mode for the RISC co-
processor featured on some S12X-family chips.

--xgate-ramoffset

-mshort

-mlong

This option instructs the linker to offset RAM addresses from S12X address
space into XGATE address space.

This option controls the ABI and indicates to use a 16-bit integer ABI. It has
no effect on the assembled instructions. This is the default.

This option controls the ABI and indicates to use a 32-bit integer ABI.

-mshort-double

This option controls the ABI and indicates to use a 32-bit float ABI. This is
the default.

-mlong-double

This option controls the ABI and indicates to use a 64-bit float ABI.

—--strict-direct-mode

You can use the ‘--strict-direct-mode’ option to disable the automatic trans-
lation of direct page mode addressing into extended mode when the instruction
does not support direct mode. For example, the ‘clr’ instruction does not sup-
port direct page mode addressing. When it is used with the direct page mode,
as will ignore it and generate an absolute addressing. This option prevents
as from doing this, and the wrong usage of the direct page mode will raise an
erTor.

214 Using as

—--short-branches

The ‘--short-branches’ option turns off the translation of relative branches
into absolute branches when the branch offset is out of range. By default
as transforms the relative branch (‘bsr’, ‘bgt’, ‘bge’, ‘beq’, ‘bne’, ‘ble’, ‘b1lt’,
‘bhi’, ‘bee’, ‘bls’, ‘bes’, ‘bmi’, ‘bvs’, ‘bvs’, ‘bra’) into an absolute branch when
the offset is out of the -128 .. 127 range. In that case, the ‘bsr’ instruction is
translated into a ‘jsr’, the ‘bra’ instruction is translated into a ‘jmp’ and the
conditional branches instructions are inverted and followed by a ‘jmp’. This
option disables these translations and as will generate an error if a relative
branch is out of range. This option does not affect the optimization associated
to the ‘jbra’, ‘jbsr’ and ‘jbXX’ pseudo opcodes.

--force-long-branches
The ‘--force-long-branches’ option forces the translation of relative branches
into absolute branches. This option does not affect the optimization associated
to the ‘jbra’, ‘jbsr’ and ‘jbXX’ pseudo opcodes.

--print-insn-syntax
You can use the ‘~-print-insn-syntax’ option to obtain the syntax description
of the instruction when an error is detected.

—--print-opcodes
The ‘—-print-opcodes’ option prints the list of all the instructions with their
syntax. The first item of each line represents the instruction name and the
rest of the line indicates the possible operands for that instruction. The list is
printed in alphabetical order. Once the list is printed as exits.

--generate-example
The ‘--generate-example’ option is similar to ‘~-print-opcodes’ but it gen-
erates an example for each instruction instead.

9.23.2 Syntax

In the M68HCI11 syntax, the instruction name comes first and it may be followed by one
or several operands (up to three). Operands are separated by comma (‘,’). In the normal
mode, as will complain if too many operands are specified for a given instruction. In the
MRI mode (turned on with ‘-M’ option), it will treat them as comments. Example:

inx

lda #23

bset 2,x #4

brclr *bot #8 foo

The presence of a ‘;’ character or a ‘!’ character anywhere on a line indicates the start

of a comment that extends to the end of that line.

A ‘¥’ or a ‘# character at the start of a line also introduces a line comment, but these
characters do not work elsewhere on the line. If the first character of the line is a ‘#’
then as well as starting a comment, the line could also be logical line number directive
(see Section 3.3 [Comments|, page 31) or a preprocessor control command (see Section 3.1
[Preprocessing], page 31).

The M68HC11 assembler does not currently support a line separator character.

The following addressing modes are understood for 68HC11 and 68HC12:

Chapter 9: Machine Dependent Features 215

Immediate
‘#number’

Address Register
‘number,X’, ‘number,Y’

The number may be omitted in which case 0 is assumed.

Direct Addressing mode
‘*symbol’, or ‘*digits’

Absolute ‘symbol’; or ‘digits’

The M68HC12 has other more complex addressing modes. All of them are supported
and they are represented below:

Constant Offset Indexed Addressing Mode
‘number, reg’

The number may be omitted in which case 0 is assumed. The register can
be either ‘X’, Y’, ‘SP’ or ‘PC’. The assembler will use the smaller post-byte
definition according to the constant value (5-bit constant offset, 9-bit constant
offset or 16-bit constant offset). If the constant is not known by the assembler
it will use the 16-bit constant offset post-byte and the value will be resolved at
link time.

Offset Indexed Indirect
‘[number, regl’

The register can be either ‘X’, ‘Y’, ‘SP’ or ‘PC’.

Auto Pre-Increment/Pre-Decrement/Post-Increment /Post-Decrement
‘number,-reg’ ‘number,+reg ‘number,reg-’ ‘number,reg+’

The number must be in the range ‘-8’..+8’ and must not be 0. The register
can be either ‘X’, ‘Y’, ‘SP’ or ‘PC’.

Accumulator Offset
‘acc,reg’

The accumulator register can be either ‘A’, ‘B’ or ‘D’. The register can be either
X, Y7, ‘SP’ or ‘PC’.

Accumulator D offset indexed-indirect
‘[D,regl’

The register can be either ‘X’, ‘Y’, ‘SP’ or ‘PC’.

For example:

ldab 1024,sp
1ldd [10,x]
orab 3,+x
stab -2,y-
1ldx a,pc

sty [d,sp]

216 Using as

9.23.3 Symbolic Operand Modifiers

The assembler supports several modifiers when using symbol addresses in 68HC11 and
68HC12 instruction operands. The general syntax is the following:
fmodifier (symbol)

%haddr This modifier indicates to the assembler and linker to use the 16-bit physical
address corresponding to the symbol. This is intended to be used on memory
window systems to map a symbol in the memory bank window. If the symbol
is in a memory expansion part, the physical address corresponds to the symbol
address within the memory bank window. If the symbol is not in a memory ex-
pansion part, this is the symbol address (using or not using the %addr modifier
has no effect in that case).

hpage This modifier indicates to use the memory page number corresponding to the
symbol. If the symbol is in a memory expansion part, its page number is
computed by the linker as a number used to map the page containing the symbol
in the memory bank window. If the symbol is not in a memory expansion part,
the page number is 0.

%hi This modifier indicates to use the 8-bit high part of the physical address of the
symbol.

%lo This modifier indicates to use the 8-bit low part of the physical address of the
symbol.

For example a 68HC12 call to a function ‘foo_example’ stored in memory expansion
part could be written as follows:
call Yaddr(foo_example) ,’%page(foo_example)
and this is equivalent to
call foo_example
And for 68HC11 it could be written as follows:

ldab #J,page(foo_example)
stab _page_switch
jsr Y%addr(foo_example)

9.23.4 Assembler Directives
The 68HC11 and 68HC12 version of as have the following specific assembler directives:

.relax The relax directive is used by the ‘GNU Compiler’ to emit a specific relocation
to mark a group of instructions for linker relaxation. The sequence of instruc-
tions within the group must be known to the linker so that relaxation can be
performed.

.mode [mshort|mlong|mshort-double|mlong-doublel
This directive specifies the ABI. It overrides the ‘-mshort’, ‘-mlong’,
‘-mshort-double’ and ‘-mlong-double’ options.

.far symbol
This directive marks the symbol as a ‘far’ symbol meaning that it uses a
‘call/rtc’ calling convention as opposed to ‘jsr/rts’. During a final link, the
linker will identify references to the ‘far’ symbol and will verify the proper
calling convention.

Chapter 9: Machine Dependent Features

.interrupt symbol
This directive marks the symbol as an interrupt entry point. This information
is then used by the debugger to correctly unwind the frame across interrupts.

.xrefb symbol
This directive is defined for compatibility with the ‘Specification for
Motorola 8 and 16-Bit Assembly Language Input Standard’ and is ignored.

9.23.5 Floating Point
Packed decimal (P) format floating literals are not supported. Feel free to add the code!

The floating point formats generated by directives are these.

.float
.double

.extend
.1ldouble

Single precision floating point constants.

Double precision floating point constants.

Extended precision (long double) floating point constants.

9.23.6 Opcodes

9.23.6.1 Branch Improvement

217

Certain pseudo opcodes are permitted for branch instructions. They expand to the shortest
branch instruction that reach the target. Generally these mnemonics are made by prepend-
ing ‘j’ to the start of Motorola mnemonic. These pseudo opcodes are not affected by the
‘-—short-branches’ or ‘--force-long-branches’ options.

The following table summarizes the pseudo-operations.
Displacement Width

Op

bsr
bra
jbsr
jbra
bXX
jbXX

XX:

NX: negative of condition XX

jbsr
jbra

jbXX

+ ___
| Options

| --short-branches --force-long-branches
e e B
|BYTE WORD | BYTE WORD
e e e et +
| bsr <pc-rel> <error> | jsr <abs>

| bra <pc-rel> <error> | jmp <abs>

| bsr <pc-rel> jsr <abs> | bsr <pc-rel> jsr <abs>

| bra <pc-rel> jmp <abs> | bra <pc-rel> jmp <abs>

| bXX <pc-rel> <error> | bNX +3; jmp <abs>

| bXX <pc-rel> DNX +3; | bXX <pc-rel> DNX +3; jmp <abs>

| jmp <abs> |

e -—- ————t -—- -—-
condition

These are the simplest jump pseudo-operations; they always map to one partic-
ular machine instruction, depending on the displacement to the branch target.

Here, ‘jbXX’ stands for an entire family of pseudo-operations, where XX is a
conditional branch or condition-code test. The full list of pseudo-ops in this

family is:

218 Using as

jbcc jbeq jbge jbgt jbhi jbvs jbpl jblo
jbcs jbne jblt jble jbls jbvc jbmi
For the cases of non-PC relative displacements and long displacements, as issues
a longer code fragment in terms of NX, the opposite condition to XX. For
example, for the non-PC relative case:
jbXX foo
gives
bNXs oof
jmp foo
oof:

Chapter 9: Machine Dependent Features 219

9.24 S127Z Dependent Features

The Freescale S127Z version of as has a few machine dependent features.

9.24.1 S127Z Options
The S127Z version of as recognizes the following options:

‘-mreg-prefix=prefix’
You can use the ‘-mreg-prefix=pfx’ option to indicate that the assembler
should expect all register names to be prefixed with the string pfx.

¢

For an explanation of what this means and why it might be needed, see
Section 9.24.2.3 [S12Z Register Notation], page 221.

‘-mdollar-hex’
The ‘-mdollar-hex’ option affects the way that literal hexadecimal constants
are represented. When this option is specified, the assembler will consider
the ‘$’ character as the start of a hexadecimal integer constant. Without this
option, the standard value of ‘0x’ is expected.

If you use this option, then you cannot have symbol names starting with ‘$’.
‘-mdollar-hex’ is implied if the ‘--traditional-format’ (see Section 2.15
[traditional-format], page 29) is used.

9.24.2 Syntax
9.24.2.1 Overview

In the S12Z syntax, the instruction name comes first and it may be followed by one, or by
several operands. In most cases the maximum number of operands is three. Operands are
separated by a comma (‘,’). A comma however does not act as a separator if it appears
within parentheses (‘()’) or within square brackets (‘[1’). as will complain if too many,
too few or inappropriate operands are specified for a given instruction.

Some instructions accept and (in certain situations require) a suffix indicating the size
[T

of the operand. The suffix is separated from the instruction name by a period (‘.”) and
may be one of ‘b’, ‘w’, ‘p’ or ‘1’ indicating ‘byte’ (a single byte), ‘word’ (2 bytes), ‘pointer’
(3 bytes) or ‘long’ (4 bytes) respectively.

Example:

bset.b 0xA98, #5
mov.b #6, 0x2409

1d do, #4

mov.1l (40, x), 0x2409
inc do

cmp do, #12

blt *—4

lea x, 0x2409

st y, 1, x

The presence of a ‘;’ character anywhere on a line indicates the start of a comment that
extends to the end of that line.

A ‘¥’ or a ‘# character at the start of a line also introduces a line comment, but these
characters do not work elsewhere on the line. If the first character of the line is a ‘#
then as well as starting a comment, the line could also be logical line number directive

220 Using as

(see Section 3.3 [Comments|, page 31) or a preprocessor control command (see Section 3.1
[Preprocessing], page 31).

The S127Z assembler does not currently support a line separator character.

9.24.2.2 Addressing Modes
The following addressing modes are understood for the S12Z.

Immediate
‘#number’

Immediate Bit Field
‘#width:offset’

Bit field instructions in the immediate mode require the width and offset to
be specified. The width parameter specifies the number of bits in the field. It
should be a number in the range [1,32]. Offset determines the position within
the field where the operation should start. It should be a number in the range
[0,31].

Relative ‘ksymbol’, or ‘¢ [+-]digits’

Program counter relative addresses have a width of 15 bits. Thus, they must
be within the range [-32768, 32767].

4 v

Register reg
Some instructions accept a register as an operand. In general, reg may be a
data register (‘DO’, ‘D1’ ... ‘D7’), the ‘X’ register or the ‘Y’ register.
A few instructions accept as an argument the stack pointer register (‘S’), and/or
the program counter (‘P’).

Some very special instructions accept arguments which refer to the condition
code register. For these arguments the syntax is ‘CCR’, ‘CCH’ or ‘CCL’ which refer
to the complete condition code register, the condition code register high byte
and the condition code register low byte respectively.

Absolute Direct
‘symbol’; or ‘digits’

Absolute Indirect
‘[symbol’, or ‘digits]’
Constant Offset Indexed
‘(number,reg)’
Reg may be either ‘X', ‘Y’, ‘S’ or ‘P’ or one of the data registers ‘D0’, ‘D1’ ...
‘D7’. If any of the registers ‘D2’ ... ‘D5’ are specified, then the register value is

treated as a signed value. Otherwise it is treated as unsigned. Number may be
any integer in the range [-8388608,8388607].

Offset Indexed Indirect
‘[number, regl’

Reg may be either ‘X’, ‘Y’, ‘S’ or ‘P’. Number may be any integer in the range
[-8388608,8388607].

Chapter 9: Machine Dependent Features 221

Auto Pre-Increment/Pre-Decrement /Post-Increment/Post-Decrement
‘-reg’, ‘+reg’, ‘reg-’ or ‘reg+’
This addressing mode is typically used to access a value at an address, and
simultaneously to increment/decrement the register pointing to that address.
Thus reg may be any of the 24 bit registers ‘X’, ‘Y’, or ‘S’. Pre-increment
and post-decrement are not available for register ‘S’ (only post-increment and
pre-decrement are available).

Register Offset Direct
‘(data-reg,reg)’

Reg can be either ‘X’, ‘Y’, or ‘S’. Data-reg must be one of the data registers
‘DO’, ‘D1’ ... ‘D7’. If any of the registers ‘D2’ ... ‘D5’ are specified, then the
register value is treated as a signed value. Otherwise it is treated as unsigned.

Register Offset Indirect
‘[data-reg,reg]’

Reg can be either ‘X’ or ‘Y’. Data-reg must be one of the data registers ‘D0’,
‘D1’ ... ‘D7’. If any of the registers ‘D2’ ... ‘D5’ are specified, then the register
value is treated as a signed value. Otherwise it is treated as unsigned.

For example:

trap #197 ;3 Immediate mode

bra *+49 ;; Relative mode

bra .LO HH ditto

jmp 0xFE0034 ;; Absolute direct mode

jmp [0xFD0012] ;; Absolute indirect mode

inc.b (4,x) ;; Constant offset indexed mode
jsr (45, do) HE ditto

dec.w [4,y] ;; Constant offset indexed indirect mode
clr.p (-s) ;3 Pre-decrement mode

neg.1l (do, s) ;; Register offset direct mode
com.b [d1, x] ;; Register offset indirect mode
psh cch ;; Register mode

9.24.2.3 Register Notation

Without a register prefix (see Section 9.24.1 [S12Z Options|, page 219), S12Z assembler
code is expected in the traditional format like this:
lea s, (-2,s)

st d2, (0,s)
1d x, symbol
tfr d2, d6

cmp d6, #1532

However, if as is started with (for example) ‘-mreg-prefix=%’ then all register names must
be prefixed with ‘%’ as follows:

lea %s, (-2,%s)

st %d2, (0,%s)

1d %x, symbol

tfr %d2, %dé

cmp %d6, #1532

The register prefix feature is intended to be used by compilers to avoid ambiguity between

symbols and register names. Consider the following assembler instruction:

222 Using as

st d0, di
The destination operand of this instruction could either refer to the register ‘D1’, or it could
refer to the symbol named “d1”. If the latter is intended then as must be invoked with
‘-mreg-prefix=pfx’ and the code written as

st pfxd0, di
where pfx is the chosen register prefix. For this reason, compiler back-ends should choose
a register prefix which cannot be confused with a symbol name.

Chapter 9: Machine Dependent Features 223

9.25 Meta Dependent Features

9.25.1 Options

The Imagination Technologies Meta architecture is implemented in a number of versions,
with each new version adding new features such as instructions and registers. For precise
details of what instructions each core supports, please see the chip’s technical reference
manual.

The following table lists all available Meta options.

-mcpu=metacll
Generate code for Meta 1.1.

-mcpu=metacl2
Generate code for Meta 1.2.

-mcpu=metac21
Generate code for Meta 2.1.

-mfpu=metac21
Allow code to use FPU hardware of Meta 2.1.

9.25.2 Syntax
9.25.2.1 Special Characters

‘17 is the line comment character.
You can use ‘;’ instead of a newline to separate statements.

Since ‘$’ has no special meaning, you may use it in symbol names.

9.25.2.2 Register Names

Registers can be specified either using their mnemonic names, such as ‘DORe0Q’, or using the
unit plus register number separated by a ¢.’, such as ‘D0.0’.

224 Using as

9.26 MicroBlaze Dependent Features

The Xilinx MicroBlaze processor family includes several variants, all using the same core
instruction set. This chapter covers features of the GNU assembler that are specific to the
MicroBlaze architecture. For details about the MicroBlaze instruction set, please see the
MicroBlaze Processor Reference Guide (UG081) available at www.xilinx.com.

9.26.1 Directives
A number of assembler directives are available for MicroBlaze.

.data8 expression,...
This directive is an alias for .byte. Each expression is assembled into an eight-
bit value.

.datal6 expression,...
This directive is an alias for .hword. Each expression is assembled into an
16-bit value.

.data32 expression,...
This directive is an alias for .word. Each expression is assembled into an 32-bit
value.

.ent name[,label]
This directive is an alias for .func denoting the start of function name at
(optional) label.

.end name[,label]
This directive is an alias for .endfunc denoting the end of function name.

.gpword label,...
This directive is an alias for .rva. The resolved address of Iabel is stored in
the data section.

.weakext label
Declare that label is a weak external symbol.

.rodata Switch to .rodata section. Equivalent to .section .rodata

.sdata2 Switch to .sdata2 section. Equivalent to .section .sdata2

.sdata Switch to .sdata section. Equivalent to .section .sdata
.bss Switch to .bss section. Equivalent to .section .bss
.sbss Switch to .sbss section. Equivalent to .section .sbss

9.26.2 Syntax for the MicroBlaze
9.26.2.1 Special Characters

The presence of a ‘#’ on a line indicates the start of a comment that extends to the end of
the current line.

If a ‘#’ appears as the first character of a line, the whole line is treated as a comment, but
in this case the line can also be a logical line number directive (see Section 3.3 [Comments]
page 31) or a preprocessor control command (see Section 3.1 [Preprocessing], page 31).

)

The ¢;’ character can be used to separate statements on the same line.

Chapter 9: Machine Dependent Features 225

9.27 MIPS Dependent Features

GNU as for MIPS architectures supports several different MIPS processors, and MIPS ISA
levels I through V, MIPS32, and MIPS64. For information about the MIPS instruction set,
see MIPS RISC Architecture, by Kane and Heindrich (Prentice-Hall). For an overview of
MIPS assembly conventions, see “Appendix D: Assembly Language Programming” in the
same work.

9.27.1 Assembler options
The MIPS configurations of GNU as support these special options:

-G num Set the “small data” limit to n bytes. The default limit is 8 bytes. See
Section 9.27.4 [Controlling the use of small data accesses|, page 234.

-EB

-EL Any MIPS configuration of as can select big-endian or little-endian output at
run time (unlike the other GNU development tools, which must be configured
for one or the other). Use ‘-EB’ to select big-endian output, and ‘-EL’ for
little-endian.

-KPIC Generate SVR4-style PIC. This option tells the assembler to generate SVR4-

style position-independent macro expansions. It also tells the assembler to mark
the output file as PIC.

-mvxworks-pic
Generate VxWorks PIC. This option tells the assembler to generate VxWorks-
style position-independent macro expansions.

-mipsl

-mips2

-mips3

-mips4

-mipsb

-mips32

-mips32r2

-mips32r3

-mips32rb

-mips32r6

-mips64

-mips64r2

-mips64r3

-mips64rb

-mips64r6
Generate code for a particular MIPS Instruction Set Architecture level.
‘-mipsl’ corresponds to the R2000 and R3000 processors, ‘-mips2’ to the
R6000 processor, ‘-mips3’ to the R4000 processor, and ‘-mips4’ to the R8000
and R10000 processors. ‘-mipsb’, ‘-mips32’, ‘-mips32r2’, ‘-mips32r3’,
‘-mips32r5’, ‘-mips32r6’, ‘-mips64’, ‘-mips64r2’, ‘-mips64r3’, ‘-mips64rb’,
and ‘-mips64r6’ correspond to generic MIPS V, MIPS32, MIPS32 Release
2, MIPS32 Release 3, MIPS32 Release 5, MIPS32 Release 6, MIPS64, and

226 Using as

MIPS64 Release 2, MIPS64 Release 3, MIPS64 Release 5, and MIPS64 Release
6 ISA processors, respectively. You can also switch instruction sets during the
assembly; see Section 9.27.5 [MIPS ISA], page 235.

-mgp32

-mfp32 Some macros have different expansions for 32-bit and 64-bit registers. The
register sizes are normally inferred from the ISA and ABI, but these flags force
a certain group of registers to be treated as 32 bits wide at all times. ‘-mgp32’
controls the size of general-purpose registers and ‘-mfp32’ controls the size of
floating-point registers.

The .set gp=32 and .set fp=32 directives allow the size of registers to
be changed for parts of an object. The default value is restored by .set
gp=default and .set fp=default.

On some MIPS variants there is a 32-bit mode flag; when this flag is set, 64-
bit instructions generate a trap. Also, some 32-bit OSes only save the 32-bit
registers on a context switch, so it is essential never to use the 64-bit registers.

-mgp64
-mfp64 Assume that 64-bit registers are available. This is provided in the interests of
symmetry with ‘-mgp32’ and ‘-mfp32’.

The .set gp=64 and .set fp=64 directives allow the size of registers to
be changed for parts of an object. The default value is restored by .set
gp=default and .set fp=default.

-mfpxx Make no assumptions about whether 32-bit or 64-bit floating-point registers are
available. This is provided to support having modules compatible with either
‘-mfp32’ or ‘-mfp64’. This option can only be used with MIPS II and above.

The .set fp=xx directive allows a part of an object to be marked as not making
assumptions about 32-bit or 64-bit FP registers. The default value is restored
by .set fp=default.

-modd-spreg

-mno-odd-spreg
Enable use of floating-point operations on odd-numbered single-precision regis-
ters when supported by the ISA. ‘-mfpxx’ implies ‘-mno-odd-spreg’, otherwise
the default is ‘-modd-spreg’

-mipsi16
-no-mipsi16
Generate code for the MIPS 16 processor. This is equivalent to putting .module
mips16 at the start of the assembly file. ‘-no-mips16’ turns off this option.
-mmips16e2

-mno-mipsi6e2
Enable the use of MIPS16e2 instructions in MIPS16 mode. This is equivalent to
putting .module mipsi6e2 at the start of the assembly file. ‘-mno-mipsi16e2’
turns off this option.

Chapter 9: Machine Dependent Features 227

-mmicromips

-mno-micromips
Generate code for the microMIPS processor. This is equivalent to putting
.module micromips at the start of the assembly file. ‘-mno-micromips’ turns
off this option. This is equivalent to putting .module nomicromips at the start
of the assembly file.

-msmartmips

-mno-smartmips
Enables the SmartMIPS extensions to the MIPS32 instruction set, which pro-
vides a number of new instructions which target smartcard and cryptographic
applications. This is equivalent to putting .module smartmips at the start of
the assembly file. ‘-mno-smartmips’ turns off this option.

-mips3d

-no-mips3d
Generate code for the MIPS-3D Application Specific Extension. This tells the
assembler to accept MIPS-3D instructions. ‘-no-mips3d’ turns off this option.

-mdmx
-no-mdmx Generate code for the MDMX Application Specific Extension. This tells the
assembler to accept MDMX instructions. ‘-no-mdmx’ turns off this option.

-mdsp

-mno-dsp Generate code for the DSP Release 1 Application Specific Extension. This tells
the assembler to accept DSP Release 1 instructions. ‘-mno-dsp’ turns off this
option.

-mdspr2

-mno-dspr2
Generate code for the DSP Release 2 Application Specific Extension. This
option implies ‘-mdsp’. This tells the assembler to accept DSP Release 2 in-
structions. ‘-mno-dspr2’ turns off this option.

-mdspr3

-mno-dspr3
Generate code for the DSP Release 3 Application Specific Extension. This
option implies ‘-mdsp’ and ‘-mdspr2’. This tells the assembler to accept DSP
Release 3 instructions. ‘-mno-dspr3’ turns off this option.

-mmt
-mno-mt Generate code for the MT Application Specific Extension. This tells the as-
sembler to accept MT instructions. ‘-mno-mt’ turns off this option.

-mmcu
-mno-mcu Generate code for the MCU Application Specific Extension. This tells the
assembler to accept MCU instructions. ‘-mno-mcu’ turns off this option.

-mmsa
-mno-msa Generate code for the MIPS SIMD Architecture Extension. This tells the as-
sembler to accept MSA instructions. ‘-mno-msa’ turns off this option.

228 Using as

-mxpa
-mno-xpa Generate code for the MIPS eXtended Physical Address (XPA) Extension. This
tells the assembler to accept XPA instructions. ‘-mno-xpa’ turns off this option.

-mvirt

-mno-virt
Generate code for the Virtualization Application Specific Extension. This tells
the assembler to accept Virtualization instructions. ‘-mno-virt’ turns off this
option.

-mcrc

-mno-crc Generate code for the cyclic redundancy check (CRC) Application Specific Ex-
tension. This tells the assembler to accept CRC instructions. ‘-mno-crc’ turns
off this option.

-mginv

-mno-ginv
Generate code for the Global INValidate (GINV) Application Specific Exten-
sion. This tells the assembler to accept GINV instructions. ‘-mno-ginv’ turns
off this option.

-mloongson-mmi

-mno—-loongson-mmi
Generate code for the Loongson MultiMedia extensions Instructions (MMI)
Application Specific Extension. This tells the assembler to accept MMI in-
structions. ‘-mno-loongson-mmi’ turns off this option.

-mloongson-cam

-mno-loongson-cam
Generate code for the Loongson Content Address Memory (CAM) Applica-
tion Specific Extension. This tells the assembler to accept CAM instructions.
‘-mno-loongson-cam’ turns off this option.

-mloongson—-ext

-mno-loongson-ext
Generate code for the Loongson EXTensions (EXT) instructions Application
Specific Extension. This tells the assembler to accept EXT instructions.
‘-mno-loongson-ext’ turns off this option.

-mloongson-ext2

-mno-loongson-ext2
Generate code for the Loongson EXTensions R2 (EXT2) instructions Applica-
tion Specific Extension. This tells the assembler to accept EXT2 instructions.
‘-mno-loongson-ext2’ turns off this option.

-minsn32

-mno-insn32
Only use 32-bit instruction encodings when generating code for the microMIPS
processor. This option inhibits the use of any 16-bit instructions. This is equiv-
alent to putting .set insn32 at the start of the assembly file. ‘-mno-insn32’
turns off this option. This is equivalent to putting .set noinsn32 at the start of

Chapter 9: Machine Dependent Features 229

the assembly file. By default ‘-mno-insn32’ is selected, allowing all instructions
to be used.

-mfix7000

-mno-£ix7000
Cause nops to be inserted if the read of the destination register of an mfhi or
mflo instruction occurs in the following two instructions.

-mfix-rm7000

-mno-fix-rm7000
Cause nops to be inserted if a dmult or dmultu instruction is followed by a load
instruction.

-mfix-loongson2f-jump

-mno-fix-loongson2f-jump
Eliminate instruction fetch from outside 256 M region to work around the Loong-
son2F ‘jump’ instructions. Without it, under extreme cases, the kernel may
crash. The issue has been solved in latest processor batches, but this fix has no
side effect to them.

-mfix-loongson2f-nop

-mno-fix-loongson2f-nop
Replace nops by or at,at,zero to work around the Loongson2F ‘nop’ errata.
Without it, under extreme cases, the CPU might deadlock. The issue has been
solved in later Loongson2F batches, but this fix has no side effect to them.

-mfix-loongson3-1lsc

-mno-fix-loongson3-1lsc
Insert ‘sync’ before ‘11’ and ‘11d’ to work around Loongson3 LLSC errata.
Without it, under extrame cases, the CPU might deadlock. The default can
be controlled by the --enable-mips-fix-loongson3-1lsc=[yes|no] config-
ure option.

-mfix-vr4120

-mno-fix-vr4120
Insert nops to work around certain VR4120 errata. This option is intended to
be used on GCC-generated code: it is not designed to catch all problems in
hand-written assembler code.

-mfix-vr4130
-mno-fix-vr4130
Insert nops to work around the VR4130 ‘mflo’/‘mfhi’ errata.

-mfix-24k
-mno—-fix-24k
Insert nops to work around the 24K ‘eret’/‘deret’ errata.

-mfix-cn63xxpl

-mno—-fix—-cn63xxpl
Replace pref hints 0 - 4 and 6 - 24 with hint 28 to work around certain
CN63XXP1 errata.

230

-mfix-r590

Using as

0

-mno-fix-r5900

-m4010
-no-m4010

-m4650
-no-m4650

-m3900
-no-m3900
-m4100
-no-m4100

-march=cpu

-mtune=cpu

Do not attempt to schedule the preceding instruction into the delay slot of a
branch instruction placed at the end of a short loop of six instructions or fewer
and always schedule a nop instruction there instead. The short loop bug under
certain conditions causes loops to execute only once or twice, due to a hardware
bug in the R5900 chip.

Generate code for the LSI R4010 chip. This tells the assembler to accept the
R4010-specific instructions (‘addciu’, ‘ffc’, etc.), and to not schedule ‘nop’
instructions around accesses to the ‘HI’ and ‘L0’ registers. ‘-no-m4010’ turns
off this option.

Generate code for the MIPS R4650 chip. This tells the assembler to accept
the ‘mad’ and ‘madu’ instruction, and to not schedule ‘nop’ instructions around
accesses to the ‘HI’ and ‘L0’ registers. ‘-no-m4650’° turns off this option.

¢

For each option ‘-mnnnn’, generate code for the MIPS Rnnnn chip. This tells
the assembler to accept instructions specific to that chip, and to schedule for
that chip’s hazards.

Generate code for a particular MIPS CPU. It is exactly equivalent to ‘-mcpu’,
except that there are more value of cpu understood. Valid cpu value are:

2000, 3000, 3900, 4000, 4010, 4100, 4111, vr4120, vr4130, vr4181,
4300, 4400, 4600, 4650, 5000, rm5200, rm5230, rm5231, rm5261,
rmb721, vr5400, vr5500, 6000, rm7000, 8000, rm9000, 10000, 12000,
14000, 16000, 4kc, 4km, 4kp, 4ksc, 4kec, 4kem, 4kep, 4ksd, mdk,
mdkp, m14k, m1l4ke, m14ke, m14kec, 24kc, 24kf2_1, 24kf, 24kf1_1,
24kec, 24kef2_1, 24kef, 24kefl_1, 34ke, 34kf2_1, 34kf, 34kf1_1, 34kn,
Tdke, 74kf2_1, 74kf, 74kf1_1, 74kf3_2, 1004ke, 1004kf2_1, 1004kf,
1004kf1_1, interaptiv, interaptiv-mr2, m5100, m5101, p5600, 5kc,
5kf, 20ke, 25kf, sbl, sbla, 16400, 16500, p6600, loongson2e, loong-
son2f, gsd64, gsdbde, gs264e, octeon, octeon+, octeon2, octeond,
xlr, xIp

For compatibility reasons, ‘nx’ and ‘bfx’ are accepted as synonyms for ‘nf1_1’.
These values are deprecated.

Schedule and tune for a particular MIPS CPU. Valid cpu values are identical
to ‘-march=cpu’.

Chapter 9: Machine Dependent Features 231

-mabi=abi
Record which ABI the source code uses. The recognized arguments are: ‘32’
‘n32’, ‘064’, ‘64’ and ‘eabi’.

-msym32

-mno-sym32
Equivalent to adding .set sym32 or .set nosym32 to the beginning of the as-
sembler input. See Section 9.27.3 [MIPS Symbol Sizes|, page 234.

-nocpp This option is ignored. It is accepted for command-line compatibility with
other assemblers, which use it to turn off C style preprocessing. With GNU as,
there is no need for ‘-nocpp’, because the GNU assembler itself never runs the
C preprocessor.

-msoft-float

-mhard-float
Disable or enable floating-point instructions. Note that by default floating-
point instructions are always allowed even with CPU targets that don’t have
support for these instructions.

-msingle-float

-mdouble-float
Disable or enable double-precision floating-point operations. Note that by de-
fault double-precision floating-point operations are always allowed even with
CPU targets that don’t have support for these operations.

--construct-floats

--no-construct-floats
The --no-construct-floats option disables the construction of double width
floating point constants by loading the two halves of the value into the two
single width floating point registers that make up the double width register.
This feature is useful if the processor support the FR bit in its status register,
and this bit is known (by the programmer) to be set. This bit prevents the
aliasing of the double width register by the single width registers.

By default --construct-floats is selected, allowing construction of these
floating point constants.

--relax-branch

--no-relax-branch
The ‘--relax-branch’ option enables the relaxation of out-of-range branches.
Any branches whose target cannot be reached directly are converted to a small
instruction sequence including an inverse-condition branch to the physically
next instruction, and a jump to the original target is inserted between the two
instructions. In PIC code the jump will involve further instructions for address
calculation.

The BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T, BPOSGE32 and BPOSGE64 in-
structions are excluded from relaxation, because they have no complementing
counterparts. They could be relaxed with the use of a longer sequence involv-
ing another branch, however this has not been implemented and if their target
turns out of reach, they produce an error even if branch relaxation is enabled.

232

Using as

Also no MIPS16 branches are ever relaxed.

By default ‘--no-relax-branch’ is selected, causing any out-of-range branches
to produce an error.

-mignore-branch-isa
-mno-ignore-branch-isa

Ignore branch checks for invalid transitions between ISA modes.

The semantics of branches does not provide for an ISA mode switch, so in most
cases the ISA mode a branch has been encoded for has to be the same as the
ISA mode of the branch’s target label. If the ISA modes do not match, then
such a branch, if taken, will cause the ISA mode to remain unchanged and
instructions that follow will be executed in the wrong ISA mode causing the
program to misbehave or crash.

In the case of the BAL instruction it may be possible to relax it to an equivalent
JALX instruction so that the ISA mode is switched at the run time as required.
For other branches no relaxation is possible and therefore GAS has checks
implemented that verify in branch assembly that the two ISA modes match,
and report an error otherwise so that the problem with code can be diagnosed
at the assembly time rather than at the run time.

However some assembly code, including generated code produced by some ver-
sions of GCC, may incorrectly include branches to data labels, which appear
to require a mode switch but are either dead or immediately followed by valid
instructions encoded for the same ISA the branch has been encoded for. While
not strictly correct at the source level such code will execute as intended, so to
help with these cases ‘-mignore-branch-isa’ is supported which disables ISA
mode checks for branches.

By default ‘-mno-ignore-branch-isa’ is selected, causing any invalid branch
requiring a transition between ISA modes to produce an error.

-mnan=encoding

-—trap

—--no-break

--break
-—-no-trap

This option indicates whether the source code uses the IEEE 2008 NaN encoding
(-mnan=2008) or the original MIPS encoding (-mnan=legacy). It is equivalent
to adding a .nan directive to the beginning of the source file. See Section 9.27.10
[MIPS NaN Encodings|, page 238.

-mnan=legacy is the default if no -mnan option or .nan directive is used.

as automatically macro expands certain division and multiplication instruc-
tions to check for overflow and division by zero. This option causes as to
generate code to take a trap exception rather than a break exception when an
error is detected. The trap instructions are only supported at Instruction Set
Architecture level 2 and higher.

Generate code to take a break exception rather than a trap exception when an
error is detected. This is the default.

Chapter 9: Machine Dependent Features 233

-mpdr
-mno-pdr Control generation of .pdr sections. Off by default on IRIX, on elsewhere.

-mshared

-mno-shared
When generating code using the Unix calling conventions (selected by ‘~KPIC’ or
‘-mcall_shared’), gas will normally generate code which can go into a shared
library. The ‘-mno-shared’ option tells gas to generate code which uses the
calling convention, but can not go into a shared library. The resulting code is
slightly more efficient. This option only affects the handling of the ‘.cpload’
and ‘.cpsetup’ pseudo-ops.

9.27.2 High-level assembly macros

MIPS assemblers have traditionally provided a wider range of instructions than the MIPS
architecture itself. These extra instructions are usually referred to as “macro” instructions!.

Some MIPS macro instructions extend an underlying architectural instruction while
others are entirely new. An example of the former type is and, which allows the third
operand to be either a register or an arbitrary immediate value. Examples of the latter
type include bgt, which branches to the third operand when the first operand is greater
than the second operand, and ulh, which implements an unaligned 2-byte load.

One of the most common extensions provided by macros is to expand memory offsets
to the full address range (32 or 64 bits) and to allow symbolic offsets such as ‘my_data
+ 4’ to be used in place of integer constants. For example, the architectural instruction
lbu allows only a signed 16-bit offset, whereas the macro lbu allows code such as ‘1bu
$4,array+32769($5)’. The implementation of these symbolic offsets depends on several
factors, such as whether the assembler is generating SVR4-style PIC (selected by -KPIC, see
Section 9.27.1 [Assembler options|, page 225), the size of symbols (see Section 9.27.3 [Direc-
tives to override the size of symbols], page 234), and the small data limit (see Section 9.27.4
[Controlling the use of small data accesses|, page 234).

Sometimes it is undesirable to have one assembly instruction expand to several machine
instructions. The directive .set nomacro tells the assembler to warn when this happens.
.set macro restores the default behavior.

Some macro instructions need a temporary register to store intermediate results. This
register is usually $1, also known as $at, but it can be changed to any core register reg
using .set at=reg. Note that $at always refers to $1 regardless of which register is being
used as the temporary register.

Implicit uses of the temporary register in macros could interfere with explicit uses in
the assembly code. The assembler therefore warns whenever it sees an explicit use of the
temporary register. The directive .set noat silences this warning while .set at restores
the default behavior. It is safe to use .set noat while .set nomacro is in effect since
single-instruction macros never need a temporary register.

Note that while the GNU assembler provides these macros for compatibility, it does not
make any attempt to optimize them with the surrounding code.

1 The term “macro” is somewhat overloaded here, since these macros have no relation to those defined by
.macro, see Section 7.62 [.macro], page 69.

234 Using as

9.27.3 Directives to override the size of symbols

The n64 ABI allows symbols to have any 64-bit value. Although this provides a great deal
of flexibility, it means that some macros have much longer expansions than their 32-bit
counterparts. For example, the non-PIC expansion of ‘dla $4,sym’ is usually:
lui $4,%highest (sym)
lui $1,%hi (sym)
daddiu $4,$4,%higher (sym)
daddiu $1,$1,%lo(sym)
ds1132 $4,$4,0
daddu $4,%$4,$1
whereas the 32-bit expansion is simply:
lui $4,%hi (sym)
daddiu $4,%$4,%1lo(sym)
n64 code is sometimes constructed in such a way that all symbolic constants are known
to have 32-bit values, and in such cases, it’s preferable to use the 32-bit expansion instead

of the 64-bit expansion.

You can use the .set sym32 directive to tell the assembler that, from this point on, all
expressions of the form ‘symbol’ or ‘symbol + offset’ have 32-bit values. For example:

.set sym32

dla $4,sym

1w $4,sym+16

sW $4, sym+0x8000 ($4)

will cause the assembler to treat ‘sym’, sym+16 and sym+0x8000 as 32-bit values. The
handling of non-symbolic addresses is not affected.

The directive .set nosym32 ends a .set sym32 block and reverts to the normal behavior.
It is also possible to change the symbol size using the command-line options -msym32 and
-mno-sym32.

These options and directives are always accepted, but at present, they have no effect for
anything other than n64.

9.27.4 Controlling the use of small data accesses

It often takes several instructions to load the address of a symbol. For example, when ‘addr’
is a 32-bit symbol, the non-PIC expansion of ‘dla $4,addr’ is usually:
lui $4,%hi (addr)
daddiu $4,%$4,%lo(addr)
The sequence is much longer when ‘addr’ is a 64-bit symbol. See Section 9.27.3 [Direc-
tives to override the size of symbols], page 234.

In order to cut down on this overhead, most embedded MIPS systems set aside a 64-
kilobyte “small data” area and guarantee that all data of size n and smaller will be placed in
that area. The limit n is passed to both the assembler and the linker using the command-
line option -G n, see Section 9.27.1 [Assembler options|, page 225. Note that the same
value of n must be used when linking and when assembling all input files to the link; any
inconsistency could cause a relocation overflow error.

The size of an object in the .bss section is set by the .comm or .lcomm directive that
defines it. The size of an external object may be set with the .extern directive. For
example, ‘.extern sym,4’ declares that the object at sym is 4 bytes in length, while leaving
sym otherwise undefined.

Chapter 9: Machine Dependent Features 235

When no -G option is given, the default limit is 8 bytes. The option -G 0 prevents any
data from being automatically classified as small.

It is also possible to mark specific objects as small by putting them in the special sections
.sdata and .sbss, which are “small” counterparts of .data and .bss respectively. The
toolchain will treat such data as small regardless of the -G setting.

On startup, systems that support a small data area are expected to initialize register
$28, also known as $gp, in such a way that small data can be accessed using a 16-bit offset
from that register. For example, when ‘addr’ is small data, the ‘dla $4,addr’ instruction
above is equivalent to:

daddiu $4,$28,%gp_rel(addr)

Small data is not supported for SVR4-style PIC.
9.27.5 Directives to override the ISA level

GNU as supports an additional directive to change the MIPS Instruction Set Architecture
level on the fly: .set mipsn. n should be a number from 0 to 5, or 32, 32r2, 32r3, 32r5,
32r6, 64, 64r2, 64r3, 64r5 or 64r6. The values other than 0 make the assembler accept
instructions for the corresponding ISA level, from that point on in the assembly. .set
mipsn affects not only which instructions are permitted, but also how certain macros are
expanded. .set mipsO restores the ISA level to its original level: either the level you
selected with command-line options, or the default for your configuration. You can use this
feature to permit specific MIPS III instructions while assembling in 32 bit mode. Use this
directive with care!

The .set arch=cpu directive provides even finer control. It changes the effective CPU
target and allows the assembler to use instructions specific to a particular CPU. All CPUs
supported by the ‘-march’ command-line option are also selectable by this directive. The
original value is restored by .set arch=default.

The directive .set mips16 puts the assembler into MIPS 16 mode, in which it will
assemble instructions for the MIPS 16 processor. Use .set nomips16 to return to normal
32 bit mode.

Traditional MIPS assemblers do not support this directive.

The directive .set micromips puts the assembler into microMIPS mode, in which it
will assemble instructions for the microMIPS processor. Use .set nomicromips to return
to normal 32 bit mode.

Traditional MIPS assemblers do not support this directive.

9.27.6 Directives to control code generation

The .module directive allows command-line options to be set directly from assembly. The
format of the directive matches the .set directive but only those options which are relevant
to a whole module are supported. The effect of a .module directive is the same as the
corresponding command-line option. Where .set directives support returning to a default
then the .module directives do not as they define the defaults.

These module-level directives must appear first in assembly.
Traditional MIPS assemblers do not support this directive.

The directive .set insn32 makes the assembler only use 32-bit instruction encodings
when generating code for the microMIPS processor. This directive inhibits the use of any

236 Using as

16-bit instructions from that point on in the assembly. The .set noinsn32 directive allows
16-bit instructions to be accepted.

Traditional MIPS assemblers do not support this directive.

9.27.7 Directives for extending MIPS 16 bit instructions

By default, MIPS 16 instructions are automatically extended to 32 bits when necessary. The
directive .set noautoextend will turn this off. When .set noautoextend is in effect, any
32 bit instruction must be explicitly extended with the .e modifier (e.g., 1i.e $4,1000).
The directive .set autoextend may be used to once again automatically extend instructions
when necessary.

This directive is only meaningful when in MIPS 16 mode. Traditional MIPS assemblers
do not support this directive.

9.27.8 Directive to mark data as an instruction

The .insn directive tells as that the following data is actually instructions. This makes a
difference in MIPS 16 and microMIPS modes: when loading the address of a label which
precedes instructions, as automatically adds 1 to the value, so that jumping to the loaded
address will do the right thing.

The .global and .globl directives supported by as will by default mark the symbol
as pointing to a region of data not code. This means that, for example, any instructions
following such a symbol will not be disassembled by objdump as it will regard them as data.
To change this behavior an optional section name can be placed after the symbol name in
the .global directive. If this section exists and is known to be a code section, then the
symbol will be marked as pointing at code not data. e the syntax for the directive is:

.global symboll[section] [, symboll section]] ...,
Here is a short example:
.global foo .text, bar, baz .data

foo:

nop
bar:

.word 0x0
baz:

.word Ox1

9.27.9 Directives to control the FP ABI

9.27.9.1 History of FP ABIs

The MIPS ABIs support a variety of different floating-point extensions where calling-
convention and register sizes vary for floating-point data. The extensions exist to support
a wide variety of optional architecture features. The resulting ABI variants are generally
incompatible with each other and must be tracked carefully.

Traditionally the use of an explicit .gnu_attribute 4, n directive is used to indicate
which ABI is in use by a specific module. It was then left to the user to ensure that
command-line options and the selected ABI were compatible with some potential for incon-
sistencies.

Chapter 9: Machine Dependent Features 237

9.27.9.2 Supported FP ABIs
The supported floating-point ABI variants are:

0 - No floating-point
This variant is used to indicate that floating-point is not used within the module
at all and therefore has no impact on the ABI. This is the default.

1 - Double-precision
This variant indicates that double-precision support is used. For 64-bit ABIs
this means that 64-bit wide floating-point registers are required. For 32-bit ABIs
this means that 32-bit wide floating-point registers are required and double-
precision operations use pairs of registers.

2 - Single-precision
This variant indicates that single-precision support is used. Double precision
operations will be supported via soft-float routines.

3 - Soft-float
This variant indicates that although floating-point support is used all operations
are emulated in software. This means the ABI is modified to pass all floating-
point data in general-purpose registers.

4 - Deprecated
This variant existed as an initial attempt at supporting 64-bit wide floating-
point registers for 032 ABI on a MIPS32r2 CPU. This has been superseded by
5,6 and 7.

5 - Double-precision 32-bit CPU, 32-bit or 64-bit FPU
This variant is used by 32-bit ABIs to indicate that the floating-point code in
the module has been designed to operate correctly with either 32-bit wide or
64-bit wide floating-point registers. Double-precision support is used. Only

032 currently supports this variant and requires a minimum architecture of
MIPS II.

6 - Double-precision 32-bit FPU, 64-bit FPU
This variant is used by 32-bit ABIs to indicate that the floating-point code in the
module requires 64-bit wide floating-point registers. Double-precision support
is used. Only O32 currently supports this variant and requires a minimum
architecture of MIPS32r2.

7 - Double-precision compat 32-bit FPU, 64-bit FPU
This variant is used by 32-bit ABIs to indicate that the floating-point code
in the module requires 64-bit wide floating-point registers. Double-precision
support is used. This differs from the previous ABI as it restricts use of odd-
numbered single-precision registers. Only O32 currently supports this variant
and requires a minimum architecture of MIPS32r2.

9.27.9.3 Automatic selection of FP ABI

In order to simplify and add safety to the process of selecting the correct floating-point ABI,
the assembler will automatically infer the correct .gnu_attribute 4, n directive based on
command-line options and .module overrides. Where an explicit .gnu_attribute 4, n

238 Using as

directive has been seen then a warning will be raised if it does not match an inferred
setting.

The floating-point ABI is inferred as follows. If ‘-msoft-float’ has been used the
module will be marked as soft-float. If ‘-msingle-float’ has been used then the module
will be marked as single-precision. The remaining ABIs are then selected based on the
FP register width. Double-precision is selected if the width of GP and FP registers match
and the special double-precision variants for 32-bit ABIs are then selected depending on
‘-mfpxx’, ‘-mfp64’ and ‘-mno-odd-spreg’.

9.27.9.4 Linking different FP ABI variants

Modules using the default FP ABI (no floating-point) can be linked with any other (singular)
FP ABI variant.

Special compatibility support exists for O32 with the four double-precision FP ABI
variants. The ‘-mfpxx’ FP ABI is specifically designed to be compatible with the standard
double-precision ABI and the ‘-mfp64’ FP ABIs. This makes it desirable for 032 modules
to be built as ‘-mfpxx’ to ensure the maximum compatibility with other modules produced
for more specific needs. The only FP ABIs which cannot be linked together are the standard
double-precision ABI and the full ‘-mfp64’ ABI with ‘-modd-spreg’.

9.27.10 Directives to record which NalN encoding is being used

The IEEE 754 floating-point standard defines two types of not-a-number (NaN) data: “sig-
nalling” NaNs and “quiet” NaNs. The original version of the standard did not specify how
these two types should be distinguished. Most implementations followed the 1387 model,
in which the first bit of the significand is set for quiet NaNs and clear for signalling NaNs.
However, the original MIPS implementation assigned the opposite meaning to the bit, so
that it was set for signalling NaNs and clear for quiet NaNs.

The 2008 revision of the standard formally suggested the 1387 choice and as from Sep
2012 the current release of the MIPS architecture therefore optionally supports that form.
Code that uses one NaN encoding would usually be incompatible with code that uses the
other NaN encoding, so MIPS ELF objects have a flag (EF_MIPS_NAN2008) to record which
encoding is being used.

Assembly files can use the .nan directive to select between the two encodings. ‘.nan

2008’ says that the assembly file uses the IEEE 754-2008 encoding while ‘.nan legacy’ says
that the file uses the original MIPS encoding. If several .nan directives are given, the final
setting is the one that is used.

The command-line options -mnan=legacy and -mnan=2008 can be used instead of ‘.nan
legacy’ and ‘.nan 2008’ respectively. However, any .nan directive overrides the command-
line setting.

‘.nan legacy’ is the default if no .nan directive or -mnan option is given.

Note that GNU as does not produce NaNs itself and therefore these directives do not
affect code generation. They simply control the setting of the EF_MIPS_NAN2008 flag.

Traditional MIPS assemblers do not support these directives.

Chapter 9: Machine Dependent Features 239

9.27.11 Directives to save and restore options

The directives .set push and .set pop may be used to save and restore the current settings
for all the options which are controlled by .set. The .set push directive saves the current
settings on a stack. The .set pop directive pops the stack and restores the settings.

These directives can be useful inside an macro which must change an option such as the
ISA level or instruction reordering but does not want to change the state of the code which
invoked the macro.

Traditional MIPS assemblers do not support these directives.

9.27.12 Directives to control generation of MIPS ASE instructions

The directive .set mips3d makes the assembler accept instructions from the MIPS-3D
Application Specific Extension from that point on in the assembly. The .set nomips3d
directive prevents MIPS-3D instructions from being accepted.

The directive .set smartmips makes the assembler accept instructions from the Smart-
MIPS Application Specific Extension to the MIPS32 ISA from that point on in the assembly.
The .set nosmartmips directive prevents SmartMIPS instructions from being accepted.

The directive .set mdmx makes the assembler accept instructions from the MDMX Ap-
plication Specific Extension from that point on in the assembly. The .set nomdmx directive
prevents MDMX instructions from being accepted.

The directive .set dsp makes the assembler accept instructions from the DSP Release
1 Application Specific Extension from that point on in the assembly. The .set nodsp
directive prevents DSP Release 1 instructions from being accepted.

The directive .set dspr2 makes the assembler accept instructions from the DSP Release
2 Application Specific Extension from that point on in the assembly. This directive implies
.set dsp. The .set nodspr2 directive prevents DSP Release 2 instructions from being
accepted.

The directive .set dspr3 makes the assembler accept instructions from the DSP Release
3 Application Specific Extension from that point on in the assembly. This directive implies
.set dsp and .set dspr2. The .set nodspr3 directive prevents DSP Release 3 instructions
from being accepted.

The directive .set mt makes the assembler accept instructions from the MT Application
Specific Extension from that point on in the assembly. The .set nomt directive prevents
MT instructions from being accepted.

The directive .set mcu makes the assembler accept instructions from the MCU Appli-
cation Specific Extension from that point on in the assembly. The .set nomcu directive
prevents MCU instructions from being accepted.

The directive .set msa makes the assembler accept instructions from the MIPS SIMD
Architecture Extension from that point on in the assembly. The .set nomsa directive
prevents MSA instructions from being accepted.

The directive .set virt makes the assembler accept instructions from the Virtualiza-
tion Application Specific Extension from that point on in the assembly. The .set novirt
directive prevents Virtualization instructions from being accepted.

240 Using as

The directive .set xpa makes the assembler accept instructions from the XPA Extension
from that point on in the assembly. The .set noxpa directive prevents XPA instructions
from being accepted.

The directive .set mipsi6e2 makes the assembler accept instructions from the
MIPS16e2 Application Specific Extension from that point on in the assembly, whenever
in MIPS16 mode. The .set nomips16e2 directive prevents MIPS16e2 instructions from
being accepted, in MIPS16 mode. Neither directive affects the state of MIPS16 mode
being active itself which has separate controls.

The directive .set crc makes the assembler accept instructions from the CRC Extension
from that point on in the assembly. The .set nocrc directive prevents CRC instructions
from being accepted.

The directive .set ginv makes the assembler accept instructions from the GINV Ex-
tension from that point on in the assembly. The .set noginv directive prevents GINV
instructions from being accepted.

The directive .set loongson-mmi makes the assembler accept instructions from the
MMI Extension from that point on in the assembly. The .set noloongson-mmi directive
prevents MMI instructions from being accepted.

The directive .set loongson-cam makes the assembler accept instructions from the
Loongson CAM from that point on in the assembly. The .set noloongson-cam directive
prevents Loongson CAM instructions from being accepted.

The directive .set loongson-ext makes the assembler accept instructions from the
Loongson EXT from that point on in the assembly. The .set noloongson-ext directive
prevents Loongson EXT instructions from being accepted.

The directive .set loongson-ext2 makes the assembler accept instructions from
the Loongson EXT2 from that point on in the assembly. This directive implies
.set loognson-ext. The .set noloongson-ext2 directive prevents Loongson EXT2
instructions from being accepted.

Traditional MIPS assemblers do not support these directives.

9.27.13 Directives to override floating-point options

The directives .set softfloat and .set hardfloat provide finer control of disabling
and enabling float-point instructions. These directives always override the default (that
hard-float instructions are accepted) or the command-line options (‘-msoft-float’ and
‘-mhard-float’).

The directives .set singlefloat and .set doublefloat provide finer control of dis-
abling and enabling double-precision float-point operations. These directives always over-
ride the default (that double-precision operations are accepted) or the command-line options
(‘-msingle-float’ and ‘-mdouble-float’).

Traditional MIPS assemblers do not support these directives.

9.27.14 Syntactical considerations for the MIPS assembler
9.27.14.1 Special Characters

The presence of a ‘#’ on a line indicates the start of a comment that extends to the end of
the current line.

Chapter 9: Machine Dependent Features 241

If a ‘#’ appears as the first character of a line, the whole line is treated as a comment, but
in this case the line can also be a logical line number directive (see Section 3.3 [Comments],
page 31) or a preprocessor control command (see Section 3.1 [Preprocessing], page 31).

The ¢;’ character can be used to separate statements on the same line.

242 Using as

9.28 MMIX Dependent Features

9.28.1 Command-line Options

The MMIX version of as has some machine-dependent options.

When ‘--fixed-special-register-names’ is specified, only the register names speci-
fied in Section 9.28.3.3 [MMIX-Regs|, page 244 are recognized in the instructions PUT and
GET.

You can use the ‘--globalize-symbols’ to make all symbols global. This option is
useful when splitting up a mmixal program into several files.

The ‘--gnu-syntax’ turns off most syntax compatibility with mmixal. Its usability is
currently doubtful.

The ‘--relax’ option is not fully supported, but will eventually make the object file
prepared for linker relaxation.

If you want to avoid inadvertently calling a predefined symbol and would rather get an
error, for example when using as with a compiler or other machine-generated code, specify
‘-—no-predefined-syms’. This turns off built-in predefined definitions of all such symbols,
including rounding-mode symbols, segment symbols, ‘BIT’ symbols, and TRAP symbols used
in mmix “system calls”. It also turns off predefined special-register names, except when used
in PUT and GET instructions.

By default, some instructions are expanded to fit the size of the operand or an external
symbol (see Section 9.28.2 [MMIX-Expand], page 243). By passing ‘--no-expand’, no such
expansion will be done, instead causing errors at link time if the operand does not fit.

The mmixal documentation (see [mmixsite], page 243) specifies that global registers
allocated with the ‘GREG’ directive (see [MMIX-greg|, page 245) and initialized to the same
non-zero value, will refer to the same global register. This isn’t strictly enforceable in as
since the final addresses aren’t known until link-time, but it will do an effort unless the
‘--no-merge-gregs’ option is specified. (Register merging isn’t yet implemented in 1d.)

as will warn every time it expands an instruction to fit an operand unless the option
‘-x’ is specified. It is believed that this behaviour is more useful than just mimicking
mmixal’s behaviour, in which instructions are only expanded if the ‘-x’ option is specified,
and assembly fails otherwise, when an instruction needs to be expanded. It needs to be
kept in mind that mmixal is both an assembler and linker, while as will expand instructions
that at link stage can be contracted. (Though linker relaxation isn’t yet implemented in
1d.) The option ‘-x’ also implies ‘--linker-allocated-gregs’.

If instruction expansion is enabled, as can expand a ‘PUSHJ’ instruction into a series of
instructions. The shortest expansion is to not expand it, but just mark the call as redi-
rectable to a stub, which 1d creates at link-time, but only if the original ‘PUSHJ’ instruction
is found not to reach the target. The stub consists of the necessary instructions to form a
jump to the target. This happens if as can assert that the ‘PUSHJ’ instruction can reach
such a stub. The option ‘--no-pushj-stubs’ disables this shorter expansion, and the longer
series of instructions is then created at assembly-time. The option ‘--no-stubs’ is a syn-
onym, intended for compatibility with future releases, where generation of stubs for other
instructions may be implemented.

Usually a two-operand-expression (see [GREG-base|, page 246) without a matching
‘GREG’ directive is treated as an error by as. When the option ‘--linker-allocated-gregs’

Chapter 9: Machine Dependent Features 243

is in effect, they are instead passed through to the linker, which will allocate as many global
registers as is needed.

9.28.2 Instruction expansion

When as encounters an instruction with an operand that is either not known or does not fit
the operand size of the instruction, as (and 1d) will expand the instruction into a sequence
of instructions semantically equivalent to the operand fitting the instruction. Expansion
will take place for the following instructions:

‘GETA’ Expands to a sequence of four instructions: SETL, INCML, INCMH and INCH. The
operand must be a multiple of four.

Conditional branches
A branch instruction is turned into a branch with the complemented condition
and prediction bit over five instructions; four instructions setting $255 to the
operand value, which like with GETA must be a multiple of four, and a final GO
$255,$255,0.

‘PUSHJT’ Similar to expansion for conditional branches; four instructions set $255 to the
operand value, followed by a PUSHGO $255,$255,0.
‘JMP’ Similar to conditional branches and PUSHJ. The final instruction is GO

$255,$255,0.

The linker 1d is expected to shrink these expansions for code assembled with ‘--relax’
(though not currently implemented).

9.28.3 Syntax

The assembly syntax is supposed to be upward compatible with that described in Sec-
tions 1.3 and 1.4 of ‘The Art of Computer Programming, Volume 1’. Draft versions of
those chapters as well as other MMIX information is located at http://www-cs-faculty.
stanford.edu/ "knuth/mmix-news.html. Most code examples from the mmixal package
located there should work unmodified when assembled and linked as single files, with a few
noteworthy exceptions (see Section 9.28.4 [MMIX-mmixal], page 247).

Before an instruction is emitted, the current location is aligned to the next four-byte
boundary. If a label is defined at the beginning of the line, its value will be the aligned
value.

In addition to the traditional hex-prefix ‘0x’, a hexadecimal number can also be specified
by the prefix character ‘#’.

After all operands to an MMIX instruction or directive have been specified, the rest of
the line is ignored, treated as a comment.

9.28.3.1 Special Characters

The characters ‘*” and ‘#” are line comment characters; each start a comment at the begin-
ning of a line, but only at the beginning of a line. A ‘# prefixes a hexadecimal number if
found elsewhere on a line. If a ‘#" appears at the start of a line the whole line is treated
as a comment, but the line can also act as a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 31).

http://www-cs-faculty.stanford.edu/~knuth/mmix-news.html
http://www-cs-faculty.stanford.edu/~knuth/mmix-news.html

244 Using as

Two other characters, ‘%’ and ‘!’, each start a comment anywhere on the line. Thus you
can’t use the ‘modulus’ and ‘not’ operators in expressions normally associated with these
two characters.

A ¢;’ is a line separator, treated as a new-line, so separate instructions can be specified
on a single line.

9.28.3.2 Symbols

The character ‘:’ is permitted in identifiers. There are two exceptions to it being treated as
any other symbol character: if a symbol begins with ‘:’) it means that the symbol is in the
global namespace and that the current prefix should not be prepended to that symbol (see
[MMIX-prefix|, page 247). The *:’ is then not considered part of the symbol. For a symbol
in the label position (first on a line), a ‘:’ at the end of a symbol is silently stripped off. A

label is permitted, but not required, to be followed by a ‘:’, as with many other assembly
formats.
The character ‘@’ in an expression, is a synonym for ‘.’, the current location.

In addition to the common forward and backward local symbol formats (see Section 5.3
[Symbol Names], page 43), they can be specified with upper-case ‘B’ and ‘F’, as in ‘8B’ and
‘9F’. A local label defined for the current position is written with a ‘H’ appended to the
number:

3H LDB $0,$1,2

This and traditional local-label formats cannot be mixed: a label must be defined and
referred to using the same format.

There’s a minor caveat: just as for the ordinary local symbols, the local symbols are
translated into ordinary symbols using control characters are to hide the ordinal number
of the symbol. Unfortunately, these symbols are not translated back in error messages.
Thus you may see confusing error messages when local symbols are used. Control charac-
ters ‘\003’ (control-C) and ‘\004’ (control-D) are used for the MMIX-specific local-symbol
syntax.

The symbol ‘Main’ is handled specially; it is always global.
By defining the symbols ‘__.MMIX.start..text’ and ‘__.MMIX.start..data’, the ad-

dress of respectively the ‘.text’ and ‘.data’ segments of the final program can be defined,
though when linking more than one object file, the code or data in the object file containing
the symbol is not guaranteed to be start at that position; just the final executable. See

[MMIX-loc], page 245.

9.28.3.3 Register names

Local and global registers are specified as ‘$0’ to ‘$255’. The recognized special register
names are ‘rJ’, ‘rA’, ‘rB’, ‘rC’, ‘rD’, ‘rF’, ‘rF’, ‘r@’, ‘rH’, ‘rI’, ‘rK’, ‘rL’, ‘rM’, ‘rN’, ‘r0’, ‘rP’,
‘rQ’, ‘rR’, ‘rS’, ‘rT, ‘rU, ‘rV’, ‘oW, ‘rX’, ‘rY’, ‘rZ’, ‘rBB’, ‘rTT’, ‘rWW’, ‘rXX’, ‘rYY’ and ‘rZZ’.
A leading ‘:’ is optional for special register names.

Local and global symbols can be equated to register names and used in place of ordinary
registers.

Similarly for special registers, local and global symbols can be used. Also, symbols
equated from numbers and constant expressions are allowed in place of a special reg-

Chapter 9: Machine Dependent Features 245

ister, except when either of the options ——-no-predefined-syms and --fixed-special-
register-names are specified. Then only the special register names above are allowed for
the instructions having a special register operand; GET and PUT.

9.28.3.4 Assembler Directives

LoC

LOCAL

IS

GREG

The LOC directive sets the current location to the value of the operand field,
which may include changing sections. If the operand is a constant, the section
is set to either .data if the value is 0x2000000000000000 or larger, else it
is set to .text. Within a section, the current location may only be changed
to monotonically higher addresses. A LOC expression must be a previously
defined symbol or a “pure” constant.

An example, which sets the label prev to the current location, and updates the
current location to eight bytes forward:
prev LOC ©+8

When a LOC has a constant as its operand, a symbol __.MMIX.start..text
or __.MMIX.start..data is defined depending on the address as mentioned
above. Each such symbol is interpreted as special by the linker, locating the
section at that address. Note that if multiple files are linked, the first object
file with that section will be mapped to that address (not necessarily the file
with the LOC definition).

Example:

LOCAL external_symbol

LOCAL 42

.local asymbol
This directive-operation generates a link-time assertion that the operand does
not correspond to a global register. The operand is an expression that at
link-time resolves to a register symbol or a number. A number is treated as
the register having that number. There is one restriction on the use of this
directive: the pseudo-directive must be placed in a section with contents, code
or data.

The IS directive:

asymbol IS an_expression

sets the symbol ‘asymbol’ to ‘an_expression’. A symbol may not be set more
than once using this directive. Local labels may be set using this directive, for
example:

5H IS @+4

This directive reserves a global register, gives it an initial value and optionally
gives it a symbolic name. Some examples:

areg GREG
breg GREG data_value

246

BYTE

WYDE
TETRA
OCTA

Using as

GREG data_buffer

.greg creg, another_data_value
The symbolic register name can be used in place of a (non-special) register. If a
value isn’t provided, it defaults to zero. Unless the option ‘--no-merge-gregs’
is specified, non-zero registers allocated with this directive may be eliminated
by as; another register with the same value used in its place. Any of the in-
structions ‘CSWAP’, ‘G0’, ‘LDA’, ‘LDBU”, ‘LDB’, ‘LDHT’, ‘LDOU’, ‘LDO’, ‘LDSF’, ‘LDTU’,
‘LDT’, ‘LDUNC’, ‘LDVTS’, ‘LDWU’, ‘LDW’, ‘PREGO’, ‘PRELD’, ‘PREST’, ‘PUSHGO’, ‘STBU’,
‘STB’, ‘STCO’, ‘STHT’, ‘STOU’, ‘STSF’, ‘STTU’, ‘STT’, ‘STUNC’, ‘SYNCD’, ‘SYNCID’,
can have a value nearby an initial value in place of its second and third operands.
Here, “nearby” is defined as within the range 0. . .255 from the initial value of
such an allocated register.

bufferl1 BYTE 0,0,0,0,0
buffer2 BYTE 0,0,0,0,0

GREG bufferl

LDOU $42,buffer2
In the example above, the ‘Y’ field of the LDOUI instruction (LDOU with a
constant Z) will be replaced with the global register allocated for ‘buffer1’,
and the ‘Z’ field will have the value 5, the offset from ‘bufferl’ to ‘buffer2’.
The result is equivalent to this code:

bufferl BYTE 0,0,0,0,0
buffer2 BYTE 0,0,0,0,0

tmpreg GREG bufferl

LDOU $42,tmpreg, (buffer2-bufferl)
Global registers allocated with this directive are allocated in order higher-to-
lower within a file. Other than that, the exact order of register allocation and
elimination is undefined. For example, the order is undefined when more than
one file with such directives are linked together. With the options ‘-x’ and
‘--linker-allocated-gregs’, ‘GREG’ directives for two-operand cases like the
one mentioned above can be omitted. Sufficient global registers will then be
allocated by the linker.

The ‘BYTE’ directive takes a series of operands separated by a comma. If an
operand is a string (see Section 3.6.1.1 [Strings|, page 33), each character of
that string is emitted as a byte. Other operands must be constant expressions
without forward references, in the range 0...255. If you need operands hav-
ing expressions with forward references, use ‘.byte’ (see Section 7.10 [Byte],
page 54). An operand can be omitted, defaulting to a zero value.

The directives ‘WYDE’, ‘TETRA’ and ‘OCTA’ emit constants of two, four and eight
bytes size respectively. Before anything else happens for the directive, the
current location is aligned to the respective constant-size boundary. If a label
is defined at the beginning of the line, its value will be that after the alignment.

Chapter 9: Machine Dependent Features 247

A single operand can be omitted, defaulting to a zero value emitted for the
directive. Operands can be expressed as strings (see Section 3.6.1.1 [Strings],
page 33), in which case each character in the string is emitted as a separate
constant of the size indicated by the directive.

PREFIX
The ‘PREFIX’ directive sets a symbol name prefix to be prepended to all sym-
bols (except local symbols, see Section 9.28.3.2 [MMIX-Symbols|, page 244),
that are not prefixed with ‘:’, until the next ‘PREFIX’ directive. Such prefixes
accumulate. For example,
PREFIX a
PREFIX b
cISO
defines a symbol ‘abc’ with the value 0.
BSPEC
ESPEC

A pair of ‘BSPEC’ and ‘ESPEC’ directives delimit a section of special contents
(without specified semantics). Example:

BSPEC 42

TETRA 1,2,3

ESPEC
The single operand to ‘BSPEC’ must be number in the range 0...255. The
‘BSPEC’ number 80 is used by the GNU binutils implementation.

9.28.4 Differences to mmixal

The binutils as and 1d combination has a few differences in function compared to mmixal
(see [mmixsite], page 243).

The replacement of a symbol with a GREG-allocated register (see [GREG-base],
page 246) is not handled the exactly same way in as as in mmixal. This is apparent in the
mmixal example file inout.mms, where different registers with different offsets, eventually
yielding the same address, are used in the first instruction. This type of difference should
however not affect the function of any program unless it has specific assumptions about
the allocated register number.

Line numbers (in the ‘mmo’ object format) are currently not supported.

Expression operator precedence is not that of mmixal: operator precedence is that of
the C programming language. It’s recommended to use parentheses to explicitly specify
wanted operator precedence whenever more than one type of operators are used.

The serialize unary operator &, the fractional division operator ‘//’, the logical not
operator ! and the modulus operator ‘%’ are not available.

Symbols are not global by default, unless the option ‘--globalize-symbols’ is passed.
Use the ‘.global’ directive to globalize symbols (see Section 7.40 [Global|, page 63).

Operand syntax is a bit stricter with as than mmixal. For example, you can’t say addu
1,2,3, instead you must write addu $1,$2, 3.

You can’t LOC to a lower address than those already visited (i.e., “backwards”).

A LOC directive must come before any emitted code.

248 Using as

Predefined symbols are visible as file-local symbols after use. (In the ELF file, that
is—the linked mmo file has no notion of a file-local symbol.)

Some mapping of constant expressions to sections in LOC expressions is attempted, but
that functionality is easily confused and should be avoided unless compatibility with mmixal
is required. A LOC expression to ‘0x2000000000000000’ or higher, maps to the ‘.data’
section and lower addresses map to the ‘.text’ section (see [MMIX-loc|, page 245).

The code and data areas are each contiguous. Sparse programs with far-away LOC
directives will take up the same amount of space as a contiguous program with zeros filled
in the gaps between the LOC directives. If you need sparse programs, you might try and
get the wanted effect with a linker script and splitting up the code parts into sections (see
Section 7.84 [Section], page 76). Assembly code for this, to be compatible with mmixal,
would look something like:

Lif 0

LOC away_expression
.else

.section away,"ax"
i

as will not execute the LOC directive and mmixal ignores the lines with .. This construct
can be used generally to help compatibility.

Symbols can’t be defined twice—not even to the same value.

Instruction mmnemonics are recognized case-insensitive, though the ‘IS’ and ‘GREG’
pseudo-operations must be specified in upper-case characters.

There’s no unicode support.

The following is a list of programs in ‘mmix.tar.gz’, available at http: / /
www-cs-faculty.stanford.edu/ knuth/mmix-news.html, last checked with the version
dated 2001-08-25 (mdbsum ¢393470cfc86fac040487d22d2bf0172) that assemble with
mmixal but do not assemble with as:

silly.mms
LOC to a previous address.

sim.mms Redefines symbol ‘Done’.

test.mms Uses the serial operator ‘&’.

http://www-cs-faculty.stanford.edu/~knuth/mmix-news.html
http://www-cs-faculty.stanford.edu/~knuth/mmix-news.html

Chapter 9: Machine Dependent Features 249

9.29 MSP 430 Dependent Features

9.29.1 Options

—mmcu

-mcpu

selects the mcu architecture. If the architecture is 430Xv2 then this also enables
NOP generation unless the -mN is also specified.

selects the cpu architecture. If the architecture is 430Xv2 then this also enables
NOP generation unless the -mN is also specified.

-msilicon-errata=namel[,name...]

Implements a fixup for named silicon errata. Multiple silicon errata can be
specified by multiple uses of the -msilicon-errata option and/or by including
the errata names, separated by commas, on an individual -msilicon-errata
option. Errata names currently recognised by the assembler are:

cpud PUSH #4 and PUSH #8 need longer encodings on the MSP430. This
option is enabled by default, and cannot be disabled.

cpu8 Do not set the SP to an odd value.

cpull Do not update the SR and the PC in the same instruction.
cpul2 Do not use the PC in a CMP or BIT instruction.

cpul3d Do not use an arithmetic instruction to modify the SR.
cpul9 Insert NOP after CPUOFF.

-msilicon-errata-warn=namel[,name. . .]

-mN

~my

Like the -msilicon-errata option except that instead of fixing the specified
errata, a warning message is issued instead. This option can be used alongside
-msilicon-errata to generate messages whenever a problem is fixed, or on its
own in order to inspect code for potential problems.

enables polymorph instructions handler.
enables relaxation at assembly time. DANGEROUS!
indicates that the input uses the large code model.

enables the generation of a NOP instruction following any instruction that
might change the interrupts enabled/disabled state. The pipelined nature of
the MSP430 core means that any instruction that changes the interrupt state
(EINT, DINT, BIC #8, SR, BIS #8, SR or MOV.W <>, SR) must be followed by a
NOP instruction in order to ensure the correct processing of interrupts. By
default it is up to the programmer to supply these NOP instructions, but this
command-line option enables the automatic insertion by the assembler, if they
are missing.

disables the generation of a NOP instruction following any instruction that
might change the interrupts enabled/disabled state. This is the default be-
haviour.

tells the assembler to generate a warning message if a NOP does not imme-
diately follow an instruction that enables or disables interrupts. This is the
default.

250 Using as

Note that this option can be stacked with the -mn option so that the assembler
will both warn about missing NOP instructions and then insert them automat-

ically.
-mY disables warnings about missing NOP instructions.
-md mark the object file as one that requires data to copied from ROM to RAM at

execution startup. Disabled by default.

-mdata-region=region
Select the region data will be placed in. Region placement is performed by the
compiler and linker. The only effect this option will have on the assembler is
that if upper or either is selected, then the symbols to initialise high data and
bss will be defined. Valid region values are:

none

lower

upper

either

9.29.2 Syntax

9.29.2.1 Macros

The macro syntax used on the MSP 430 is like that described in the MSP 430 Family
Assembler Specification. Normal as macros should still work.

Additional built-in macros are:

llo(exp) Extracts least significant word from 32-bit expression ’exp’.

)

1hi(exp) Extracts most significant word from 32-bit expression ’exp’.
hlo(exp) Extracts 3rd word from 64-bit expression ’exp’.
hhi(exp) Extracts 4rd word from 64-bit expression ’exp’.

They normally being used as an immediate source operand.

mov #11lo(1), r10 ; == mov #1, rl0
mov #1hi(1), r10 ; == mov #0, ri0

9.29.2.2 Special Characters

A semicolon (‘;’) appearing anywhere on a line starts a comment that extends to the end
of that line.

If a ‘#’ appears as the first character of a line then the whole line is treated as a comment,
but it can also be a logical line number directive (see Section 3.3 [Comments]|, page 31) or
a preprocessor control command (see Section 3.1 [Preprocessing|, page 31).

Multiple statements can appear on the same line provided that they are separated by
the ‘{’ character.

The character ‘$’ in jump instructions indicates current location and implemented only
for TT syntax compatibility.

Chapter 9: Machine Dependent Features 251

9.29.2.3 Register Names

General-purpose registers are represented by predefined symbols of the form ‘N’ (for global
registers), where N represents a number between 0 and 15. The leading letters may be in
either upper or lower case; for example, ‘r13’ and ‘R7’ are both valid register names.

Register names ‘PC’, ‘SP” and ‘SR’ cannot be used as register names and will be treated
as variables. Use ‘r0’, ‘r1’, and ‘r2’ instead.

9.29.2.4 Assembler Extensions

@rN As destination operand being treated as ‘0(rn)’
0(xN) As source operand being treated as ‘@rn’

jCOND +N Skips next N bytes followed by jump instruction and equivalent to ‘jCOND
$+N+2’

Also, there are some instructions, which cannot be found in other assemblers. These
are branch instructions, which has different opcodes upon jump distance. They all got PC
relative addressing mode.

beq label A polymorph instruction which is ‘jeq label’ in case if jump distance within
allowed range for cpu’s jump instruction. If not, this unrolls into a sequence of

jne $+6
br 1label

bne label A polymorph instruction which is ‘jne label’ or ‘jeq +4; br label’
blt label A polymorph instruction which is ‘j1 label’ or ‘jge +4; br label’

bltn label
A polymorph instruction which is ‘jn label’ or ‘jn +2; jmp +4; br label’

bltu label
A polymorph instruction which is ‘jlo label’ or ‘jhs +2; br label’

bge label A polymorph instruction which is ‘jge label’ or ‘j1 +4; br label’

bgeu label
A polymorph instruction which is ‘jhs label’ or ‘jlo +4; br label’

bgt label A polymorph instruction which is ‘jeq +2; jge label’ or ‘jeq +6; jl +4; br

label’

bgtu label
A polymorph instruction which is ‘jeq +2; jhs label’ or ‘jeq +6; jlo +4; br
label’

bleu label
A polymorph instruction which is ‘jeq label; jlo label’ or ‘jeq +2; jhs +4;
br label’

ble label A polymorph instruction which is ‘jeq label; j1 label’ or ‘jeq +2; jge +4;
br label’

jump label
A polymorph instruction which is ‘jmp label’ or ‘br label’

252 Using as

9.29.3 Floating Point
The MSP 430 family uses IEEE 32-bit floating-point numbers.

9.29.4 MSP 430 Machine Directives

.file This directive is ignored; it is accepted for compatibility with other MSP 430
assemblers.

Warning: in other versions of the GNU assembler, .file is used for
the directive called .app-file in the MSP 430 support.

.line This directive is ignored; it is accepted for compatibility with other MSP 430
assemblers.

.arch Sets the target microcontroller in the same way as the -mmcu command-line
option.

.cpu Sets the target architecture in the same way as the -mcpu command-line option.

.profiler

This directive instructs assembler to add new profile entry to the object file.

.refsym This directive instructs assembler to add an undefined reference to the symbol
following the directive. The maximum symbol name length is 1023 characters.
No relocation is created for this symbol; it will exist purely for pulling in object
files from archives. Note that this reloc is not sufficient to prevent garbage
collection; use a KEEP() directive in the linker file to preserve such objects.

.mspabi_attribute
This directive tells the assembler what the MSPABI build attributes for this
file are. This is used for validating the command line options passed to the
assembler against the options the original source file was compiled with. The
expected format is: ‘.mspabi_attribute tag_name, tag_value’ For example,
to set the tag OFBA_MSPABI_Tag_ISA to MSP430X: ‘.mspabi_attribute 4, 2’

See the MSP430 EABI, document slaa534 for the details on tag names and
values.

9.29.5 Opcodes

as implements all the standard MSP 430 opcodes. No additional pseudo-instructions are
needed on this family.

For information on the 430 machine instruction set, see MSP430 User’s Manual, docu-
ment slau049d, Texas Instrument, Inc.

9.29.6 Profiling Capability

It is a performance hit to use gcc’s profiling approach for this tiny target. Even more —
jtag hardware facility does not perform any profiling functions. However we’ve got gdb’s
built-in simulator where we can do anything.

We define new section ‘.profiler’ which holds all profiling information. We define new
pseudo operation ‘.profiler’ which will instruct assembler to add new profile entry to the
object file. Profile should take place at the present address.

Chapter 9: Machine Dependent Features

Pseudo operation format:
‘.profiler flags,function_to_profile [, cycle_corrector, extral’

where:

‘flags’ is a combination of the following characters:

s function entry

X function exit

i function is in init section
f function is in fini section
1 library call

c libc standard call

d stack value demand

I interrupt service routine
P prologue start

P prologue end

E epilogue start

e epilogue end

j long jump / sjlj unwind

a an arbitrary code fragment

t extra parameter saved (a constant value like frame size)

function_to_profile
a function address

cycle_corrector
a value which should be added to the cycle counter, zero if omitted.

extra any extra parameter, zero if omitted.

For example:

.global fxx

.type fxx,@function

fxx:

.LFrameOffset_£fxx=0x08

.profiler "scdP", fxx ; function entry.
; we also demand stack value to be saved
push riil
push r10
push r9
push r8

.profiler "cdpt",fxx,0, .LFrameOffset_fxx ; check stack value at this point
; (this is a prologue end)
; note, that spare var filled with
; the farme size
mov r15,r8

253

254

.profiler cdE,fxx
pop r8
pop 19
pop ri10
pop riil

.profiler xcde,fxx,3
ret

; check stack

; exit adds 3 to the cycle counter
; cause ’ret’ insn takes 3 cycles

Using as

Chapter 9: Machine Dependent Features 255

9.30 NDS32 Dependent Features

The NDS32 processors family includes high-performance and low-power 32-bit processors
for high-end to low-end. GNU as for NDS32 architectures supports NDS32 ISA version 3.
For detail about NDS32 instruction set, please see the AndeStar ISA User Manual which is
available at http://www.andestech.com/en/index/index.htm

9.30.1 NDS32 Options
The NDS32 configurations of GNU as support these special options:

-01 Optimize for performance.

-0s Optimize for space.

-EL Produce little endian data output.
-EB Produce little endian data output.
-mpic Generate PIC.

-mno—-fp-as—gp-relax
Suppress fp-as-gp relaxation for this file.

-mb2bb-relax
Back-to-back branch optimization.

-mno-all-relax
Suppress all relaxation for this file.

-march=<arch name>
Assemble for architecture <arch name> which could be v3, v3j, v3m, v3f, v3s,
v2, v2j, v2f, v2s.

-mbaseline=<baseline>
Assemble for baseline <baseline> which could be v2, v3, v3m.

-mfpu-freg=FREG
Specify a FPU configuration.
0 8 SP / 4 DP registers
116 SP / 8 DP registers
2 32 SP / 16 DP registers
3 32 SP / 32 DP registers
-mabi=abi
Specify a abi version <abi> could be v1, v2, v2fp, v2fpp.

-m[no-]mac

Enable/Disable Multiply instructions support.
-m[no-J]div

Enable/Disable Divide instructions support.
-m[no-]16bit-ext

Enable/Disable 16-bit extension

-m[no-Jdx-regs
Enable/Disable d0/d1 registers

256 Using as

-m[no-Jperf-ext
Enable/Disable Performance extension

-m[no-Jperf2-ext
Enable/Disable Performance extension 2

-m[no-]string-ext
Enable/Disable String extension

-m[no-Jreduced-regs
Enable/Disable Reduced Register configuration (GPR16) option

-m[no-Jaudio-isa-ext

Enable/Disable AUDIO ISA extension

-m[no-]fpu-sp-ext
Enable/Disable FPU SP extension

-m[no-]fpu-dp-ext
Enable/Disable FPU DP extension

-m[no-]fpu-fma
Enable/Disable FPU fused-multiply-add instructions

-mall-ext
Turn on all extensions and instructions support

9.30.2 Syntax
9.30.2.1 Special Characters

Use ‘#’ at column 1 and ‘!’ anywhere in the line except inside quotes.

Multiple instructions in a line are allowed though not recommended and should be
separated by ;.

Assembler is not case-sensitive in general except user defined label. For example, ‘jral
F1’ is different from ‘jral £1’ while it is the same as ‘JRAL F1’.

9.30.2.2 Register Names

General purpose registers (GPR)
There are 32 32-bit general purpose registers $r0 to $r31.

Accumulators dO and di

64-bit accumulators: $d0.hi, $d0.1o, $d1.hi, and $d1.lo.

Assembler reserved register $ta
Register $ta ($r15) is reserved for assembler using.

Operating system reserved registers $p0 and $p1
Registers $p0 ($r26) and $pl ($r27) are used by operating system as scratch
registers.

Frame pointer $fp
Register $r28 is regarded as the frame pointer.

Chapter 9: Machine Dependent Features 257

Global pointer
Register $r29 is regarded as the global pointer.

Link pointer
Register $r30 is regarded as the link pointer.

Stack pointer
Register $r31 is regarded as the stack pointer.

9.30.2.3 Pseudo Instructions

1i rt5,imm32
load 32-bit integer into register rt5. ‘sethi rt5,hi20(imm32)’ and then ‘ori
rt5,reg,lo12(imm32) .

la rtb,var
Load 32-bit address of var into register rt5. ‘sethi rt5,hi20(var)’ and then
‘ori reg,rt5,lo12(var)’

1. [bhw] rt5,var
Load value of var into register rt5. ‘sethi $ta,hi20(var)’ and then ‘1[bhw]i
rt5, [$ta+lol2(var)]’

1.[bh]ls rt5,var
Load value of var into register rt5. ‘sethi $ta,hi20(var)’ and then ‘1[bh]si
rt5, [$ta+tlol2(var)]’

1. [bhw]p rt5,var,inc
Load value of var into register rt5 and increment $ta by amount inc. ‘la
$ta,var’ and then ‘1[bhwli.bi rt5, [$tal,inc’

1. [bhw]lpc rt5,inc
Continue loading value of var into register rt5 and increment $ta by amount
inc. ‘1[bhw]i.bi rt5, [$tal,inc.’

1. [bhlsp rt5,var,inc
Load value of var into register rt5 and increment $ta by amount inc. ‘la
$ta,var’ and then ‘1[bhlsi.bi rt5, [$tal,inc’

1. [bhlspc rt5,inc
Continue loading value of var into register rt5 and increment $ta by amount
inc. ‘1[bh]lsi.bi rt5, [$tal,inc.’

s. [bhw] rt5,var
Store register rth to var. ‘sethi $ta,hi20(var)’ and then ‘s[bhw]i
rt5, [$ta+tlol2(var)]’

s. [bhw]p rt5,var,inc
Store register rt5 to var and increment $ta by amount inc. ‘la $ta,var’ and
then ‘s [bhw]i.bi rt5, [$tal,inc’

s. [bhw]lpc rt5,inc
Continue storing register rt5 to var and increment $ta by amount inc.
‘s[bhwli.bi rt5, [$tal,inc.’

258 Using as

not rt5,rab
Alias of ‘nor rt5,ra5,rab’.

neg rtb5,rab
Alias of ‘subri rt5,ra5,0’.

br rb5 Depending on how it is assembled, it is translated into ‘rb rb5’ or ‘jr rb5’.

b label Branch to label depending on how it is assembled, it is translated into ‘j8
label’, ‘j label’, or "‘la $ta,label’ ‘br $ta’".

bral rb5 Alias of jral br5 depending on how it is assembled, it is translated into ‘jralb
rb5’ or ‘jral rbb’.

bal fname Alias of jal fname depending on how it is assembled, it is translated into ‘jal
fname’ or "‘la $ta,fname’ ‘bral $ta’".

call fname
Call function fname same as ‘jal fname’.

move rt5,rab
For 16-bit, this is ‘mov55 rt5,rab’. For no 16-bit, this is ‘ori rt5,ra5,0’.

move rt5,var
This is the same as ‘1.w rt5,var’.

move rt5,imm32
This is the same as ‘1i rt5,imm32’.

pushm rab5,rbb
Push contents of registers from rab to rb5 into stack.

push ra5 Push content of register rab into stack. (same ‘pushm ra5,rab’).

push.d var
Push value of double-word variable var into stack.

push.w var
Push value of word variable var into stack.

push.h var
Push value of half-word variable var into stack.

push.b var
Push value of byte variable var into stack.

pusha var Push 32-bit address of variable var into stack.

pushi imm32
Push 32-bit immediate value into stack.

popm rab5,rbb5
Pop top of stack values into registers rab to rbb.

pop rt5 Pop top of stack value into register. (same as ‘popm rt5,rt5’.)

pop.d var,rab
Pop value of double-word variable var from stack using register ra5 as 2nd
scratch register. (1st is $ta)

Chapter 9: Machine Dependent Features 259

pop.w var,rab
Pop value of word variable var from stack using register rab.

pop.h var,rab
Pop value of half-word variable var from stack using register ra5.

pop.b var,rab
Pop value of byte variable var from stack using register ra5.

260 Using as

9.31 Nios II Dependent Features

9.31.1 Options

-relax-section
Replace identified out-of-range branches with PC-relative jmp sequences
when possible. The generated code sequences are suitable for use in
position-independent code, but there is a practical limit on the extended
branch range because of the length of the sequences. This option is the default.

-relax-all
Replace branch instructions not determinable to be in range and all call in-
structions with jmp and callr sequences (respectively). This option gener-
ates absolute relocations against the target symbols and is not appropriate for
position-independent code.

-no-relax
Do not replace any branches or calls.

-EB Generate big-endian output.
-EL Generate little-endian output. This is the default.

-march=architecture
This option specifies the target architecture. The assembler issues an error
message if an attempt is made to assemble an instruction which will not execute
on the target architecture. The following architecture names are recognized: ri1,
r2. The default is r1.

9.31.2 Syntax
9.31.2.1 Special Characters

4

‘#’ is the line comment character. *;’ is the line separator character.

9.31.3 Nios II Machine Relocations

%hiadj(expression)
Extract the upper 16 bits of expression and add one if the 15th bit is set.
The value of %hiadj(expression) is:
((expression >> 16) & Oxffff) + ((expression >> 15) & 0x01)
The %hiadj relocation is intended to be used with the addi, 1d or st instruc-
tions along with a %1lo, in order to load a 32-bit constant.

movhi r2, %hiadj(symbol)
addi r2, r2, %lo(symbol)

%hi(expression)
Extract the upper 16 bits of expression.

%1lo(expression)
Extract the lower 16 bits of expression.

Chapter 9: Machine Dependent Features 261

hegprel (expression)
Subtract the value of the symbol _gp from expression.

The intention of the %gprel relocation is to have a fast small area of memory
which only takes a 16-bit immediate to access.

.section .sdata

fastint:

.int 123

.section .text

ldw r4, Ygprel(fastint) (gp)

%call (expression)
%call_lo(expression)
%call_hiadj(expression)
hgot (expression)
%hgot_lo(expression)
%got_hiadj(expression)
hgotoff (expression)
hgotoff_lo(expression)
%gotoff_hiadj(expression)
%tls_gd(expression)
%tls_ie(expression)
%tls_le(expression)
%tls_ldm(expression)
%tls_ldo(expression)
These relocations support the ABI for Linux Systems documented in the Nios
II Processor Reference Handbook.

9.31.4 Nios II Machine Directives

.align expression [, expression]
This is the generic .align directive, however this aligns to a power of two.

.half expression
Create an aligned constant 2 bytes in size.

.word expression
Create an aligned constant 4 bytes in size.

.dword expression
Create an aligned constant 8 bytes in size.

.2byte expression
Create an unaligned constant 2 bytes in size.

.4byte expression
Create an unaligned constant 4 bytes in size.

.8byte expression
Create an unaligned constant 8 bytes in size.

.16byte expression
Create an unaligned constant 16 bytes in size.

262 Using as

.set noat Allows assembly code to use at register without warning. Macro or relaxation
expansions generate warnings.

.set at Assembly code using at register generates warnings, and macro expansion and
relaxation are enabled.

.set nobreak
Allows assembly code to use ba and bt registers without warning.

.set break
Turns warnings back on for using ba and bt registers.

.set norelax
Do not replace any branches or calls.

.set relaxsection
Replace identified out-of-range branches with jmp sequences (default).

.set relaxsection
Replace all branch and call instructions with jmp and callr sequences.

.set ... All other .set are the normal use.

9.31.5 Opcodes

as implements all the standard Nios II opcodes documented in the Nios I Processor Ref-
erence Handbook, including the assembler pseudo-instructions.

Chapter 9: Machine Dependent Features 263

9.32 NS32K Dependent Features

9.32.1 Syntax

9.32.1.1 Special Characters

The presence of a ‘#’ appearing anywhere on a line indicates the start of a comment that
extends to the end of that line.

If a ‘4" appears as the first character of a line then the whole line is treated as a com-
ment, but in this case the line can also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 31).

If Sequent compatibility has been configured into the assembler then the ‘|’ character
appearing as the first character on a line will also indicate the start of a line comment.

The ‘;’ character can be used to separate statements on the same line.

264 Using as

9.33 OPENRISC Dependent Features

9.33.1 OpenRISC Syntax
The assembler syntax follows the OpenRISC 1000 Architecture Manual.

9.33.1.1 Special Characters
A ‘#° character appearing anywhere on a line indicates the start of a comment that extends
to the end of that line.

‘;” can be used instead of a newline to separate statements.

9.33.1.2 Register Names
The OpenRISC register file contains 32 general pupose registers.

e The 32 general purpose registers are referred to as ‘rn’.
e The stack pointer register ‘r1’ can be referenced using the alias ‘sp’.
e The frame pointer register ‘r2’ can be referenced using the alias ‘fp’.

e The link register ‘r9’ can be referenced using the alias ‘1r’.

Floating point operations use the same general purpose registers. The instructions
1f.itof.s (single precision) and 1f.itof.d (double precision) can be used to convert
integer values to floating point. Likewise, instructions 1f.ftoi.s (single precision) and
1f.ftoi.d (double precision) can be used to convert floating point to integer.

OpenRISC also contains privileged special purpose registers (SPRs). The SPRs are
accessed using the 1.mfspr and 1.mtspr instructions.

9.33.1.3 Relocations

ELF relocations are available as defined in the OpenRISC architecture specification.

R_OR1K_HI_16_IN_INSN is obtained using ‘hi’ and R_OR1K_LO_16_IN_INSN and R_OR1K_
SL0O16 are obtained using ‘lo’. For signed offsets R_OR1K_AHI16 is obtained from ‘ha’. For
example:

1l.movhi r5, hi(symbol)
l.ori r5, r5, lo(symbol)

1.movhi r5, ha(symbol)
l.addi 5, r5, lo(symbol)

These “high” mnemonics extract bits 31:16 of their operand, and the “low” mnemonics
extract bits 15:0 of their operand.

The PC relative relocation R_OR1K_GOTPC_HI16 can be obtained by enclosing an operand
inside of ‘gotpchi’. Likewise, the R_OR1K_GOTPC_L016 relocation can be obtained using
‘gotpclo’. These are mostly used when assembling PIC code. For example, the standard
PIC sequence on OpenRISC to get the base of the global offset table, PC relative, into a
register, can be performed as:

l.jal 0x8

1.movhi r17, gotpchi(_GLOBAL_OFFSET_TABLE_-4)
l.ori rl7, r17, gotpclo(_GLOBAL_QFFSET_TABLE_+0)

Chapter 9: Machine Dependent Features 265

1l.add rl7, r17, r9

Several relocations exist to allow the link editor to perform GOT data references. The R_
OR1K_GOT16 relocation can obtained by enclosing an operand inside of ‘got’. For example,
assuming the GOT base is in register ri7.

l.1lwz r19, got(a)(rl7)
1l.1lwz r21, 0(r19)

Also, several relocations exist for local GOT references. The R_OR1K_GOTOFF_AHI16
relocation can obtained by enclosing an operand inside of ‘gotoffha’. Likewise, R_OR1K_
GOTOFF_L016 and R_OR1K_GOTOFF_SL016 can be obtained by enclosing an operand inside
of ‘gotofflo’. For example, assuming the GOT base is in register rl7:

1l.movhi r19, gotoffha(symbol)
1.add rl19, r19, ri17
1l.1lwz r19, gotofflo(symbol) (r19)

The above PC relative relocations use a 1. jal (jump) instruction and reading of the link
register to load the PC. OpenRISC also supports page offset PC relative locations without a
jump instruction using the 1.adrp instruction. By default the 1.adrp instruction will create
an R_OR1K_PCREL_PG21 relocation. Likewise, BFD_RELOC_0OR1K_L013 and BFD_RELOC_OR1K_
SLO13 can be obtained by enclosing an operand inside of ‘po’. For example:

l.adrp r3, symbol

l.ori r4, r3, po(symbol)
1.1bz r5, po(symbol) (r3)
1l.sb po(symbol) (r3), r6

Likewise the page offset relocations can be used with GOT references. The relocation R_
OR1K_GOT_PG21 can be obtained by enclosing an 1.adrp immediate operand inside of ‘got’.
Likewise, R_OR1K_GOT_L013 can be obtained by enclosing an operand inside of ‘gotpo’. For
example to load the value of a GOT symbol into register ‘rb’ we can do:

l.adrp r17, got(_GLOBAL_OFFSET_TABLE_)
1l.1lwz r5, gotpo(symbol) (ri7)

There are many relocations that can be requested for access to thread local storage
variables. All of the OpenRISC TLS mnemonics are supported:

e R_OR1K_TLS_GD_HI16 is requested using ‘t1sgdhi’.

e R_OR1K_TLS_GD_LO16 is requested using ‘tlsgdlo’.

e R_OR1K_TLS_GD_PG21 is requested using ‘tldgd’.
R_OR1K_TLS_GD_L013 is requested using ‘tlsgdpo’.
R_OR1K_TLS_LDM_HI16 is requested using ‘tlsldmhi’.
e R_OR1K_TLS_LDM_LO016 is requested using ‘tlsldmlo’.
R_OR1K_TLS_LDM_PG21 is requested using ‘t1dldm’.

e R_OR1K_TLS_LDM_L013 is requested using ‘tlsldmpo’.
R_OR1K_TLS_LDO_HI16 is requested using ‘dtpoffhi’.
R_OR1K_TLS_LDO_L016 is requested using ‘dtpofflo’.
R_OR1K_TLS_IE_HI16 is requested using ‘gottpoffhi’.
R_OR1K_TLS_IE_AHI16 is requested using ‘gottpoffha’.

266 Using as

R_OR1K_TLS_IE_L016 is requested using ‘gottpofflo’.
R_OR1K_TLS_IE_PG21 is requested using ‘gottp’.

e R_OR1K_TLS_IE_LO13 is requested using ‘gottppo’.
R_OR1K_TLS_LE_HI16 is requested using ‘tpoffhi’.
R_OR1K_TLS_LE_AHI16 is requested using ‘tpoffha’.
R_OR1K_TLS_LE_L016 is requested using ‘tpofflo’.

R_OR1K_TLS_LE_SL016 also is requested using ‘tpofflo’ depending on the instruction
format.

Here are some example TLS model sequences.
First, General Dynamic:

1.movhi r17, tlsgdhi(symbol)
l.ori rl7, r17, tlsgdlo(symbol)
1l.add ri7, r17, ri6

l.or r3, ri17, ri7

1.jal plt(__tls_get_addr)

1.nop

Initial Exec:

1l.movhi r17, gottpoffhi(symbol)

.add rl7, r17, ri1é6

.lwz rl7, gottpofflo(symbol) (rl7)
.add ri7, r17, r10

.1bs 17, 0(rl7)

And finally, Local Exec:

.movhi r17, tpoffha(symbol)

.add rl7, r17, r10

.addi ri17, r1l7, tpofflo(symbol)
.1bs 17, 0(rl7)

o

o

9.33.2 Floating Point

OpenRISC uses IEEE floating-point numbers.

9.33.3 OpenRISC Machine Directives

The OpenRISC version of as supports the following additional machine directives:
.align This must be followed by the desired alignment in bytes.

.word On the OpenRISC, the .word directive produces a 32 bit value.

.nodelay On the OpenRISC, the .nodelay directive sets a flag in elf binaries indicating
that the binary is generated catering for no delay slots.

.proc This directive is ignored. Any text following it on the same line is also ignored.

.endproc This directive is ignored. Any text following it on the same line is also ignored.

Chapter 9: Machine Dependent Features 267

9.33.4 Opcodes

For detailed information on the OpenRISC machine instruction set, see http: //www .
openrisc.io/architecture/.

as implements all the standard OpenRISC opcodes.

http://www.openrisc.io/architecture/
http://www.openrisc.io/architecture/

268 Using as

9.34 PDP-11 Dependent Features

9.34.1 Options

The PDP-11 version of as has a rich set of machine dependent options.

9.34.1.1 Code Generation Options

-mpic | -mno-pic
Generate position-independent (or position-dependent) code.

The default is to generate position-independent code.

9.34.1.2 Instruction Set Extension Options

These options enables or disables the use of extensions over the base line instruction set
as introduced by the first PDP-11 CPU: the KA11l. Most options come in two variants: a
-mextension that enables extension, and a -mno-extension that disables extension.

The default is to enable all extensions.

-mall | -mall-extensions
Enable all instruction set extensions.

-mno-extensions
Disable all instruction set extensions.

-mcis | -mno-cis

Enable (or disable) the use of the commercial instruction set, which consists of
these instructions: ADDNI, ADDN, ADDPI, ADDP, ASHNI, ASHN, ASHPI, ASHP, CMPCI,
CMPC, CMPNI, CMPN, CMPPI, CMPP, CVTLNI, CVTLN, CVTLPI, CVTLP, CVTNLI,
CVTNL, CVTNPI, CVTNP, CVTPLI, CVTPL, CVTPNI, CVTPN, DIVPI, DIVP, L2DR,
L3DR, LOCCI, LOCC, MATCI, MATC, MOVCI, MOVC, MOVRCI, MOVRC, MOVTCI, MOVTC,
MULPI, MULP, SCANCI, SCANC, SKPCI, SKPC, SPANCI, SPANC, SUBNI, SUBN, SUBPI,
and SUBP.

-mcsm | -mno-csm
Enable (or disable) the use of the CSM instruction.

-meis | -mno-eis
Enable (or disable) the use of the extended instruction set, which consists of
these instructions: ASHC, ASH, DIV, MARK, MUL, RTT, SOB SXT, and XOR.

-mfis | -mkevll

-mno-fis | -mno-kevil
Enable (or disable) the use of the KEV11 floating-point instructions: FADD,
FDIV, FMUL, and FSUB.

-mfpp | -mfpu | -mfp-11

-mno-fpp | —mno-fpu | -mno-fp-11
Enable (or disable) the use of FP-11 floating-point instructions: ABSF, ADDF,
CFCC, CLRF, CMPF, DIVF, LDCFF, LDCIF, LDEXP, LDF, LDFPS, MODF, MULF, NEGF,
SETD, SETF, SETI, SETL, STCFF, STCFI, STEXP, STF, STFPS, STST, SUBF, and
TSTF.

Chapter 9: Machine Dependent Features 269

-mlimited-eis | -mno-limited-eis
Enable (or disable) the use of the limited extended instruction set: MARK, RTT,
SOB, SXT, and XOR.

The -mno-limited-eis options also implies -mno-eis.

-mnfpt | -mno-mfpt
Enable (or disable) the use of the MFPT instruction.

-mmultiproc | -mno-multiproc
Enable (or disable) the use of multiprocessor instructions: TSTSET and WRTLCK.

-mmxps | -mno-mxps
Enable (or disable) the use of the MFPS and MTPS instructions.

-mspl | -mno-spl
Enable (or disable) the use of the SPL instruction.
Enable (or disable) the use of the microcode instructions: LDUB, MED, and XFC.

9.34.1.3 CPU Model Options

These options enable the instruction set extensions supported by a particular CPU, and
disables all other extensions.

-mkall KA11 CPU. Base line instruction set only.

-mkb11 KB11 CPU. Enable extended instruction set and SPL.

-mkdila KDI11-A CPU. Enable limited extended instruction set.
-mkd1lb KD11-B CPU. Base line instruction set only.

-mkd11ld KD11-D CPU. Base line instruction set only.

-mkdile KDI11-E CPU. Enable extended instruction set, MFPS, and MTPS.

-mkd11f | -mkd11lh | -mkd1ilq
KD11-F, KD11-H, or KD11-Q CPU. Enable limited extended instruction set,
MFPS, and MTPS.

-mkdiik KD11-K CPU. Enable extended instruction set, LDUB, MED, MFPS, MFPT, MTPS,

and XFC.

-mkd11z KDI11-Z CPU. Enable extended instruction set, CSM, MFPS, MFPT, MTPS, and
SPL.

-mf11 F11 CPU. Enable extended instruction set, MFPS, MFPT, and MTPS.

-mj11 J11 CPU. Enable extended instruction set, CSM, MFPS, MFPT, MTPS, SPL, TSTSET,
and WRTLCK.

-mti1 T11 CPU. Enable limited extended instruction set, MFPS, and MTPS.

9.34.1.4 Machine Model Options

These options enable the instruction set extensions supported by a particular machine
model, and disables all other extensions.

-m11/03 Same as -mkd11f.

270 Using as

-m11/04 Same as -mkd11d.

-m11/05 | -m11/10
Same as -mkd11b.

-m11/15 | -m11/20
Same as -mkaill.

-mi11/21 Same as -mt11.

-m11/23 | -m11/24
Same as -mf11.

-m11/34 Same as -mkdlle.
-m11/34a Ame as -mkdlle -mfpp.

-m11/35 | -m11/40
Same as -mkdilila.

-m11/44 Same as -mkdiliz.

-m11/45 | -m11/50 | -m11/55 | -m11/70
Same as -mkbi1.

-m11/53 | -m11/73 | -m11/83 | -m11/84 | -m11/93 | -m11/94
Same as -mj11.

-m11/60 Same as -mkd11ik.

9.34.2 Assembler Directives

The PDP-11 version of as has a few machine dependent assembler directives.
.bss Switch to the bss section.

.even Align the location counter to an even number.

9.34.3 PDP-11 Assembly Language Syntax

as supports both DEC syntax and BSD syntax. The only difference is that in DEC syntax,
a # character is used to denote an immediate constants, while in BSD syntax the character
for this purpose is $.

general-purpose registers are named rO through r7. Mnemonic alternatives for r6 and
r7 are sp and pc, respectively.

Floating-point registers are named acO through ac3, or alternatively £rO through fr3.

Comments are started with a # or a / character, and extend to the end of the line.
(FIXME: clash with immediates?)

Multiple statements on the same line can be separated by the ¢;’ character.

9.34.4 Instruction Naming
Some instructions have alternative names.
BCC BHIS

BCS BLO

Chapter 9: Machine Dependent Features 271

L2DR L2D
L3DR L3D
SYS TRAP

9.34.5 Synthetic Instructions
The JBR and JCC synthetic instructions are not supported yet.

272 Using as

9.35 picoJava Dependent Features

9.35.1 Options
as has two additional command-line options for the picoJava architecture.
-ml This option selects little endian data output.

-mb This option selects big endian data output.

9.35.2 PJ Syntax
9.35.2.1 Special Characters

The presence of a ‘!’ or °/’” on a line indicates the start of a comment that extends to the
end of the current line.

If a ‘#’ appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing]
page 31).

9

The ¢;’ character can be used to separate statements on the same line.

Chapter 9: Machine Dependent Features 273

9.36 PowerPC Dependent Features

9.36.1 Options

The PowerPC chip family includes several successive levels, using the same core instruction
set, but including a few additional instructions at each level. There are exceptions to
this however. For details on what instructions each variant supports, please see the chip’s
architecture reference manual.

The following table lists all available PowerPC options.
-a32 Generate ELF32 or XCOFF32.
-a64 Generate ELF64 or XCOFF64.
-K PIC Set EF_PPC_RELOCATABLE_LIB in ELF flags.

-mpwrx | -mpwr2

Generate code for POWER/2 (RIOS2).
-mpwr Generate code for POWER, (RIOS1)
-m601 Generate code for PowerPC 601.

-mppc, —-mppc32, -m603, -m604
Generate code for PowerPC 603/604.

-m403, -m405
Generate code for PowerPC 403/405.
-m440 Generate code for PowerPC 440. BookE and some 405 instructions.
-m464 Generate code for PowerPC 464.
-m476 Generate code for PowerPC 476.

-m7400, -m7410, -m7450, —m7455
Generate code for PowerPC 7400/7410/7450/7455.

-m750cl, -mgekko, -mbroadway
Generate code for PowerPC 750CL/Gekko/Broadway.

-m821, -m850, -m860
Generate code for PowerPC 821/850/860.

-mppc64, -m620
Generate code for PowerPC 620/625/630.

-me500, -me500x2
Generate code for Motorola e500 core complex.

-me500mc Generate code for Freescale e500mc core complex.

-me500mc64
Generate code for Freescale e500mc64 core complex.

-me5500 Generate code for Freescale 5500 core complex.

-me6500 Generate code for Freescale e6500 core complex.

274 Using as

-mspe Generate code for Motorola SPE instructions.
-mspe?2 Generate code for Freescale SPE2 instructions.
-mtitan Generate code for AppliedMicro Titan core complex.

-mppc64bridge
Generate code for PowerPC 64, including bridge insns.

-mbooke Generate code for 32-bit BookE.
-ma?2 Generate code for A2 architecture.
-me300 Generate code for PowerPC e300 family.

-maltivec
Generate code for processors with AltiVec instructions.

-mvle Generate code for Freescale PowerPC VLE instructions.

-mVSX Generate code for processors with Vector-Scalar (VSX) instructions.

-mhtm Generate code for processors with Hardware Transactional Memory instruc-
tions.

-mpower4, —-mpwr4
Generate code for Power4 architecture.

-mpowerb, —-mpwrb5, —mpwrbx
Generate code for Powerb architecture.

-mpower6, —mpwr6
Generate code for Power6 architecture.

-mpower7, —mpwr7
Generate code for Power7 architecture.

-mpower8, —mpwr8
Generate code for Power8 architecture.

-mpower9, —-mpwr9
Generate code for Power9 architecture.

-mpower10, -mpwrl0O
Generate code for Powerl0 architecture.

-mcell

-mcell Generate code for Cell Broadband Engine architecture.
-mcom Generate code Power/PowerPC common instructions.
-many Generate code for any architecture (PWR/PWRX/PPC).
-mregnames

Allow symbolic names for registers.

-mno-regnames
Do not allow symbolic names for registers.

Chapter 9: Machine Dependent Features 275

-mrelocatable
Support for GCC’s -mrelocatable option.

-mrelocatable-1ib
Support for GCC’s -mrelocatable-lib option.

-memb Set PPC_EMB bit in ELF flags.

-mlittle, -mlittle-endian, -le
Generate code for a little endian machine.

-mbig, -mbig-endian, -be
Generate code for a big endian machine.

-msolaris
Generate code for Solaris.

-mno-solaris
Do not generate code for Solaris.

-nops=count
If an alignment directive inserts more than count nops, put a branch at the
beginning to skip execution of the nops.

9.36.2 PowerPC Assembler Directives

A number of assembler directives are available for PowerPC. The following table is far from
complete.

.machine "string"
This directive allows you to change the machine for which code is generated.
"string" may be any of the -m cpu selection options (without the -m) enclosed
in double quotes, "push", or "pop". .machine "push" saves the currently se-
lected cpu, which may be restored with .machine "pop".

9.36.3 PowerPC Syntax
9.36.3.1 Special Characters

The presence of a ‘#’ on a line indicates the start of a comment that extends to the end of
the current line.

If a ‘#” appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing]
page 31).

9

If the assembler has been configured for the ppc-*-solaris* target then the ‘!’ character
also acts as a line comment character. This can be disabled via the -mno-solaris command-
line option.

The ¢;’ character can be used to separate statements on the same line.

276 Using as

9.37 PRU Dependent Features

9.37.1 Options

-mlink-relax
Assume that LD would optimize LDI32 instructions by checking the upper 16
bits of the expression. If they are all zeros, then LD would shorten the LDI32
instruction to a single LDI. In such case as will output DIFF relocations for
diff expressions.

-mno-link-relax
Assume that LD would not optimize LDI32 instructions. As a consequence,
DIFF relocations will not be emitted.

-mno-warn-regname-label
Do not warn if a label name matches a register name. Usually assembler pro-
grammers will want this warning to be emitted. C compilers may want to turn

this off.
9.37.2 Syntax

9.37.2.1 Special Characters

‘#” and ‘;’ are the line comment characters.

9.37.3 PRU Machine Relocations

%pmem (expression)
Convert expression from byte-address to a word-address. In other words, shift
right by two.

%label (expression)
Mark the given operand as a label. This is useful if you need to jump to a label
that matches a register name.

rl:
jmp rl ; Will jump to register R1
jmp %label(r1l) ; Will jump to label ril

9.37.4 PRU Machine Directives

.align expression [, expression]
This is the generic .align directive, however this aligns to a power of two.

.word expression
Create an aligned constant 4 bytes in size.

.dword expression
Create an aligned constant 8 bytes in size.

.2byte expression
Create an unaligned constant 2 bytes in size.

.4byte expression
Create an unaligned constant 4 bytes in size.

Chapter 9: Machine Dependent Features 277

.8byte expression
Create an unaligned constant 8 bytes in size.

.16byte expression
Create an unaligned constant 16 bytes in size.

.set no_warn_regname_label
Do not output warnings when a label name matches a register name. Equivalent
to passing the -mno-warn-regname-label command-line option.

9.37.5 Opcodes

as implements all the standard PRU core V3 opcodes in the original pasm assembler. Older
cores are not supported by as.

GAS also implements the LDI32 pseudo instruction for loading a 32-bit immediate value
into a register.

1di32 sp, __stack_top
1di32 ri4, 0x12345678

278 Using as

9.38 RISC-V Dependent Features

9.38.1 RISC-V Options
The following table lists all available RISC-V specific options.

-fpic
-fPIC Generate position-independent code

-fno-pic Don’t generate position-independent code (default)

-march=ISA
Select the base isa, as specified by ISA. For example -march=rv32ima. If this
option and the architecture attributes aren’t set, then assembler will check the
default configure setting —with-arch=ISA.

-misa-spec=ISAspec
Select the default isa spec version. If the version of ISA isn’t set by -march,
then assembler helps to set the version according to the default chosen spec.
If this option isn’t set, then assembler will check the default configure setting
—with-isa-spec=ISAspec.

-mpriv-spec=PRIVspec
Select the privileged spec version. We can decide whether the CSR is valid or
not according to the chosen spec. If this option and the privilege attributes
aren’t set, then assembler will check the default configure setting —with-priv-
spec=PRIVspec.

-mabi=ABI
Selects the ABI, which is either "ilp32" or "lp64", optionally followed by "f",
"d", or "q" to indicate single-precision, double-precision, or quad-precision
floating-point calling convention, or none to indicate the soft-float calling con-
vention. Also, "ilp32" can optionally be followed by "e" to indicate the RVE
ABI, which is always soft-float.

-mrelax Take advantage of linker relaxations to reduce the number of instructions re-
quired to materialize symbol addresses. (default)

-mno-relax
Don’t do linker relaxations.

-march-attr
Generate the default contents for the riscv elf attribute section if the .attribute
directives are not set. This section is used to record the information that a
linker or runtime loader needs to check compatibility. This information includes
ISA string, stack alignment requirement, unaligned memory accesses, and the
major, minor and revision version of privileged specification.

-mno-arch-attr
Don’t generate the default riscv elf attribute section if the .attribute directives
are not set.

Chapter 9: Machine Dependent Features 279

-mcsr-check
Enable the CSR checking for the ISA-dependent CRS and the read-only CSR.
The ISA-dependent CSR are only valid when the specific ISA is set. The read-
only CSR can not be written by the CSR instructions.

-mno-csr-check

Don’t do CSR checking.

-mlittle-endian
Generate code for a little endian machine.

-mbig-endian
Generate code for a big endian machine.

9.38.2 RISC-V Directives
The following table lists all available RISC-V specific directives.

.align size-log-2
Align to the given boundary, with the size given as log2 the number of bytes to
align to.

.half value
.word value
.dword value
Emits a half~-word, word, or double-word value at the current position.

.dtprelword value

.dtpreldword value
Emits a DTP-relative word (or double-word) at the current position. This is
meant to be used by the compiler in shared libraries for DWARF debug info
for thread local variables.

.bss Sets the current section to the BSS section.

.uleb128 value

.s1leb128 value
Emits a signed or unsigned LEB128 value at the current position. This only
accepts constant expressions, because symbol addresses can change with re-
laxation, and we don’t support relocations to modify LEB128 values at link
time.

.option argument

Modifies RISC-V specific assembler options inline with the assembly code. This
is used when particular instruction sequences must be assembled with a specific
set of options. For example, since we relax addressing sequences to shorter
GP-relative sequences when possible the initial load of GP must not be relaxed
and should be emitted as something like

.option push

.option norelax

la gp, __global_pointer$
.option pop

in order to produce after linker relaxation the expected

280

csr—-check

Using as

auipc gp, %pcrel_hi(__global_pointer$)
addi gp, gp, %pcrel_lo(__global_pointer$)

instead of just
addi gp, gp, O

It’s not expected that options are changed in this manner during regular use,
but there are a handful of esoteric cases like the one above where users need to
disable particular features of the assembler for particular code sequences. The
complete list of option arguments is shown below:

push

pop Pushes or pops the current option stack. These should be used
whenever changing an option in line with assembly code in order to
ensure the user’s command-line options are respected for the bulk
of the file being assembled.

rvce

norvc Enables or disables the generation of compressed instructions. In-
structions are opportunistically compressed by the RISC-V assem-
bler when possible, but sometimes this behavior is not desirable.

pic

nopic Enables or disables position-independent code generation. Unless
you really know what you’re doing, this should only be at the top
of a file.

relax

norelax Enables or disables relaxation. The RISC-V assembler and linker
opportunistically relax some code sequences, but sometimes this
behavior is not desirable.

no-csr—check

Enables or disables the CSR checking.

.insn value
.insn value

This directive permits the numeric representation of an instructions and makes
the assembler insert the operands according to one of the instruction formats
for ‘.insn’ (Section 9.38.4 [RISC-V-Formats|, page 282). For example, the
instruction ‘add a0, al, a2’ could be written as ‘.insn r 0x33, 0, 0, a0, al,
a2’

.attribute tag, value

Set the object attribute tag to value.

The tag is either an attribute number, or one of the following: Tag_RISCV_
arch, Tag_RISCV_stack_align, Tag_RISCV_unaligned_access, Tag_RISCV_
priv_spec, Tag_RISCV_priv_spec_minor, Tag _RISCV_priv_spec_revision.

Chapter 9: Machine Dependent Features 281

9.38.3 RISC-V Assembler Modifiers

The RISC-V assembler supports following modifiers for relocatable addresses used in RISC-
V instruction operands. However, we also support some pseudo instructions that are easier
to use than these modifiers.

%1lo(symbol)
The low 12 bits of absolute address for symbol.

%hi(symbol)
The high 20 bits of absolute address for symbol. This is usually used with the
%lo modifier to represent a 32-bit absolute address.

lui a0, %hi(symbol) // R_RISCV_HI20
addi a0, a0, %lo(symbol) // R_RISCV_LO12_I
lui a0, %hi(symbol) // R_RISCV_HI20

load/store a0, %lo(symbol) (a0) // R_RISCV_L012_I/S

%pcrel_lo(label)
The low 12 bits of relative address between pc and symbol. The symbol is
related to the high part instruction which is marked by label.

%pcrel_hi(symbol)
The high 20 bits of relative address between pc and symbol. This is usually
used with the %pcrel_lo modifier to represent a +/-2GB pc-relative range.

label:

auipc a0, Y%pcrel_hi(symbol) // R_RISCV_PCREL_HI20
addi a0, a0, Y%pcrel_lo(label) // R_RISCV_PCREL_L012_I
label:

auipc a0, %pcrel_hi(symbol) // R_RISCV_PCREL_HI20

load/store a0, %pcrel_lo(label)(a0) // R_RISCV_PCREL_L012_I/S

Or you can use the pseudo lla/lw/sw/... instruction to do this.
1lla a0, symbol

%hgot_pcrel_hi(symbol)
The high 20 bits of relative address between pc and the GOT entry of symbol.
This is usually used with the %pcrel_lo modifier to access the GOT entry.

label:

auipc a0, %got_pcrel_hi(symbol) // R_RISCV_GOT_HI20
addi a0, a0, %pcrel_lo(label) // R_RISCV_PCREL_L012_I
label:

auipc a0, %got_pcrel_hi(symbol) // R_RISCV_GOT_HI20

load/store a0, %pcrel_lo(label)(a0) // R_RISCV_PCREL_LO12_I/S
Also, the pseudo la instruction with PIC has similar behavior.
%tprel_add(symbol)
This is used purely to associate the R_RISCV_TPREL_ADD relocation for

TLS relaxation. This one is only valid as the fourth operand to the normally 3
operand add instruction.

htprel_lo(symbol)
The low 12 bits of relative address between tp and symbol.

282 Using as

Jtprel_hi(symbol)
The high 20 bits of relative address between tp and symbol. This is usually
used with the %tprel_lo and %tprel_add modifiers to access the thread local
variable symbol in TLS Local Exec.

lui ab, Ytprel_hi(symbol) // R_RISCV_TPREL_HI20
add ab, ab, tp, %tprel_add(symbol) // R_RISCV_TPREL_ADD
load/store t0, %tprel_lo(symbol) (ab) // R_RISCV_TPREL_L012_I/S

%tls_ie_pcrel_hi(symbol)
The high 20 bits of relative address between pc and GOT entry. It is usually
used with the %pcrel_lo modifier to access the thread local variable symbol in
TLS Initial Exec.

la.tls.ie ab, symbol
add ab, ab, tp
load/store t0, 0(ab5)

The pseudo la.tls.ie instruction can be expended to

label:
auipc a5, %tls_ie_pcrel_hi(symbol) // R_RISCV_TLS_GOT_HI20
load ab, %pcrel_lo(label) (ab) // R_RISCV_PCREL_LO012_I

%tls_gd_pcrel_hi(symbol)
The high 20 bits of relative address between pc and GOT entry. It is usually
used with the %pcrel_lo modifier to access the thread local variable symbol in
TLS Global Dynamic.

la.tls.gd a0, symbol

call __tls_get_addr@plt
mv ab, a0

load/store t0, 0(a5)

The pseudo la.tls.gd instruction can be expended to

label:
auipc a0, %tls_gd_pcrel_hi(symbol) // R_RISCV_TLS_GD_HI20
addi a0, a0, %pcrel_lo(label) // R_RISCV_PCREL_L012_I

9.38.4 RISC-V Instruction Formats

The RISC-V Instruction Set Manual Volume I: User-Level ISA lists 12 instruction for-
mats where some of the formats have multiple variants. For the ‘.insn’ pseudo directive
the assembler recognizes some of the formats. Typically, the most general variant of the
instruction format is used by the ‘.insn’ directive.

The following table lists the abbreviations used in the table of instruction formats:

opcode Unsigned immediate or op-
code name for 7-bits opcode.

opcode2 Unsigned immediate or op-
code name for 2-bits opcode.

func? Unsigned immediate for 7-
bits function code.

Chapter 9: Machine Dependent Features

func6

func4

func3

func2

rd

rsl

rsl’

rs2

rs2’

simm12

simm20

simm6

uimma8

symbol

Unsigned immediate for 6-
bits function code.

Unsigned immediate for 4-
bits function code.

Unsigned immediate for 3-
bits function code.

Unsigned immediate for 2-
bits function code.

Destination register number for operand x, can be GPR or FPR.

Destination register number for operand x,

only accept s0-sl, a0-ab, fsO-
fs1 and fa0-fa5.

First source register number for operand x, can be GPR or FPR.

First source register number for operand x,

only accept s0-sl, a0-ab, fsO-
fs1 and fa0-fa5.

Second source register num-

ber for operand x, can be GPR or FPR.
Second source register num-

ber for operand x,
only accept s0-sl, a0-ab, fsO-

fs1 and fa0-fab.

Sign-extended 12-bit immedi-
ate for operand x.

Sign-extended 20-bit immedi-
ate for operand x.

Sign-extended 6-bit immedi-
ate for operand x.

Unsigned 8-bit immediate for operand x.

Symbol or lable reference for operand x.

The following table lists all available opcode name:

Cco

283

284

C1

C2

LOAD
LOAD_FP
STORE
STORE_FP
AUIPC
LUI
BRANCH
JAL

JALR

(0]

0P_32
OP_IMM
OP_IMM_32

OP_FP
MADD
MSUB
NMADD
NMSUB
AMO
MISC_MEM
SYSTEM
CUSTOM_O
CUSTOM_1
CUSTOM_2
CUSTOM_3

Using as

Opcode space for compressed instructions.
Opcode space for load instructions.

Opcode space for floating-point load instructions.
Opcode space for store instructions.

Opcode space for floating-point store instructions.
Opcode space for auipc instruction.

Opcode space for lui instruction.

Opcode space for branch instructions.

Opcode space for jal instruction.

Opcode space for jalr instruction.

Opcode space for ALU instructions.

Opcode space for 32-bits ALU instructions.

Opcode space for ALU with immediate instructions.

Opcode space for 32-bits ALU with immediate instructions.
Opcode space for floating-point operation instructions.
Opcode space for madd instruction.

Opcode space for msub instruction.

Opcode space for nmadd instruction.

Opcode space for msub instruction.

Opcode space for atomic memory operation instructions.
Opcode space for misc instructions.

Opcode space for system instructions.

Opcode space for customize instructions.

An instruction is two or four bytes in length and must be aligned on a 2 byte boundary.
The first two bits of the instruction specify the length of the instruction, 00, 01 and 10
indicates a two byte instruction, 11 indicates a four byte instruction.

The following table lists the RISC-V instruction formats that are available with the
‘.insn’ pseudo directive:

Chapter 9: Machine Dependent Features 285

R type: .insn r opcode, func3, func7, rd, rsl, rs2

Fommm e Fomm e +
| func7 | rs2 | rs1l | func3 | rd | opcode |
oo o o o o +
31 25 20 15 12 7 0

R type with 4 register operands: .insn r opcode, func3, func2, rd, rsl, rs2, rs3
R4 type: .insn r4 opcode, func3, func2, rd, rsl, rs2, rs3

o= o et et o et +
| rs3 | func2 | rs2 | rs1 | func3 | rd | opcode |
et domm—— - et et B +
31 27 25 20 15 12 7 0
I type: .insn i opcode, func3, rd, rsl, simml2
I type: .insn i opcode, func3, rd, simm12(rs1)
Fommm - o= e et +
| simm12 | rs1 | func3 | rd | opcode |
e o e et +
31 20 15 12 7 0
S type: .insn s opcode, func3, rs2, simm12(rs1)
e o= e Fommm - Fomm - +
| simm12[11:5] | rs2 | rsl | func3 | simm12[4:0] | opcode |
e e et e Fommm Fommm +
31 25 20 15 12 7 0
B type: .insn s opcode, func3, rsil, rs2, symbol
SB type: .insn sb opcode, func3, rsl, rs2, symbol
Fommm - Fomm et e Fomm Fommm et
| simm12[12] | simm12[10:5] | rs2 | rsl | func3 | simm12[4:1] | simm12[11]] | opc
o o 4o e o o e
31 30 25 20 15 12 7 0
U type: .insn u opcode, rd, simm20
e e L e e et +
| simm20 | rd | opcode |
o et S e e +
31 12 7 0
J type: .insn j opcode, rd, symbol
UJ type: .insn uj opcode, rd, symbol
Fommm o fommm e et B +
| simm20[20] | simm20[10:1] | simm20[11] | simm20[19:12] | rd | opcode |
Fommm o dommm e et +
31 30 21 20 12 7 0
CR type: .insn cr opcode2, func4, rd, rs2
o o o o +
| func4 | rd/rsl | rs2 | opcode2 |
Fommm R +————- o +
15 12 7 2 0

286 Using as

CI type: .insn ci opcode2, func3, rd, simm6
o o Fo—— o e +

| func3 | imm | rd/rsl | imm | opcode2 |

Fo—mm— o= Fomm - et Homm +
15 13 12 7 2 0
CIW type: .insn ciw opcode2, func3, rd, uimm8
pomm e o ommmm +
| func3 | imm | rd’ | opcode2 |
Fomm Fomm - et Homm +
15 13 7 2 0
CA type: .insn ca opcode2, func6, func2, rd, rs2
pomm e Fomm e o S +
| func6 | rd’/rs1l’ | func2 | rs2’ | opcode |
Fomm fomm oo o pomm +
15 10 7 5 2 0
CB type: .insn cb opcode2, func3, rsl, symbol
pomm o o o pomm +
| func3 | offset | rsil’ | offset | opcode2 |
Fomm po—m - o fo—m - Fo—mm— +
15 13 10 7 2 0
CJ type: .insn cj opcode2, symbol
pomm o ommmm +
| func3 | jump target | opcode2 |
Fomm e Homm +
15 13 7 2 0

For the complete list of all instruction format variants see The RISC-V Instruction Set
Manual Volume I: User-Level ISA.

9.38.5 RISC-V Object Attribute

RISC-V attributes have a string value if the tag number is odd and an integer value if the
tag number is even.

Tag_RISCV _stack_align (4)
Tag_RISCV _strict_align records the N-byte stack alignment for this object. The
default value is 16 for RV32I or RV64I, and 4 for RV32E.

The smallest value will be wused if object files with different
Tag_RISCV _stack_align values are merged.

Tag RISCV_arch (5)
Tag_RISCV _arch contains a string for the target architecture taken from the
option -march. Different architectures will be integrated into a superset when
object files are merged.

Note that the version information of the target architecture must be presented
explicitly in the attribute and abbreviations must be expanded. The version
information, if not given by -march, must be in accordance with the default

Chapter 9: Machine Dependent Features 287

specified by the tool. For example, the architecture RV32I has to be recorded
in the attribute as RV32I2P0 in which 2P0 stands for the default version of its
base ISA. On the other hand, the architecture RV32G has to be presented as
RV32I2P0_M2PO_A2P0_F2P0_D2P0 in which the abbreviation G is expanded to
the IMAFD combination with default versions of the standard extensions.

Tag_RISCV _unaligned_access (6)
Tag_RISCV _unaligned_access is 0 for files that do not allow any unaligned
memory accesses, and 1 for files that do allow unaligned memory accesses.

Tag_RISCV _priv_spec (8)

Tag_RISCV _priv_spec_minor (10)

Tag_RISCV _priv_spec_revision (12)
Tag_RISCV _priv_spec contains the major/minor/revision version information
of the privileged specification. It will report errors if object files of different
privileged specification versions are merged.

288 Using as

9.39 RL78 Dependent Features

9.39.1 RL78 Options

relax Enable support for link-time relaxation.

norelax Disable support for link-time relaxation (default).

mgl0 Mark the generated binary as targeting the G10 variant of the RL78 architec-
ture.

mgl3 Mark the generated binary as targeting the G13 variant of the RL78 architec-
ture.

mgld

mrl78 Mark the generated binary as targeting the G14 variant of the RL78 architec-

ture. This is the default.

m32bit-doubles
Mark the generated binary as one that uses 32-bits to hold the double floating
point type. This is the default.

mé4bit-doubles
Mark the generated binary as one that uses 64-bits to hold the double floating
point type.

9.39.2 Symbolic Operand Modifiers
The RL78 has three modifiers that adjust the relocations used by the linker:
%1016 ()

When loading a 20-bit (or wider) address into registers, this modifier selects
the 16 least significant bits.

movw ax,#%1lo16(_sym)

%hi16()
When loading a 20-bit (or wider) address into registers, this modifier selects
the 16 most significant bits.
movw ax,#%hil6(_sym)
%hi8 ()

When loading a 20-bit (or wider) address into registers, this modifier selects
the 8 bits that would go into CS or ES (i.e. bits 23..16).
mov es, #%hi8(_sym)
9.39.3 Assembler Directives
In addition to the common directives, the RL78 adds these:

.double Output a constant in “double” format, which is either a 32-bit or a 64-bit float-
ing point value, depending upon the setting of the -m32bit-doubles|-m64bit-
doubles command-line option.

.bss Select the BSS section.

Chapter 9: Machine Dependent Features 289

.3byte Output a constant value in a three byte format.
.int
.word Output a constant value in a four byte format.

9.39.4 Syntax for the RL78
9.39.4.1 Special Characters

The presence of a ‘;’ appearing anywhere on a line indicates the start of a comment that
extends to the end of that line.

If a ‘4" appears as the first character of a line then the whole line is treated as a com-
ment, but in this case the line can also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 31).

The ‘|’ character can be used to separate statements on the same line.

290 Using as

9.40 RX Dependent Features

9.40.1 RX Options

The Renesas RX port of as has a few target specific command-line options:

-m32bit-doubles
This option controls the ABI and indicates to use a 32-bit float ABI. It has no
effect on the assembled instructions, but it does influence the behaviour of the
‘.double’ pseudo-op. This is the default.

-m64bit-doubles
This option controls the ABI and indicates to use a 64-bit float ABI. It has no
effect on the assembled instructions, but it does influence the behaviour of the
‘.double’ pseudo-op.

-mbig-endian
This option controls the ABI and indicates to use a big-endian data ABI. It
has no effect on the assembled instructions, but it does influence the behaviour
of the ‘.short’, ‘.hword’, ‘.int’, ‘.word’, ‘.long’, ‘.quad’ and ‘.octa’ pseudo-
ops.

-mlittle-endian
This option controls the ABI and indicates to use a little-endian data ABI. It
has no effect on the assembled instructions, but it does influence the behaviour
of the ‘.short’, ‘.hword’, ‘.int’, ‘.word’, ‘.long’, ‘.quad’ and ‘.octa’ pseudo-
ops. This is the default.

-muse-conventional-section-names
This option controls the default names given to the code (.text), initialised data
(.data) and uninitialised data sections (.bss).

-muse-renesas-section-names
This option controls the default names given to the code (.P), initialised data
(.D_1) and uninitialised data sections (.B_1). This is the default.

-msmall-data-limit
This option tells the assembler that the small data limit feature of the RX port
of GCC is being used. This results in the assembler generating an undefined
reference to a symbol called __gp for use by the relocations that are needed to
support the small data limit feature. This option is not enabled by default as
it would otherwise pollute the symbol table.

-mpid This option tells the assembler that the position independent data of the RX
port of GCC is being used. This results in the assembler generating an undefined
reference to a symbol called __pid_base, and also setting the RX_PID flag bit
in the e_flags field of the ELF header of the object file.

-mint-register=num
This option tells the assembler how many registers have been reserved for use
by interrupt handlers. This is needed in order to compute the correct values
for the %gpreg and %pidreg meta registers.

Chapter 9: Machine Dependent Features 291

-mgcc-abi
This option tells the assembler that the old GCC ABI is being used by the
assembled code. With this version of the ABI function arguments that are
passed on the stack are aligned to a 32-bit boundary.

-mrx-abi This option tells the assembler that the official RX ABI is being used by the
assembled code. With this version of the ABI function arguments that are
passed on the stack are aligned to their natural alignments. This option is the
default.

-mcpu=name
This option tells the assembler the target CPU type. Currently the rx100,
rx200, rx600, rx610, rxv2, rxv3 and rxv3-dfpu are recognised as valid cpu
names. Attempting to assemble an instructionnot supported by the indicated
cpu type will result in an error message being generated.

-mno-allow-string-insns
This option tells the assembler to mark the object file that it is building as one
that does not use the string instructions SMOVF, SCMPU, SMOVB, SMOVU, SUNTIL
SWHILE or the RMPA instruction. In addition the mark tells the linker to complain
if an attempt is made to link the binary with another one that does use any of
these instructions.

Note - the inverse of this option, -mallow-string-insns, is not needed. The
assembler automatically detects the use of the the instructions in the source
code and labels the resulting object file appropriately. If no string instructions
are detected then the object file is labelled as being one that can be linked with
either string-using or string-banned object files.

9.40.2 Symbolic Operand Modifiers

The assembler supports one modifier when using symbol addresses in RX instruction
operands. The general syntax is the following:

%gp (symbol)

The modifier returns the offset from the __gp symbol to the specified symbol as a 16-bit
value. The intent is that this offset should be used in a register+offset move instruction
when generating references to small data. Ie, like this:

mov.W %gp(_foo) [%gpregl, ri

The assembler also supports two meta register names which can be used to refer to
registers whose values may not be known to the programmer. These meta register names
are:

hegpreg The small data address register.
%pidreg The PID base address register.

Both registers normally have the value r13, but this can change if some registers have
been reserved for use by interrupt handlers or if both the small data limit and position
independent data features are being used at the same time.

292

Using as

9.40.3 Assembler Directives

The RX version of as has the following specific assembler directives:

.3byte

Inserts a 3-byte value into the output file at the current location.

.fetchalign

If the next opcode following this directive spans a fetch line boundary (8 byte
boundary), the opcode is aligned to that boundary. If the next opcode does
not span a fetch line, this directive has no effect. Note that one or more labels
may be between this directive and the opcode; those labels are aligned as well.
Any inserted bytes due to alignment will form a NOP opcode.

9.40.4 Floating Point

The floating point formats generated by directives are these.

.float

.double

Single precision (32-bit) floating point constants.

If the -m64bit-doubles command-line option has been specified then then
double directive generates double precision (64-bit) floating point constants,
otherwise it generates single precision (32-bit) floating point constants. To
force the generation of 64-bit floating point constants used the dc.d directive
instead.

9.40.5 Syntax for the RX

9.40.5.1 Special Characters

The presence of a ‘;’ appearing anywhere on a line indicates the start of a comment that
extends to the end of that line.

If a ‘#" appears as the first character of a line then the whole line is treated as a com-
ment, but in this case the line can also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],

page 31).

The ‘!’ character can be used to separate statements on the same line.

Chapter 9: Machine Dependent Features 293

9.41 IBM S/390 Dependent Features

The s390 version of as supports two architectures modes and eleven chip levels. The archi-
tecture modes are the Enterprise System Architecture (ESA) and the newer z/Architecture
mode. The chip levels are gb (or arch3), g6, z900 (or archb), z990 (or arch6), z9-109, z9-ec
(or archT7), z10 (or arch8), z196 (or arch9), zEC12 (or archl0), z13 (or archll), z14 (or
arch12), z15 (or arch13), or archl14.

9.41.1 Options
The following table lists all available s390 specific options:

-m31 | -m64
Select 31- or 64-bit ABI implying a word size of 32- or 64-bit.

These options are only available with the ELF object file format, and require
that the necessary BFD support has been included (on a 31-bit platform you
must add —enable-64-bit-bfd on the call to the configure script to enable 64-bit
usage and use s390x as target platform).

-mesa | -mzarch
Select the architecture mode, either the Enterprise System Architecture (esa)
mode or the z/Architecture mode (zarch).

The 64-bit instructions are only available with the z/Architecture mode. The
combination of ‘-m64’ and ‘-mesa’ results in a warning message.

-march=CPU
This option specifies the target processor. The following processor names are
recognized: gb (or arch3), g6, z900 (or archb), z990 (or arch6), z9-109,
z9-ec (or arch7), z10 (or arch8), z196 (or arch9), zEC12 (or arch10), z13 (or
archl1), z14 (or arch12), z15 (or arch13), and archi4.

Assembling an instruction that is not supported on the target processor results
in an error message.

The processor names starting with arch refer to the edition number in the
Principle of Operations manual. They can be used as alternate processor names
and have been added for compatibility with the IBM XL compiler.

arch3, gb and g6 cannot be used with the ‘-mzarch’ option since the
z/Architecture mode is not supported on these processor levels.

There is no arch4 option supported. arch4 matches -march=arch5 -mesa.

-mregnames
Allow symbolic names for registers.

-mno-regnames
Do not allow symbolic names for registers.

-mwarn-areg-zero
Warn whenever the operand for a base or index register has been specified but
evaluates to zero. This can indicate the misuse of general purpose register 0 as
an address register.

294 Using as

9.41.2 Special Characters

‘#’ is the line comment character.

If a ‘#’ appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 31).

The ¢;’ character can be used instead of a newline to separate statements.

9.41.3 Instruction syntax

The assembler syntax closely follows the syntax outlined in Enterprise Systems Architec-
ture/390 Principles of Operation (SA22-7201) and the z/Architecture Principles of Opera-
tion (SA22-7832).

Each instruction has two major parts, the instruction mnemonic and the instruction
operands. The instruction format varies.

9.41.3.1 Register naming

The as recognizes a number of predefined symbols for the various processor registers. A
register specification in one of the instruction formats is an unsigned integer between 0
and 15. The specific instruction and the position of the register in the instruction format
denotes the type of the register. The register symbols are prefixed with ‘%’

%rN the 16 general purpose registers, 0 <= N <= 15
%fN the 16 floating point registers, 0 <= N <= 15
%aN the 16 access registers, 0 <= N <= 15

%cN the 16 control registers, 0 <= N <= 15

%lit an alias for the general purpose register %r13

%sp an alias for the general purpose register %r15

9.41.3.2 Instruction Mnemonics

All instructions documented in the Principles of Operation are supported with the
mnemonic and order of operands as described. The instruction mnemonic identifies the
instruction format (Section 9.41.3.4 [s390 Formats], page 297) and the specific operation
code for the instruction. For example, the ‘1r’ mnemonic denotes the instruction format
‘RR’ with the operation code ‘0x18’.

The definition of the various mmnemonics follows a scheme, where the first character
usually hint at the type of the instruction:

a add instruction, for example ‘al’ for add logical 32-bit

b branch instruction, for example ‘bc’ for branch on condition

Chapter 9: Machine Dependent Features 295

0
sla, sll
sra, srl

st

compare or convert instruction, for example ‘cr’ for compare
register 32-bit

divide instruction, for example ‘d1r’ devide logical register
64-bit to 32-bit

insert instruction, for example ‘ic’ insert character

load instruction, for example ‘1tr’ load and test register
move instruction, for example ‘mvc’ move character
multiply instruction, for example ‘mh’ multiply halfword
and instruction, for example ‘ni’ and immediate

or instruction, for example ‘oc’ or character

shift left single instruction

shift right single instruction

store instruction, for example ‘stm’ store multiple

subtract instruction, for example ‘s1r’ subtract
logical 32-bit

test or translate instruction, of example ‘tm’ test under mask

exclusive or instruction, for example ‘xc’ exclusive or
character

Certain characters at the end of the mnemonic may describe a property of the instruction:

¢ the instruction uses a 8-bit character operand

f the instruction extends a 32-bit operand to 64 bit

g the operands are treated as 64-bit values

h the operand uses a 16-bit halfword operand

i the instruction uses an immediate operand

1 the instruction uses unsigned, logical operands

m the instruction uses a mask or operates on multiple values

296 Using as

r if r is the last character, the instruction operates on registers

y the instruction uses 20-bit displacements

There are many exceptions to the scheme outlined in the above lists, in particular for
the privileged instructions. For non-privileged instruction it works quite well, for example
the instruction ‘clgfr’ ¢: compare instruction, I: unsigned operands, g: 64-bit operands, f:
32- to 64-bit extension, r: register operands. The instruction compares an 64-bit value in a
register with the zero extended 32-bit value from a second register. For a complete list of
all mnemonics see appendix B in the Principles of Operation.

9.41.3.3 Instruction Operands

Instruction operands can be grouped into three classes, operands located in registers, im-
mediate operands, and operands in storage.

A register operand can be located in general, floating-point, access, or control register.
The register is identified by a four-bit field. The field containing the register operand is
called the R field.

Immediate operands are contained within the instruction and can have 8, 16 or 32
bits. The field containing the immediate operand is called the I field. Dependent on the
instruction the I field is either signed or unsigned.

A storage operand consists of an address and a length. The address of a storage operands
can be specified in any of these ways:

e The content of a single general R

e The sum of the content of a general register called the base register B plus the content
of a displacement field D

e The sum of the contents of two general registers called the index register X and the
base register B plus the content of a displacement field

e The sum of the current instruction address and a 32-bit signed immediate field multi-
plied by two.
The length of a storage operand can be:
e Implied by the instruction
e Specified by a bitmask
e Specified by a four-bit or eight-bit length field L

e Specified by the content of a general register
The notation for storage operand addresses formed from multiple fields is as follows:

Dn (Bn) the address for operand number n is formed from the content of general register
Bn called the base register and the displacement field Dn.

Dn (Xn,Bn)
the address for operand number n is formed from the content of general register
Xn called the index register, general register Bn called the base register and the
displacement field Dn.

Chapter 9: Machine Dependent Features 297

Dn(Ln,Bn)
the address for operand number n is formed from the content of general register
Bn called the base register and the displacement field Dn. The length of the
operand n is specified by the field Ln.

The base registers Bn and the index registers Xn of a storage operand can be skipped.
If Bn and Xn are skipped, a zero will be stored to the operand field. The notation changes
as follows:

full notation short notation
Dn(0,Bn) Dn(Bn)
Dn(0,0) Dn

Dn(0) Dn

Dn(Ln,0) Dn(Ln)

9.41.3.4 Instruction Formats

The Principles of Operation manuals lists 26 instruction formats where some of the formats
have multiple variants. For the ‘.insn’ pseudo directive the assembler recognizes some of
the formats. Typically, the most general variant of the instruction format is used by the
‘.insn’ directive.

The following table lists the abbreviations used in the table of instruction formats:
OpCode / OpCd Part of the op code.

Bx Base register number for operand x.

Dx Displacement for operand x.

DLx Displacement lower 12 bits for operand x.
DHx Displacement higher 8-bits for operand x.
Rx Register number for operand x.

Xx Index register number for operand x.

Ix Signed immediate for operand x.

Ux Unsigned immediate for operand x.

An instruction is two, four, or six bytes in length and must be aligned on a 2 byte
boundary. The first two bits of the instruction specify the length of the instruction, 00

298 Using as

indicates a two byte instruction, 01 and 10 indicates a four byte instruction, and 11 indicates
a six byte instruction.

The following table lists the s390 instruction formats that are available with the ‘. insn’
pseudo directive:

E format
Fomm - +
[OpCode |
Fommm - +
0 15
RI format: <insn> R1,I2
e e +
| OpCode | R1 |OpCdl 12
fomm - e o +
0 8 12 16 31
RIE format: <insn> R1,R3,I2
tomm— e fomm o +
| OpCode | R1 | R3 | 12 |////////1 OpCode |
e e t e o +
0 8 12 16 32 40 47
RIL format: <insn> R1,I2
fomm - e s i L e e +
| OpCode | R1 |OpCdl 12 I
tomm— s ettt +
0 8 12 16 47
RILU format: <insn> R1,U2
o e B e e +
| OpCode | R1 |0pCdl U2 |
fomm - e s St +
0 8 12 16 47
RIS format: <insn> R1,I2,M3,D4(B4)
o e e tomm o +
| OpCode | R1 | M3 | B4 | D4 | I2 | Opcode |
e e t e o o +
0 8 12 16 20 32 36 47
RR format: <insn> R1,R2
fomm - Fo——
| OpCode | R1 | R2 |
tomm— e
0 8 12 15
RRE format: <insn> R1,R2
et o ot ————+
I OpCode \////////1 R1 | R2 |

Fom o o+

Chapter 9: Machine Dependent Features 299

0 16 24 28 31
RRF format: <insn> R1,R2,R3,M4
it e A
| OpCode | R3 | M4 | R1 | R2 |
fom - et e s
0 16 20 24 28 31
RRS format: <insn> R1,R2,M3,D4(B4)
fommm et e oo m e +
| OpCode | R1 | R3 | B4 | D4 | M3 |////| OpCode |
Fommm - e it e +
0 8 12 16 20 32 36 40 47
RS format: <insn> R1,R3,D2(B2)
fomm— - St S e e +
| OpCode | R1 | R3 | B2 | D2 I
o e +
0 8 12 16 20 31
RSE format: <insn> R1,R3,D2(B2)
Fo—mm - e et pommm - o +
| OpCode | R1 | R3 | B2 | D2 |////////1 0OpCode |
fommm Tt S B fommm tom +
0 8 12 16 20 32 40 47
RSI format: <insn> R1,R3,I2
pommm e it e e e e +
| OpCode | R1 | R3 | 12 |
pommm - e +
0 8 12 16 a7
RSY format: <insn> R1,R3,D2(B2)
fomm— s S T fomm— to— - +
| OpCode | R1 | R3 | B2 | DL2 | DH2 | OpCode |
Fmmmm e e pmmmm pom +
0 8 12 16 20 32 40 47
RX format: <insn> R1,D2(X2,B2)
Fo—mm - e +
| OpCode | R1 | X2 | B2 | D2 |
fommm Tt e it L +
0 8 12 16 20 31
RXE format: <insn> R1,D2(X2,B2)
pommm e et pommm pommm +
| OpCode | R1 | X2 | B2 | D2 |////////1 OpCode |
pommm - e Fommm - fo— - +
0 8 12 16 20 32 40 a7

RXF format: <insn> R1,R3,D2(X2,B2)
O s e s ST B +

300
| OpCode | R3 | X2 | B2 | D2 | R1 |///| OpCode |
Fm————— s T e B s e B +
0 8 12 16 20 32 36 40 a7
RXY format: <insn> R1,D2(X2,B2)
e s e e e e +
| OpCode | R1 | X2 | B2 | DL2 | DH2 | OpCode |
o s T e o e +
0 8 12 16 20 32 36 40 a7
S format: <insn> D2(B2)
e B +
| OpCode | B2 | D2 |
o e +
0 16 20 31
SI format: <insn> D1(B1),I2
o o B TR +
| OpCode | 12 | B1 | D1 |
o o B +
0 8 16 20 31
SIY format: <insn> D1(B1),U2
fmm———— fmm————— e e o —————— +
| OpCode | I2 | B1 | DL1 | DH1 | OpCode |
o ——— o e o e +
0 8 16 20 32 36 40 47
SIL format: <insn> D1(B1),I2
e B e +
| OpCode | B1 | D1 | 12
o e e +
0 16 20 32 47
SS format: <insn> D1(R1,B1),D2(B3),R3
O s e s T +
| OpCode | R1 | R3 | Bl | D1 | B2 | D2 |
o s T e e +
0 8 12 16 20 32 36 a7
SSE format: <insn> D1(B1) ,D2(B2)
e B s T +
I OpCode | B1 | D1 | B2 | D2 |
o B s s T T +
0 8 12 16 20 32 36 47
SSF format: <insn> D1(B1),D2(B2),R3
o s T e e e +
| OpCode | R3 |0pCd| B1 | D1 | B2 | D2 |
fmm———— s S fmm +

0 8 12 16 20

32 36 47

Using as

Chapter 9: Machine Dependent Features 301

For the complete list of all instruction format variants see the Principles of Operation
manuals.

9.41.3.5 Instruction Aliases

A specific bit pattern can have multiple mnemonics, for example the bit pattern
‘0xa7000000’ has the mnemonics ‘tmh’ and ‘tmlh’. In addition, there are a number of
mnemonics recognized by as that are not present in the Principles of Operation. These
are the short forms of the branch instructions, where the condition code mask operand is
encoded in the mnemonic. This is relevant for the branch instructions, the compare and
branch instructions, and the compare and trap instructions.

For the branch instructions there are 20 condition code strings that can be used as part
of the mnemonic in place of a mask operand in the instruction format:

instruction short form

ber M1,R2 b<m>r R2

be M1,D2(X2,B2) b<m> D2(X2,B2)
brc M1,I2 j<m> 12

brcl M1,12 jg<m> 12

In the mnemonic for a branch instruction the condition code string <m> can be any of
the following:

0 jump on overflow / if ones
h jump on A high

) jump on plus

nle jump on not low or equal
1 jump on A low

m jump on minus

nhe jump on not high or equal
lh jump on low or high

ne jump on A not equal B

nz jump on not zero / if not zeros

302 Using as

e jump on A equal B

z jump on zero / if zeroes

nlh jump on not low or high

he jump on high or equal

nl jump on A not low

nm jump on not minus / if not mixed
le jump on low or equal

nh jump on A not high

np jump on not plus

no jump on not overflow / if not ones

For the compare and branch, and compare and trap instructions there are 12 condition
code strings that can be used as part of the mnemonic in place of a mask operand in the
instruction format:

instruction short form

crcb R1,R2,M3,D4(B4) crb<m> R1,R2,D4(B4)
cerb R1,R2,M3,D4(B4) cgrb<m> R1,R2,D4(B4)
crj RI1,R2,M3,14 cri<m> R1,R2,14

cgrji RI1,R2,M3,14 cgri<m> RI1,R214

cib R1,12,M3,D4(B4) cib<m> R1,12,D4(B4)
cgib R1,12)M3,D4(B4) cgib<m> R1,12,D4(B4)
cij R1,12,M3,14 cij<m> R1,12,14

cgij R1,12,M3,14 cgij<m> RI1,12,14

crt R1,R2,M3 crt<m> R1,R2

cgrt R1,R2,M3 cgrt<m> RI1,R2

Chapter 9: Machine Dependent Features

cit RI1,I12,M3

cgit R1,12,M3

clrb R1,R2,M3,D4(B4)
clgrb R1,R2,M3,D4(B4)
clrj R1,R2,M3,l4

clgrj R1,R2,M3.,14

clib R1,12,M3,D4(B4)
clgib R1,I12,M3,D4(B4)
clij RI1,I2,M3,14

clgij R1,12,M3,14

clrt R1,R2,M3

clgrt R1,R2,M3

clfit R1,12,M3

clgit R1,12,M3

303

cit<m> R1,I2
cgit<m> R1,I2
clrb<m> R1,R2,D4(B4)
clgrb<m> R1,R2,D4(B4)
clrj<m> RI1,R2,I4
clgrj<m> R1,R2,14
clib<m> R1,12,D4(B4)
clgib<m> R1,12,D4(B4)
clijgm> RI1,12,14
clgij<m> R1,12,14
clrt<m> RI1,R2
clgrt<m> R1,R2
clfit<m> R1,12

clgit<m> R1,I12

In the mnemonic for a compare and branch and compare and trap instruction the con-
dition code string <m> can be any of the following;:

h jump on A high

nle jump on not low or equal
1 jump on A low

nhe jump on not high or equal
ne jump on A not equal B

lh jump on low or high

e jump on A equal B

nlh jump on not low or high

304 Using as

nl jump on A not low
he jump on high or equal
nh jump on A not high

le jump on low or equal

9.41.3.6 Instruction Operand Modifier

If a symbol modifier is attached to a symbol in an expression for an instruction operand
field, the symbol term is replaced with a reference to an object in the global offset
table (GOT) or the procedure linkage table (PLT). The following expressions are
allowed: ‘symbol@modifier + constant’, ‘symbol@modifier + label + constant’, and
‘symbol@modifier - label + constant’. The term ‘symbol’ is the symbol that will be
entered into the GOT or PLT, ‘label’ is a local label, and ‘constant’ is an arbitrary
expression that the assembler can evaluate to a constant value.

The term ‘(symbol + constantl)@modifier +/- label + constant2’ is also accepted
but a warning message is printed and the term is converted to ‘symbol@modifier +/-
label + constantl + constant2’.

Qgot

Qgot12 The @got modifier can be used for displacement fields, 16-bit immediate fields
and 32-bit pc-relative immediate fields. The @got12 modifier is synonym to
@got. The symbol is added to the GOT. For displacement fields and 16-bit
immediate fields the symbol term is replaced with the offset from the start of
the GOT to the GOT slot for the symbol. For a 32-bit pc-relative field the
pec-relative offset to the GOT slot from the current instruction address is used.

@gotent The Qgotent modifier can be used for 32-bit pc-relative immediate fields. The
symbol is added to the GOT and the symbol term is replaced with the pc-
relative offset from the current instruction to the GOT slot for the symbol.

@gotoff The @gotoff modifier can be used for 16-bit immediate fields. The symbol term
is replaced with the offset from the start of the GOT to the address of the
symbol.

@gotplt The @Qgotplt modifier can be used for displacement fields, 16-bit immediate
fields, and 32-bit pc-relative immediate fields. A procedure linkage table entry
is generated for the symbol and a jump slot for the symbol is added to the GOT.
For displacement fields and 16-bit immediate fields the symbol term is replaced
with the offset from the start of the GOT to the jump slot for the symbol. For
a 32-bit pc-relative field the pc-relative offset to the jump slot from the current
instruction address is used.

@plt The @plt modifier can be used for 16-bit and 32-bit pc-relative immediate fields.
A procedure linkage table entry is generated for the symbol. The symbol term
is replaced with the relative offset from the current instruction to the PLT entry
for the symbol.

Chapter 9: Machine Dependent Features 305

@pltoff The @pltoff modifier can be used for 16-bit immediate fields. The symbol term
is replaced with the offset from the start of the PLT to the address of the
symbol.

@gotntpoff
The @gotntpoff modifier can be used for displacement fields. The symbol is
added to the static TLS block and the negated offset to the symbol in the
static TLS block is added to the GOT. The symbol term is replaced with the
offset to the GOT slot from the start of the GOT.

Q@indntpoff
The @Qindntpoff modifier can be used for 32-bit pc-relative immediate fields. The
symbol is added to the static TLS block and the negated offset to the symbol
in the static TLS block is added to the GOT. The symbol term is replaced with
the pc-relative offset to the GOT slot from the current instruction address.

For more information about the thread local storage modifiers ‘gotntpoff’ and
‘indntpoff’ see the ELF extension documentation ‘ELF Handling For Thread-Local
Storage’.

9.41.3.7 Instruction Marker

The thread local storage instruction markers are used by the linker to perform code opti-
mization.

:tls_load
The :tls_load marker is used to flag the load instruction in the initial exec TLS

model that retrieves the offset from the thread pointer to a thread local storage
variable from the GOT.

:tls_gdcall
The :tls_gdcall marker is used to flag the branch-and-save instruction to the
__tls_get_offset function in the global dynamic TLS model.

:tls_ldcall
The :tls_ldcall marker is used to flag the branch-and-save instruction to the
__tls_get_offset function in the local dynamic TLS model.

For more information about the thread local storage instruction marker and the linker
optimizations see the ELF extension documentation ‘ELF Handling For Thread-Local
Storage’.

9.41.3.8 Literal Pool Entries

A literal pool is a collection of values. To access the values a pointer to the literal pool is
loaded to a register, the literal pool register. Usually, register %r13 is used as the literal
pool register (Section 9.41.3.1 [s390 Register|, page 294). Literal pool entries are created
by adding the suffix :lit1, :lit2, :1it4, or :1it8 to the end of an expression for an instruction
operand. The expression is added to the literal pool and the operand is replaced with the
offset to the literal in the literal pool.

:1litl The literal pool entry is created as an 8-bit value. An operand modifier must
not be used for the original expression.

306

:1it2

:1it4

:1it8

Using as

The literal pool entry is created as a 16 bit value. The operand modifier Qgot
may be used in the original expression. The term ‘x@got:1it2’ will put the got
offset for the global symbol x to the literal pool as 16 bit value.

The literal pool entry is created as a 32-bit value. The operand modifier Qgot
and @plt may be used in the original expression. The term ‘x@got:1it4’ will
put the got offset for the global symbol x to the literal pool as a 32-bit value.
The term ‘x@plt:1it4’ will put the plt offset for the global symbol x to the
literal pool as a 32-bit value.

The literal pool entry is created as a 64-bit value. The operand modifier Qgot
and @plt may be used in the original expression. The term ‘x@got:1it8’ will
put the got offset for the global symbol x to the literal pool as a 64-bit value.
The term ‘x@plt:1it8’ will put the plt offset for the global symbol x to the
literal pool as a 64-bit value.

The assembler directive ‘.1torg’ is used to emit all literal pool entries to the current

position.

9.41.4 Assembler Directives

as for s390 supports all of the standard ELF assembler directives as outlined in the main
part of this document. Some directives have been extended and there are some additional
directives, which are only available for the s390 as.

.insn

.short
.long
.quad

This directive permits the numeric representation of an instructions and
makes the assembler insert the operands according to one of the instructions
formats for ‘.insn’ (Section 9.41.3.4 [s390 Formats], page 297). For
example, the instruction ‘1 %r1,24(%r15)’ could be written as ‘.insn
rx,0x58000000,%r1,24 (%r15)’ .

This directive places one or more 16-bit (.short), 32-bit (.long), or 64-bit
(.quad) values into the current section. If an ELF or TLS modifier is used
only the following expressions are allowed: ‘symbol@modifier + constant’,
‘symbol@modifier + label + constant’, and ‘symbol@modifier - label +
constant’. The following modifiers are available:

QGgot

Q@got12 The @got modifier can be used for .short, .long and .quad. The
@got12 modifier is synonym to @Qgot. The symbol is added to the
GOT. The symbol term is replaced with offset from the start of the
GOT to the GOT slot for the symbol.

@gotoff The @gotoff modifier can be used for .short, .long and .quad. The
symbol term is replaced with the offset from the start of the GOT
to the address of the symbol.

@gotplt The @Qgotplt modifier can be used for .long and .quad. A procedure
linkage table entry is generated for the symbol and a jump slot for
the symbol is added to the GOT. The symbol term is replaced with
the offset from the start of the GOT to the jump slot for the symbol.

Chapter 9: Machine Dependent Features 307

.ltorg

@plt The @plt modifier can be used for .long and .quad. A procedure
linkage table entry us generated for the symbol. The symbol term
is replaced with the address of the PLT entry for the symbol.

@pltoff The @pltoff modifier can be used for .short, .long and .quad. The
symbol term is replaced with the offset from the start of the PLT
to the address of the symbol.

@tlsgd

@tlsldm The @tlsgd and @tlsldm modifier can be used for .long and .quad.
A tls_index structure for the symbol is added to the GOT. The
symbol term is replaced with the offset from the start of the GOT
to the tls_index structure.

@gotntpoff

@indntpoff
The @Qgotntpoff and @indntpoff modifier can be used for .long and
.quad. The symbol is added to the static TLS block and the negated
offset to the symbol in the static TLS block is added to the GOT.
For @Qgotntpoff the symbol term is replaced with the offset from
the start of the GOT to the GOT slot, for @Qindntpoff the symbol
term is replaced with the address of the GOT slot.

@dtpoff The @Qdtpoff modifier can be used for .long and .quad. The symbol
term is replaced with the offset of the symbol relative to the start
of the TLS block it is contained in.

@ntpoff The @ntpoff modifier can be used for .long and .quad. The symbol
term is replaced with the offset of the symbol relative to the TCB
pointer.

For more information about the thread local storage modifiers see the ELF
extension documentation ‘ELF Handling For Thread-Local Storage’.

This directive causes the current contents of the literal pool to be dumped to
the current location (Section 9.41.3.8 [s390 Literal Pool Entries|, page 305).

.machine STRING[+EXTENSION] ...

This directive allows changing the machine for which code is generated. string
may be any of the -march= selection options, or push, or pop. .machine push
saves the currently selected cpu, which may be restored with .machine pop. Be
aware that the cpu string has to be put into double quotes in case it contains
characters not appropriate for identifiers. So you have to write "z9-109" instead
of just z9-109. Extensions can be specified after the cpu name, separated by
plus characters. Valid extensions are: htm, nohtm, vx, novx. They extend the
basic instruction set with features from a higher cpu level, or remove support
for a feature from the given cpu level.

Example: z13+nohtm allows all instructions of the z13 cpu except instructions
from the HTM facility.

.machinemode string

This directive allows one to change the architecture mode for which code is
being generated. string may be esa, zarch, zarch_nohighgprs, push, or pop.

308 Using as

.machinemode zarch_nohighgprs can be used to prevent the highgprs flag
from being set in the ELF header of the output file. This is useful in situations
where the code is gated with a runtime check which makes sure that the code is
only executed on kernels providing the highgprs feature. .machinemode push
saves the currently selected mode, which may be restored with .machinemode

pop.
9.41.5 Floating Point

The assembler recognizes both the IEEE floating-point instruction and the hexadecimal
floating-point instructions. The floating-point constructors ‘.float’, ‘.single’, and
‘.double’ always emit the IEEE format. To assemble hexadecimal floating-point constants
the ‘.long’ and ‘.quad’ directives must be used.

Chapter 9: Machine Dependent Features 309

9.42 SCORE Dependent Features

9.42.1 Options
The following table lists all available SCORE options.

-G num This option sets the largest size of an object that can be referenced implicitly
with the gp register. The default value is 8.

-EB Assemble code for a big-endian cpu

-EL Assemble code for a little-endian cpu

-FIXDD Assemble code for fix data dependency

-NWARN Assemble code for no warning message for fix data dependency
-SCORE5 Assemble code for target is SCORES

-SCORE5U Assemble code for target is SCORE5U

-SCORE7 Assemble code for target is SCORET7, this is default setting
-SCORE3 Assemble code for target is SCORE3

-march=score?
Assemble code for target is SCORET7, this is default setting

-march=score3

Assemble code for target is SCORE3
-USE_R1 Assemble code for no warning message when using temp register rl

-KPIC Generate code for PIC. This option tells the assembler to generate score
position-independent macro expansions. It also tells the assembler to mark the
output file as PIC.

-00 Assembler will not perform any optimizations

-V Sunplus release version

9.42.2 SCORE Assembler Directives

A number of assembler directives are available for SCORE. The following table is far from
complete.

.set nwarn
Let the assembler not to generate warnings if the source machine language
instructions happen data dependency.

.set fixdd
Let the assembler to insert bubbles (32 bit nop instruction / 16 bit nop! In-
struction) if the source machine language instructions happen data dependency.

.set nofixdd
Let the assembler to generate warnings if the source machine language instruc-
tions happen data dependency. (Default)

.set rl Let the assembler not to generate warnings if the source program uses rl. allow
user to use rl

310 Using as

set norl Let the assembler to generate warnings if the source program uses rl. (Default)
.sdata Tell the assembler to add subsequent data into the sdata section
.rdata Tell the assembler to add subsequent data into the rdata section

.frame "frame-register", "offset", "return-pc-register"
Describe a stack frame. "frame-register" is the frame register, "offset" is the dis-
tance from the frame register to the virtual frame pointer, "return-pc-register"
is the return program register. You must use ".ent" before ".frame" and only
one ".frame" can be used per ".ent".

.mask "bitmask", "frameoffset"
Indicate which of the integer registers are saved in the current function’s stack
frame, this is for the debugger to explain the frame chain.

.ent "proc-name"
Set the beginning of the procedure "proc_name". Use this directive when you
want to generate information for the debugger.

.end proc-name
Set the end of a procedure. Use this directive to generate information for the
debugger.

.bss Switch the destination of following statements into the bss section, which is
used for data that is uninitialized anywhere.

9.42.3 SCORE Syntax
9.42.3.1 Special Characters

The presence of a ‘#’ appearing anywhere on a line indicates the start of a comment that
extends to the end of that line.

If a ‘#’ appears as the first character of a line then the whole line is treated as a com-
ment, but in this case the line can also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 31).

The ¢;’ character can be used to separate statements on the same line.

Chapter 9: Machine Dependent Features 311

9.43 Renesas / SuperH SH Dependent Features

9.43.1 Options

as has following command-line options for the Renesas (formerly Hitachi) / SuperH SH
family.

--little Generate little endian code.
--big Generate big endian code.
--relax Alter jump instructions for long displacements.

--small Align sections to 4 byte boundaries, not 16.

--dsp Enable sh-dsp insns, and disable sh3e / sh4 insns.

--renesas
Disable optimization with section symbol for compatibility with Renesas as-
sembler.

--allow-reg-prefix
Allow ’$’ as a register name prefix.

--fdpic Generate an FDPIC object file.

--isa=sh4 | sh4a
Specify the sh4 or sh4a instruction set.

--isa=dsp
Enable sh-dsp insns, and disable sh3e / sh4 insns.

--isa=fp Enable sh2e, sh3e, sh4, and sh4a insn sets.

--isa=all
Enable shl, sh2, sh2e, sh3, sh3e, sh4, sh4a, and sh-dsp insn sets.

-h-tick-hex
Support H’00 style hex constants in addition to 0x00 style.

9.43.2 Syntax
9.43.2.1 Special Characters

‘17 is the line comment character.
You can use ‘;’ instead of a newline to separate statements.

If a ‘#’ appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 31).

Since ‘$’ has no special meaning, you may use it in symbol names.

312 Using as

9.43.2.2 Register Names
You can use the predefined symbols ‘r0’, ‘r1’, ‘r2’, ‘r3’, ‘rd’, ‘rb, ‘ré’, ‘r7’, ‘r8, ‘r9’,
‘r10’, ‘r11’, ‘r12’, ‘r13’, ‘r14’, and ‘r15’ to refer to the SH registers.

The SH also has these control registers:

pr procedure register (holds return address)

pc program counter

mach

macl high and low multiply accumulator registers
sr status register

gbr global base register

vbr vector base register (for interrupt vectors)

9.43.2.3 Addressing Modes

as understands the following addressing modes for the SH. Rn in the following refers to any
of the numbered registers, but not the control registers.

Rn Register direct

©@Rn Register indirect

©@-Rn Register indirect with pre-decrement
@Rn+ Register indirect with post-increment

@(disp, Rn)
Register indirect with displacement

@(RO, Rn) Register indexed

@(disp, GBR)
GBR offset

@(RO, GBR)
GBR indexed

addr

@(disp, PC)
PC relative address (for branch or for addressing memory). The as implemen-
tation allows you to use the simpler form addr anywhere a PC relative address
is called for; the alternate form is supported for compatibility with other as-
semblers.

#imm Immediate data

9.43.3 Floating Point
SH2E, SH3E and SH4 groups have on-chip floating-point unit (FPU). Other SH groups can
use .float directive to generate IEEE floating-point numbers.

SH2E and SH3E support single-precision floating point calculations as well as entirely
PCAPI compatible emulation of double-precision floating point calculations. SH2E and

Chapter 9: Machine Dependent Features 313

SH3E instructions are a subset of the floating point calculations conforming to the IEEE754
standard.

In addition to single-precision and double-precision floating-point operation capability,
the on-chip FPU of SH4 has a 128-bit graphic engine that enables 32-bit floating-point
data to be processed 128 bits at a time. It also supports 4 * 4 array operations and inner
product operations. Also, a superscalar architecture is employed that enables simultaneous
execution of two instructions (including FPU instructions), providing performance of up to
twice that of conventional architectures at the same frequency.

9.43.4 SH Machine Directives

uaword

ualong

uaquad as will issue a warning when a misaligned .word, .long, or .quad directive is
used. You may use .uaword, .ualong, or .uaquad to indicate that the value is
intentionally misaligned.

9.43.5 Opcodes

For detailed information on the SH machine instruction set, see SH-Microcomputer User’s
Manual (Renesas) or SH-4 32-bit CPU Core Architecture (SuperH) and SuperH (SH) 64-Bit
RISC Series (SuperH).

as implements all the standard SH opcodes. No additional pseudo-instructions are
needed on this family. Note, however, that because as supports a simpler form of PC-
relative addressing, you may simply write (for example)

mov.l bar,r0O

where other assemblers might require an explicit displacement to bar from the program
counter:

mov.l @(disp, PC)

314 Using as

9.44 SPARC Dependent Features

9.44.1 Options

The SPARC chip family includes several successive versions, using the same core instruction
set, but including a few additional instructions at each version. There are exceptions to
this however. For details on what instructions each variant supports, please see the chip’s
architecture reference manual.

By default, as assumes the core instruction set (SPARC v6), but “bumps” the archi-
tecture level as needed: it switches to successively higher architectures as it encounters
instructions that only exist in the higher levels.

If not configured for SPARC v9 (sparc64-*-*) GAS will not bump past sparclite by
default, an option must be passed to enable the v9 instructions.

GAS treats sparclite as being compatible with v8, unless an architecture is explicitly
requested. SPARC v9 is always incompatible with sparclite.

-Av6 | -Av7 | -Av8 | -Aleon | -Asparclet | -Asparclite

-Av8plus | -Av8plusa | -Av8plusb | -Av8plusc | —-Av8plusd |

-Av8plusv | -Av8plusm | -Av8plusm8

-Av9 | -Av9a | -Av9b | -Av9c | -Av9d | -Av9e | -Av9v | -AvOm | -AvIm8

-Asparc | -Asparcvis | -Asparcvis2 | -Asparcfmaf | -Asparcima

-Asparcvis3 | -Asparcvis3r | -Asparch | -Asparc6
Use one of the ‘~A’ options to select one of the SPARC architectures explicitly.
If you select an architecture explicitly, as reports a fatal error if it encounters
an instruction or feature requiring an incompatible or higher level.
‘-Av8plus’, ‘-Av8plusa’, ‘-Av8plusb’, ‘-Av8plusc’, ‘-Av8plusd’, and
‘~Av8plusv’ select a 32 bit environment.
‘-Av9’, ‘-=Av9a’, ‘-AvIb’, ‘-Av9c’, ‘-Av9d’, ‘-Av9e’, ‘-AvIv’ and ‘-Av9m’ select
a 64 bit environment and are not available unless GAS is explicitly configured
with 64 bit environment support.

‘~Av8plusa’ and ‘-Av9a’ enable the SPARC V9 instruction set with Ultra-
SPARC VIS 1.0 extensions.

‘~Av8plusb’ and ‘-~Av9b’ enable the UltraSPARC VIS 2.0 instructions, as well
as the instructions enabled by ‘-~Av8plusa’ and ‘-Av9a’.
‘~Av8plusc’ and ‘-Av9c’ enable the UltraSPARC Niagara instructions, as well
as the instructions enabled by ‘-Av8plusb’ and ‘-Av9b’.

‘~Av8plusd’ and ‘-Av9d’ enable the floating point fused multiply-add, VIS
3.0, and HPC extension instructions, as well as the instructions enabled by
‘~Av8plusc’ and ‘-Av9c’.

‘-Av8pluse’ and ‘-Av9e’ enable the cryptographic instructions, as well as the
instructions enabled by ‘~Av8plusd’ and ‘-Av9d’.

‘~Av8plusv’ and ‘~Av9v’ enable floating point unfused multiply-add, and integer
multiply-add, as well as the instructions enabled by ‘-~Av8pluse’ and ‘-Av9e’.
‘~Av8plusm’ and ‘-Av9m’ enable the VIS 4.0, subtract extended, xmpmul,
xmontmul and xmontsqr instructions, as well as the instructions enabled by
‘~Av8plusv’ and ‘-Av9v’.

Chapter 9: Machine Dependent Features 315

‘~Av8plusm8’ and ‘-AvOm8’ enable the instructions introduced in the Oracle
SPARC Architecture 2017 and the MS8 processor, as well as the instructions
enabled by ‘-~Av8plusm’ and ‘-AvOm’.

‘~Asparc’ specifies a v9 environment. It is equivalent to ‘-Av9’ if the word size
is 64-bit, and ‘-~Av8plus’ otherwise.

‘~Asparcvis’ specifies a v9a environment. It is equivalent to ‘~Av9a’ if the word
size is 64-bit, and ‘-Av8plusa’ otherwise.

‘~Asparcvis2’ specifies a v9b environment. It is equivalent to ‘~Av9b’ if the
word size is 64-bit, and ‘~Av8plusb’ otherwise.

‘-Asparcfmaf’ specifies a v9b environment with the floating point fused
multiply-add instructions enabled.

‘-Asparcima’ specifies a vOb environment with the integer multiply-add instruc-
tions enabled.

‘-Asparcvis3’ specifies a vOb environment with the VIS 3.0, HPC , and floating
point fused multiply-add instructions enabled.

‘~Asparcvis3r’ specifies a v9b environment with the VIS 3.0, HPC, and floating
point unfused multiply-add instructions enabled.

‘~Asparch’ is equivalent to ‘~Av9m’.

‘-Asparc6’ is equivalent to ‘~Av9m8’.

-xarch=v8plus | -xarch=v8plusa | -xarch=v8plusb | -xarch=v8plusc
-xarch=v8plusd | -xarch=v8plusv | -xarch=v8plusm
-xarch=v8plusm8 | -xarch=v9 | -xarch=v9a | -xarch=v9b
-xarch=v9c | -xarch=v9d | -xarch=v9e | -xarch=v9v

-xarch=v9m | -xarch=vOm8

-xarch=sparc | -xarch=sparcvis | -xarch=sparcvis2
-xarch=sparcfmaf | -xarch=sparcima | -xarch=sparcvis3
-xarch=sparcvis3r | -xarch=sparc5 | -xarch=sparc6

—bump

-32 | -64

For compatibility with the SunOS v9 assembler. These options are equiva-
lent to -Av8plus, -Av8plusa, -Av8plusb, -Av8plusc, -Av8plusd, -Av8plusv, -
Av8plusm, -Av8plusm8, -Av9, -Av9a, -Av9b, -Av9c, -Av9d, -Av9e, -AvIv,
-AvI9m, -Av9mS, -Asparc, -Asparcvis, -Asparcvis2, -Asparcfmaf, -Asparcima,
-Asparcvis3, -Asparcvis3r, -Asparch and -Asparcb respectively.

Warn whenever it is necessary to switch to another level. If an architecture level
is explicitly requested, GAS will not issue warnings until that level is reached,
and will then bump the level as required (except between incompatible levels).

Select the word size, either 32 bits or 64 bits. These options are only available
with the ELF object file format, and require that the necessary BFD support
has been included.

--dcti-couples-detect

Warn if a DCTI (delayed control transfer instruction) couple is found when
generating code for a variant of the SPARC architecture in which the execution
of the couple is unpredictable, or very slow. This is disabled by default.

316 Using as

9.44.2 Enforcing aligned data

SPARC GAS normally permits data to be misaligned. For example, it permits the .long
pseudo-op to be used on a byte boundary. However, the native SunOS assemblers issue an
error when they see misaligned data.

You can use the -—enforce-aligned-data option to make SPARC GAS also issue an
error about misaligned data, just as the SunOS assemblers do.

The --enforce-aligned-data option is not the default because gcc issues misaligned
data pseudo-ops when it initializes certain packed data structures (structures defined using
the packed attribute). You may have to assemble with GAS in order to initialize packed
data structures in your own code.

9.44.3 Sparc Syntax

The assembler syntax closely follows The Sparc Architecture Manual, versions 8 and 9, as
well as most extensions defined by Sun for their UltraSPARC and Niagara line of processors.

9.44.3.1 Special Characters
A ‘v’ character appearing anywhere on a line indicates the start of a comment that extends
to the end of that line.

If a ‘#’ appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 31).

‘;7 can be used instead of a newline to separate statements.

9.44.3.2 Register Names

The Sparc integer register file is broken down into global, outgoing, local, and incoming,.

e The 8 global registers are referred to as ‘%gn’.

e The 8 outgoing registers are referred to as ‘%on’.

e The 8 local registers are referred to as ‘%1n’.

e The 8 incoming registers are referred to as ‘%in’.

e The frame pointer register ‘%16’ can be referenced using the alias ‘%fp’.

e The stack pointer register ‘%06’ can be referenced using the alias ‘%sp’.

Floating point registers are simply referred to as ‘%fn’. When assembling for pre-V9,

only 32 floating point registers are available. For V9 and later there are 64, but there are
restrictions when referencing the upper 32 registers. They can only be accessed as double

or quad, and thus only even or quad numbered accesses are allowed. For example, ‘%£34’
is a legal floating point register, but ‘%£35’ is not.

Floating point registers accessed as double can also be referred using the ‘%dn’ notation,
where n is even. Similarly, floating point registers accessed as quad can be referred using
the ‘%qn’ notation, where n is a multiple of 4. For example, ‘%f4’ can be denoted as both
‘%d4’ and ‘%g4’. On the other hand, ‘%£2’ can be denoted as ‘%d2’ but not as ‘%q2’.

Certain V9 instructions allow access to ancillary state registers. Most simply they can
be referred to as ‘4jasrn’ where n can be from 16 to 31. However, there are some aliases
defined to reference ASR registers defined for various UltraSPARC processors:

Chapter 9: Machine Dependent Features 317

e The tick compare register is referred to as ‘%tick_cmpr’.

e The system tick register is referred to as ‘Y%stick’. An alias, ‘Ysys_tick’, exists but is
deprecated and should not be used by new software.

e The system tick compare register is referred to as ‘Ystick_cmpr’. An alias,
‘hsys_tick_cmpr’, exists but is deprecated and should not be used by new software.

e The software interrupt register is referred to as ‘%softint’.

e The set software interrupt register is referred to as ‘/%set_softint’. The mnemonic
‘hsoftint_set’ is provided as an alias.

e The clear software interrupt register is referred to as ‘%yclear_softint’. The mnemonic
‘hsoftint_clear’ is provided as an alias.

e The performance instrumentation counters register is referred to as ‘%pic’.
e The performance control register is referred to as ‘%pcr’.
e The graphics status register is referred to as ‘Ygsr’.
e The V9 dispatch control register is referred to as ‘%dcr’.
Various V9 branch and conditional move instructions allow specification of which set of
integer condition codes to test. These are referred to as ‘%xcc’ and ‘%icc’.

Additionally, GAS supports the so-called “natural” condition codes; these are referred
to as ‘%incc’ and reference to ‘%icc’ if the word size is 32, ‘%xcc’ if the word size is 64.

In V9, there are 4 sets of floating point condition codes which are referred to as ‘%fccn’.
Several special privileged and non-privileged registers exist:
e The V9 address space identifier register is referred to as ‘%asi’.
e The V9 restorable windows register is referred to as ‘/,canrestore’.
e The V9 savable windows register is referred to as ‘%cansave’.
e The V9 clean windows register is referred to as ‘%cleanwin’.
e The V9 current window pointer register is referred to as ‘J,cwp’.
e The floating-point queue register is referred to as ‘%fq’.
e The V8 co-processor queue register is referred to as ‘%cq’.
e The floating point status register is referred to as ‘%fsr’.
e The other windows register is referred to as ‘,otherwin’.
e The V9 program counter register is referred to as ‘%pc’.
e The V9 next program counter register is referred to as ‘Ynpc’.
e The V9 processor interrupt level register is referred to as ‘%pil’.
e The V9 processor state register is referred to as ‘Y;pstate’.
e The trap base address register is referred to as ‘%tba’.
e The V9 tick register is referred to as ‘Y%tick’.
e The V9 trap level is referred to as ‘%tl’.
e The V9 trap program counter is referred to as ‘%tpc’.
e The V9 trap next program counter is referred to as ‘Yitnpc’.
e The V9 trap state is referred to as ‘/tstate’.

318

Using as

The V9 trap type is referred to as ‘%tt’.

The V9 condition codes is referred to as ‘%ccr’.

The V9 floating-point registers state is referred to as ‘Yfprs’.
The V9 version register is referred to as ‘Y%ver’.

The V9 window state register is referred to as ‘%wstate’.
The Y register is referred to as ‘%y’.

The V8 window invalid mask register is referred to as ‘%wim’.
The V8 processor state register is referred to as ‘%psr’.

The V9 global register level register is referred to as ‘%gl’.

Several special register names exist for hypervisor mode code:

The hyperprivileged processor state register is referred to as ‘4hpstate’.

The hyperprivileged trap state register is referred to as ‘4htstate’.

The hyperprivileged interrupt pending register is referred to as ‘%hintp’.
The hyperprivileged trap base address register is referred to as ‘%htba’.

The hyperprivileged implementation version register is referred to as ‘%hver’.

The hyperprivileged system tick offset register is referred to as ‘4hstick_offset’. Note
that there is no ‘)hstick’ register, the normal ‘%stick’ is used.

The hyperprivileged system tick enable register is referred to as ‘4hstick_enable’.

The hyperprivileged system tick compare register is referred to as ‘bhstick_cmpr’.

9.44.3.3 Constants

Several Sparc instructions take an immediate operand field for which mnemonic names
exist. Two such examples are ‘membar’ and ‘prefetch’. Another example are the set of V9
memory access instruction that allow specification of an address space identifier.

The ‘membar’ instruction specifies a memory barrier that is the defined by the operand
which is a bitmask. The supported mask mnemonics are:

‘#Sync’ requests that all operations (including nonmemory reference operations) ap-
pearing prior to the membar must have been performed and the effects of any excep-
tions become visible before any instructions after the membar may be initiated. This
corresponds to membar cmask field bit 2.

‘#MemIssue’ requests that all memory reference operations appearing prior to the
membar must have been performed before any memory operation after the membar
may be initiated. This corresponds to membar cmask field bit 1.

‘#Lookaside’ requests that a store appearing prior to the membar must complete before
any load following the membar referencing the same address can be initiated. This
corresponds to membar cmask field bit 0.

‘#StoreStore’ defines that the effects of all stores appearing prior to the membar in-
struction must be visible to all processors before the effect of any stores following the
membar. Equivalent to the deprecated stbar instruction. This corresponds to membar
mmask field bit 3.

Chapter 9: Machine Dependent Features 319

e ‘#LoadStore’ defines all loads appearing prior to the membar instruction must have
been performed before the effect of any stores following the membar is visible to any
other processor. This corresponds to membar mmask field bit 2.

e ‘#StoreLoad’ defines that the effects of all stores appearing prior to the membar in-
struction must be visible to all processors before loads following the membar may be
performed. This corresponds to membar mmask field bit 1.

e ‘#LoadLload’ defines that all loads appearing prior to the membar instruction must have
been performed before any loads following the membar may be performed. This corre-
sponds to membar mmask field bit 0.

These values can be ored together, for example:

membar #Sync
membar #Storeload | #LoadLoad
membar #StorelLoad | #StoreStore

The prefetch and prefetcha instructions take a prefetch function code. The following
prefetch function code constant mnemonics are available:

e ‘#n_reads’ requests a prefetch for several reads, and corresponds to a prefetch function
code of 0.

‘#one_read’ requests a prefetch for one read, and corresponds to a prefetch function
code of 1.

‘#n_writes’ requests a prefetch for several writes (and possibly reads), and corresponds
to a prefetch function code of 2.

‘#one_write’ requests a prefetch for one write, and corresponds to a prefetch function
code of 3.

‘#page’ requests a prefetch page, and corresponds to a prefetch function code of 4.

‘#invalidate’ requests a prefetch invalidate, and corresponds to a prefetch function
code of 16.

‘#unified’ requests a prefetch to the nearest unified cache, and corresponds to a
prefetch function code of 17.

‘#n_reads_strong’ requests a strong prefetch for several reads, and corresponds to a
prefetch function code of 20.

‘#one_read_strong’ requests a strong prefetch for one read, and corresponds to a
prefetch function code of 21.

‘#n_writes_strong’ requests a strong prefetch for several writes, and corresponds to
a prefetch function code of 22.

‘#one_write_strong’ requests a strong prefetch for one write, and corresponds to a
prefetch function code of 23.

Onle one prefetch code may be specified. Here are some examples:
prefetch [%10 + %12], #one_read
prefetch [%g2 + 8], #n_writes
prefetcha [%gl] 0x8, #unified
prefetcha [/o0 + 0x10] %asi, #n_reads

320 Using as

The actual behavior of a given prefetch function code is processor specific. If a processor
does not implement a given prefetch function code, it will treat the prefetch instruction
as a nop.

For instructions that accept an immediate address space identifier, as provides many
mnemonics corresponding to V9 defined as well as UltraSPARC and Niagara extended
values. For example, ‘#ASI_P’ and ‘#ASI_BLK_INIT_QUAD_LDD_AIUS’. See the V9 and
processor specific manuals for details.

9.44.3.4 Relocations
ELF relocations are available as defined in the 32-bit and 64-bit Sparc ELF specifications.

R_SPARC_HI22 is obtained using ‘%hi’ and R_SPARC_L010 is obtained using ‘%1lo’. Like-
wise R_SPARC_HIX22 is obtained from ‘%4hix’ and R_SPARC_LOX10 is obtained using ‘%lox’.
For example:

sethi %hi(symbol), %gl
or %gl, %lo(symbol), %gl

sethi %hix(symbol), %gl
xor %gl, %lox(symbol), %gl
These “high” mnemonics extract bits 31:10 of their operand, and the “low” mnemonics
extract bits 9:0 of their operand.
V9 code model relocations can be requested as follows:

)

e R_SPARC_HH22 is requested using ‘%4hh’. It can also be generated using ‘Juhi’.

e R_SPARC_HM10 is requested using ‘%hm’. It can also be generated using ‘%ulo’.
e R_SPARC_LM22 is requested using ‘%1lm’.

e R_SPARC_H44 is requested using ‘%h44’.

e R_SPARC_M44 is requested using ‘%m44’.

e R_SPARC_L44 is requested using ‘%144’ or ‘%134’.

e R_SPARC_H34 is requested using ‘%h34’.

The ‘%134’ generates a R_SPARC_L44 relocation because it calculates the necessary value,
and therefore no explicit R_SPARC_L34 relocation needed to be created for this purpose.

The ‘%h34’ and ‘%134’ relocations are used for the abs34 code model. Here is an example
abs34 address generation sequence:

sethi %h34(symbol), %gl
sllx Y%gl, 2, %gl
or %gl, %134 (symbol), %gl

The PC relative relocation R_SPARC_PC22 can be obtained by enclosing an operand inside
of ‘%pc22’. Likewise, the R_SPARC_PC10 relocation can be obtained using ‘%pc10’. These
are mostly used when assembling PIC code. For example, the standard PIC sequence on
Sparc to get the base of the global offset table, PC relative, into a register, can be performed
as:

sethi %pc22(_GLOBAL_OFFSET_TABLE_-4), %17
add %17, %pclO(_GLOBAL_OFFSET_TABLE_+4), %17

Chapter 9: Machine Dependent Features 321

Several relocations exist to allow the link editor to potentially optimize GOT data refer-
ences. The R_SPARC_GOTDATA_OP_HIX22 relocation can obtained by enclosing an operand
inside of ‘%gdop_hix22’. The R_SPARC_GOTDATA_OP_L0X10 relocation can obtained by en-
closing an operand inside of ‘)gdop_lox10’. Likewise, R_SPARC_GOTDATA_QOP can be ob-
tained by enclosing an operand inside of ‘%gdop’. For example, assuming the GOT base is
in register %17:

sethi %gdop_hix22(symbol), %11
xor %11, %gdop_lox10(symbol), %11
1d (%17 + %111, %12, %gdop(symbol)

There are many relocations that can be requested for access to thread local storage
variables. All of the Sparc TLS mnemonics are supported:

e R_SPARC_TLS_GD_HI22 is requested using ‘%tgd_hi22’.

e R_SPARC_TLS_GD_L010 is requested using ‘%tgd_lo10’.

e R_SPARC_TLS_GD_ADD is requested using ‘%tgd_add’.
R_SPARC_TLS_GD_CALL is requested using ‘%tgd_call’.
R_SPARC_TLS_LDM_HI22 is requested using ‘%tldm_hi22’.

e R_SPARC_TLS_LDM_LO010 is requested using ‘%tldm_lo010’.
R_SPARC_TLS_LDM_ADD is requested using ‘%tldm_add’.

e R_SPARC_TLS_LDM_CALL is requested using ‘%tldm_call’.
R_SPARC_TLS_LDO_HIX22 is requested using ‘%tldo_hix22’.
R_SPARC_TLS_LDO_LOX10 is requested using ‘/%tldo_lox10’.
R_SPARC_TLS_LDO_ADD is requested using ‘%tldo_add’.
R_SPARC_TLS_IE_HIZ22 is requested using ‘%tie_hi22’.
R_SPARC_TLS_IE_LO010 is requested using ‘%tie_lo10’.
R_SPARC_TLS_IE_LD is requested using ‘%tie_1d’.
R_SPARC_TLS_IE_LDX is requested using ‘/tie_ldx’.
R_SPARC_TLS_IE_ADD is requested using ‘/tie_add’.
R_SPARC_TLS_LE_HIX22 is requested using ‘%tle_hix22’.
R_SPARC_TLS_LE_LOX10 is requested using ‘%tle_lox10’.

Here are some example TLS model sequences.
First, General Dynamic:

sethi Y%tgd_hi22(symbol), %11
add %11, %tgd_lo10(symbol), %11
add %17, %11, %00, %tgd_add(symbol)
call __tls_get_addr, %tgd_call(symbol)
nop

Local Dynamic:

sethi %tldm_hi22(symbol), %11

add %11, %tldm_lo10(symbol), %11

add w17, %11, %00, %tldm_add(symbol)
call _tls_get_addr, %tldm_call(symbol)

322 Using as

nop

sethi %tldo_hix22(symbol), %11
xor %11, Y%tldo_lox10(symbol), %11
add %00, %11, %11, %tldo_add(symbol)

Initial Exec:

sethi Y%tie_hi22(symbol), %11

add %11, %tie_lol10(symbol), %11

1d (%17 + %111, %00, %tie_ld(symbol)
add %g?, %00, %00, %tie_add(symbol)

sethi %tie_hi22(symbol), %11

add %11, %tie_lo10(symbol), %11

ldx (%17 + %111, %00, %tie_ldx(symbol)
add %g7, %00, %00, %tie_add(symbol)

And finally, Local Exec:

sethi %tle_hix22(symbol), %11
add %11, %tle_lox10(symbol), %11
add %g7, %11, %11

When assembling for 64-bit, and a secondary constant addend is specified in an address
expression that would normally generate an R_SPARC_L010 relocation, the assembler will
emit an R_SPARC_0LO10 instead.

9.44.3.5 Size Translations

Often it is desirable to write code in an operand size agnostic manner. as provides support
for this via operand size opcode translations. Translations are supported for loads, stores,
shifts, compare-and-swap atomics, and the ‘clr’ synthetic instruction.

If generating 32-bit code, as will generate the 32-bit opcode. Whereas if 64-bit code is
being generated, the 64-bit opcode will be emitted. For example 1dn will be transformed
into 1d for 32-bit code and 1dx for 64-bit code.

Here is an example meant to demonstrate all the supported opcode translations:

ldn [%00], %ol

ldna [%00] %asi, %02

stn %ol, [%o00]

stna %02, [%o0] %asi

slln %03, 3, %o3

srln Y%o4, 8, Y%o4

sran %05, 12, %05

casn [%00], %ol, %02
casna [%00] %asi, %ol, %02
clrn Y%gl

In 32-bit mode as will emit:

1d [%00], %ol
lda [%00] Y%asi, %02

Chapter 9:

st
sta
sll
srl
sra
cas
casa
clr

Machine Dependent Features 323

%ol, [%o0]

%02, [%o0] %asi

%03, 3, %03

%o4, 8, %ol

%05, 12, %05

[%00], %ol, %o2
[%00] %asi, %ol, %o2
el

And in 64-bit mode as will emit:

1ldx

ldxa
stx

stxa
sllx
srlx
srax
casx

[%00], %ol
[%00] %asi, %o2
%ol, [%o0]

%02, [%ho0] %asi
%03, 3, %03
%04, 8, %ol
%05, 12, %05
[%00], %ol, %o2

casxa [%00] %asi, %ol, %o2

clrx

el

Finally, the ‘.nword’ translating directive is supported as well. It is documented in the
section on Sparc machine directives.

9.44.4 Floating Point

The Sparc uses IEEE floating-point numbers.

9.44.5 Sparc Machine Directives

The Sparc version of as supports the following additional machine directives:

.align

.common

.half

.nword

.proc

.register

This must be followed by the desired alignment in bytes.

This must be followed by a symbol name, a positive number, and "bss". This
behaves somewhat like . comm, but the syntax is different.

This is functionally identical to .short.

On the Sparc, the .nword directive produces native word sized value, ie. if as-
sembling with -32 it is equivalent to .word, if assembling with -64 it is equivalent
to .xword.

This directive is ignored. Any text following it on the same line is also ignored.

This directive declares use of a global application or system register. It must
be followed by a register name %g2, %g3, %g6 or %g7, comma and the symbol
name for that register. If symbol name is #scratch, it is a scratch register, if it
is #ignore, it just suppresses any errors about using undeclared global register,
but does not emit any information about it into the object file. This can be
useful e.g. if you save the register before use and restore it after.

324

.reserve

.seg

.skip

.word

.xword

Using as

This must be followed by a symbol name, a positive number, and "bss". This
behaves somewhat like .1lcomm, but the syntax is different.

This must be followed by "text", "data", or "datal". It behaves like .text,
.data, or .data 1.

This is functionally identical to the .space directive.

On the Sparc, the .word directive produces 32 bit values, instead of the 16 bit
values it produces on many other machines.

On the Sparc V9 processor, the .xword directive produces 64 bit values.

Chapter 9: Machine Dependent Features 325

9.45 TIC54X Dependent Features

9.45.1 Options
The TMS320C54X version of as has a few machine-dependent options.

You can use the ‘-mfar-mode’ option to enable extended addressing mode. All addresses
will be assumed to be > 16 bits, and the appropriate relocation types will be used. This
option is equivalent to using the ‘.far_mode’ directive in the assembly code. If you do not
use the ‘-mfar-mode’ option, all references will be assumed to be 16 bits. This option may
be abbreviated to ‘-mf’.

You can use the ‘-mcpu’ option to specify a particular CPU. This option is equivalent

to using the ‘.version’ directive in the assembly code. For recognized CPU codes, see See
Section 9.45.9 [.version|, page 328. The default CPU version is ‘542’.

You can use the ‘-merrors-to-file’ option to redirect error output to a file (this pro-
vided for those deficient environments which don’t provide adequate output redirection).
This option may be abbreviated to ‘-me’.

9.45.2 Blocking

A blocked section or memory block is guaranteed not to cross the blocking boundary (usually
a page, or 128 words) if it is smaller than the blocking size, or to start on a page boundary
if it is larger than the blocking size.

9.45.3 Environment Settings

‘C54XDSP_DIR’ and ‘A_DIR’ are semicolon-separated paths which are added to the list of di-
rectories normally searched for source and include files. ‘C54XDSP_DIR’ will override ‘A_DIR’.

9.45.4 Constants Syntax

The TIC54X version of as allows the following additional constant formats, using a suffix
to indicate the radix:

Binary 000000B, 011000b
Octal 10Q, 224q
Hexadecimal 45h, OFH

9.45.5 String Substitution

A subset of allowable symbols (which we’ll call subsyms) may be assigned arbitrary string
values. This is roughly equivalent to C preprocessor #define macros. When as encounters
one of these symbols, the symbol is replaced in the input stream by its string value. Subsym
names must begin with a letter.

Subsyms may be defined using the .asg and .eval directives (See Section 9.45.9 [.asg]
page 328, See Section 9.45.9 [.evall, page 328.

Expansion is recursive until a previously encountered symbol is seen, at which point
substitution stops.

In this example, x is replaced with SYM2; SYM2 is replaced with SYM1, and SYMI1 is
replaced with x. At this point, x has already been encountered and the substitution stops.

9

326 Using as

.asg "x",SYM1

.asg "SYM1",SYM2

.asg "SYM2",x

add X,a ; final code assembled is "add x, a"

Macro parameters are converted to subsyms; a side effect of this is the normal as "\ARG’
dereferencing syntax is unnecessary. Subsyms defined within a macro will have global
scope, unless the .var directive is used to identify the subsym as a local macro variable see
Section 9.45.9 [.var], page 328.

Substitution may be forced in situations where replacement might be ambiguous by
placing colons on either side of the subsym. The following code:

.eval "10",x
LAB:X: add #x, a

When assembled becomes:
LAB10 add #10, a
Smaller parts of the string assigned to a subsym may be accessed with the following
syntax:

:symbol(char_index) :
Evaluates to a single-character string, the character at char_index.

:symbol(start,length) :
Evaluates to a substring of symbol beginning at start with length length.

9.45.6 Local Labels

Local labels may be defined in two ways:
e $N, where N is a decimal number between 0 and 9
e LABEL?, where LABEL is any legal symbol name.
Local labels thus defined may be redefined or automatically generated. The scope of a

local label is based on when it may be undefined or reset. This happens when one of the
following situations is encountered:

e .newblock directive see Section 9.45.9 [.newblock], page 328
e The current section is changed (.sect, .text, or .data)
e Entering or leaving an included file

e The macro scope where the label was defined is exited

9.45.7 Math Builtins

The following built-in functions may be used to generate a floating-point value. All return
a floating-point value except ‘$cvi’, ‘$int’, and ‘$sgn’, which return an integer value.

$acos (expr)
Returns the floating point arccosine of expr.

$asin(expr)
Returns the floating point arcsine of expr.

$atan(expr)
Returns the floating point arctangent of expr.

Chapter 9: Machine Dependent Features 327

$atan2(expri, expr2)
Returns the floating point arctangent of exprl / expr2.

$ceil (expr)
Returns the smallest integer not less than expr as floating point.

$cosh(expr)
Returns the floating point hyperbolic cosine of expr.

$cos (expr)
Returns the floating point cosine of expr.

$cvf (expr)
Returns the integer value expr converted to floating-point.

$cvi(expr)
Returns the floating point value expr converted to integer.

$exp(expr)
Returns the floating point value e ~ expr.

$fabs (expr)
Returns the floating point absolute value of expr.

$floor (expr)
Returns the largest integer that is not greater than expr as floating point.

$fmod (expri, expr2)
Returns the floating point remainder of exprl / expr2.

$int (expr)
Returns 1 if expr evaluates to an integer, zero otherwise.

$1dexp(expri, expr2)
Returns the floating point value exprl * 2 ~ expr2.

$log10(expr)
Returns the base 10 logarithm of expr.

$log(expr)
Returns the natural logarithm of expr.

$max (expril, expr2)
Returns the floating point maximum of exprl and expr2.

$min(expril, expr2)
Returns the floating point minimum of exprl and expr2.

$pow(exprl, expr2)
Returns the floating point value exprl ~ expr2.

$round (expr)
Returns the nearest integer to expr as a floating point number.

$sgn (expr)
Returns -1, 0, or 1 based on the sign of expr.

328 Using as

$sin(expr)
Returns the floating point sine of expr.

$sinh (expr)
Returns the floating point hyperbolic sine of expr.

$sqrt (expr)
Returns the floating point square root of expr.

$tan(expr)
Returns the floating point tangent of expr.

$tanh (expr)
Returns the floating point hyperbolic tangent of expr.

$trunc(expr)
Returns the integer value of expr truncated towards zero as floating point.

9.45.8 Extended Addressing

The LDX pseudo-op is provided for loading the extended addressing bits of a label or address.
For example, if an address _label resides in extended program memory, the value of _label
may be loaded as follows:

1ldx #_label,16,a ; loads extended bits of _label
or #_label,a ; loads lower 16 bits of _label
bacc a ; full address is in accumulator A

9.45.9 Directives

.align [size]
.even Align the section program counter on the next boundary, based on size. size
may be any power of 2. .even is equivalent to .align with a size of 2.

1 Align SPC to word boundary
2 Align SPC to longword boundary (same as .even)
128 Align SPC to page boundary

.asg string, name
Assign name the string string. String replacement is performed on string before
assignment.

.eval string, name
Evaluate the contents of string string and assign the result as a string to the
subsym name. String replacement is performed on string before assignment.

.bss symbol, size [, [blocking flag] [,alignment_flag]]
Reserve space for symbol in the .bss section. size is in words. If present, block-
ing_flag indicates the allocated space should be aligned on a page boundary if
it would otherwise cross a page boundary. If present, alignment_flag causes the
assembler to allocate size on a long word boundary.

Chapter 9: Machine Dependent Features 329

.byte value [,...,value_n]

.ubyte value [,...,value_n]
.char value [,...,value_n]
.uchar value [,...,value_n]

Place one or more bytes into consecutive words of the current section. The
upper 8 bits of each word is zero-filled. If a label is used, it points to the word
allocated for the first byte encountered.

.clink ["section_name"]
Set STYP_CLINK flag for this section, which indicates to the linker that if no
symbols from this section are referenced, the section should not be included in
the link. If section_name is omitted, the current section is used.

.c_mode TBD.

.copy "filename" | filename

.include "filename" | filename
Read source statements from filename. The normal include search path is used.
Normally .copy will cause statements from the included file to be printed in
the assembly listing and .include will not, but this distinction is not currently
implemented.

.data Begin assembling code into the .data section.

.double value [,...,value_n]

.ldouble value [,...,value_n]

.float value [,...,value_n]

.xfloat value [,...,value_n]
Place an IEEE single-precision floating-point representation of one or more
floating-point values into the current section. All but .xfloat align the result
on a longword boundary. Values are stored most-significant word first.

.drlist
.drnolist
Control printing of directives to the listing file. Ignored.

.emsg string
.mmsg string
.wmsg string
Emit a user-defined error, message, or warning, respectively.

.far_mode
Use extended addressing when assembling statements. This should appear only
once per file, and is equivalent to the -mfar-mode option see Section 9.45.1
[-mfar-mode|, page 325.

.fclist
.fcnolist
Control printing of false conditional blocks to the listing file.

.field value [,sizel
Initialize a bitfield of size bits in the current section. If value is relocatable,
then size must be 16. size defaults to 16 bits. If value does not fit into size

330 Using as

bits, the value will be truncated. Successive .field directives will pack starting
at the current word, filling the most significant bits first, and aligning to the
start of the next word if the field size does not fit into the space remaining in
the current word. A .align directive with an operand of 1 will force the next
.field directive to begin packing into a new word. If a label is used, it points
to the word that contains the specified field.

.global symbol [,...,symbol_n]

.def symbol [,...,symbol_n]

.ref symbol [,...,symbol_n]
.def nominally identifies a symbol defined in the current file and available
to other files. .ref identifies a symbol used in the current file but defined
elsewhere. Both map to the standard .global directive.

.half value [,...,value_n]
.uhalf value [,...,value_n]
.short value [,...,value_n]
.ushort value [,...,value_n]
.int value [,...,value_n]
.uint value [,...,value_n]
.word value [,...,value_n]
.uword value [,...,value_n]

Place one or more values into consecutive words of the current section. If a
label is used, it points to the word allocated for the first value encountered.

.label symbol
Define a special symbol to refer to the load time address of the current section
program counter.

.length
.width Set the page length and width of the output listing file. Ignored.

.list
.nolist Control whether the source listing is printed. Ignored.

.long value [,...,value_n]

.ulong value [,...,value_n]

.xlong value [,...,value_n]
Place one or more 32-bit values into consecutive words in the current section.
The most significant word is stored first. .long and .ulong align the result on
a longword boundary; xlong does not.

.1loop [count]

.break [condition]

.endloop Repeatedly assemble a block of code. .loop begins the block, and .endloop
marks its termination. count defaults to 1024, and indicates the number of times
the block should be repeated. .break terminates the loop so that assembly
begins after the .endloop directive. The optional condition will cause the loop
to terminate only if it evaluates to zero.

Chapter 9: Machine Dependent Features 331

macro_name .macro [paraml][,...param_n]

[.mexit]

.endm See the section on macros for more explanation (See Section 9.45.10 [TIC54X-
Macros|, page 333.

.mlib "filename" | filename
Load the macro library filename. filename must be an archived library (BFD
ar-compatible) of text files, expected to contain only macro definitions. The
standard include search path is used.

.mlist
.mnolist Control whether to include macro and loop block expansions in the listing
output. Ignored.

.mmregs Define global symbolic names for the ’cb4x registers. Supposedly equivalent to
executing .set directives for each register with its memory-mapped value, but
in reality is provided only for compatibility and does nothing.

.newblock
This directive resets any TIC54X local labels currently defined. Normal as
local labels are unaffected.

.option option_list
Set listing options. Ignored.

.sblock "section_name" | section_name [,"name_n" | name_n]
Designate section_name for blocking. Blocking guarantees that a section will
start on a page boundary (128 words) if it would otherwise cross a page bound-
ary. Only initialized sections may be designated with this directive. See also
See Section 9.45.2 [TIC54X-Block]|, page 325.

.sect "section_name"
Define a named initialized section and make it the current section.

symbol .set "value"

symbol .equ "value"
Equate a constant value to a symbol, which is placed in the symbol table.
symbol may not be previously defined.

.space size_in_bits

.bes size_in_bits
Reserve the given number of bits in the current section and zero-fill them. If a
label is used with .space, it points to the first word reserved. With .bes, the
label points to the last word reserved.

.sslist
.ssnolist
Controls the inclusion of subsym replacement in the listing output. Ignored.
.string "string" [,...,"string n"]
.pstring "string" [,...,"string_n"]

Place 8-bit characters from string into the current section. .string zero-fills
the upper 8 bits of each word, while .pstring puts two characters into each

332 Using as

word, filling the most-significant bits first. Unused space is zero-filled. If a label
is used, it points to the first word initialized.

[stag] .struct [offset]

[name_1] element [count_1]
[name_2] element [count_2]
[tname] .tag stagx [tcount]

[name_n] element [count_n]

[ssize] .endstruct

label .tag [stag]
Assign symbolic offsets to the elements of a structure. stag defines a symbol
to use to reference the structure. offset indicates a starting value to use for the
first element encountered; otherwise it defaults to zero. Each element can have
a named offset, name, which is a symbol assigned the value of the element’s
offset into the structure. If stag is missing, these become global symbols. count
adjusts the offset that many times, as if element were an array. element may
be one of .byte, .word, .long, .float, or any equivalent of those, and the
structure offset is adjusted accordingly. .field and .string are also allowed;
the size of .field is one bit, and .string is considered to be one word in
size. Only element descriptors, structure/union tags, .align and conditional
assembly directives are allowed within .struct/.endstruct. .align aligns
member offsets to word boundaries only. ssize, if provided, will always be
assigned the size of the structure.

The .tag directive, in addition to being used to define a structure/union ele-
ment within a structure, may be used to apply a structure to a symbol. Once
applied to label, the individual structure elements may be applied to label to
produce the desired offsets using label as the structure base.

.tab Set the tab size in the output listing. Ignored.

[utag] .union

[name_1] element [count_1]
[name_2] element [count_2]
[tname] .tag utagxl[,tcount]

[name_n] element [count_n]

[usize] .endstruct

label .tag [utag]
Similar to .struct, but the offset after each element is reset to zero, and the
usize is set to the maximum of all defined elements. Starting offset for the
union is always zero.

[symbol] .usect "section_name", size, [,[blocking flag] [,alignment_flag]]
Reserve space for variables in a named, uninitialized section (similar to .bss).
.usect allows definitions sections independent of .bss. symbol points to the
first location reserved by this allocation. The symbol may be used as a variable
name. size is the allocated size in words. blocking_flag indicates whether to
block this section on a page boundary (128 words) (see Section 9.45.2 [TIC54X-

Chapter 9: Machine Dependent Features 333

Block], page 325). alignment flag indicates whether the section should be
longword-aligned.

.var sym[, ..., sym_nl]
Define a subsym to be a local variable within a macro. See See Section 9.45.10
[TIC54X-Macros|, page 333.

.version version
Set which processor to build instructions for. Though the following values are
accepted, the op is ignored.

541
542
543
545
545LP
546LP
548
549

9.45.10 Macros

Macros do not require explicit dereferencing of arguments (i.e., \ARG).

During macro expansion, the macro parameters are converted to subsyms. If the number
of arguments passed the macro invocation exceeds the number of parameters defined, the last
parameter is assigned the string equivalent of all remaining arguments. If fewer arguments
are given than parameters, the missing parameters are assigned empty strings. To include
a comma in an argument, you must enclose the argument in quotes.

The following built-in subsym functions allow examination of the string value of subsyms

(or ordinary strings). The arguments are strings unless otherwise indicated (subsyms passed
as args will be replaced by the strings they represent).

$symlen(str)
Returns the length of str.

$symcmp (str1,str2)
Returns 0 if strl == str2, non-zero otherwise.

$firstch(str,ch)
Returns index of the first occurrence of character constant ch in str.

$lastch(str, ch)
Returns index of the last occurrence of character constant ch in str.

$isdefed(symbol)
Returns zero if the symbol symbol is not in the symbol table, non-zero other-
wise.

$ismember (symbol,list)
Assign the first member of comma-separated string list to symbol; list is re-
assigned the remainder of the list. Returns zero if list is a null string. Both
arguments must be subsyms.

334 Using as

$iscons (expr)
Returns 1 if string expr is binary, 2 if octal, 3 if hexadecimal, 4 if a character,
5 if decimal, and zero if not an integer.

$isname (name)
Returns 1 if name is a valid symbol name, zero otherwise.

$isreg(reg)
Returns 1 if reg is a valid predefined register name (AR0-ART only).

$structsz(stag)
Returns the size of the structure or union represented by stag.

$structacc(stag)
Returns the reference point of the structure or union represented by stag. Al-
ways returns zero.

9.45.11 Memory-mapped Registers

The following symbols are recognized as memory-mapped registers:

9.45.12 TIC54X Syntax
9.45.12.1 Special Characters

The presence of a ‘;’ appearing anywhere on a line indicates the start of a comment that

extends to the end of that line.

If a ‘4’ appears as the first character of a line then the whole line is treated as a com-
ment, but in this case the line can also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 31).

The presence of an asterisk (‘*’) at the start of a line also indicates a comment that
extends to the end of that line.

The TIC54X assembler does not currently support a line separator character.

Chapter 9: Machine Dependent Features 335

9.46 TIC6X Dependent Features

9.46.1 TIC6X Options

-march=arch
Enable (only) instructions from architecture arch. By default, all instructions
are permitted.

The following values of arch are accepted: c62x, c64x, c64x+, c67x, c67x+,

c674x.

-mdsbt

-mno-dsbt
The -mdsbt option causes the assembler to generate the Tag_ABI_DSBT at-
tribute with a value of 1, indicating that the code is using DSBT addressing.
The -mno-dsbt option, the default, causes the tag to have a value of 0, indi-
cating that the code does not use DSBT addressing. The linker will emit a
warning if objects of different type (DSBT and non-DSBT) are linked together.

-mpid=no

-mpid=near

-mpid=far
The -mpid= option causes the assembler to generate the Tag_ABI_PID attribute
with a value indicating the form of data addressing used by the code. -mpid=no,
the default, indicates position-dependent data addressing, -mpid=near indi-
cates position-independent addressing with GOT accesses using near DP ad-
dressing, and -mpid=far indicates position-independent addressing with GOT
accesses using far DP addressing. The linker will emit a warning if objects built
with different settings of this option are linked together.

-mpic

-mno-pic The -mpic option causes the assembler to generate the Tag_ABI_PIC attribute
with a value of 1, indicating that the code is using position-independent code
addressing, The —-mno-pic option, the default, causes the tag to have a value of
0, indicating position-dependent code addressing. The linker will emit a warning
if objects of different type (position-dependent and position-independent) are
linked together.

-mbig-endian
-mlittle-endian
Generate code for the specified endianness. The default is little-endian.

9.46.2 TIC6X Syntax

)

The presence of a ‘;’ on a line indicates the start of a comment that extends to the end
of the current line. If a ‘#’ or ‘*’ appears as the first character of a line, the whole line
is treated as a comment. Note that if a line starts with a ‘#’ character then it can also
be a logical line number directive (see Section 3.3 [Comments], page 31) or a preprocessor
control command (see Section 3.1 [Preprocessing|, page 31).

The ‘@ character can be used instead of a newline to separate statements.

336 Using as

Instruction, register and functional unit names are case-insensitive. as requires fully-
specified functional unit names, such as ‘.81°, *.L1X’ or ‘*.D1T2’, on all instructions using a
functional unit.

For some instructions, there may be syntactic ambiguity between register or functional
unit names and the names of labels or other symbols. To avoid this, enclose the ambiguous
symbol name in parentheses; register and functional unit names may not be enclosed in
parentheses.

9.46.3 TIC6X Directives

Directives controlling the set of instructions accepted by the assembler have effect for in-
structions between the directive and any subsequent directive overriding it.

.arch arch
This has the same effect as -march=arch.

.cantunwind
Prevents unwinding through the current function. No personality routine or
exception table data is required or permitted.

If this is not specified then frame unwinding information will be constructed
from CFT directives. see Section 7.11 [CFI directives|, page 54.

.cbxabi_attribute tag, value
Set the C6000 EABI build attribute tag to value.

The tag is either an attribute number or one of Tag_ISA, Tag_ABI_wchar_t,
Tag_ABI_stack_align_needed, Tag_ABI_stack_align_preserved, Tag ABI_
DSBT, Tag_ABI_PID, Tag_ABI_PIC, TAG_ABI_array_object_alignment, TAG_
ABI_array_object_align_expected, Tag_ABI_compatibility and Tag_ABI_
conformance. The value is either a number, "string", or number, "string"
depending on the tag.

.ehtype symbol
Output an exception type table reference to symbol.

.endp Marks the end of and exception table or function. If preceded by a
.handlerdata directive then this also switched back to the previous text
section.

.handlerdata

Marks the end of the current function, and the start of the exception table entry
for that function. Anything between this directive and the .endp directive will
be added to the exception table entry.

Must be preceded by a CFI block containing a .cfi_lsda directive.
.nocmp Disallow use of C64x+ compact instructions in the current text section.

.personalityindex index
Sets the personality routine for the current function to the ABI specified com-
pact routine number index

.personality name
Sets the personality routine for the current function to name.

Chapter 9: Machine Dependent Features 337

.scomm symbol, size, align
Like .comm, creating a common symbol symbol with size size and alignment
align, but unlike when using .comm, this symbol will be placed into the small
BSS section by the linker.

338 Using as

9.47 TILE-Gx Dependent Features

9.47.1 Options
The following table lists all available TILE-Gx specific options:

-m32 | -m64
Select the word size, either 32 bits or 64 bits.

-EB | ~EL Select the endianness, either big-endian (-EB) or little-endian (-EL).

9.47.2 Syntax

Block comments are delimited by ‘/*’ and ‘*/’. End of line comments may be introduced
by ‘#’.

Instructions consist of a leading opcode or macro name followed by whitespace and an
optional comma-separated list of operands:

opcode [operand, ...]
Instructions must be separated by a newline or semicolon.

There are two ways to write code: either write naked instructions, which the assembler
is free to combine into VLIW bundles, or specify the VLIW bundles explicitly.

Bundles are specified using curly braces:
{ add r3,r4,r5 ; add r7,r8,r9 ; 1w ri0,ri1l }

A bundle can span multiple lines. If you want to put multiple instructions on a line,
whether in a bundle or not, you need to separate them with semicolons as in this example.

A bundle may contain one or more instructions, up to the limit specified by the ISA
(currently three). If fewer instructions are specified than the hardware supports in a bundle,
the assembler inserts fnop instructions automatically.

The assembler will prefer to preserve the ordering of instructions within the bundle,
putting the first instruction in a lower-numbered pipeline than the next one, etc. This fact,
combined with the optional use of explicit fnop or nop instructions, allows precise control
over which pipeline executes each instruction.

If the instructions cannot be bundled in the listed order, the assembler will automatically
try to find a valid pipeline assignment. If there is no way to bundle the instructions together,
the assembler reports an error.

The assembler does not yet auto-bundle (automatically combine multiple instructions
into one bundle), but it reserves the right to do so in the future. If you want to force an
instruction to run by itself, put it in a bundle explicitly with curly braces and use nop
instructions (not fnop) to fill the remaining pipeline slots in that bundle.

9.47.2.1 Opcode Names

For a complete list of opcodes and descriptions of their semantics, see TILE-Gx Instruction
Set Architecture, available upon request at www.tilera.com.

9.47.2.2 Register Names

General-purpose registers are represented by predefined symbols of the form ‘rN’, where N
represents a number between 0 and 63. However, the following registers have canonical
names that must be used instead:

Chapter 9: Machine Dependent Features 339

rb54 sp
rb5 Ir
r56 sn
r57 idn0
r58 idn1
r59 udnO
r60 udnl
r61 udn2
r62 udn3
r63 ZeTro

The assembler will emit a warning if a numeric name is used instead of the non-numeric
name. The .no_require_canonical_reg_names assembler pseudo-op turns off this warn-
ing. .require_canonical_reg_names turns it back on.

9.47.2.3 Symbolic Operand Modifiers

The assembler supports several modifiers when using symbol addresses in TILE-Gx instruc-
tion operands. The general syntax is the following:
modifier (symbol)

The following modifiers are supported:

hwO
This modifier is used to load bits 0-15 of the symbol’s address.
hwil
This modifier is used to load bits 16-31 of the symbol’s address.
hw2
This modifier is used to load bits 32-47 of the symbol’s address.
hw3
This modifier is used to load bits 48-63 of the symbol’s address.
hwO_last
This modifier yields the same value as hw0, but it also checks that the value
does not overflow.
hwl_last
This modifier yields the same value as hwl, but it also checks that the value
does not overflow.
hw2_last

This modifier yields the same value as hw2, but it also checks that the value
does not overflow.

A 48-bit symbolic value is constructed by using the following idiom:

340 Using as

moveli rO, hw2_last(sym)
sh116insli r0, rO, hwl(sym)
sh116insli r0, rO, hwO(sym)

hwO_got

This modifier is used to load bits 0-15 of the symbol’s offset in the GOT entry
corresponding to the symbol.

hwO_last_got
This modifier yields the same value as hwO_got, but it also checks that the
value does not overflow.

hwl_last_got
This modifier is used to load bits 16-31 of the symbol’s offset in the GOT entry
corresponding to the symbol, and it also checks that the value does not overflow.

plt

This modifier is used for function symbols. It causes a procedure linkage table,
an array of code stubs, to be created at the time the shared object is created
or linked against, together with a global offset table entry. The value is a pc-
relative offset to the corresponding stub code in the procedure linkage table.
This arrangement causes the run-time symbol resolver to be called to look up
and set the value of the symbol the first time the function is called (at latest;
depending environment variables). It is only safe to leave the symbol unresolved
this way if all references are function calls.

hwO_plt
This modifier is used to load bits 0-15 of the pc-relative address of a plt entry.

hwil_plt
This modifier is used to load bits 16-31 of the pc-relative address of a plt entry.

hwl_last_plt
This modifier yields the same value as hwl_plt, but it also checks that the
value does not overflow.

hw2_last_plt
This modifier is used to load bits 32-47 of the pc-relative address of a plt entry,
and it also checks that the value does not overflow.

hwO_tls_gd
This modifier is used to load bits 0-15 of the offset of the GOT entry of the
symbol’s TLS descriptor, to be used for general-dynamic TLS accesses.

hwO_last_tls_gd
This modifier yields the same value as hwO_t1s_gd, but it also checks that the
value does not overflow.

hwl_last_tls_gd
This modifier is used to load bits 16-31 of the offset of the GOT entry of the
symbol’s TLS descriptor, to be used for general-dynamic TLS accesses. It also
checks that the value does not overflow.

Chapter 9: Machine Dependent Features 341

hwO_tls_ie
This modifier is used to load bits 0-15 of the offset of the GOT entry containing
the offset of the symbol’s address from the TCB, to be used for initial-exec TLS
accesses.

hwO_last_tls_ie
This modifier yields the same value as hwO_t1ls_ie, but it also checks that the
value does not overflow.

hwl_last_tls_ie
This modifier is used to load bits 16-31 of the offset of the GOT entry containing
the offset of the symbol’s address from the TCB, to be used for initial-exec TLS
accesses. It also checks that the value does not overflow.

hwO_tls_1le
This modifier is used to load bits 0-15 of the offset of the symbol’s address from
the TCB, to be used for local-exec TLS accesses.

hwO_last_tls_le
This modifier yields the same value as hwO_t1ls_le, but it also checks that the
value does not overflow.

hwl_last_tls_le
This modifier is used to load bits 16-31 of the offset of the symbol’s address
from the TCB, to be used for local-exec TLS accesses. It also checks that the
value does not overflow.

tls_gd_call
This modifier is used to tag an instruction as the “call” part of a calling sequence
for a TLS GD reference of its operand.

tls_gd_add
This modifier is used to tag an instruction as the “add” part of a calling sequence
for a TLS GD reference of its operand.

tls_ie_load
This modifier is used to tag an instruction as the “load” part of a calling
sequence for a TLS IE reference of its operand.

9.47.3 TILE-Gx Directives

.align expression [, expression]
This is the generic .align directive. The first argument is the requested align-
ment in bytes.

.allow_suspicious_bundles
Turns on error checking for combinations of instructions in a bundle that prob-
ably indicate a programming error. This is on by default.

.no_allow_suspicious_bundles
Turns off error checking for combinations of instructions in a bundle that prob-
ably indicate a programming error.

342 Using as

.require_canonical_reg_names
Require that canonical register names be used, and emit a warning if the nu-
meric names are used. This is on by default.

.no_require_canonical_reg_names
Permit the use of numeric names for registers that have canonical names.

Chapter 9: Machine Dependent Features 343

9.48 TILEPro Dependent Features

9.48.1 Options

as has no machine-dependent command-line options for TILEPro.

9.48.2 Syntax

Block comments are delimited by ‘/*’ and ‘*/’. End of line comments may be introduced
by ‘#’.

Instructions consist of a leading opcode or macro name followed by whitespace and an
optional comma-separated list of operands:

opcode [operand, ...]
Instructions must be separated by a newline or semicolon.

There are two ways to write code: either write naked instructions, which the assembler
is free to combine into VLIW bundles, or specify the VLIW bundles explicitly.

Bundles are specified using curly braces:
{ add r3,r4,r5 ; add r7,r8,r9 ; 1w ri10,ri1l }

A bundle can span multiple lines. If you want to put multiple instructions on a line,
whether in a bundle or not, you need to separate them with semicolons as in this example.

A bundle may contain one or more instructions, up to the limit specified by the ISA
(currently three). If fewer instructions are specified than the hardware supports in a bundle,
the assembler inserts fnop instructions automatically.

The assembler will prefer to preserve the ordering of instructions within the bundle,
putting the first instruction in a lower-numbered pipeline than the next one, etc. This fact,
combined with the optional use of explicit fnop or nop instructions, allows precise control
over which pipeline executes each instruction.

If the instructions cannot be bundled in the listed order, the assembler will automatically
try to find a valid pipeline assignment. If there is no way to bundle the instructions together,
the assembler reports an error.

The assembler does not yet auto-bundle (automatically combine multiple instructions
into one bundle), but it reserves the right to do so in the future. If you want to force an
instruction to run by itself, put it in a bundle explicitly with curly braces and use nop
instructions (not fnop) to fill the remaining pipeline slots in that bundle.

9.48.2.1 Opcode Names

For a complete list of opcodes and descriptions of their semantics, see TILE Processor User
Architecture Manual, available upon request at www.tilera.com.

9.48.2.2 Register Names

General-purpose registers are represented by predefined symbols of the form ‘rN’; where N
represents a number between 0 and 63. However, the following registers have canonical
names that must be used instead:

rb4 Sp
r55 Ir

344

r56
r57
r58
r59
r60
r61
r62
r63

Using as

sn
idn0O

idnl

udnO
udnl
udn?2
udn3

zZero

The assembler will emit a warning if a numeric name is used instead of the canonical
name. The .no_require_canonical_reg_names assembler pseudo-op turns off this warn-
ing. .require_canonical_reg_names turns it back on.

9.48.2.3 Symbolic Operand Modifiers

The assembler supports several modifiers when using symbol addresses in TILEPro instruc-
tion operands. The general syntax is the following:
modifier (symbol)

The following modifiers are supported:

lo16

hil6

hal6

got

got_lol6

got_hil6

This modifier is used to load the low 16 bits of the symbol’s address, sign-
extended to a 32-bit value (sign-extension allows it to be range-checked against
signed 16 bit immediate operands without complaint).

This modifier is used to load the high 16 bits of the symbol’s address, also
sign-extended to a 32-bit value.

hal6(N) is identical to hi16(N), except if 1016 (N) is negative it adds one to
the hi16(N) value. This way 1016 and hal6 can be added to create any 32-
bit value using auli. For example, here is how you move an arbitrary 32-bit
address into r3:

moveli r3, lol6(sym)
auli r3, r3, hal6(sym)

This modifier is used to load the offset of the GOT entry corresponding to the
symbol.

This modifier is used to load the sign-extended low 16 bits of the offset of the
GOT entry corresponding to the symbol.

This modifier is used to load the sign-extended high 16 bits of the offset of the
GOT entry corresponding to the symbol.

Chapter 9:

got_hal6

plt

tls_gd

Machine Dependent Features 345

This modifier is like got_hi16, but it adds one if got_1o016 of the input value
is negative.

This modifier is used for function symbols. It causes a procedure linkage table,
an array of code stubs, to be created at the time the shared object is created
or linked against, together with a global offset table entry. The value is a pc-
relative offset to the corresponding stub code in the procedure linkage table.
This arrangement causes the run-time symbol resolver to be called to look up
and set the value of the symbol the first time the function is called (at latest;
depending environment variables). It is only safe to leave the symbol unresolved
this way if all references are function calls.

This modifier is used to load the offset of the GOT entry of the symbol’s TLS
descriptor, to be used for general-dynamic TLS accesses.

tls_gd_lol6

This modifier is used to load the sign-extended low 16 bits of the offset of the
GOT entry of the symbol’s TLS descriptor, to be used for general dynamic TLS
accesses.

tls_gd_hil6

This modifier is used to load the sign-extended high 16 bits of the offset of the
GOT entry of the symbol’s TLS descriptor, to be used for general dynamic TLS
accesses.

tls_gd_hal6

tls_ie

This modifier is like t1s_gd_hi16, but it adds one to the value if t1s_gd_lo16
of the input value is negative.

This modifier is used to load the offset of the GOT entry containing the offset
of the symbol’s address from the TCB, to be used for initial-exec TLS accesses.

tls_ie_lo16

This modifier is used to load the low 16 bits of the offset of the GOT entry
containing the offset of the symbol’s address from the TCB, to be used for
initial-exec TLS accesses.

tls_ie_hil6

This modifier is used to load the high 16 bits of the offset of the GOT entry
containing the offset of the symbol’s address from the TCB, to be used for
initial-exec TLS accesses.

tls_ie_hal6

tls_le

This modifier is like t1s_ie_hi16, but it adds one to the value if t1s_ie_lo16
of the input value is negative.

346 Using as

This modifier is used to load the offset of the symbol’s address from the TCB,
to be used for local-exec TLS accesses.

tls_le_lo1l6
This modifier is used to load the low 16 bits of the offset of the symbol’s address
from the TCB, to be used for local-exec TLS accesses.

tls_le_hil6
This modifier is used to load the high 16 bits of the offset of the symbol’s
address from the TCB, to be used for local-exec TLS accesses.

tls_le_hal6
This modifier is like t1s_le_hi16, but it adds one to the value if t1s_le_lo16
of the input value is negative.

tls_gd_call
This modifier is used to tag an instruction as the “call” part of a calling sequence
for a TLS GD reference of its operand.

tls_gd_add
This modifier is used to tag an instruction as the “add” part of a calling sequence
for a TLS GD reference of its operand.

tls_ie_load
This modifier is used to tag an instruction as the “load” part of a calling
sequence for a TLS TE reference of its operand.

9.48.3 TILEPro Directives

.align expression [, expression]
This is the generic .align directive. The first argument is the requested align-
ment in bytes.

.allow_suspicious_bundles
Turns on error checking for combinations of instructions in a bundle that prob-
ably indicate a programming error. This is on by default.

.no_allow_suspicious_bundles
Turns off error checking for combinations of instructions in a bundle that prob-
ably indicate a programming error.

.require_canonical_reg_names
Require that canonical register names be used, and emit a warning if the nu-
meric names are used. This is on by default.

.no_require_canonical_reg_names
Permit the use of numeric names for registers that have canonical names.

9.49 v850 Dependent Features

9.49.1 Options

as supports the following additional command-line options for the V850 processor family:

Chapter 9: Machine Dependent Features 347

-wsigned_overflow
Causes warnings to be produced when signed immediate values overflow the
space available for then within their opcodes. By default this option is disabled
as it is possible to receive spurious warnings due to using exact bit patterns as
immediate constants.

-wunsigned_overflow
Causes warnings to be produced when unsigned immediate values overflow the
space available for then within their opcodes. By default this option is disabled
as it is possible to receive spurious warnings due to using exact bit patterns as
immediate constants.

-mv850 Specifies that the assembled code should be marked as being targeted at the
V850 processor. This allows the linker to detect attempts to link such code
with code assembled for other processors.

-mv850e Specifies that the assembled code should be marked as being targeted at the
V850E processor. This allows the linker to detect attempts to link such code
with code assembled for other processors.

-mv850el Specifies that the assembled code should be marked as being targeted at the
V850E1 processor. This allows the linker to detect attempts to link such code
with code assembled for other processors.

-mv850any

Specifies that the assembled code should be marked as being targeted at the
V850 processor but support instructions that are specific to the extended vari-
ants of the process. This allows the production of binaries that contain target
specific code, but which are also intended to be used in a generic fashion. For
example libgce.a contains generic routines used by the code produced by GCC
for all versions of the v850 architecture, together with support routines only
used by the V850E architecture.

-mv850e2 Specifies that the assembled code should be marked as being targeted at the
V850E2 processor. This allows the linker to detect attempts to link such code
with code assembled for other processors.

-mv850e2v3
Specifies that the assembled code should be marked as being targeted at the
V850E2V3 processor. This allows the linker to detect attempts to link such
code with code assembled for other processors.

-mv850e2v4
This is an alias for -mv850e3v5.

-mv850e3v5
Specifies that the assembled code should be marked as being targeted at the
V850E3V5 processor. This allows the linker to detect attempts to link such
code with code assembled for other processors.

-mrelax Enables relaxation. This allows the .longcall and .longjump pseudo ops to be
used in the assembler source code. These ops label sections of code which are

348 Using as

either a long function call or a long branch. The assembler will then flag these
sections of code and the linker will attempt to relax them.

-mgcc-abi
Marks the generated object file as supporting the old GCC ABI.

-mrh850-abi
Marks the generated object file as supporting the RH850 ABI. This is the
default.

-m8byte-align
Marks the generated object file as supporting a maximum 64-bits of alignment
for variables defined in the source code.

-m4byte-align
Marks the generated object file as supporting a maximum 32-bits of alignment
for variables defined in the source code. This is the default.

-msoft-float
Marks the generated object file as not using any floating point instructions -
and hence can be linked with other V850 binaries that do or do not use floating
point. This is the default for binaries for architectures earlier than the e2v3.

-mhard-float
Marks the generated object file as one that uses floating point instructions -
and hence can only be linked with other V850 binaries that use the same kind
of floating point instructions, or with binaries that do not use floating point at
all. This is the default for binaries the e2v3 and later architectures.

9.49.2 Syntax
9.49.2.1 Special Characters

‘#’ is the line comment character. If a ‘#’ appears as the first character of a line, the whole
line is treated as a comment, but in this case the line can also be a logical line number
directive (see Section 3.3 [Comments|, page 31) or a preprocessor control command (see
Section 3.1 [Preprocessing], page 31).

Two dashes (‘-=’) can also be used to start a line comment.

The ¢;’ character can be used to separate statements on the same line.

9.49.2.2 Register Names

as supports the following names for registers:

general register 0
r0, zero

general register 1
rl

general register 2
r2, hp

Chapter 9: Machine Dependent Features

general register 3
r3, sp

general register 4
rd, gp

general register 5
o, tp

general register 6
r6

general register 7
r7

general register 8
r8

general register 9
r9

general register 10
rl0

general register 11
rll

general register 12
r12

general register 13
rl3

general register 14
rl4

general register 15
rld

general register 16
rl6

general register 17
rl7

general register 18
rl8

general register 19
rl9

general register 20
r20

general register 21
r2l

349

350

general register 22
r22

general register 23
r23

general register 24
r24

general register 25
r25

general register 26
r26

general register 27
r27

general register 28
r28

general register 29
r29

general register 30
r30, ep
general register 31
r3l, Ip
system register O
eipc
system register 1
eipsw
system register 2
fepc
system register 3

fepsw

system register 4
ecr

system register 5
psSw

system register 16
ctpc

system register 17
ctpsw

system register 18
dbpc

Using as

Chapter 9: Machine Dependent Features 351

system register 19

dbpsw

system register 20

ctbp

9.49.3 Floating Point
The V850 family uses IEEE floating-point numbers.

9.49.4 V850 Machine Directives

.offset <expression>

Moves the offset into the current section to the specified amount.

.section "name", <type>

.v850

.v850e

.v850e1

.v850e2

.v850e2v3

.v850e2v4

.v850e3v5

This is an extension to the standard .section directive. It sets the current section
to be <type> and creates an alias for this section called "name".

Specifies that the assembled code should be marked as being targeted at the
V850 processor. This allows the linker to detect attempts to link such code
with code assembled for other processors.

Specifies that the assembled code should be marked as being targeted at the
V850E processor. This allows the linker to detect attempts to link such code
with code assembled for other processors.

Specifies that the assembled code should be marked as being targeted at the
V850E1 processor. This allows the linker to detect attempts to link such code
with code assembled for other processors.

Specifies that the assembled code should be marked as being targeted at the
V850E2 processor. This allows the linker to detect attempts to link such code
with code assembled for other processors.

Specifies that the assembled code should be marked as being targeted at the
V850E2V3 processor. This allows the linker to detect attempts to link such
code with code assembled for other processors.

Specifies that the assembled code should be marked as being targeted at the
V850E3V5 processor. This allows the linker to detect attempts to link such
code with code assembled for other processors.

Specifies that the assembled code should be marked as being targeted at the
V850E3V5 processor. This allows the linker to detect attempts to link such
code with code assembled for other processors.

9.49.5 Opcodes
as implements all the standard V850 opcodes.

as also implements the following pseudo ops:

352

hi0o()

100

hi()

hilo()

sdaoff ()

Using as

Computes the higher 16 bits of the given expression and stores it into the
immediate operand field of the given instruction. For example:

‘mulhi hiO(here - there), r5, r6’

computes the difference between the address of labels ’here’ and ’there’, takes
the upper 16 bits of this difference, shifts it down 16 bits and then multiplies
it by the lower 16 bits in register 5, putting the result into register 6.

Computes the lower 16 bits of the given expression and stores it into the im-
mediate operand field of the given instruction. For example:

‘addi lo(here - there), r5, r6’

computes the difference between the address of labels 'here’ and ’there’, takes
the lower 16 bits of this difference and adds it to register 5, putting the result
into register 6.

Computes the higher 16 bits of the given expression and then adds the value
of the most significant bit of the lower 16 bits of the expression and stores the
result into the immediate operand field of the given instruction. For example
the following code can be used to compute the address of the label ’here’ and
store it into register 6:

‘movhi hi(here), r0, r6’ ‘movea lo(here), r6, ré6’

The reason for this special behaviour is that movea performs a sign exten-
sion on its immediate operand. So for example if the address of ’here’ was
0xFFFFFFFF then without the special behaviour of the hi() pseudo-op the
movhi instruction would put OxFFFF0000 into r6, then the movea instruc-
tion would takes its immediate operand, OxFFFF, sign extend it to 32 bits,
OxFFFFFFFF, and then add it into 16 giving OxFFFEFFFF which is wrong
(the fifth nibble is E). With the hi() pseudo op adding in the top bit of the
lo() pseudo op, the movhi instruction actually stores 0 into r6 (0xFFFF + 1 =
0x0000), so that the movea instruction stores OxXFFFFFFFF into r6 - the right
value.

Computes the 32 bit value of the given expression and stores it into the imme-
diate operand field of the given instruction (which must be a mov instruction).
For example:

‘mov hilo (here), r6’

computes the absolute address of label 'here’ and puts the result into register
6.

Computes the offset of the named variable from the start of the Small Data
Area (whose address is held in register 4, the GP register) and stores the result
as a 16 bit signed value in the immediate operand field of the given instruction.
For example:

‘1d.w sdaoff (_a_variable) [gp],r6’

loads the contents of the location pointed to by the label ’_a_variable’ into
register 6, provided that the label is located somewhere within +/- 32K of the
address held in the GP register. [Note the linker assumes that the GP register
contains a fixed address set to the address of the label called ’__gp’. This can

Chapter 9: Machine Dependent Features 353

either be set up automatically by the linker, or specifically set by using the
‘~-defsym __gp=<value>’ command-line option].

tdaoff () Computes the offset of the named variable from the start of the Tiny Data Area
(whose address is held in register 30, the EP register) and stores the result as
a 4,5, 7 or 8 bit unsigned value in the immediate operand field of the given
instruction. For example:

‘sld.w tdaoff (_a_variable) [ep] ,r6’

loads the contents of the location pointed to by the label ’_a_variable’ into
register 6, provided that the label is located somewhere within +256 bytes of
the address held in the EP register. [Note the linker assumes that the EP
register contains a fixed address set to the address of the label called ’__ep’.
This can either be set up automatically by the linker, or specifically set by
using the ‘--defsym __ep=<value>’ command-line option].

zdaoff () Computes the offset of the named variable from address 0 and stores the result
as a 16 bit signed value in the immediate operand field of the given instruction.
For example:

‘movea zdaoff (_a_variable) ,zero,r6’

puts the address of the label '_a_variable’ into register 6, assuming that the
label is somewhere within the first 32K of memory. (Strictly speaking it also
possible to access the last 32K of memory as well, as the offsets are signed).

ctoff () Computes the offset of the named variable from the start of the Call Table
Area (whose address is held in system register 20, the CTBP register) and
stores the result a 6 or 16 bit unsigned value in the immediate field of then
given instruction or piece of data. For example:

‘callt ctoff(table_funcl)’

will put the call the function whose address is held in the call table at the
location labeled ’table_funcl’.

.longcall name
Indicates that the following sequence of instructions is a long call to function
name. The linker will attempt to shorten this call sequence if name is within
a 22bit offset of the call. Only valid if the -mrelax command-line switch has
been enabled.

.longjump name
Indicates that the following sequence of instructions is a long jump to label
name. The linker will attempt to shorten this code sequence if name is within
a 22bit offset of the jump. Only valid if the -mrelax command-line switch has
been enabled.

For information on the V850 instruction set, see V850 Family 32-/16-Bit single-Chip
Microcontroller Architecture Manual from NEC. Ltd.

9.50 VAX Dependent Features

354

Using as

9.50.1 VAX Command-Line Options

The Vax version of as accepts any of the following options, gives a warning message that the
option was ignored and proceeds. These options are for compatibility with scripts designed
for other people’s assemblers.

-D (Debug)

-S (Symbol Table)
-T (Token Trace)

These are obsolete options used to debug old assemblers.

-d (Displacement size for JUMPs)

This option expects a number following the ‘-d’. Like options that expect file-
names, the number may immediately follow the ‘-d’ (old standard) or constitute
the whole of the command-line argument that follows ‘-d’ (GNU standard).

-V (Virtualize Interpass Temporary File)

Some other assemblers use a temporary file. This option commanded them to
keep the information in active memory rather than in a disk file. as always
does this, so this option is redundant.

-J (JUMPify Longer Branches)

Many 32-bit computers permit a variety of branch instructions to do the same
job. Some of these instructions are short (and fast) but have a limited range;
others are long (and slow) but can branch anywhere in virtual memory. Often
there are 3 flavors of branch: short, medium and long. Some other assemblers
would emit short and medium branches, unless told by this option to emit short
and long branches.

-t (Temporary File Directory)

Some other assemblers may use a temporary file, and this option takes a filename
being the directory to site the temporary file. Since as does not use a temporary
disk file, this option makes no difference. ‘-t’ needs exactly one filename.

The Vax version of the assembler accepts additional options when compiled for VMS:

L_h n?

External symbol or section (used for global variables) names are not case sensi-
tive on VAX/VMS and always mapped to upper case. This is contrary to the C
language definition which explicitly distinguishes upper and lower case. To im-
plement a standard conforming C compiler, names must be changed (mapped)
to preserve the case information. The default mapping is to convert all lower
case characters to uppercase and adding an underscore followed by a 6 digit
hex value, representing a 24 digit binary value. The one digits in the binary
value represent which characters are uppercase in the original symbol name.

The ‘~h n’ option determines how we map names. This takes several values.
No ‘-h’ switch at all allows case hacking as described above. A value of zero
(‘-h0’) implies names should be upper case, and inhibits the case hack. A value
of 2 (‘-h2’) implies names should be all lower case, with no case hack. A value
of 3 (‘~h3’) implies that case should be preserved. The value 1 is unused. The
-H option directs as to display every mapped symbol during assembly.

Chapter 9: Machine Dependent Features 355

Symbols whose names include a dollar sign ‘$’ are exceptions to the general
name mapping. These symbols are normally only used to reference VMS library
names. Such symbols are always mapped to upper case.

4 The -+ option causes as to truncate any symbol name larger than 31 char-
acters. The ‘—+’ option also prevents some code following the ‘_main’ symbol
normally added to make the object file compatible with Vax-11 "C".

=1’ This option is ignored for backward compatibility with as version 1.x.
‘-0 The ‘-H’ option causes as to print every symbol which was changed by case
mapping.

9.50.2 VAX Floating Point

Conversion of flonums to floating point is correct, and compatible with previous assemblers.
Rounding is towards zero if the remainder is exactly half the least significant bit.

D, F, G and H floating point formats are understood.

Immediate floating literals (e.g. ‘S‘$6.9’) are rendered correctly. Again, rounding is
towards zero in the boundary case.

The .float directive produces £ format numbers. The .double directive produces d
format numbers.

9.50.3 Vax Machine Directives

The Vax version of the assembler supports four directives for generating Vax floating point
constants. They are described in the table below.

.dfloat This expects zero or more flonums, separated by commas, and assembles Vax
d format 64-bit floating point constants.

.ffloat This expects zero or more flonums, separated by commas, and assembles Vax
f format 32-bit floating point constants.

.gfloat This expects zero or more flonums, separated by commas, and assembles Vax
g format 64-bit floating point constants.

.hfloat This expects zero or more flonums, separated by commas, and assembles Vax
h format 128-bit floating point constants.

9.50.4 VAX Opcodes

All DEC mnemonics are supported. Beware that case... instructions have exactly 3
operands. The dispatch table that follows the case... instruction should be made with
.word statements. This is compatible with all unix assemblers we know of.

9.50.5 VAX Branch Improvement

Certain pseudo opcodes are permitted. They are for branch instructions. They expand
to the shortest branch instruction that reaches the target. Generally these mnemonics are
made by substituting ‘j’ for ‘b’ at the start of a DEC mnemonic. This feature is included
both for compatibility and to help compilers. If you do not need this feature, avoid these
opcodes. Here are the mnemonics, and the code they can expand into.

356

jbsb

jbr
jr

jCOND

jacbX

jaobYYY
jsobZZz

Using as

‘Jsb’ is already an instruction mnemonic, so we chose ‘jbsb’.

(byte displacement)
bsbb ...

(word displacement)
bsbw ...

(long displacement)
jsb ...

Unconditional branch.

(byte displacement)
brb ...

(word displacement)
brw ...
(long displacement)
jmp ...
COND may be any one of the conditional branches neq, nequ, eql, eqlu, gtr,
geq, 1ss, gtru, lequ, vc, vs, gequ, cc, 1ssu, cs. COND may also be one of

the bit tests bs, bc, bss, bes, bsc, bece, bssi, beci, 1bs, 1bc. NOTCOND is
the opposite condition to COND.

(byte displacement)
bCOND . ..

(word displacement)
bNOTCOND foo ; brw ... ; foo:

(long displacement)
bNOTCOND foo ; jmp ... ; foo:

X may beoneofbdf ghlw.

(word displacement)

OPCODE . ..
(long displacement)
OPCODE ..., foo ;
brb bar ;
foo: jmp ... ;
bar:

YYY may be one of 1ss leq.
ZZZ may be one of geq gtr.

(byte displacement)
OPCODE . ..

(word displacement)
OPCODE ..., foo ;

Chapter 9: Machine Dependent Features 357

brb bar ;
foo: brw destination ;
bar:

(long displacement)

OPCODE ..., foo ;
brb bar ;
foo: jmp destination ;
bar:
aobleq
aoblss
sobgeq
sobgtr
(byte displacement)
OPCODE . . .
(word displacement)
OPCODE ..., foo ;
brb bar ;
foo: brw destination ;
bar:

(long displacement)

OPCODE ..., foo ;

brb bar ;

foo: jmp destination ;
bar:

9.50.6 VAX Operands
The immediate character is ‘$’ for Unix compatibility, not ‘#’ as DEC writes it.
The indirect character is ‘*’ for Unix compatibility, not ‘@ as DEC writes it.

The displacement sizing character is ‘¢’ (an accent grave) for Unix compatibility, not ‘*’
as DEC writes it. The letter preceding ‘¢’ may have either case. ‘G’ is not understood, but
all other letters (b 1 1 s w) are understood.

Register names understood are rO r1 r2 ... r15 ap fp sp pc. Upper and lower case
letters are equivalent.

For instance
tstb *w‘$4(r5)

Any expression is permitted in an operand. Operands are comma separated.

9.50.7 Not Supported on VAX

Vax bit fields can not be assembled with as. Someone can add the required code if they
really need it.

9.50.8 VAX Syntax

358 Using as

9.50.8.1 Special Characters

The presence of a ‘#’ appearing anywhere on a line indicates the start of a comment that
extends to the end of that line.

If a ‘4" appears as the first character of a line then the whole line is treated as a com-
ment, but in this case the line can also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 31).

The ¢;’ character can be used to separate statements on the same line.

Chapter 9: Machine Dependent Features 359

9.51 Visium Dependent Features

9.51.1 Options

The Visium assembler implements one machine-specific option:

-mtune=arch
This option specifies the target architecture. If an attempt is made to assemble
an instruction that will not execute on the target architecture, the assembler
will issue an error message.

The following names are recognized: mcm24 mcm gr5 gré

9.51.2 Syntax
9.51.2.1 Special Characters

Line comments are introduced either by the ‘!’ character or by the ‘;’ character appearing
anywhere on a line.

A hash character (‘#’) as the first character on a line also marks the start of a line
comment, but in this case it could also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 31).

The Visium assembler does not currently support a line separator character.

9.51.2.2 Register Names

Registers can be specified either by using their canonical mnemonic names or by using their
alias if they have one, for example ‘sp’.

9.51.3 Opcodes
All the standard opcodes of the architecture are implemented, along with the following
three pseudo-instructions: cmp, cmpc, move.
In addition, the following two illegal opcodes are implemented and used by the simula-
tion:
stop 5-bit immediate, SourceA
trace 5-bit immediate, SourceA

360 Using as

9.52 WebAssembly Dependent Features

9.52.1 Notes

While WebAssembly provides its own module format for executables, this documentation
describes how to use as to produce intermediate ELF object format files.

9.52.2 Syntax

The assembler syntax directly encodes sequences of opcodes as defined in the WebAssembly
binary encoding specification at https://github.com/webassembly /spec/BinaryEncoding.md.
Structured sexp-style expressions are not supported as input.

9.52.2.1 Special Characters

‘#” and ¢;’ are the line comment characters. Note that if ‘#’ is the first character on a line
then it can also be a logical line number directive (see Section 3.3 [Comments|, page 31) or
a preprocessor control command (see Section 3.1 [Preprocessing], page 31).

9.52.2.2 Relocations

Special relocations are available by using the ‘@p1t’, ‘@got’, or ‘@got’ suffixes after a constant
expression, which correspond to the R_ASMJS_LEB128_PLT, R_ASMJS_LEB128_GOT,
and R_LASMJS_LEB128_GOT_CODE relocations, respectively.

The ‘@plt’ suffix is followed by a symbol name in braces; the symbol value is used to
determine the function signature for which a PLT stub is generated. Currently, the symbol
name is parsed from its last ‘F’ character to determine the argument count of the function,
which is also necessary for generating a PLT stub.

9.52.2.3 Signatures

Function signatures are specified with the signature pseudo-opcode, followed by a simple
function signature imitating a C++-mangled function type: F followed by an optional v,
then a sequence of i, 1, £, and d characters to mark 132, i64, 32, and f64 parameters,
respectively; followed by a final E to mark the end of the function signature.

9.52.3 Floating Point

WebAssembly uses little-endian IEEE floating-point numbers.

9.52.4 Regular Opcodes

Ordinary instructions are encoded with the WebAssembly mnemonics as listed at: https://
github.com/WebAssembly/design/blob/master/BinaryEncoding.md.

Opcodes are written directly in the order in which they are encoded, without going
through an intermediate sexp-style expression as in the was format.

For “typed” opcodes (block, if, etc.), the type of the block is specified in square brackets
following the opcode: if[i], if[].

9.52.5 WebAssembly Module Layout

as will only produce ELF output, not a valid WebAssembly module. It is possible to make
as produce output in a single ELF section which becomes a valid WebAssembly module, but

https://github.com/WebAssembly/design/blob/master/BinaryEncoding.md
https://github.com/WebAssembly/design/blob/master/BinaryEncoding.md

Chapter 9: Machine Dependent Features 361

a linker script to do so may be preferable, as it doesn’t require running the entire module
through the assembler at once.

362 Using as

9.53 XGATE Dependent Features
9.53.1 XGATE Options

The Freescale XGATE version of as has a few machine dependent options.

-mshort This option controls the ABI and indicates to use a 16-bit integer ABI. It has
no effect on the assembled instructions. This is the default.

-mlong This option controls the ABI and indicates to use a 32-bit integer ABI.

-mshort-double
This option controls the ABI and indicates to use a 32-bit float ABI. This is
the default.

-mlong-double
This option controls the ABI and indicates to use a 64-bit float ABI.

--print-insn-syntax
You can use the ‘--print-insn-syntax’ option to obtain the syntax description
of the instruction when an error is detected.

—--print-opcodes
The ‘--print-opcodes’ option prints the list of all the instructions with their
syntax. Once the list is printed as exits.

9.53.2 Syntax
In XGATE RISC syntax, the instruction name comes first and it may be followed by up

to three operands. Operands are separated by commas (‘,’). as will complain if too many
operands are specified for a given instruction. The same will happen if you specified too
few operands.

nop
1d1 #23
CMP R1, R2

The presence of a ‘;’ character or a ‘!’ character anywhere on a line indicates the start
of a comment that extends to the end of that line.

A ‘¥’ or a ‘# character at the start of a line also introduces a line comment, but these
characters do not work elsewhere on the line. If the first character of the line is a ‘#’
then as well as starting a comment, the line could also be logical line number directive
(see Section 3.3 [Comments], page 31) or a preprocessor control command (see Section 3.1
[Preprocessing], page 31).

The XGATE assembler does not currently support a line separator character.

The following addressing modes are understood for XGATE:

(%)

Inherent

Immediate 3 Bit Wide
‘#number’

Immediate 4 Bit Wide
‘#number’

Chapter 9: Machine Dependent Features

Immediate 8 Bit Wide
‘#number’

Monadic Addressing

(regj

Dyadic Addressing
‘reg, reg’

Triadic Addressing
‘reg, reg, reg’

Relative Addressing 9 Bit Wide
‘*symbol’

Relative Addressing 10 Bit Wide
‘*symbol’

Index Register plus Immediate Offset

‘reg, (reg, #number)’

Index Register plus Register Offset
‘reg, reg, reg’

Index Register plus Register Offset with Post-increment

‘reg, reg, regt’

Index Register plus Register Offset with Pre-decrement

‘reg, reg, —reg’

The register can be either ‘RO’, ‘R1’, ‘R2’, ‘R3’, ‘R4’, ‘R5’, ‘R6’ or ‘R7’.

Convene macro opcodes to deal with 16-bit values have been added.

Immediate 16 Bit Wide
‘#number’, or ‘*symbol’

For example:

ldw R1, #1024
1dw R3, timer
ldw R1, (R1, #0)
COM R1

stw R2, (R1, #0)

9.53.3 Assembler Directives

The XGATE version of as have the following specific assembler directives:

9.53.4 Floating Point

Packed decimal (P) format floating literals are not supported(yet).

The floating point formats generated by directives are these.
.float Single precision floating point constants.

.double Double precision floating point constants.

.extend

.1ldouble Extended precision (long double) floating point constants.

363

364 Using as

9.53.5 Opcodes

9.54 XStormy1l6 Dependent Features

9.54.1 Syntax
9.54.1.1 Special Characters

‘#’ is the line comment character. If a ‘#’ appears as the first character of a line, the whole
line is treated as a comment, but in this case the line can also be a logical line number
directive (see Section 3.3 [Comments|, page 31) or a preprocessor control command (see
Section 3.1 [Preprocessing], page 31).

A semicolon (*;’) can be used to start a comment that extends from wherever the char-
acter appears on the line up to the end of the line.

The ‘|’ character can be used to separate statements on the same line.

9.54.2 XStormy16 Machine Directives

.16bit_pointers
Like the --16bit-pointers command-line option this directive indicates that
the assembly code makes use of 16-bit pointers.

.32bit_pointers
Like the --32bit-pointers command-line option this directive indicates that
the assembly code makes use of 32-bit pointers.

.no_pointers
Like the ——no-pointers command-line option this directive indicates that the
assembly code does not makes use pointers.

9.54.3 XStormy16 Pseudo-Opcodes

as implements all the standard XStormy16 opcodes.
as also implements the following pseudo ops:

@lo() Computes the lower 16 bits of the given expression and stores it into the im-
mediate operand field of the given instruction. For example:
‘add r6, @lo(here - there)’
computes the difference between the address of labels 'here’ and ’there’, takes
the lower 16 bits of this difference and adds it to register 6.

@hi() Computes the higher 16 bits of the given expression and stores it into the
immediate operand field of the given instruction. For example:
‘addc r7, @hi(here - there)’

computes the difference between the address of labels ’here’ and ’there’, takes
the upper 16 bits of this difference, shifts it down 16 bits and then adds it,
along with the carry bit, to the value in register 7.

Chapter 9: Machine Dependent Features 365

9.55 Xtensa Dependent Features

This chapter covers features of the GNU assembler that are specific to the Xtensa architec-
ture. For details about the Xtensa instruction set, please consult the Xtensa Instruction
Set Architecture (ISA) Reference Manual.

9.55.1 Command-line Options

--text-section-literals | ——no-text-section-literals

Control the treatment of literal pools. The default is ‘--no-text-section-
literals’, which places literals in separate sections in the output file. This
allows the literal pool to be placed in a data RAM/ROM. With ‘--text-
section-literals’, the literals are interspersed in the text section in order
to keep them as close as possible to their references. This may be necessary
for large assembly files, where the literals would otherwise be out of range of
the L32R instructions in the text section. Literals are grouped into pools fol-
lowing .literal_position directives or preceding ENTRY instructions. These
options only affect literals referenced via PC-relative L32R instructions; literals
for absolute mode L32R instructions are handled separately. See Section 9.55.5.4
[literal], page 373.

--auto-litpools | -—no-auto-litpools

Control the treatment of literal pools. The default is ‘--no-auto-litpools’,
which in the absence of ‘--text-section-literals’ places literals in separate
sections in the output file. This allows the literal pool to be placed in a data
RAM/ROM. With ‘--auto-litpools’, the literals are interspersed in the text
section in order to keep them as close as possible to their references, explicit
.literal_position directives are not required. This may be necessary for very
large functions, where single literal pool at the beginning of the function may
not be reachable by L32R instructions at the end. These options only affect
literals referenced via PC-relative L32R instructions; literals for absolute mode
L32R instructions are handled separately. When used together with ‘--text-
section-literals’, ‘-—auto-litpools’ takes precedence. See Section 9.55.5.4
[literal], page 373.

--absolute-literals | --no-absolute-literals
Indicate to the assembler whether L32R instructions use absolute or PC-relative
addressing. If the processor includes the absolute addressing option, the default
is to use absolute L32R relocations. Otherwise, only the PC-relative L32R relo-
cations can be used.

--target-align | --no-target-align
Enable or disable automatic alignment to reduce branch penalties at some ex-
pense in code size. See Section 9.55.3.2 [Automatic Instruction Alignment],
page 368. This optimization is enabled by default. Note that the assembler will
always align instructions like LOOP that have fixed alignment requirements.

--longcalls | --no-longcalls
Enable or disable transformation of call instructions to allow calls across a
greater range of addresses. See Section 9.55.4.2 [Function Call Relaxation]

9

366 Using as

page 369. This option should be used when call targets can potentially be out
of range. It may degrade both code size and performance, but the linker can
generally optimize away the unnecessary overhead when a call ends up within
range. The default is ‘--no-longcalls’.

--transform | ——no-transform
Enable or disable all assembler transformations of Xtensa instructions,
including both relaxation and optimization. The default is ‘--transform’;
‘~-no-transform’ should only be used in the rare cases when the instructions
must be exactly as specified in the assembly source. Using ‘--no-transform’
causes out of range instruction operands to be errors.

-—-rename-section oldname=newname
Rename the oldname section to newname. This option can be used multiple
times to rename multiple sections.

--trampolines | --no-trampolines
Enable or disable transformation of jump instructions to allow jumps across a
greater range of addresses. See Section 9.55.4.3 [Jump Trampolines|, page 370.
This option should be used when jump targets can potentially be out of range.
In the absence of such jumps this option does not affect code size or perfor-
mance. The default is ‘~-trampolines’.

--abi-windowed | —--abi-call0
Choose ABI tag written to the .xtensa.info section. ABI tag indicates ABI
of the assembly code. A warning is issued by the linker on an attempt to link
object files with inconsistent ABI tags. Default ABI is chosen by the Xtensa
core configuration.

9.55.2 Assembler Syntax

Block comments are delimited by ‘/*’ and ‘*/’. End of line comments may be introduced
with either ‘# or //’.

If a ‘#’ appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 31).

Instructions consist of a leading opcode or macro name followed by whitespace and an
optional comma-separated list of operands:

opcode [operand, ...]
Instructions must be separated by a newline or semicolon (‘;’).

FLIX instructions, which bundle multiple opcodes together in a single instruction, are
specified by enclosing the bundled opcodes inside braces:
{
[format]
opcode0 [operands]
opcodel [operands]
opcode2 [operands]

Chapter 9: Machine Dependent Features 367

The opcodes in a FLIX instruction are listed in the same order as the corresponding
instruction slots in the TIE format declaration. Directives and labels are not allowed inside
the braces of a FLIX instruction. A particular TIE format name can optionally be specified
immediately after the opening brace, but this is usually unnecessary. The assembler will
automatically search for a format that can encode the specified opcodes, so the format name
need only be specified in rare cases where there is more than one applicable format and
where it matters which of those formats is used. A FLIX instruction can also be specified
on a single line by separating the opcodes with semicolons:

{ [format;] opcodeO [operands]; opcodel [operands]; opcode2 [operands]; ... }

If an opcode can only be encoded in a FLIX instruction but is not specified as part of
a FLIX bundle, the assembler will choose the smallest format where the opcode can be
encoded and will fill unused instruction slots with no-ops.

9.55.2.1 Opcode Names

See the Xtensa Instruction Set Architecture (ISA) Reference Manual for a complete list of
opcodes and descriptions of their semantics.

[T

If an opcode name is prefixed with an underscore character (‘_’), as will not trans-
form that instruction in any way. The underscore prefix disables both optimization (see
Section 9.55.3 [Xtensa Optimizations], page 368) and relaxation (see Section 9.55.4 [Xtensa
Relaxation], page 369) for that particular instruction. Only use the underscore prefix when
it is essential to select the exact opcode produced by the assembler. Using this feature un-
necessarily makes the code less efficient by disabling assembler optimization and less flexible
by disabling relaxation.

Note that this special handling of underscore prefixes only applies to Xtensa opcodes,
not to either built-in macros or user-defined macros. When an underscore prefix is used
with a macro (e.g., _MOV), it refers to a different macro. The assembler generally provides
built-in macros both with and without the underscore prefix, where the underscore versions
behave as if the underscore carries through to the instructions in the macros. For example,
_MOV may expand to _MOV.N.

The underscore prefix only applies to individual instructions, not to series of instructions.
For example, if a series of instructions have underscore prefixes, the assembler will not
transform the individual instructions, but it may insert other instructions between them
(e.g., to align a LOOP instruction). To prevent the assembler from modifying a series of
instructions as a whole, use the no-transform directive. See Section 9.55.5.3 [transform],
page 373.

9.55.2.2 Register Names

The assembly syntax for a register file entry is the “short” name for a TIE register file
followed by the index into that register file. For example, the general-purpose AR register
file has a short name of a, so these registers are named a0...al5. As a special feature,
sp is also supported as a synonym for al. Additional registers may be added by processor
configuration options and by designer-defined TIE extensions. An initial ‘$’ character is
optional in all register names.

368 Using as

9.55.3 Xtensa Optimizations

The optimizations currently supported by as are generation of density instructions where
appropriate and automatic branch target alignment.

9.55.3.1 Using Density Instructions

The Xtensa instruction set has a code density option that provides 16-bit versions of some of
the most commonly used opcodes. Use of these opcodes can significantly reduce code size.
When possible, the assembler automatically translates instructions from the core Xtensa
instruction set into equivalent instructions from the Xtensa code density option. This trans-
lation can be disabled by using underscore prefixes (see Section 9.55.2.1 [Opcode Names],
page 367), by using the ‘--no-transform’ command-line option (see Section 9.55.1 [Com-
mand Line Options|, page 365), or by using the no-transform directive (see Section 9.55.5.3
[transform], page 373).

It is a good idea not to use the density instructions directly. The assembler will au-
tomatically select dense instructions where possible. If you later need to use an Xtensa
processor without the code density option, the same assembly code will then work without
modification.

9.55.3.2 Automatic Instruction Alignment

The Xtensa assembler will automatically align certain instructions, both to optimize per-
formance and to satisfy architectural requirements.

As an optimization to improve performance, the assembler attempts to align branch
targets so they do not cross instruction fetch boundaries. (Xtensa processors can be con-
figured with either 32-bit or 64-bit instruction fetch widths.) An instruction immediately
following a call is treated as a branch target in this context, because it will be the target of
a return from the call. This alignment has the potential to reduce branch penalties at some
expense in code size. This optimization is enabled by default. You can disable it with the
‘~-no-target-align’ command-line option (see Section 9.55.1 [Command-line Options],
page 365).

The target alignment optimization is done without adding instructions that could in-
crease the execution time of the program. If there are density instructions in the code
preceding a target, the assembler can change the target alignment by widening some of
those instructions to the equivalent 24-bit instructions. Extra bytes of padding can be in-
serted immediately following unconditional jump and return instructions. This approach is
usually successful in aligning many, but not all, branch targets.

The LOOP family of instructions must be aligned such that the first instruction in the
loop body does not cross an instruction fetch boundary (e.g., with a 32-bit fetch width, a
LOOP instruction must be on either a 1 or 2 mod 4 byte boundary). The assembler knows
about this restriction and inserts the minimal number of 2 or 3 byte no-op instructions to
satisfy it. When no-op instructions are added, any label immediately preceding the original
loop will be moved in order to refer to the loop instruction, not the newly generated no-op
instruction. To preserve binary compatibility across processors with different fetch widths,
the assembler conservatively assumes a 32-bit fetch width when aligning LOOP instructions
(except if the first instruction in the loop is a 64-bit instruction).

Chapter 9: Machine Dependent Features 369

Previous versions of the assembler automatically aligned ENTRY instructions to 4-byte
boundaries, but that alignment is now the programmer’s responsibility.

9.55.4 Xtensa Relaxation

When an instruction operand is outside the range allowed for that particular instruction
field, as can transform the code to use a functionally-equivalent instruction or sequence
of instructions. This process is known as relaxation. This is typically done for branch
instructions because the distance of the branch targets is not known until assembly-time.
The Xtensa assembler offers branch relaxation and also extends this concept to function
calls, MOVT instructions and other instructions with immediate fields.

9.55.4.1 Conditional Branch Relaxation

When the target of a branch is too far away from the branch itself, i.e., when the offset from
the branch to the target is too large to fit in the immediate field of the branch instruction,
it may be necessary to replace the branch with a branch around a jump. For example,

beqz a2, L

may result in:
bnez.n a2, M
jL
M:
(The BNEZ.N instruction would be used in this example only if the density option is
available. Otherwise, BNEZ would be used.)

This relaxation works well because the unconditional jump instruction has a much larger
offset range than the various conditional branches. However, an error will occur if a branch
target is beyond the range of a jump instruction. as cannot relax unconditional jumps.
Similarly, an error will occur if the original input contains an unconditional jump to a
target that is out of range.

Branch relaxation is enabled by default. It can be disabled by using underscore prefixes
(see Section 9.55.2.1 [Opcode Names|, page 367), the ‘--no-transform’ command-line op-
tion (see Section 9.55.1 [Command-line Options|, page 365), or the no-transform directive
(see Section 9.55.5.3 [transform], page 373).

9.55.4.2 Function Call Relaxation

Function calls may require relaxation because the Xtensa immediate call instructions
(CALLO, CALL4, CALL8 and CALL12) provide a PC-relative offset of only 512 Kbytes in
either direction. For larger programs, it may be necessary to use indirect calls (CALLXO,
CALLX4, CALLX8 and CALLX12) where the target address is specified in a register. The
Xtensa assembler can automatically relax immediate call instructions into indirect call
instructions. This relaxation is done by loading the address of the called function into the
callee’s return address register and then using a CALLX instruction. So, for example:

call8 func

might be relaxed to:

.literal .L1, func
132r a8, .L1
callx8 a8

370 Using as

Because the addresses of targets of function calls are not generally known until link-time,
the assembler must assume the worst and relax all the calls to functions in other source
files, not just those that really will be out of range. The linker can recognize calls that
were unnecessarily relaxed, and it will remove the overhead introduced by the assembler for
those cases where direct calls are sufficient.

Call relaxation is disabled by default because it can have a negative effect on both code
size and performance, although the linker can usually eliminate the unnecessary overhead.
If a program is too large and some of the calls are out of range, function call relaxation can
be enabled using the ‘--longcalls’ command-line option or the longcalls directive (see
Section 9.55.5.2 [longcalls], page 373).

9.55.4.3 Jump Relaxation

Jump instruction may require relaxation because the Xtensa jump instruction (J) provide
a PC-relative offset of only 128 Kbytes in either direction. One option is to use jump long
(J.L) instruction, which depending on jump distance may be assembled as jump (J) or
indirect jump (JX). However it needs a free register. When there’s no spare register it is
possible to plant intermediate jump sites (trampolines) between the jump instruction and
its target. These sites may be located in areas unreachable by normal code execution flow,
in that case they only contain intermediate jumps, or they may be inserted in the middle of
code block, in which case there’s an additional jump from the beginning of the trampoline
to the instruction past its end. So, for example:

j 1f
retw

mov all, a2
call8 func

might be relaxed to:

j .LO_TR_1

retw
.LO_TR_1:

j 1f

mov all, a2

call8 func

or to:

Chapter 9: Machine Dependent Features 371

j -LO_TR_1

retw

mov all, a2

j .LO_TR_O
.LO_TR_1:

j 1f
.LO_TR_O:

call8 func

The Xtensa assembler uses trampolines with jump around only when it cannot find
suitable unreachable trampoline. There may be multiple trampolines between the jump
instruction and its target.

This relaxation does not apply to jumps to undefined symbols, assuming they will reach
their targets once resolved.

Jump relaxation is enabled by default because it does not affect code size or
performance while the code itself is small. This relaxation may be disabled completely
with ‘--no-trampolines’ or ‘--no-transform’ command-line options (see Section 9.55.1
[Command-line Options], page 365).

9.55.4.4 Other Immediate Field Relaxation

The assembler normally performs the following other relaxations. They can be disabled
by using underscore prefixes (see Section 9.55.2.1 [Opcode Names|, page 367), the
‘~-no-transform’ command-line option (see Section 9.55.1 [Command-line Options],
page 365), or the no-transform directive (see Section 9.55.5.3 [transform|, page 373).

The MOVI machine instruction can only materialize values in the range from -2048 to
2047. Values outside this range are best materialized with L32R instructions. Thus:

movi a0, 100000

is assembled into the following machine code:

.literal .L1, 100000
132r a0, .L1
The L8UI machine instruction can only be used with immediate offsets in the range from

0 to 255. The L16SI and L16UI machine instructions can only be used with offsets from 0
to 510. The L32I machine instruction can only be used with offsets from 0 to 1020. A load
offset outside these ranges can be materialized with an L32R instruction if the destination
register of the load is different than the source address register. For example:

132i a1, a0, 2040

is translated to:

.literal .L1, 2040
132r al, .L1

add al, a0, al
132i al, al, O

If the load destination and source address register are the same, an out-of-range offset causes
an error.

372 Using as

The Xtensa ADDI instruction only allows immediate operands in the range from -128 to
127. There are a number of alternate instruction sequences for the ADDI operation. First,
if the immediate is 0, the ADDI will be turned into a MOV.N instruction (or the equivalent
OR instruction if the code density option is not available). If the ADDI immediate is outside
of the range -128 to 127, but inside the range -32896 to 32639, an ADDMI instruction or
ADDMI/ADDI sequence will be used. Finally, if the immediate is outside of this range and a
free register is available, an L32R/ADD sequence will be used with a literal allocated from
the literal pool.

For example:
addi ab, a6, 0
addi ab, a6, 512
addi ab, a6, 513
addi ab, a6, 50000
is assembled into the following:

.literal .L1, 50000
mov.n ab, a6

addmi ab, a6, 0x200
addmi ab, a6, 0x200
addi ab, ab, 1
132r ab, .L1

add ab, a6, ab

9.55.5 Directives

The Xtensa assembler supports a region-based directive syntax:

.begin directive [options]
:éﬁd directive
All the Xtensa-specific directives that apply to a region of code use this syntax.

The directive applies to code between the .begin and the .end. The state of the option
after the .end reverts to what it was before the .begin. A nested .begin/.end region can
further change the state of the directive without having to be aware of its outer state. For
example, consider:

.begin no-transform
L: add a0, al, a2
.begin transform
M: add a0, al, a2
.end transform
N: add a0, al, a2
.end no-transform
The ADD opcodes at L and N in the outer no-transform region both result in ADD machine
instructions, but the assembler selects an ADD.N instruction for the ADD at M in the inner

transform region.

The advantage of this style is that it works well inside macros which can preserve the
context of their callers.

The following directives are available:

9.55.5.1 schedule

The schedule directive is recognized only for compatibility with Tensilica’s assembler.

Chapter 9: Machine Dependent Features 373

.begin [no-]schedule
.end [no-]schedule

This directive is ignored and has no effect on as.

9.55.5.2 longcalls

The longcalls directive enables or disables function call relaxation. See Section 9.55.4.2
[Function Call Relaxation], page 369.
.begin [no-Jlongcalls
.end [no-]longcalls
Call relaxation is disabled by default unless the ‘--longcalls’ command-line option is
specified. The longcalls directive overrides the default determined by the command-line
options.

9.55.5.3 transform

This directive enables or disables all assembler transformation, including relaxation (see
Section 9.55.4 [Xtensa Relaxation|, page 369) and optimization (see Section 9.55.3 [Xtensa
Optimizations|, page 368).

.begin [no-Jtransform

.end [no-]transform

Transformations are enabled by default unless the ‘~-no-transform’ option is used. The

transform directive overrides the default determined by the command-line options. An
underscore opcode prefix, disabling transformation of that opcode, always takes precedence
over both directives and command-line flags.

9.55.5.4 literal

The .1literal directive is used to define literal pool data, i.e., read-only 32-bit data accessed
via L32R instructions.

.literal label, valuel, value...]

This directive is similar to the standard .word directive, except that the actual location
of the literal data is determined by the assembler and linker, not by the position of the
.literal directive. Using this directive gives the assembler freedom to locate the literal
data in the most appropriate place and possibly to combine identical literals. For example,
the code:

entry sp, 40
.literal .L1, sym
132r a4, .L1

can be used to load a pointer to the symbol sym into register a4. The value of sym will
not be placed between the ENTRY and L32R instructions; instead, the assembler puts the
data in a literal pool.

Literal pools are placed by default in separate literal sections; however, when using the
‘~—text-section-literals’ option (see Section 9.55.1 [Command-line Options|, page 365),
the literal pools for PC-relative mode L32R instructions are placed in the current section.!
These text section literal pools are created automatically before ENTRY instructions and man-
ually after ‘. literal_position’ directives (see Section 9.55.5.5 [literal_position|, page 374).

)

I Literals for the .init and .fini sections are always placed in separate sections, even when ‘--text-
section-literals’ is enabled.

374 Using as

If there are no preceding ENTRY instructions, explicit .literal_position directives must
be used to place the text section literal pools; otherwise, as will report an error.

When literals are placed in separate sections, the literal section names are derived from
the names of the sections where the literals are defined. The base literal section names are
.literal for PC-relative mode L32R instructions and .1it4 for absolute mode L32R in-
structions (see Section 9.55.5.7 [absolute-literals|, page 375). These base names are used for
literals defined in the default .text section. For literals defined in other sections or within
the scope of a literal_prefix directive (see Section 9.55.5.6 [literal_prefix|, page 375), the
following rules determine the literal section name:

1. If the current section is a member of a section group, the literal section name includes
the group name as a suffix to the base .literal or .1lit4 name, with a period to
separate the base name and group name. The literal section is also made a member of

the group.

2. If the current section name (or literal_prefix value) begins with
“.gnu.linkonce.kind.”, the literal section name is formed by replacing
“.kind” with the base .literal or .1lit4 name. For example, for literals

defined in a section named .gnu.linkonce.t.func, the literal section will be
.gnu.linkonce.literal.func or .gnu.linkonce.lit4.func.

3. If the current section name (or literal_prefix value) ends with .text, the literal
section name is formed by replacing that suffix with the base .1iteral or .1it4 name.
For example, for literals defined in a section named .iram0.text, the literal section
will be .iram0.literal or .iram0O.lit4.

4. If none of the preceding conditions apply, the literal section name is formed by adding
the base .1literal or .1lit4 name as a suffix to the current section name (or literal_
prefix value).

9.55.5.5 literal_position

When using ‘--text-section-literals’ to place literals inline in the section being as-
sembled, the .literal_position directive can be used to mark a potential location for a
literal pool.

.literal_position

The .literal_position directive is ignored when the ‘--text-section-literals’ op-
tion is not used or when L32R instructions use the absolute addressing mode.

The assembler will automatically place text section literal pools before ENTRY instruc-
tions, so the .literal_position directive is only needed to specify some other location
for a literal pool. You may need to add an explicit jump instruction to skip over an inline
literal pool.

For example, an interrupt vector does not begin with an ENTRY instruction so the as-
sembler will be unable to automatically find a good place to put a literal pool. Moreover,
the code for the interrupt vector must be at a specific starting address, so the literal pool
cannot come before the start of the code. The literal pool for the vector must be explicitly
positioned in the middle of the vector (before any uses of the literals, due to the nega-
tive offsets used by PC-relative L32R instructions). The .literal_position directive can
be used to do this. In the following code, the literal for ‘M’ will automatically be aligned
correctly and is placed after the unconditional jump.

Chapter 9: Machine Dependent Features 375

.global M
code_start:

j continue

.literal_position

.align 4
continue:

movi a4, M

9.55.5.6 literal_prefix

The literal_prefix directive allows you to override the default literal section names,
which are derived from the names of the sections where the literals are defined.

.begin literal_prefix [name]

.end literal_prefix

For literals defined within the delimited region, the literal section names are derived from

the name argument instead of the name of the current section. The rules used to derive
the literal section names do not change. See Section 9.55.5.4 [literal], page 373. If the
name argument is omitted, the literal sections revert to the defaults. This directive has no
effect when using the ‘--text-section-literals’ option (see Section 9.55.1 [Command-
line Options], page 365).

9.55.5.7 absolute-literals

The absolute-literals and no-absolute-literals directives control the absolute vs.
PC-relative mode for L32R instructions. These are relevant only for Xtensa configurations
that include the absolute addressing option for L32R instructions.

.begin [no-Jlabsolute-literals

.end [no-Jabsolute-literals

These directives do not change the L32R mode—they only cause the assembler to emit

the appropriate kind of relocation for L32R instructions and to place the literal values in
the appropriate section. To change the L32R mode, the program must write the LITBASE
special register. It is the programmer’s responsibility to keep track of the mode and indicate
to the assembler which mode is used in each region of code.

If the Xtensa configuration includes the absolute L32R addressing option, the default is
to assume absolute L32R addressing unless the ‘--no-absolute-literals’ command-line
option is specified. Otherwise, the default is to assume PC-relative L32R addressing. The
absolute-literals directive can then be used to override the default determined by the
command-line options.

376 Using as

9.56 Z80 Dependent Features

9.56.1 Command-line Options

-march=CPU[-EXT...] [+EXT...]

This option specifies the target processor. The assembler will issue an error
message if an attempt is made to assemble an instruction which will not ex-
ecute on the target processor. The following processor names are recognized:
z80, z180, ez80, gbz80, z80n, r800. In addition to the basic instruction set,
the assembler can be told to accept some extention mnemonics. For example,
-march=2z180+sli+infc extends z180 with SLI instructions and IN F,(C). The
following extentions are currently supported: full (all known instructions), adl
(ADL CPU mode by default, eZ80 only), s1i (instruction known as SLI, SLL or
SL1), xyhl (instructions with halves of index registers: IXL, IXH, IYL, IYH),
xdcb (instructions like RotOp (II+d),R and BitOp n,(II+d),R), infc (instruc-
tion IN F,(C) or IN (C)), outcO (instruction OUT (C),0). Note that rather
than extending a basic instruction set, the extention mnemonics starting with
- revoke the respective functionality: -march=z80-full+xyhl first removes all
default extentions and adds support for index registers halves only.

If this option is not specified then -march=z80+xyhl+infc is assumed.

-local-prefix=prefix
Mark all labels with specified prefix as local. But such label can be marked
global explicitly in the code. This option do not change default local label
prefix .L, it is just adds new one.

-colonless
Accept colonless labels. All symbols at line begin are treated as labels.

-sdcc Accept assembler code produced by SDCC.

-fp-s=FORMAT
Single precision floating point numbers format. Default: ieee754 (32 bit).

~fp-d=FORMAT
Double precision floating point numbers format. Default: ieee754 (64 bit).

Floating point numbers formats.
ieee754 Single or double precision IEEE754 compatible format.
half Half precision IEEE754 compatible format (16 bits).
single Single precision IEEE754 compatible format (32 bits).
double Double precision IEEE754 compatible format (64 bits).
zeda32 32 bit floating point format from z80float library by Zeda.

math48 48 bit floating point format from Math48 package by Anders Hejlsberg.

Chapter 9: Machine Dependent Features 377

9.56.2 Syntax
The assembler syntax closely follows the ’Z80 family CPU User Manual’ by Zilog. In
expressions a single ‘=" may be used as “is equal to” comparison operator.

Suffices can be used to indicate the radix of integer constants; ‘H” or ‘h’ for hexadecimal,
‘D’ or ‘d’ for decimal, ‘Q’, ‘0’, ‘q’ or ‘o’ for octal, and ‘B’ for binary.

The suffix ‘b’ denotes a backreference to local label.

9.56.2.1 Special Characters

The semicolon ‘;’ is the line comment character;

If a ‘#’ appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3
[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 31).

The Z80 assembler does not support a line separator character.

The dollar sign ‘$’ can be used as a prefix for hexadecimal numbers and as a symbol
denoting the current location counter.

A backslash ‘\’ is an ordinary character for the Z80 assembler.

The single quote ‘>’ must be followed by a closing quote. If there is one character in
between, it is a character constant, otherwise it is a string constant.
9.56.2.2 Register Names
The registers are referred to with the letters assigned to them by Zilog. In addition as
recognizes ‘ix1’ and ‘ixh’ as the least and most significant octet in ‘ix’, and similarly ‘iy1’
and ‘iyh’ as parts of ‘iy’.
9.56.2.3 Case Sensitivity

Upper and lower case are equivalent in register names, opcodes, condition codes and as-
sembler directives. The case of letters is significant in labels and symbol names. The case
is also important to distinguish the suffix ‘b’ for a backward reference to a local label from
the suffix ‘B’ for a number in binary notation.

9.56.2.4 Labels

Labels started by .L acts as local labels. You may specify custom local label prefix by
-local-prefix command-line option. Dollar, forward and backward local labels are sup-
ported. By default, all labels are followed by colon. Legacy code with colonless labels can
be built with -colonless command-line option specified. In this case all tokens at line
begin are treated as labels.

9.56.3 Floating Point

Floating-point numbers of following types are supported:

ieee754 Supported half, single and double precision IEEE754 compatible numbers.
zeda32 32 bit floating point numbers from z80float library by Zeda.

math438 48 bit floating point numbers from Math48 package by Anders Hejlsberg.

378 Using as

9.56.4 Z80 Assembler Directives

as for the Z80 supports some additional directives for compatibility with other assemblers.

These are the additional directives in as for the Z&0:

.assume ADL = expression
Set ADL status for €Z80. Non-zero value enable compilation in ADL mode
else used Z80 mode. ADL and Z80 mode produces incompatible object code.
Mixing both of them within one binary may lead problems with disassembler.

db expression|stringl,expression|string...]

defb expression|stringl,expression|string...]

defm stringl,string...]
For each string the characters are copied to the object file, for each other
expression the value is stored in one byte. A warning is issued in case of an
overflow. Backslash symbol in the strings is generic symbol, it cannot be used
as escape character. See Section 7.5 [.ascii], page 52.

dw expressionl[,expression...]
defw expression[,expression...]
For each expression the value is stored in two bytes, ignoring overflow.

d24 expression|,expression...]
def24 expressionl[,expression...]
For each expression the value is stored in three bytes, ignoring overflow.

d32 expressionl,expression...]
def32 expressionl,expression...]
For each expression the value is stored in four bytes, ignoring overflow.

ds count[, value]

defs count[, value]
Fill count bytes in the object file with value, if value is omitted it defaults to
Z€ero.

symbol defl expression
The defl directive is like .set but with different syntax. See Section 7.85
[.set], page 81. It set the value of symbol to expression. Symbols defined with
defl are not protected from redefinition.

symbol equ expression
The equ directive is like .equiv but with different syntax. See Section 7.29
[.equiv], page 61. It set the value of symbol to expression. It is an error if
symbol is already defined. Symbols defined with equ are not protected from
redefinition.

psect name
A synonym for .section, no second argument should be given. See Section 7.84
[.section], page 76.

xdef symbol
A synonym for .global, make symbol is visible to linker. See Section 7.40
[.global], page 63.

Chapter 9: Machine Dependent Features 379

xref name
A synonym for .extern (Section 7.34 [.extern], page 61).

9.56.5 Opcodes

In line with common practice, Z80 mnemonics are used for the Z80, Z80ON, Z180, eZ&80, Ascii
R800 and the GameBoy Z80.

In many instructions it is possible to use one of the half index registers
(‘4x1’,ixh’‘iy1’‘iyh’) in stead of an 8-bit general purpose register. This yields
instructions that are documented on the eZ80 and the R800, undocumented on the
780 and unsupported on the Z180. Similarly in f, (c) is documented on the R&00,
undocumented on the Z80 and unsupported on the Z180 and the eZ80.

The assembler also supports the following undocumented Z80-instructions, that have not
been adopted in any other instruction set:

out (c),0 Sends zero to the port pointed to by register C.

slim Equivalent to m = (m<<1)+1, the operand m can be any operand that is valid
for ‘sla’. One can use ‘s1l’ as a synonym for ‘s1i’.

op (ix+d), r
This is equivalent to
1d r, (ix+d)
op r
1d (ix+d), r
The operation ‘op’ may be any of ‘res b,’, ‘set b,’, ‘rl’, ‘rlc’, ‘rr’, ‘rrc’,
‘sla’; ‘s1i’, ‘sra’ and ‘srl’, and the register ‘r’ may be any of ‘a’, ‘b’, ‘c¢’, ‘d’,
‘e’, ‘h’ and ‘1’.
op (iy+d), r
As above, but with ‘iy’ instead of ‘ix’.

The web site at http://www.z80.info is a good starting place to find more information
on programming the Z80.

You may enable or disable any of these instructions for any target CPU even this in-
struction is not supported by any real CPU of this type. Useful for custom CPU cores.

http://www.z80.info

380 Using as

9.57 78000 Dependent Features

The Z8000 as supports both members of the Z8000 family: the unsegmented Z8002, with
16 bit addresses, and the segmented Z8001 with 24 bit addresses.

When the assembler is in unsegmented mode (specified with the unsegm directive), an
address takes up one word (16 bit) sized register. When the assembler is in segmented
mode (specified with the segm directive), a 24-bit address takes up a long (32 bit) register.
See Section 9.57.3 [Assembler Directives for the Z8000], page 381, for a list of other Z8000
specific assembler directives.

9.57.1 Options
-z8001 Generate segmented code by default.

-z8002 Generate unsegmented code by default.

9.57.2 Syntax
9.57.2.1 Special Characters

‘17 is the line comment character.
If a ‘#” appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3

[Comments], page 31) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 31).

You can use ‘;’ instead of a newline to separate statements.

9.57.2.2 Register Names

The Z8000 has sixteen 16 bit registers, numbered 0 to 15. You can refer to different sized
groups of registers by register number, with the prefix ‘r’ for 16 bit registers, ‘rr’ for 32 bit
registers and ‘rq’ for 64 bit registers. You can also refer to the contents of the first eight
(of the sixteen 16 bit registers) by bytes. They are named ‘rln’ and ‘rhn’.

byte registers

r1l0 rhO rll rhl rl2 rh2 rl3 rh3
rl4 rh4 rl5 rh5 rl6 rh6 rl7 rh7

word registers
rO0 rl r2 r3 r4 r5 r6 r7 r8 r9 r10 ri1l r12 r13 ri14 rib

long word registers
rr0 rr2 rr4d rr6 rr8 rri0 rri2 rri4d

quad word registers
rq0 rq4 rq8 rql2

9.57.2.3 Addressing Modes
as understands the following addressing modes for the Z8000:

Chapter 9: Machine Dependent Features 381

rln

rhn

rn

rrn

rqn Register direct: 8bit, 16bit, 32bit, and 64bit registers.

Orn
Qrrn Indirect register: @Qrrn in segmented mode, @Qrn in unsegmented mode.

addr Direct: the 16 bit or 24 bit address (depending on whether the assembler is in
segmented or unsegmented mode) of the operand is in the instruction.

address(rn)
Indexed: the 16 or 24 bit address is added to the 16 bit register to produce the
final address in memory of the operand.

rn(#imm)
rro(#imm)
Base Address: the 16 or 24 bit register is added to the 16 bit sign extended
immediate displacement to produce the final address in memory of the operand.
ran(rm)

rrn(rm) Base Index: the 16 or 24 bit register rn or rrn is added to the sign extended 16
bit index register rm to produce the final address in memory of the operand.

#xx Immediate data xx.

9.57.3 Assembler Directives for the Z8000

The Z8000 port of as includes additional assembler directives, for compatibility with other
78000 assemblers. These do not begin with ‘.’ (unlike the ordinary as directives).

segm
.z8001 Generate code for the segmented Z8001.

unsegm
.z8002 Generate code for the unsegmented Z8002.

name Synonym for .file

global Synonym for .global

wval Synonym for .word
lval Synonym for .long
bval Synonym for .byte
sval Assemble a string. sval expects one string literal, delimited by single

quotes. It assembles each byte of the string into consecutive addresses.
You can use the escape sequence ‘%xx’ (where xx represents a two-digit
hexadecimal number) to represent the character whose AsCIl value is xx.
Use this feature to describe single quote and other characters that may
not appear in string literals as themselves. For example, the C statement
‘char *a = "he said \"it’s 50% off\"";’ is represented in Z8000 assembly
language (shown with the assembler output in hex at the left) as

382 Using as

68652073 sval ’he said %22it%27s 50%25 off%22700’
61696420

22697427

73203530

25206F66

662200

rsect synonym for .section
block synonym for .space

even special case of .align; aligns output to even byte boundary.

9.57.4 Opcodes

For detailed information on the Z8000 machine instruction set, see Z8000 Technical Manual.

Chapter 10: Reporting Bugs 383

10 Reporting Bugs

Your bug reports play an essential role in making as reliable.

Reporting a bug may help you by bringing a solution to your problem, or it may not.
But in any case the principal function of a bug report is to help the entire community
by making the next version of as work better. Bug reports are your contribution to the
maintenance of as.

In order for a bug report to serve its purpose, you must include the information that
enables us to fix the bug.

10.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:

e If the assembler gets a fatal signal, for any input whatever, that is a as bug. Reliable
assemblers never crash.

e If as produces an error message for valid input, that is a bug.

e If as does not produce an error message for invalid input, that is a bug. However, you
should note that your idea of “invalid input” might be our idea of “an extension” or
“support for traditional practice”.

e If you are an experienced user of assemblers, your suggestions for improvement of as
are welcome in any case.

10.2 How to Report Bugs

A number of companies and individuals offer support for GNU products. If you obtained as
from a support organization, we recommend you contact that organization first.

You can find contact information for many support companies and individuals in the file
etc/SERVICE in the GNU Emacs distribution.

In any event, we also recommend that you send bug reports for as to
http://www.sourceware.org/bugzilla/.

The fundamental principle of reporting bugs usefully is this: report all the facts. If you
are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and
assume that some details do not matter. Thus, you might assume that the name of a
symbol you use in an example does not matter. Well, probably it does not, but one cannot
be sure. Perhaps the bug is a stray memory reference which happens to fetch from the
location where that name is stored in memory; perhaps, if the name were different, the
contents of that location would fool the assembler into doing the right thing despite the
bug. Play it safe and give a specific, complete example. That is the easiest thing for you
to do, and the most helpful.

Keep in mind that the purpose of a bug report is to enable us to fix the bug if it is new
to us. Therefore, always write your bug reports on the assumption that the bug has not
been reported previously.

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” This cannot
help us fix a bug, so it is basically useless. We respond by asking for enough details to

http://www.sourceware.org/bugzilla/

384 Using as

enable us to investigate. You might as well expedite matters by sending them to begin
with.

To enable us to fix the bug, you should include all these things:
e The version of as. as announces it if you start it with the ‘--version’ argument.

Without this, we will not know whether there is any point in looking for the bug in the
current version of as.

e Any patches you may have applied to the as source.
e The type of machine you are using, and the operating system name and version number.
e What compiler (and its version) was used to compile as—e.g. “gcc-2.7".

e The command arguments you gave the assembler to assemble your example and observe
the bug. To guarantee you will not omit something important, list them all. A copy
of the Makefile (or the output from make) is sufficient.

If we were to try to guess the arguments, we would probably guess wrong and then we
might not encounter the bug.

e A complete input file that will reproduce the bug. If the bug is observed when the
assembler is invoked via a compiler, send the assembler source, not the high level
language source. Most compilers will produce the assembler source when run with the
‘-8’ option. If you are using gcc, use the options ‘-v --save-temps’; this will save the
assembler source in a file with an extension of .s, and also show you exactly how as is
being run.

e A description of what behavior you observe that you believe is incorrect. For example,
“It gets a fatal signal.”

Of course, if the bug is that as gets a fatal signal, then we will certainly notice it. But
if the bug is incorrect output, we might not notice unless it is glaringly wrong. You
might as well not give us a chance to make a mistake.

Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as, your copy of as is out of sync, or you
have encountered a bug in the C library on your system. (This has happened!) Your
copy might crash and ours would not. If you told us to expect a crash, then when ours
fails to crash, we would know that the bug was not happening for us. If you had not
told us to expect a crash, then we would not be able to draw any conclusion from our
observations.

e If you wish to suggest changes to the as source, send us context diffs, as generated by
diff with the ‘-u’, ‘-c’, or ‘-p’ option. Always send diffs from the old file to the new
file. If you even discuss something in the as source, refer to it by context, not by line
number.

The line numbers in our development sources will not match those in your sources.
Your line numbers would convey no useful information to us.
Here are some things that are not necessary:
e A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to
the input file will make the bug go away and which changes will not affect it.

Chapter 10: Reporting Bugs 385

This is often time consuming and not very useful, because the way we will find the
bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples. We recommend that you save your time for
something else.

Of course, if you can find a simpler example to report instead of the original one, that
is a convenience for us. Errors in the output will be easier to spot, running under the
debugger will take less time, and so on.

However, simplification is not vital; if you do not want to do this, report the bug
anyway and send us the entire test case you used.

e A patch for the bug.

A patch for the bug does help us if it is a good one. But do not omit the necessary
information, such as the test case, on the assumption that a patch is all we need. We
might see problems with your patch and decide to fix the problem another way, or we
might not understand it at all.

Sometimes with a program as complicated as as it is very hard to construct an example
that will make the program follow a certain path through the code. If you do not send
us the example, we will not be able to construct one, so we will not be able to verify
that the bug is fixed.

And if we cannot understand what bug you are trying to fix, or why your patch should
be an improvement, we will not install it. A test case will help us to understand.

e A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even we cannot guess right about such things without
first using the debugger to find the facts.

Chapter 11: Acknowledgements 387

11 Acknowledgements

If you have contributed to GAS and your name isn’t listed here, it is not meant as a slight.
We just don’t know about it. Send mail to the maintainer, and we’ll correct the situation.
Currently the maintainer is Nick Clifton (email address nickc@redhat.com).

Dean Elsner wrote the original GNU assembler for the VAX.!

Jay Fenlason maintained GAS for a while, adding support for GDB-specific debug infor-
mation and the 68k series machines, most of the preprocessing pass, and extensive changes
in messages.c, input-file.c, write.c.

K. Richard Pixley maintained GAS for a while, adding various enhancements and many
bug fixes, including merging support for several processors, breaking GAS up to handle
multiple object file format back ends (including heavy rewrite, testing, an integration of
the coff and b.out back ends), adding configuration including heavy testing and verifica-
tion of cross assemblers and file splits and renaming, converted GAS to strictly ANSI C
including full prototypes, added support for m680[34]0 and cpu32, did considerable work
on i960 including a COFF port (including considerable amounts of reverse engineering),
a SPARC opcode file rewrite, DECstation, rs6000, and hp300hpux host ports, updated
“know” assertions and made them work, much other reorganization, cleanup, and lint.

Ken Raeburn wrote the high-level BFD interface code to replace most of the code in
format-specific I/O modules.

The original VMS support was contributed by David L. Kashtan. Eric Youngdale has
done much work with it since.

The Intel 80386 machine description was written by Eliot Dresselhaus.
Minh Tran-Le at IntelliCorp contributed some AIX 386 support.

The Motorola 88k machine description was contributed by Devon Bowen of Buffalo
University and Torbjorn Granlund of the Swedish Institute of Computer Science.

Keith Knowles at the Open Software Foundation wrote the original MIPS back end
(tc-mips.c, tc-mips.h), and contributed Rose format support (which hasn’t been merged
in yet). Ralph Campbell worked with the MIPS code to support a.out format.

Support for the Zilog Z8k and Renesas H8/300 processors (tc-z8k, tc-h8300), and IEEE
695 object file format (obj-ieee), was written by Steve Chamberlain of Cygnus Support.
Steve also modified the COFF back end to use BFD for some low-level operations, for use

with the H8/300 and AMD 29k targets.

John Gilmore built the AMD 29000 support, added .include support, and simplified
the configuration of which versions accept which directives. He updated the 68k machine
description so that Motorola’s opcodes always produced fixed-size instructions (e.g., jsr),
while synthetic instructions remained shrinkable (jbsr). John fixed many bugs, including
true tested cross-compilation support, and one bug in relaxation that took a week and
required the proverbial one-bit fix.

Tan Lance Taylor of Cygnus Support merged the Motorola and MIT syntax for the 68k,
completed support for some COFF targets (68k, 386 SVR3, and SCO Unix), added support
for MIPS ECOFF and ELF targets, wrote the initial RS/6000 and PowerPC assembler, and
made a few other minor patches.

1 Any more details?

388 Using as

Steve Chamberlain made GAS able to generate listings.

Hewlett-Packard contributed support for the HP9000/300.

Jeff Law wrote GAS and BFD support for the native HPPA object format (SOM) along
with a fairly extensive HPPA testsuite (for both SOM and ELF object formats). This
work was supported by both the Center for Software Science at the University of Utah and
Cygnus Support.

Support for ELF format files has been worked on by Mark Eichin of Cygnus Support
(original, incomplete implementation for SPARC), Pete Hoogenboom and Jeff Law at the
University of Utah (HPPA mainly), Michael Meissner of the Open Software Foundation
(1386 mainly), and Ken Raeburn of Cygnus Support (sparc, and some initial 64-bit support).

Linas Vepstas added GAS support for the ESA/390 “IBM 370" architecture.

Richard Henderson rewrote the Alpha assembler. Klaus Kaempf wrote GAS and BFD
support for openVMS/Alpha.

Timothy Wall, Michael Hayes, and Greg Smart contributed to the various tic* flavors.

David Heine, Sterling Augustine, Bob Wilson and John Ruttenberg from Tensilica, Inc.
added support for Xtensa processors.

Several engineers at Cygnus Support have also provided many small bug fixes and con-
figuration enhancements.

Jon Beniston added support for the Lattice Mico32 architecture.

Many others have contributed large or small bugfixes and enhancements. If you have
contributed significant work and are not mentioned on this list, and want to be, let us know.
Some of the history has been lost; we are not intentionally leaving anyone out.

Appendix A: GNU Free Documentation License 389

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

390

2.

Using as

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain AScIil without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

VERBATIM COPYING

Appendix A: GNU Free Documentation License 391

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

392

=

N.

O.

Using as

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: GNU Free Documentation License 393

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

394

7.

Using as

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix A: GNU Free Documentation License 395

10.

11.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

396 Using as

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

AS Index

AS Index

\" (doublequote character).................... 34
\\ (‘\? character)c.oo i 34
\b (backspace character)...................... 33
\ddd (octal character code) 34
\f (formfeed character) 33
\n (newline character) 33
\r (carriage return character)................. 33
Nt (tab) oo 33
\xd. .. (hex character code) 34
#
o 32
BAPP L 31
H#NO_APP . .o 31
$

$ in symbol names 160, 164, 223, 311
B 129
$acos math builtin, TIC54X.................. 326
$asin math builtin, TIC54X.................. 326
$atan math builtin, TIC54X.................. 326
$atan2 math builtin, TIC54X................. 326
$ceil math builtin, TIC54X.................. 327
$cos math builtin, TIC54X 327
$cosh math builtin, TIC54X.................. 327
$cvf math builtin, TIC54X 327
$cvi math builtin, TIC54X................... 327
B 99, 129
$exp math builtin, TIC54X 327
$fabs math builtin, TIC54X.................. 327
$firstch subsym builtin, TIC54X 333
$floor math builtin, TIC54X................. 327
$fmod math builtin, TIC54X.................. 327
$int math builtin, TIC54X................... 327
$iscons subsym builtin, TIC54X 333
$isdefed subsym builtin, TIC54X 333
$ismember subsym builtin, TIC54X 333
$isname subsym builtin, TIC54X 334
$isreg subsym builtin, TIC54X 334
$lastch subsym builtin, TIC54X 333
$1ldexp math builtin, TICH4X................. 327
$log math builtin, TIC54X................... 327
$1log10 math builtin, TICH4X................. 327
$max math builtin, TIC54X 327
$min math builtin, TIC54X................... 327
$pow math builtin, TIC54X 327
$round math builtin, TIC54X................. 327
$sgn math builtin, TIC54X................... 327
$sin math builtin, TIC54X................... 327
$sinh math builtin, TIC54X.................. 328

$sqrt math builtin, TIC54X.................. 328

397
$structacc subsym builtin, TIC54X.......... 334
$structsz subsym builtin, TIC54X........... 334
$symemp subsym builtin, TIC54X 333
$symlen subsym builtin, TIC54X 333
Bt 129
$tan math builtin, TIC54X................... 328
$tanh math builtin, TIC54X.................. 328
$trunc math builtin, TIC54X................. 328
B 99
%0
0D -« v et 291
hEPTCE . oot 291
hpidreg’. ... 291
‘=+” option, VAX/VMS ...t 355
B 21
‘==32’ option, i386. 176
‘~=32’ option, x86-64 176
‘==64’ option, i386........ i 176
‘=-64’ option, x86-64l 176
——abi-callO............... il 366
—-abi-windowed................l 366
--absolute-literals........................ 365
——allow-reg-prefixt 311
——alternate ...l 25
——auto-litpools.................. ...l 365
‘--base-size-default-16"................... 206
‘--base-size-default-32’................... 206
DA 311
‘~-bitwise-or’ option, M680x0............... 205
‘--compress-debug-sections=’ option.......... 7
‘--disp-size-default-16"................... 206
‘--disp-size-default-32’................... 206
‘--divide’ option, i386c.. ... 176
TSP 311
--emulation=crisaout command-line option,
CRIS . . 152
--emulation=criself command-line option, CRIS
... 152
--enforce-aligned-data..................... 316
-—fatal-warnings...............ccciiiiiiiiinn 29
——fdpic...............iilllll L 311
--fix-v4bx command-line option, ARM 121
‘--fixed-special-register-names’ command-line
option, MMIX 242
‘~—force-long-branches’..................... 214
‘--generate-example’................. 214
‘--globalize-symbols’ command-line option,
MMIX .o 242
‘-—gnu-syntax’ command-line option, MMIX
... 242

398

‘--linker-allocated-gregs’ command-line

option, MMIX 242
--listing-cont-lines........................ 27
--listing-lhs-width......................... 27
--listing-lhs-width2........................ 27
—-listing-rhs-width......................... 27
—mlittle. 311
——longcallsoiiiiiii 365
--march=architecture command-line option,

CRIS ... 152
oD L e 28
--mul-bug-abort command-line option, CRIS

... 152
--no-absolute-literals..................... 365
--no-auto-litpools 365
‘--no-expand’ command-line option, MMIX... 242
—-no-longcalls.........cooviiiiiiiiiiinnninnn 365
‘--no-merge-gregs’ command-line option, MMIX

... 242
--no-mul-bug-abort command-line option, CRIS

... 152
--no-pad-sections............ ...l 28
‘--no-predefined-syms’ command-line option,

MMIX .. o 242
‘--no-pushj-stubs’ command-line option, MMIX

... 242
‘-=-no-stubs’ command-line option, MMIX. ... 242
--no-target-align....................... ... 365
--no-text-section-literals................ 365
--no-trampolines............................ 366
--no-transform............... 366
--no-underscore command-line option, CRIS

.. 152
Bt 1 £ o« 29
Cemperel’ . 206
--pic command-line option, CRIS............ 152
‘——print-insn-syntax’.................. 214, 362
‘-—print-opcodes’....................... 214, 362
‘--register-prefix-optional’ option, M680x0

... 205
SmrELAX e 311
‘--relax’ command-line option, MMIX 242
--rename-section.............. L 366
B =Y ¢ LT - Y= N 311
—-sectname-subst..............iiiiiiiiann. 77
‘-—short-branches’ 213
—-small. .o 311
--statistics......... ...l 29
‘-—strict-direct-mode’...................... 213
-—target-align.................. ... 365
--text-section-literals 365
--traditional-format........................ 29
-—trampolines............................... 366
-—transform............ ool 366
--underscore command-line option, CRIS.... 152
TWATIL L e 30
‘—-x32’ option, i386........l 176
‘—-x32’ option, x86-64c ... 176

Using as

‘-—xgate-ramoffset’.............. 213
‘-1’ option, VAX/VMS ...t 355
-32addr command-line option, Alpha......... 100
FuE: 25
TR e 25
A 25
T 25
-1 PP 25
mal 25
“Aleomn ... 314
AT 25
A L e 25
SASparcC. ... 314
-Asparcfmafol 314
—Asparcimal 314
—Asparclet 314
-Asparclite...........l 314
—Asparcvis ...l 314
—Asparcvis2........... ...l 314
—ASParCViIsS3 ... 314
—Asparcvis3r..... ... 314
SAVB 314
SAVT 314
SAVS L 314
SAVO L 314
SAVOA L 314
SAVOD L 314
SAVOC . 314
SAVOA L 314
SAVOE L 314
SAVOmM L. 314
SAVOV L 314
-big option, M32R.......... ool 201
-colonless command-line option, Z80........ 376
-d, VAX option ..., 354
D 26
=D, ignored on VAX il 354
-eabi= command-line option, ARM........... 120
-EB command-line option, AArch64............ 94
-EB command-line option, ARC............... 108
-EB command-line option, ARM 120
-EB command-line option, BPF 144
-EB option (MIPS) 225
-EB option, M32R i 201
‘~EB’ option, TILE-Gx.............. 338
-EL command-line option, AArch64............ 94
-EL command-line option, ARC............... 108
-EL command-line option, ARM 121
-EL command-line option, BPF............... 144
-EL option (MIPS)cooiiiiiiina.. 225
-EL option, M32Rol 201
‘~EL’ option, TILE-Gx............coooiiii... 338
e 1 26
-F command-line option, Alpha............... 100
‘~fno-pic’ option, RISC-V 278
-fp-d command-line option, Z80.............. 376
-fp-s command-line option, Z80.............. 376

‘~fpic’ option, RISC-V....................... 278

AS Index

-g command-line option, Alpha............... 100
-G command-line option, Alpha............... 100
-G option (MIPS)oooia... 225
‘~h’ option, VAX/VMS................ooo... 354
‘~H’ option, VAX/VMS, 355
Sl path ..o 26
‘~-ignore-parallel-conflicts’ option, M32RX
... 202
‘~Ip’ option, M32RX 202
=J,ignored on VAX i 354
-k command-line option, ARM 121
K 26
-KPIC option, M32R.................ooi.. 201
-KPIC option, MIPS, 225
‘=1’ option, M680X0 ..o 205
-little option, M32R................ 201
-local-prefix command-line option, Z80 376
Sl e 26
‘-m[no-168851" command-line option, M680x0
... 205
‘-m[no-168881" command-line option, M680x0
... 205

‘-m[no-]div’ command-line option, M680x0... 205
‘-m[no-Jemac’ command-line option, M680x0.. 205
‘-m[no-Jfloat’ command-line option, M680x0

‘-m[no-Jmac’ command-line option, M680x0... 205
‘-m[no-Jusp’ command-line option, M680x0... 205

Sm11/03 . 269
Sml1/04. oo 269
Sm11/05. 270
11/ 10 270
-mll/15. 270
Sml1/20. . 270
Smll/21 . 270
Sml1/23 . 270
-mll/24. . 270
Sml1/34. 270
-mll/34a. . 270
Sm11/35 . 270
e T T 270
Smll/ A4 270
Sl A5 270
SmLL1/B0. 270
-mll/B3. 270
S/ B5 270
“m11/60. 270
Smll/70. . 270
Sl T3 270
Sml1/83 . 270
Sml1/84 . 270
-ml1/93. 270
-mll/94. 270
‘-m16¢’ option, M16C............. 199
‘-m31’ option, 390 il 293
‘-m32’ option, TILE-Gx........ ... 338
‘-m32bit-doubles’ 290

399
‘-m32r’ option, M32R................, 201
‘-m32rx’ option, M32R2 201
‘-m32rx’ option, M32RX................ 201
-m4byte-align command-line option, V850 ... 348
‘-m64’ option, $390 293
‘-m64’ option, TILE-Gx............ 338
‘-m64bit-doubles’l 290
‘-m68000° and related options................. 206
—mB8hCLL 213
~mB8hCl12 L 213
mBBhCS12’ 213
-m8byte-align command-line option, V850... 348
-mabi= command-line option, AArch64......... 94
‘-mabi=ABI’ option, RISC-V 278
‘-madd-bnd-prefix’ option, i386.............. 178
‘-madd-bnd-prefix’ option, x86-64 178
‘-malign-branch-boundary=’ option, i386..... 179

‘-malign-branch-boundary=’ option, x86-64 .. 179
‘-malign-branch-prefix-size=" option, i386

....................................... 179
‘-malign-branch-prefix-size=’ option, x86-64

... 179
‘-malign-branch=’ option, i386............... 179
‘-malign-branch=’ option, x86-64............. 179
-mall. .o 268
-mall-enabled command-line option, LM32 .. 196
-mall-extensions 268
-mall-opcodes command-line option, AVR ... 133
‘-mamd64’ option, x86-64........... 180
-mapcs-26 command-line option, ARM 120
-mapcs-32 command-line option, ARM 120

-mapcs-float command-line option, ARM.... 120
-mapcs-reentrant command-line option, ARM

... 120
‘-march-attr’ option, RISC-V................ 278
-march= command-line option, AArch64 94
-march= command-line option, ARM.......... 116
‘-march=" command-line option, M680x0...... 205
-march= command-line option, TIC6X 335
-march= command-line option, Z80 376
‘-march=" option, i386 176
‘-march=" option, s390........................ 293
‘-march=" option, x86-64...................... 176
‘-march=ISA’ option, RISC-V................. 278
-matpcs command-line option, ARM.......... 120
‘-mavxscalar=’ option, i386................... 177
‘-mavxscalar=’ option, x86-64 177
-mbarrel-shift-enabled command-line option,

LM32. e 196
‘-mbig-endian’............. ... il 290
‘-mbig-endian’ option, RISC-V............... 279
‘-mbig-obj’ option, i386................ 178
‘-mbig-obj’ option, x86-64.................... 178
‘-mbranches-within-32B-boundaries’ option, i386

... 179
‘-mbranches-within-32B-boundaries’ option,

X86-64 ... 179

400

-mbreak-enabled command-line option, LM32

... 196
-mccs command-line option, ARM............ 121
SINCIS . ottt 268

-mcode-density command-line option, ARC.. 108
-mconstant-gp command-line option, IA-64... 192

-mcpu command-line option, Alpha 100
‘—mcpu’ option, CPU ...ttt 325
CICPUS L e 291
-mcpu= command-line option, AArch64......... 94
-mcpu= command-line option, ARM........... 115
-mcpu= command-line option, Blackfin........ 140
‘-mcpu=" command-line option, M680x0 205
-mcpu=cpu command-line option, ARC........ 107
SINICSIIL. & et 268
‘-mcsr-check’ option, RISC-V................ 278
-mdcache-enabled command-line option, LM32
... 196
-mdebug command-line option, Alpha......... 100
-mdivide-enabled command-line option, LM32
... 196
‘-mdollar-hex’ option, dollar-hex............. 219
-mdpfp command-line option, ARC 108
-mdsbt command-line option, TIC6X 335
‘-me’ option, stderr redirect................... 325
SINEIS . ot 268

-mepiphany command-line option, Epiphany .. 167
-mepiphany16 command-line option, Epiphany

... 167
‘-merrors-to-file’ option, stderr redirect.... 325
‘-mesa’ option, 8390o 293
‘-mevexlig=’ option, i386............. 178
‘-mevexlig=’ option, x86-64 178
‘-mevexrcig=" option, i386.................... 180
‘-mevexrcig=’" option, x86-64 180
‘-mevexwig=" option, i386............... 178
‘-mevexwig=" option, x86-64 178
‘-mf’ option, far-mode 325
—mf Ll 269
‘-mfar-mode’ option, far-mode 325
-mfdpic command-line option, Blackfin....... 140
‘-mfence-as-lock-add=’ option, i386 179
‘-mfence-as-lock-add=’ option, x86-64....... 179
SIS 268
-mfloat-abi= command-line option, ARM.... 120
-mfp-11 . 268
-mfpl6-format= command-line option 119
PP . 268
SPU . 268
-mfpu= command-line option, ARM........... 119
-mfpuda command-line option, ARC.......... 108
‘emgec—abl’ L. 290
-mgcc-abi command-line option, V850........ 348
-mgcc-isr command-line option, AVR........ 134

-mhard-float command-line option, V850 348

-micache-enabled command-line option, LM32
... 196

-mimplicit-it command-line option, ARM... 120

Using as
‘-mint-register’............ ool 290
‘-mintel64’ option, x86-64.................... 180
‘-mip2022’ option, IP2K.............. 195
‘-mip2022ext’ option, IP2022................. 195
‘-misa-spec=ISAspec’ option, RISC-V........ 278
1 1 269
-mkall ... 269
-mKkbll. ..o 269
-mkdlla ..o 269
-mkdllb .o 269
-mkdlld ..o 269
-mkdlle. ... 269
-mkd11f. 269
-mkdllh oo 269
-mkdIlk .o 269
-mkdllg . 269
-mkdllz. ..o 269
-mkevll. . 268
‘-mlfence-after-load=’ option, i386 179
‘-mlfence-after-load=’ option, x86-64....... 179
‘-ml1fence-before-indirect-branch=" option, i386

... 179
‘-mlfence-before-indirect-branch=’ option,

X86-64 ... 179
‘-mlfence-before-ret=’ option, i386 180
‘-ml1fence-before-ret=" option, x86-64....... 180
-mlimited-eis......... ... 268
-mlink-relax command-line option, AVR 134
‘“-mlittle-endian’ciiiiiiiiia... 290
‘-mlittle-endian’ option, RISC-V........... 279
mlONE .. 213, 362
‘-mlong-double’............. 213, 362
CmmOSI2X L 213
CemmOSI2KE L 213
-mmcu= command-line option, AVR 132
-mmfpt. ..o 269
SMMICTOCOAE ottt e e 269
‘-mmnemonic=’ option, i386.................... 178
‘-mmnemonic=’ option, x86-64 178
-mmultiply-enabled command-line option, LM32

... 196
-mMMUbIPIOC .« 269
S 00000 b:q o 1= PN 269
‘-mnaked-reg’ option, i386.................... 178
‘-mnaked-reg’ option, x86-64 178
-mnan= command-line option, MIPS 232
‘-mno-allow-string-insns’.................. 291
‘-mno-arch-attr’ option, RISC-V 278
SINNO-CIS. ottt ettt 268
SINNO-CSIIL & vttt ettt ie e e e 268
‘-mno-csr-check’ option, RISC-V 279
-mno-dsbt command-line option, TIC6X...... 335
SINNO-€IS. o vttt 268
-MNo-extensionso o oL 268
-mno-fdpic command-line option, Blackfin.... 140
-MNO-fiS . .o 268
-mno-fp-11 ..o 268
-mMNo-fpp ..o 268

AS Index

-mno-fpu. ... 268
-mno-kevll.. ... 268
-mno-limited-eis............ ... ool 268
-mno-link-relax command-line option, AVR
....................................... 134
-mno-mfpt ... 269
-mno-microcode i 269
SMNO-MUbIPIOC . . vttt e 269
STNTIOTIIXDS « ¢ v vttt ettt 269
SINNO-PIC « e e et 268
-mno-pic command-line option, TIC6X....... 335
‘-mno-regnames’ option, s390 293
‘-mno-relax’ option, RISC-V................. 278
-mno-skip-bug command-line option, AVR ... 133
SMNO-SPL . e et 269
SMNO-SYM32 ..o 231
-mno-verbose-error command-line option,
AArchG4o 94
-mno-wrap command-line option, AVR........ 133
-mnopic command-line option, Blackfin....... 140
-mnps400 command-line option, ARC......... 108
‘-momit-lock-prefix=’ option, i386 178
‘-momit-lock-prefix=’ option, x86-64........ 178
SINPIC « ettt e 268
-mpic command-line option, TIC6X 335
CmPId 290
-mpid= command-line option, TIC6X 335
‘-mpriv-spec=PRIVspec’ option, RISC-V...... 278
‘-mreg-prefix=prefix’ option, reg-prefix..... 219
‘-mregnames’ option, s390..................... 293
-mrelax command-line option, ARC.......... 108
-mrelax command-line option, V850.......... 347
‘-mrelax’ option, RISC-V 278
‘-mrelax-relocations=’ option, i386 179
‘-mrelax-relocations=’ option, x86-64....... 179
-mrh850-abi command-line option, V850 348
-mrmw command-line option, AVR............. 133
Cemrx-abi’ L 291
‘-mshared’ option, 1386 178
‘-mshared’ option, x86-64..................... 178
‘emshort’ ..o 213, 362
‘-mshort-double’........... ... 213, 362
-msign-extend-enabled command-line option,
LM32. . 196
‘-msmall-data-limit’................ 290
-msoft-float command-line option, V850 348
-mspfp command-line option, ARC 108
SMSPL. 269
‘-msse-check=" option, i386................... 177
‘-msse-check=" option, x86-64 177
‘-msse2avx’ option, i386.................. ... 177
‘-msse2avx’ option, x86-64.................... 177
SISYM32 L 231
‘-msyntax=’ option, i386.............. 178
‘-msyntax=’ option, x86-64.................... 178
Smtll 269

-mthumb command-line option, ARM.......... 119

401

-mthumb-interwork command-line option, ARM

... 119
‘-mtune=" option, i386 177
‘-mtune=’ option, x86-64...................... 177
-mtune=arch command-line option, Visium ... 359
‘-muse-conventional-section-names’........ 290
‘-muse-renesas-section-names’.............. 290
-muser-enabled command-line option, LM32

... 196
-mv850 command-line option, V850 347
-mv850any command-line option, V850........ 347
-mv850e command-line option, V850.......... 347
-mv850el command-line option, V850......... 347
-mv850e2 command-line option, V850......... 347
-mv850e2v3 command-line option, V850 347
-mv850e2v4 command-line option, V850 347
-mv850e3v5 command-line option, V850 347
-mverbose-error command-line option, AArch64

... 94
‘-mvexwig=" option, i386................ 177
‘-mvexwig=" option, x86-64.................... 177
-mvxworks-pic option, MIPS................. 225
‘-mwarn-areg-zero’ option, s390.............. 293
-mwarn-deprecated command-line option, ARM

... 121
-mwarn-syms command-line option, ARM..... 121
‘-mx86-used-note=" option, i386.............. 180
‘-mx86-used-note=" option, x86-64 180
‘-mzarch’ option, s390................ 293
TN 27
-N command-line option, CRIS 152
‘-nIp’ option, M32RX, 202
‘-no-bitinst’, M32R2.............. 201
‘-no-ignore-parallel-conflicts’ option, M32RX

... 202
-no-mdebug command-line option, Alpha...... 100
-no-parallel option, M32RX 201
‘-no-warn-explicit-parallel-conflicts’ option,

M32RX .o 202
‘-no-warn-unmatched-high’ option, M32R 202
-nocpp ignored (MIPS)....................... 231
-noreplace command-line option, Alpha...... 100
O 29
‘=0’ option, i386t 180
-0 option, M32RX........ ... 201
‘=0’ option, x86-64. 180
‘=00’ option, 1386 180
‘~00’ option, x86-64 ...t 180
‘=01’ option, 1386ot 180
‘=01’ option, x86-64t 180
‘=02’ option, 1386 180
‘=02’ option, x86-64 180
‘=0s’ option, i386......... L 180
‘~0s’ option, x86-64 ..., 180
-parallel option, M32RX.................... 201
-relax command-line option, Alpha.......... 100
-replace command-line option, Alpha........ 100
R 29

402

-S,ignored on VAX i 354
-sdcc command-line option, Z80.............. 376
-t, ignored on VAX ool 354
=T, ignored on VAX 354
2P 29
-V, redundant on VAX 354
SVErSION. ...t 29
‘-warn-explicit-parallel-conflicts’ option,
M32RX .o 201
‘-warn-unmatched-high’ option, M32R 202
T 29
‘~Wnp’ option, M32RX 202
‘~Wnuh’ option, M32RX 202
‘=Wp’ option, M32RX 201
-wsigned_overflow command-line option, V850
... 347
‘=Wuh’ option, M32RX, 202
-wunsigned_overflow command-line option, V850
... 347
‘-x’ command-line option, MMIX............. 242
-z8001 command-line option, Z8000 380
-z8002 command-line option, Z8000 380
L(symbol) ..o 45
.align directive, ARM 123
.align directive, TILE-Gx 341
.align directive, TILEPro.................... 346
.allow_suspicious_bundles directive, TILE-Gx
... 341
.allow_suspicious_bundles directive, TILEPro
... 346
.arc_attribute directive, ARC 113
.arch directive, AArch64 97
.arch directive, ARM 123
.arch directive, TIC6X 336
.arch_extension directive, AArch64........... 97
.arch_extension directive, ARM............. 123
.arm directive, ARM 123
.assume directive, Z80............ 378
.attribute directive, RISC-V 280
.big directive, M32RX 203
.bss directive, AArch64 97
.bss directive, ARM 123
.c6xabi_attribute directive, TIC6X 336
.cantunwind directive, ARM 123
.cantunwind directive, TIC6X 336
.cfi_b_key_frame directive, AArch64 99
.code directive, ARM 123
.cpu directive, AArch64 98
.cpu directive, ARM 123
.dn and .qn directives, ARM 123
.dword directive, AArch64..................... 98
.eabi_attribute directive, ARM............. 124
.ehtype directive, TIC6X 336
.endp directive, TIC6X....................... 336
.even directive, AArch64 98

Using as
.even directive, ARM 124
.extend directive, ARM 124
.float16 directive, AArch64................... 98
.float16 directive, ARM..................... 124
.float16_format directive, ARM............. 124
.fnend directive, ARM 124
.fnstart directive, ARM..................... 125
.force_thumb directive, ARM 125
.fpu directive, ARM 125
sglobal ... 236
.gnu_attribute 4, n directive, MIPS......... 236
.gnu_attribute Tag_GNU_MIPS_ABI_FP, n
directive, MIPS 236
.handlerdata directive, ARM 125
.handlerdata directive, TIC6X............... 336
INSI . 236
.insn directive, 8390ol 306
.inst directive, AArch64 98
.inst directive, ARM 125
.1ldouble directive, ARM..................... 124
.little directive, M32RX.................... 203
.long directive, s390 ool 306
.1ltorg directive, AArch64..................... 98
.1torg directive, ARM 125
.1ltorg directive, s390 L. 307
.m32r directive, M32R............. 203
.m32r2 directive, M32R2 203
.m32rx directive, M32RX 203
.machine directive, 8390 307
.machinemode directive, s390 307
module. ... 235
.module fp=nn directive, MIPS 237
.movsp directive, ARM 125
.nan directive, MIPS 238
.no_pointers directive, XStormy16........... 364
.nocmp directive, TIC6X...................... 336
0 e 22
.object_arch directive, ARM 125
.packed directive, ARM 125
.pad directive, ARM 125
.paramon HPPA 172
.personality directive, ARM 126
.personality directive, TIC6X............... 336
.personalityindex directive, ARM 126
.personalityindex directive, TIC6X 336
.pool directive, AArch64...................... 98
.pool directive, ARM 126
.quad directive, 8390 L 306
.req directive, AArch64 98
.req directive, ARM 126
.require_canonical_reg_names directive,
TILE-GX o ovvvii i 341
.require_canonical_reg_names directive,
TILEPro....covi 346
.save directive, ARM 126
.scomm directive, TIC6X...................... 336
.secrel32 directive, ARM.................... 126

.set arch=cpu....................iiiii 235

AS Index

set at. .. 233
.set at=reg..... ... 233
.set autoextend.............. 236
LSEL CTC ..ttt 240
.set doublefloat...............oooiiiiiiiin, 240
set dsp....i 239
.set dspr2....... 239
.set dspr3 ... 239
.set ginv...... 240
.set hardfloat................. ... iin. 240
.set insn32 ...l 235
.set loongson-camc.uuiiiiii.. 240
.set loongson-ext 240
.set loongson-ext2......................... 240
.set loongson-mmi, 240
.Set MACTO ...t 233
LSEE MCU. .ttt 239
cset mdmX. ... 239
.set mips16e2.......... ...l 240
set mips3d ... 239
set mipSn..... 235
LSEL MSA. ..t 239
LSet Mb ..o 239
setmoat........ 233
.set noautoextend 236
.St MOCTC .ot 240
.set modsp ... 239
.set modspr2.................LL 239
.set modspr3.......... il 239
.set moginv ... 240
.set moinsn32. ... 235
.set noloongson-cam........................ 240
.set noloongson-ext 240
.set noloongson-ext2...................unn. 240
.set noloongson-mmi........................ 240
.SEt MOMACTO .ottt et 233
LSet MOMCU ..ot 239
.set momdmXl 239
.set nomipsl6e2.............. 240
.set momips3d...... ... il 239
LS MOMSA .« o vt vee et 239
set momt. ... 239
.set nosmartmips............ ..., 239
.set mosym32............... L 234
.set movirt ... 239
28T MOXPA ...t 239
LSeL POP.. . 239
.set push.......o 239
.set singlefloat............................ 240
.set smartmips............l 239
.set softfloat..................oiiiiiia, 240
cset sym32 ... 234
Lset VArt. ... 239
Lset Xpa........ioiiiai 239
setfp directive, ARM 126
.short directive, s390 306
.syntax directive, ARM 126

.thumb directive, ARM 127

403
.thumb_func directive, ARM 127
.thumb_set directive, ARM................... 127
.tlsdescadd directive, AArch64............... 98
.tlsdesccall directive, AArch64.............. 98
.tlsdescldr directive, AArch64............... 98
.tlsdescseq directive, ARM 127
.unreq directive, AArch64..................... 98
.unreq directive, ARM 127
.unwind_raw directive, ARM 127
.v850 directive, V850............cooiiiiii.. 351
.v850e directive, V850l 351
.v850e1 directive, V850 351
.v850e2 directive, V850 ..., 351
.v850e2v3 directive, V850 351
.v850e2v4 directive, V850 351
.v850e3v5 directive, V850 351
.variant_pcs directive, AArch64.............. 98
.vsave directive, ARM 127
.xword directive, AArch64..................... 99
z8001 .. 381
Z8002 . . 381
(Iabel) ..o 33
@

@gotoff(symbol), ARC modifier............... 114
@gotpc(symbol), ARC modifier............... 114
@hi pseudo-op, XStormyl6 364
@lo pseudo-op, XStormyl6 364
@pcl(symbol), ARC modifier 114
@plt(symbol), ARC modifier.................. 114
@sda(symbol), ARC modifier................. 114
@Qword modifier, DIOV........................ 162
_opcode prefix. ... 367
__DYNAMIC__, ARC pre-defined symbol...... 114
__GLOBAL_OFFSET_TABLE__, ARC pre-defined
symbol 114

1
16-bit code, 1886 . v v 189
16bit_pointers directive, XStormyl6........ 364
16byte directive, Nios IT...................... 261
16byte directive, PRU......... 277

2
2byte directive oo 88
2byte directive, Nios IT....................... 261
2byte directive, PRU.............. 276

404

3

32bit_pointers directive, XStormyl16 364
3DNow!, 1386 .. e e 188
3DNow!, x86-64 ..ot 188

4

430 SUPPOTt .. 249
4byte directive ... 38
4byte directive, Nios IT........... 261
4byte directive, PRU...... 276

8

8byte directive........... oL 88
8byte directive, Nios IT....................... 261
8byte directive, PRU......................... 276

A 0UL o 22
a.out symbol attributes.............. 46
‘A_DIR’ environment variable, TIC54X 325
AArch64 floating point (IEEE).................. 97
AArch64 immediate character.................. 97
AArch64 line comment character............... 97
AArch64 line separator 97
AArch64 machine directives.................... 97
AArch64 opcodes. ..ot 99
AArch64 options (none)o.. 94
AArch64 register namesc..... 97
AArch64 relocations ...l 97
AArch64 support 94
abort directive i 51
ABORT directiveo.vveveiiiieeniieann. 51
absolute section ool 38
absolute-literals directive 375
ADDI instructions, relaxation.................. 371
addition, permitted arguments................. 48
addresses. ... 47
addresses, format of L 38
addressing modes, D10V 161
addressing modes, D30V 166
addressing modes, H8/300.................... 168
addressing modes, M680x0.................... 208
addressing modes, M68HC11 214
addressing modes, S127 220
addressing modes, SH 312
addressing modes, XGATE 362
addressing modes, Z8000 380
ADR reg,<label> pseudo op, ARM............ 128
ADRL reg,<label> pseudo op, ARM........... 128
ADRP, ADD, LDR/STR group relocations,
AArch64o 97
advancing location counter..................... 73
align directive oL 51, 279

align directive, Nios IT................. 261

Using as
align directive, OpenRISC................... 266
align directive, PRU........... 276
align directive, SPARC 323
align directive, TIC54X.......... 328
aligned instruction bundle 53
alignment for NEON instructions............. 122
alignment of branch targets................... 368
alignment of LOOP instructions................ 368
Alpha floating point (IEEE) 103
Alpha line comment character 101
Alpha line separator.......................... 101
Alpha notesoooiiiiiiiiiiiii.. 100
Alpha options ..o, 100
Alpha registers ... 101
Alpha relocations.c.coviiiieein.. 101
Alpha support.........coooiiiiiiiiii 100
Alpha Syntax ... 100
Alpha-only directives............. 103
Altera Nios II support...........ccovvvuv.... 260
altered difference tables........................ 87
alternate syntax for the 680x0................ 209
ARC Branch Target Address 109
ARC BTA saved on exception entry 109

ARC Build configuration for: BTA Registers.. 110
ARC Build configuration for: Core Registers.. 110

ARC Build configuration for: Interrupts. 110
ARC Build Configuration Registers Version... 109
ARC C preprocessor macro separator......... 108
ARC core general registers.................... 109
ARC DCCM RAM Configuration Register.... 110
ARC Exception Cause Register............... 109
ARC Exception Return Address.............. 109
ARC extension core registers 109
ARC frame pointer...................ooi.. 109
ARC global pointer................. 109
ARC interrupt link register................... 109
ARC Interrupt Vector Base address........... 109
ARC level 1 interrupt link register............ 109
ARC level 2 interrupt link register............ 109
ARC line comment character 108
ARC line separator............cooveiuueennn... 108
ARC link register...........c.ooooiiiiiiii 109
ARCloopcounter...........covvviniuinennnn.. 109
ARC machine directives...................... 110
ARC opcodes. ...ovviiiiii i 114
ARCoptionscooviiiiiiiiiiiie. 107
ARC Processor Identification register......... 109
ARC Program Counter....................... 109
ARC register name prefix character........... 108
ARC register names..............c.ooouinn.... 109
ARC Saved User Stack Pointer 109
ARC stack pointer i 109
ARC Status register............. ... 109
ARC STATUS32 saved on exception.......... 109
ARC Stored STATUS32 register on entry to level
PO interrupts ... 109
ARC SUpPPOTrt ..o vvvev i 107
ARC symbol prefix character 108

AS Index

ARC word aligned program counter........... 109
arch directive, i386 L. 189
arch directive, M680x0cooiut.. 210
arch directive, MSP 430...................... 252
arch directive, X86-64....... ...t 189
architecture options, IP2022.................. 195
architecture options, IP2K................. ... 195
architecture options, M16C 199
architecture options, M32C 199
architecture options, M32R................... 201
architecture options, M32R2.................. 201
architecture options, M32RX 201
architecture options, M680x0 206
Architecture variant option, CRIS 152
architectures, Meta........................... 223
architectures, PowerPC....................... 273
architectures, SCORE 309
architectures, SPARC 314
arguments for addition......................... 48
arguments for subtraction...................... 48
arguments in expressions 47
arithmetic functions 47
arithmetic operands 47
ARM data relocations........................ 122
ARM floating point (IEEE).................... 123
ARM identifiers i 122
ARM immediate character.................... 122
ARM line comment character................. 122
ARM line separatorccovviinnen... 122
ARM machine directives...................... 123
ARM 0pcodes . ..ovveii i 128
ARM options (none)................ooiiiiia. 115
ARM register names.c..oiiiiia.... 122
ARM Supportooovviiiiiii 115
ascii directive........ ... i 52
asciz directiveo i 52
asg directive, TIC54X 328
assembler bugs, reporting..................... 383
assembler crash........... oL 383
assembler directive .3byte, RX................ 292
assembler directive .arch, CRIS............... 156
assembler directive .dword, CRIS............. 155
assembler directive .far, M68HC11............ 216
assembler directive .fetchalign, RX............ 292
assembler directive .interrupt, M68HC11...... 217
assembler directive .mode, M68HC11 216
assembler directive .relax, M68HCI11.......... 216
assembler directive .syntax, CRIS............. 155
assembler directive .xrefb, M68HC11.......... 217
assembler directive BSPEC, MMIX 247
assembler directive BYTE, MMIX 246
assembler directive ESPEC, MMIX 247
assembler directive GREG, MMIX............ 245
assembler directive IS, MMIX................. 245
assembler directive LOC, MMIX.............. 245
assembler directive LOCAL, MMIX........... 245
assembler directive OCTA, MMIX 246

assembler directive PREFIX, MMIX.......... 247

405
assembler directive TETRA, MMIX 246
assembler directive WYDE, MMIX 246
assembler directives, CRIS.................... 155
assembler directives, M68HC11 216
assembler directives, M68HC12............... 216
assembler directives, MMIX 245
assembler directives, RL78.................... 288
assembler directives, RX............... 292
assembler directives, XGATE 363
assembler internal logic error 39
assembler version............. ... il 29
assembler, and linker 37
assembly listings, enabling..................... 25
assigning values to symbols 43, 60
at register, MIPS......... 233
att_syntax pseudo op, i386.................... 182
att_syntax pseudo op, x86-64 182
attributes, symbol ool 45
auxiliary attributes, COFF symbols............ 46
auxiliary symbol information, COFF........... 60
AVR line comment character 134
AVR line separator........... ... 134
AVR modifiers oo 134
AVR opcode summary..............cooiia.. 135
AVR options (none)c.ooevuiiin.. 132
AVR register namesoo..... 134
AVR sSupportcoovviiiiiiiii 132
B
backslash (\\) ..., 34
backspace (\b)coiia.. 33
balign directive............ L 52
balignl directive.............. 53
balignw directive............. 53
bes directive, TICH4Xt 331
big endian output, MIPS 14
big endian output, PJ oL 13
big-endian output, MIPS 225
big-endian output, TIC6X 335
bignums. ... 35
binary constants, TIC54X 325
binary files, including.............. 65
binary integers 34
bit names, TA-64 193
bitfields, not supported on VAX 357
Blackfin directives................ il 142
Blackfin options (none)....................... 140
Blackfin support. ... 140
Blackfin syntax...........ooiiiiiiiii... 140
block . .o 382
BMI, 386 ..o v e 188
BMI, x86-64.....cvvviiii i 188
BPF line comment character.................. 144
BPFopcodes............cooiiiiiiiiiii 145
BPF options (none) ..o, 144
BPF register names 144
BPF support................... ... 144

406

branch improvement, M680x0................. 211
branch improvement, M68HC11 217
branch improvement, VAX.................... 355
branch instructions, relaxation................ 369
Branch Target Address, ARC................. 109
branch target alignment 368
break directive, TIC54X 330
BSD syntaxc.ooiiiiiiiiii 270
bss directive, TIC54Xt 328
bss section...........oooiiiiiiiiiiian, 38, 40
BSS directive. ... 279
BTA saved on exception entry, ARC.......... 109
bug criteria....... oo 383
bug reports....... i 383
bugs in assembler.............. 383
Build configuration for: BTA Registers, ARC.. 110
Build configuration for: Core Registers, ARC.. 110
Build configuration for: Interrupts, ARC...... 110
Build Configuration Registers Version, ARC .. 109
Built-in symbols, CRIS....................... 153
builtin math functions, TIC54X 326
builtin subsym functions, TIC54X 333
bundle ... 53
bundle-locked............ ... i 53
bundle_align_mode directive 53
bundle_lock directive ..., 53
bundle_unlock directive..............ccoviun.. 53
bus lock prefixes, 386 ... 186
bval .. 381
byte directive i 54
byte directive, TIC54X, 328
C
c_mode directive, TIC54X..............coou.. 329
C preprocessor macro separator, ARC 108
C-SKY options........covviiiiiiiiiiann. 157
C-SKY SUpport.......ooovvuiiiiiiiinia.. 157
‘C54XDSP_DIR’ environment variable, TIC54X
....................................... 325
call directive, Nios IT......... 261
call instructions, i386..........., 184
call instructions, relaxation................... 369
call instructions, x86-64 184
call_hiadj directive, Nios II................. 261
call_lo directive, Nios IT..................... 261
carriage return (backslash-r)................. 33
case sensitivity, Z80 377
cfi_endproc directivel 54
cfi_fde_data directive.............. 55
cfi_personality directive..................... 54
cfi_personality_id directive................. 55
cfi_sections directive.............. 54
cfi_startproc directive....................... 54
char directive, TIC54X 328
character constant, Z80....................... 377
character constants.................. 33
character escape codes............. ...t 33

Using as

character escapes, Z80.............c.ooii... 377
character, single i 34
characters used in symbols..................... 32
clink directive, TIC54X 329
codel6 directive, i386......................... 189
codel6gcc directive, 1386 189
code32 directive, i386......... ol 189
code64 directive, i386......... ol 189
code64 directive, x86-64 189
COFF auxiliary symbol information 60
COFF structure debugging 84
COFF symbol attributes....................... 46
COFF symbol descriptor....................... 59
COFF symbol storage class.................... 76
COFF symbol type...............ooiiiit. 85
COFF symbols, debugging..................... 59
COFF value attribute 86
COMDAT ..o e 67
comm direCtiveooiiiiiiii 57
command line conventions 21
command-line options ignored, VAX 354
command-line options, V850 346
comment character, XStormy16............... 364
COMMENES . oo vttt 31
comments, M680x0........................... 212
comments, removed by preprocessor............ 31
common directive, SPARC..................... 323
common Sections, 67
common variable storage.................... ... 40
COMPATriSON EXPreSSiONS .« ovvvvvveeeeeeeeeeenn.. 48
conditional assembly............ 64
constant, single character...................... 34
constants......... ... i 33
constants, bignum 35
constants, character 33
constants, converted by preprocessor........... 31
constants, floating point 35
constants, integer........... o L 34
constants, number.......... oL 34
constants, Sparc..............ciiiiiiiii.. 318
constants, string..............o oo 33
constants, TICH4X ... 325
conversion instructions, i386.................. 183
conversion instructions, x86-64................ 183
coprocessor wait, i386 186
copy directive, TIC54X 329
core general registers, ARC................... 109
cpu directive, ARC ...t 110
cpu directive, M680x0 210
cpu directive, MSP 430....................... 252
CR16 line comment character................. 151
CR16 line separatorcovueennn... 151
CR16 Operand Qualifiers..................... 150
CRI16 SUPPOIt .. oovvei i 150
crash of assembler............................ 383
CRIS --emulation=crisaout command-line option
... 152

AS Index

CRIS --emulation=criself command-line option

... 152
CRIS --march=architecture command-line option
... 152
CRIS --mul-bug-abort command-line option
... 152
CRIS --no-mul-bug-abort command-line option
... 152
CRIS --no-underscore command-line option
... 152
CRIS --pic command-line option............. 152
CRIS --underscore command-line option..... 152
CRIS -N command-line option................ 152
CRIS architecture variant option 152
CRIS assembler directive .arch................ 156
CRIS assembler directive .dword.............. 155
CRIS assembler directive .syntax 155
CRIS assembler directives 155
CRIS built-in symbols........................ 153
CRIS instruction expansion................... 153
CRIS line comment characters................ 154
CRIS options.vvvuviiiii i 152
CRIS position-independent code 152
CRIS pseudo-op .archcoouat. 156
CRIS pseudo-op .dword 155
CRIS pseudo-op .syntaxccovvuunn.. 155
CRIS pseudo-0psovvviiiniiiiian.. 155
CRIS register names................covuua... 155
CRIS SUPPOIt « . vvve e 152
CRIS symbols in position-independent code... 154
ctbp register, V850ol 351
ctoff pseudo-op, V850 ...l 353
ctpc register, V850 oo 350
ctpsw register, V850....... L 350
current address 45
current address, advancing..................... 73
D
d24 directive, Z80 378
d32 directive, Z80 378
D10V @word modifier........................ 162
D10V addressing modes 161
D10V floating pointc..covieiii... 162
D10V line comment character................. 160
D10V opcode summary....................... 162
D10V optimizationl 11
D10V optionsoei i 159
D10V registers ...t 161
D10V size modifiers ... 159
D10V sub-instruction ordering................ 160
D10V sub-instructions........................ 159
D10V support 159
DIOV syntax................ooiiiiL 159
D30V addressing modes 166
D30V floating point ... 166
D30V Guarded Execution 165
D30V line comment character................. 163

407
D30V nops.....covviiiiiiiiiii i 11
D30V nops after 32-bit multiply 11
D30V opcode summary....................... 166
D30V optimization 11
D30V options ... 163
D30V registersooi L 165
D30V size modifiersl 163
D30V sub-instruction ordering................ 164
D30V sub-instructions........................ 163
D30V support ... 163
D30V syntaxcooviiiiiiiiiii 163
data alignment on SPARC.................... 316
data and text sections, joining................. 29
data directiveooviii e 58
data directive, TIC54Xo, 329
Data directives.......... ...l 279
data relocations, ARM 122
data sectioncoiiiiiiiii i 38
datal directive, M680x0.................. ... 210
data?2 directive, M680x0...................... 210
db directive, Z80 ... 378
dbpc register, V850 oL 350
dbpsw register, V850............ 350
de directive. ...l 58
deb directive ... 59
DCCM RAM Configuration Register, ARC ... 110
debuggers, and symbol order................... 43
debugging COFF symbols 59
DEC Syntax.....oovviiieeiiiieniienn. 270
decimal integers..............l 34
def directive 59
def directive, TICH54X 330
def24 directive, Z80 ... 378
def32 directive, Z80 378
defb directive, Z80 378
defl directive, Z80 ...ttt 378
defm directive, Z80 ...t 378
defs directive, Z80 378
defw directive, Z80 378
density instructions.............. 368
dependency tracking.............. 28
deprecated directives, 88
desc directivel i 59
descriptor, of a.out symbol.................... 46
dfloat directive, VAX, 355
difference tables altered........................ 87
difference tables, warning 26
differences, mmixal 247
dim directive ... 60
directives and instructions..................... 32
directives for PowerPC 275
directives for SCORE............... 309
directives, Blackfin 142
directives, M32R oo il 202
directives, M680x0............................ 210
directives, machine independent................ 51
directives, Xtensaccoiiiiiii 372
directives, Z8000 ...t 381

408

Disable floating-point instructions 240
Disable single-precision floating-point operations
... 240
displacement sizing character, VAX 357
dollar local symbols.............. 45
dot (symbol) ... 45
double directivecoiiiiiiiii. 60
double directive, i386............ciiiiiii... 188
double directive, M680x0.................. .. 210
double directive, M68HC11................... 217
double directive, RX 292
double directive, TIC54X..................... 329
double directive, VAX 355
double directive, x86-64 188
double directive, XGATE 363
doublequote (\") ... 34
drlist directive, TIC54X. ...t 329
drnolist directive, TIC54X 329
ds directive.cooiiiiiiii i 59
ds directive, Z80 ... 378
DTP-relative data directives.................. 279
dw directive, Z80o 378
dword directive, BPF 144
dword directive, Nios IT....................... 261
dword directive, PRU......................... 276

E

EB command-line option, C-SKY.............. 157
EB command-line option, Nios IT.............. 260
ecr register, V850 ... 350
eight-byte integer 75, 88
eipc register, V850 ool 350
eipsw register, V850.......... L. 350
eject directive il 60
EL command-line option, C-SKY.............. 157
EL command-line option, Nios IT.............. 260
ELF symbol type......... L. 85
else directive ... 60
elseif directive.............. it 60
empPty EXPreSsSiOnSvvvveeee e 47
emsg directive, TIC54X 329
emulation i 19
encoding options, i386............. ... 183
encoding options, x86-64........... 183
end directive ... 60
endef directive i 60
endfunc directive. ...l 60
endianness, MIPSo... 14
endianness, PJ 13
endif directive......... il 60
endloop directive, TIC54X 330
endm directive o i 71
endm directive, TIC54Xt 330
endproc directive, OpenRISC................. 266
endstruct directive, TIC54X 332
endunion directive, TIC54X 332

environment settings, TIC54X 325

Using as
EOF, newline must precede.................... 32
ep register, V850 it 350
Epiphany line comment character............. 167
Epiphany line separator 167
Epiphany options............................. 167
Epiphany support ... 167
equ directive i 60
equ directive, TIC54Xot 331
equ directive, Z80 378
equiv directive..........o il 61
eqv directive i 61
err directive i 61
error directive oo il 61
ETTOL IMESSAZES .+« v v vttt 23
error on valid input.............. 383
errors, caused by warnings..................... 29
errors, continuing after oL 30
escape codes, character 33
eval directive, TIC54X ...t 328
[2= « 382
even directive, M680x0coounnn. 210
even directive, TIC54X ..., 328
Exception Cause Register, ARC 109
Exception Return Address, ARC.............. 109
exitm directive.......... il 71
expr (internal section)c.oo.oua.. 39
expression arguments............. 47
EXPIESSIONS « . v vttt 47
expressions, Comparison........................ 48
expressions, empty............ ..o .. 47
expressions, integer..................l 47
extAuxRegister directive, ARC 111
extCondCode directive, ARC.................. 111
extCoreRegister directive, ARC............. 112
extend directive M680x0 210
extend directive M68HCI1 217
extend directive XGATE 363
extension core registers, ARC................. 109
extension instructions, i386 184
extension instructions, x86-64................. 184
extern directive............ciiiiiiiiii... 61
extInstruction directive, ARC 112
F
fail directivecoviiiieiniiii .. 61
far_mode directive, TIC54X 329
faster processing (=£) ..., 26
fatal signal 383
fclist directive, TIC54X.t 329
fcnolist directive, TICH4Xoouot.. 329
fepc register, V850 i 350
fepsw register, V850.......... ... oL 350
ffloat directive, VAX...... 355
field directive, TIC54X............. 329
file directive ... 62
file directive, MSP 430...................... 252
file name, logical.............. 62

AS Index

file names and line numbers, in warnings/errors

... 23
files, including oL 65
files, iInput.......cooviiiiiii 22
fill directive ...ooviiiii i 62
filling memory ..., 81, 82
filling memory with no-op instructions......... 72
filling memory with zero bytes................. 88
FLIX syntax ...t 366
float directive i 63
float directive, i386.............. 188
float directive, M680X0..........ccoviii.. 210
float directive, M68BHC11.................... 217
float directive, RX oot 292
float directive, TIC54X...................... 329
float directive, VAXl 355
float directive, x86-64 188
float directive, XGATE...................... 363
floating point numbers.......... 35
floating point numbers (double)................ 60
floating point numbers (single) 63, 81
floating point, AArch64 (IEEE)................. 97
floating point, Alpha (IEEE)................... 103
floating point, ARM (IEEE) 123
floating point, DIOV.........., 162
floating point, D30V 166
floating point, H8/300 (IEEE) 169
floating point, HPPA (IEEE) 171
floating point, 1386 187
floating point, M680x0...............c.cue.... 210
floating point, M68HC11 217
floating point, MSP 430 (IEEE)................ 252
floating point, OPENRISC (IEEE)............. 266
floating point, RX L 292
floating point, 390 i 308
floating point, SH (IEEE)...................... 312
floating point, SPARC (IEEE)................. 323
floating point, V850 (IEEE) 351
floating point, VAX L. 355
floating point, WebAssembly (IEEE)........... 360
floating point, x86-64................ ..., 187
floating point, XGATE 363
floating point, Z80......., 377
flonums 35
force2bsr command-line option, C-SKY...... 157
format of error messages.............. 23
format of warning messages.................... 23
formfeed (\f)..... ..ot 33
four-byte integer.............ccoiiiiiiiii... 88
fpic command-line option, C-SKY 157
frame pointer, ARC 109
func directiveo 63
functions, in expressions 47

G

gfloat directive, VAX................ 355
global 381

409
global directive.................oooiiiiL 63
global directive, TIC54X..................... 330
global pointer, ARC.......................... 109
got directive, Nios IT........o ... 261
got_hiadj directive, Nios IT.................. 261
got_lo directive, Nios IT.............. 261
gotoff directive, Nios IT.............. 261
gotoff_hiadj directive, Nios IT............... 261
gotoff_lo directive, Nios IT.................. 261
gp register, MIPS......., 234
gp register, V850 349
gprel directive, Nios IT........... 260
grouping data 39
H
H8/300 addressing modes..................... 168
H8/300 floating point (IEEE).................. 169
H8/300 line comment character............... 168
H8/300 line separator 168
H8/300 machine directives (none)............. 170
H8/300 opcode summaryc.o.... 170
H8/300 options...........cvuiiiiniiina.. 168
H8/300 registers...............cooiiiiiia.. 168
H8/300 size suffixes........................... 170
H8/300 SUPPOTt « v voevev i 168
H8/300H, assembling for...................... 170
half directive, BPF 144
half directive, Nios II................ 261
half directive, SPARC 323
half directive, TIC54X oot 330
hex character code (\xd...)................... 34
hexadecimal integers........................... 34
hexadecimal prefix, S12Z 219
hexadecimal prefix, Z80....................... 377
hfloat directive, VAX 355
hi directive, Nios ITo ot 260
hi pseudo-op, V850.......cooviiiiiiiii.. 352
hiO pseudo-op, V850 ..., 352
hiadj directive, Nios IT....................... 260
hidden directive............. L 63
high directive, M32R...........ot 202
hilo pseudo-op, V850 ..., 352
HPPA directives not supported 171
HPPA floating point (IEEE)................... 171
HPPA Syntaxcovvuiiiniiinnennan.. 171
HPPA-only directives......................... 172
hword directive, 63
I
i386 16-bit codet 189
i386 arch directive.......... oL 189
i386 att_syntax pseudo op 182
i386 conversion instructions................... 183
i386 extension instructions.................... 184
1386 floating point L 187
1386 immediate operands 182

410

1386 instruction naming....................... 183
1386 instruction prefixes 185
1386 intel_syntax pseudo op................... 182
1386 jump optimization............... 187
1386 jump, call, return......... oL 182
i386 jump/call operands...................... 182
1386 line comment character.................. 182
1386 line separator............. ...t 182
1386 memory references.............. 186
1386 mnemonic compatibility 184
i386 mul, imul instructions 191
i386 options............o i il 176
1386 register operandso il 182
1386 registers......... .. il 184
1386 sections. ... 182
1386 size suffixes....... ... i 182
1386 source, destination operands............. 182
1386 support...... ... oo 176
1386 syntax compatibility 182
180386 supporto 176
TA-64 line comment character................. 193
TA-64 line separatorc.ccoviueann... 193
TA-64 options.ot 192
TA-64 Processor-status-Register bit names 193
TA-64 registers........coooiviiiiii .. 193
TA-64 relocations 193
TA-64 SUPPOTt .. oot 192
TA-64 Syntax........cooviiiiiiiiiiii i 193
ident directiveo it 64
identifiers, ARM......... il 122
identifiers, MSP 430 it 250
if directive......ooiii 64
ifbdirective 64
ifcdirective ... 64
ifdef directive i 64
ifeq directivel 64
ifegs directive...........ol 64
ifge directiveo i 64
ifgt directive i 64
ifledirective ..o 64
iflt directive ... 64
ifnb directive ... 64
ifnc directive o i 65
ifndef directive......... il 65
ifne directive ... 65
ifnes directive ...ttt 65
ifnotdef directive............ oo 65
immediate character, AArch64................. 97
immediate character, ARM 122
immediate character, M680x0................. 212
immediate character, VAX.................... 357
immediate fields, relaxation................... 371
immediate operands, i386..................... 182
immediate operands, x86-64 182
imul instruction, i386.................. 191
imul instruction, x86-64 191
incbin directive......... ... il 65
include directive........... ..o 65

Using as
include directive search path.................. 26
indirect character, VAX 357
infix operators......... .o i 48
inhibiting interrupts, i386..................... 186
Input.o 22
input file linenumbers.......................... 22
INSN directivesovueiiniiniinienn.. 280
instruction aliases, s390....................... 301
instruction bundle.............. ...l 53
instruction expansion, CRIS.................. 153
instruction expansion, MMIX 243
instruction formats, risc-v 282
instruction formats, s390 297
instruction marker, s390...................... 305
instruction mnemonics, s390.................. 294
instruction naming, i386........... 183
instruction naming, x86-64 183
instruction operand modifier, 390 304
instruction operands, s390.................... 296
instruction prefixes, i386...................... 185
instruction set, M680x0................c...... 211
instruction set, M68HCI11..................... 217
instruction set, XGATE 364
instruction summary, AVR 135
instruction summary, D10V................... 162
instruction summary, D30V......... 166
instruction summary, H8/300................. 170
instruction summary, LM32.............. 198, 267
instruction summary, SH..................... 313
instruction summary, Z8000 382
instruction syntax, s390 294
instructions and directives.............. 32
int directive o i 65
int directive, H8/300......................... 170
int directive, i386......... .. il 188
int directive, TIC54X 330
int directive, x86-64...... 188
integer exXpressions. 47
integer, 16-byte......... .o i 72
integer, 2-byte........... ... il 88
integer, 4-byte....... i 88
integer, 8-byte.......... ... ool 75, 88
INEEZETS .« v vt 34
integers, 16-bit ool 63
integers, 32-bit L 65
integers, binary........... ... o i 34
integers, decimal.................... i, 34
integers, hexadecimal 34
integers, octal oot 34
integers, one byte......... oL 54
intel_syntax pseudo op, i386 182
intel_syntax pseudo op, x86-64................ 182
internal assembler sections..................... 39
internal directive......... ... i, 65
interrupt link register, ARC 109
Interrupt Vector Base address, ARC.......... 109
invalid input 383

invocation summaryoeiiiiiiia... 1

AS Index

IP2K architecture options 195
IP2K line comment character................. 195
IP2K line separator...............cooovuee... 195
IP2K options. ..ot 195
IP2K support ... 195
irpdirectiveo i i 66
irpc directive o il 66

J

joining text and data sections.................. 29
jsri2bsr command-line option, C-SKY 157
jump instructions, i386 184
jump instructions, relaxation 370
jump instructions, x86-64..................... 184
jump optimization, i386 187
jump optimization, x86-64.................... 187
jump/call operands, i386 182
jump/call operands, x86-64................... 182

L

L1681 instructions, relaxation................. 371
L16UI instructions, relaxation................. 371
L32I instructions, relaxation.................. 371
L8UI instructions, relaxation.................. 371
label (1) .. .o 33
label directive, TIC54X ...t 330
labels ... 43
labels, Z80o 377
largecomnm directive, ELF..................... 181
lcomm directive ..., 66, 110
lcomm directive, COFF 181
lcommon directive, ARC 110
I 22
ldouble directive M680x0 210
ldouble directive M68HCI1 217
ldouble directive XGATE 363
ldouble directive, TIC54X 329
LDR reg,=<expr> pseudo op, AArch64.......... 99
LDR reg,=<label> pseudo op, ARM........... 128
LEB128 directives..............cooiiiiiiiin. 279
length directive, TIC54X......... 330
length of symbols......... 32
level 1 interrupt link register, ARC 109
level 2 interrupt link register, ARC 109
1flags directive (ignored) 67
line ... 108
line comment character........................ 31
line comment character, AArch64.............. 97
line comment character, Alpha................ 101
line comment character, ARC................. 108
line comment character, ARM 122
line comment character, AVR................. 134
line comment character, BPF................. 144
line comment character, CR16................ 151
line comment character, D10V 160

line comment character, D30V 163

411
line comment character, Epiphany 167
line comment character, H8/300.............. 168
line comment character, i386.................. 182
line comment character, TA-64................ 193
line comment character, IP2K 195
line comment character, LM32................ 198
line comment character, M32C................ 200
line comment character, M680x0.............. 212
line comment character, M68HC11............ 214
line comment character, Meta 223
line comment character, MicroBlaze 224
line comment character, MIPS................ 240
line comment character, MSP 430............. 250
line comment character, Nios IT............... 260
line comment character, NS32K............... 263
line comment character, OpenRISC........... 264
line comment character, PJ................... 272
line comment character, PowerPC 275
line comment character, PRU................. 276
line comment character, RL78 289
line comment character, RX 292
line comment character, s390 294
line comment character, S12Z................. 219
line comment character, SCORE.............. 310
line comment character, SH................... 311
line comment character, Sparc................ 316
line comment character, TIC54X.............. 334
line comment character, TIC6X............... 335
line comment character, V850 348
line comment character, VAX................. 358
line comment character, Visium............... 359
line comment character, WebAssembly........ 360
line comment character, XGATE 362
line comment character, XStormy16 364
line comment character, Z80.................. 377
line comment character, Z8000................ 380
line comment characters, CRIS............... 154
line comment characters, MMIX 243
line directive ... 67
line directive, MSP 430...................... 252
line numbers, in input files............., 22
line separator character........................ 32
line separator character, Nios IT............... 260
line separator, AArch64........................ 97
line separator, Alpha 101
line separator, ARC 108
line separator, ARM 122
line separator, AVR 134
line separator, CR16.................. 151
line separator, Epiphany...................... 167
line separator, H8/300........................ 168
line separator, i386 o i 182
line separator, TA-64.......................... 193
line separator, IP2K 195
line separator, LM32 198
line separator, M32C 200
line separator, M680x0 212
line separator, M68HC11 214

412

line separator, Meta................... 223
line separator, MicroBlaze 224
line separator, MIPS 241
line separator, MSP 430 250
line separator, NS32K 263
line separator, OpenRISC 264
line separator, PJo 272
line separator, PowerPC...................... 275
line separator, RL78........... 289
line separator, RX 292
line separator, s390..........l 294
line separator, S12Zt 220
line separator, SCORE 310
line separator, SH......... 311
line separator, Sparc............c..oovieieann.. 316
line separator, TIC54X 334
line separator, TIC6X 335
line separator, V850 ..., 348
line separator, VAXol 358
line separator, Visium 359
line separator, XGATE 362
line separator, XStormyl16.................... 364
line separator, Z80......... ... 377
line separator, Z8000, 380
lines starting with #........................... 32
link register, ARC ...t 109
Inker....... ... 22
linker, and assembler 37
linkonce directive............. ol 67
list directive ... 68
list directive, TIC54X ...t 330
listing control, turning off....... 72
listing control, turning on...................... 68
listing control: new page..................o.... 60
listing control: paper size 75
listing control: subtitle.......... 76
listing control: title line........................ 85
listings, enabling............................... 25
literal directive.............oooiiiiii... 373
literal pool entries, s390 305
literal_position directive 374
literal_prefix directive..................... 375
little endian output, MIPS..................... 14
little endian output, PJ.......... 13
little-endian output, MIPS.................... 225
little-endian output, TIC6X 335
LM32 line comment character 198
LM32 line separator...............cooooiiinn.. 198
LM32 modifiers ... 197
LM32 opcode summary..............c.o.o.u... 198
LM32 options (none)coooiuinn... 196
LM32 register namescoiiii... 196
LM32 support . ..o 196
Indirective.coviiiiiiiii i 68
lo directive, Nios IT...........oooiiiiiiat. 260
lo pseudo-op, V850. ... 352
locdirectivecovviiiiii 68
loc_mark_labels directive..................... 69

Using as
local common symbols......................... 66
local directivecoviiuiiiiiiieann, 69
local labels ... 44
local symbol names............................ 43
local symbols, retaining in output.............. 26
location counter oo 45
location counter, advancing.................... 73
location counter, Z80 L. 377
logical filenameol 62
logical line number 67
logical line numbers 32
long directive oo 69
long directive, i386.........c.ciiiiiiiia... 188
long directive, TICH4X ...t 330
long directive, x86-64 188
longcall pseudo-op, V850...........cooiuun. 353
longcalls directive ... 373
longjump pseudo-op, V850.................... 353
Loongson Content Address Memory (CAM)
generation override....................... 240
Loongson EXTensions (EXT) instructions
generation override....................... 240
Loongson EXTensions R2 (EXT2) instructions
generation override....................... 240
Loongson MultiMedia extensions Instructions
(MMI) generation override............... 240
loop counter, ARCoiiiia. 109
loop directive, TIC54Xcoviiiiiinn... 330
LOOP instructions, alignment 368
low directive, M32R il 202
1p register, V850 L 350
IVAL e e 381
LWP, 386 . ..o 188
LWP, X86-64oovenini i 188
M
M16C architecture option..................... 199
M32C architecture option..................... 199
M32C line comment character 200
M32C line separator............o.ceeeevunnen... 200
M32C modifierscoiiiiiiii 199
M32C OptionS .« vt vt 199
M32C SUPPOTt .« vvv et e 199
M32R architecture options.................... 201
M32R directives.........coooiiiiiiiiiiiii 202
M32R OptIONS « v vvvveee e 201
M32R support............... o 201
M32R warnings ... 203
M680x0 addressing modes 208
M680x0 architecture options.................. 206
M680x0 branch improvement 211
M680x0 directives ... 210
M680x0 floating point ...t 210
M680x%0 immediate character 212
M680%0 line comment character 212
M680%0 line separator...............cooiiua.. 212

M680x%0 0pCcOdes. . ..vvvvn i 211

AS Index

M680x0 optionscovviiiiii 205
M680x0 pseudo-opcodesccovuun... 211
M680x0 size modifiers 208
M680X0 SUPPOTt .« vt 205
M680x0 Syntaxccovvuiiiiiiiiiii. 208
M68HC11 addressing modes 214
M68HC11 and M68HC12 support............. 213
M68HC11 assembler directive far............. 216
M68HC11 assembler directive .interrupt 217
M68HC11 assembler directive .mode.......... 216
M68HC11 assembler directive .relax........... 216
M68HC11 assembler directive .xrefb 217
M68HC11 assembler directives................ 216
M68HC11 branch improvement 217
M68HC11 floating pointcooiun. 217
M68HC11 line comment character 214
M68HCI11 line separator................c.o.... 214
M68HC11 modifierscoovienna ... 216
M68HC11 opcodes. .. .ovvvuviiiiiniinien.. 217
M68HCI1 options . ..ovvvveee i 213
M68HC11 pseudo-opcodes.................... 217
M68HCIL syntax.......oovvuiiiiiinnannn... 214
M68HC12 assembler directives................ 216
mA6 command-line option, ARC............... 107
mA7 command-line option, ARC............... 107
machine dependencies 93
machine directives, AArch64................... 97
machine directives, ARC...................... 110
machine directives, ARM 123
machine directives, BPF...................... 144
machine directives, H§/300 (none)............ 170
machine directives, MSP 430 252
machine directives, Nios IT.................... 261
machine directives, OPENRISC............... 266
machine directives, PRU...................... 276
machine directives, RISC-V................... 279
machine directives, SH........................ 313
machine directives, SPARC 323
machine directives, TIC54X 328
machine directives, TIC6X.................... 336
machine directives, TILE-Gx 341
machine directives, TILEPro.................. 346
machine directives, V850 351
machine directives, VAX...................... 355
machine directives, x86 181
machine directives, XStormy16 364
machine independent directives................ 51
machine instructions (not covered)............. 21
machine relocations, Nios IT.................. 260
machine relocations, PRU 276
machine-independent syntax................... 31
macro directiveo ool 69
macro directive, TIC54X...................... 330
TACTOS .+« e ettt ttee e ettt e et e e 69
macros, count executed 71
Macros, MSP 430cciiiiiiiiia... 250
macros, TIC54X i 333
make rules...... ... i 28

413
manual, structure and purpose................. 21
marc600 command-line option, ARC.......... 107
mARC601 command-line option, ARC.......... 107
mARC700 command-line option, ARC.......... 107
march command-line option, C-SKY 157
march command-line option, Nios IT........... 260
math builtins, TIC54X 326
Maximum number of continuation lines........ 27

mbig-endian command-line option, C-SKY ... 157
mbranch-stub command-line option, C-SKY .. 157

mcache command-line option, C-SKY 158
mcp command-line option, C-SKY............. 158
mcpu command-line option, C-SKY 157
mdsp command-line option, C-SKY 158
medsp command-line option, C-SKY 158
melrw command-line option, C-SKY 158
mEM command-line option, ARC............... 107
memory references, i386 186
memory references, x86-64.......... 186
memory-mapped registers, TIC54X 334
merging text and data sections................. 29
messages from assembler....................... 23
Meta architectures................ 223
Meta line comment character................. 223
Meta line separator............., 223
Metaoptions................ o i 223
Meta registers............ oo 223
Meta support........ ... i 223
mforce2bsr command-line option, C-SKY 157
mhard-float command-line option, C-SKY ... 158
mHS command-line option, ARC............... 107
MicroBlaze architectures...................... 224
MicroBlaze directives.................oooo... 224
MicroBlaze line comment character........... 224
MicroBlaze line separator..................... 224
MicroBlaze support................ooiil. 224
minus, permitted arguments 48
MIPS 32-bit microMIPS instruction generation
override.ooou i 235
MIPS architecture options.................... 225
MIPS big-endian output...................... 225
MIPS CPU overridecooovvviii i 235
MIPS cyclic redundancy check (CRC) instruction
generation override....................... 240
MIPS directives to override command-line options
... 235
MIPS DSP Release 1 instruction generation
override. . ..o 239
MIPS DSP Release 2 instruction generation
override. . ..o 239
MIPS DSP Release 3 instruction generation
override. 239
MIPS endiannessc.oviiiieeinnnen... 14
MIPS eXtended Physical Address (XPA)
instruction generation override........... 239

MIPS Global INValidate (GINV) instruction
generation override....................... 240

414

MIPS IEEE 754 NaN data encoding selection

... 238
MIPS ISA .. 14
MIPS ISA overridet 235
MIPS line comment character................. 240
MIPS line separatorcooeenn... 241
MIPS little-endian output 225

MIPS MCU instruction generation override ... 239
MIPS MDMX instruction generation override

... 239
MIPS MIPS-3D instruction generation override
... 239
MIPS MT instruction generation override. 239
MIPS option stack........ ... 239
MIPS pProCessorvvvuie e 225
MIPS SIMD Architecture instruction generation
override. ... i 239
MIPS16e2 instruction generation override... .. 240
mistack command-line option, C-SKY 158
MIT e 208
mjsri2bsr command-line option, C-SKY...... 157
mlabr command-line option, C-SKY 158
mlaf command-line option, C-SKY 158
mlib directive, TIC54X, 331
mlink-relax command-line option, PRU...... 276
mlist directive, TIC54X........., 331
mliterals-after-br command-line option, C-SKY
... 158

C-SKY oo 158

... 157
mljump command-line option, C-SKY 157
MMIX assembler directive BSPEC............ 247
MMIX assembler directive BYTE............. 246
MMIX assembler directive ESPEC............ 247
MMIX assembler directive GREG 245
MMIX assembler directive IS 245
MMIX assembler directive LOC 245
MMIX assembler directive LOCAL 245
MMIX assembler directive OCTA............. 246
MMIX assembler directive PREFIX........... 247
MMIX assembler directive TETRA 246
MMIX assembler directive WYDE 246
MMIX assembler directives................... 245
MMIX line comment characters............... 243
MMIX optionsovviiiiiiiiiiiiiiiiaen 242
MMIX pseudo-op BSPEC 247
MMIX pseudo-op BYTE 246
MMIX pseudo-op ESPEC 247
MMIX pseudo-op GREG 245
MMIX pseudo-op IS..... ...t 245
MMIX pseudo-op LOCoo.. .. 245
MMIX pseudo-op LOCAL 245
MMIX pseudo-op OCTA 246
MMIX pseudo-op PREFIX 247
MMIX pseudo-op TETRA 246

MMIX pseudo-op WYDE..................... 246

Using as
MMIX pseudo-opS........cooviuiiiiiinn... 245
MMIX register names 244
MMIX support 242
mmixal differences............. 247
mmp command-line option, C-SKY............. 158
mmregs directive, TIC54X..................... 331
mmsg directive, TIC54X 329
MMX|[2386 . .t eoee e 188
MMX, X86-64 ..o veei i 188
mnemonic compatibility, i386................. 184
mnemonic suffixes, i386....................... 182
mnemonic suffixes, x86-64 182
mnemonics for opcodes, VAX 355
mnemonics, AVR........l 135
mnemonics, DIOV 162
mnemonics, D30V i 166
mnemonics, H8/300 170
mnemonics, LM32............. 198
mnemonics, OpenRISC....................... 267
mnemonics, SH.............. ... L. 313
mnemonics, Z8000., 382
mno-branch-stub command-line option, C-SKY
... 157
mno-elrw command-line option, C-SKY 158
mno-force2bsr command-line option, C-SKY
... 157
mno-istack command-line option, C-SKY 158
mno-jsri2bsr command-line option, C-SKY .. 157
mno-labr command-line option, C-SKY....... 158
mno-laf command-line option, C-SKY 158

mno-link-relax command-line option, PRU .. 276
mno-literals-after-func command-line option,

C-SKY oo 158
mno-1jump command-line option, C-SKY...... 157
mno-lrw command-line option, C-SKY 157
mno-warn-regname-label command-line option,

PRU. ... 276
mnolist directive, TIC54X 331
mnoliterals-after-br command-line option,

C-SKY 158
mnolrw command-line option, C-SKY 157
mnps400 command-line option, ARC.......... 108
modifiers, M32C........ ... 199
module layout, WebAssembly................. 360
Motorola syntax for the 680x0................ 209
MOVI instructions, relaxation.................. 371
MOVN, MOVZ and MOVK group relocations,

AArch64. ... 97
MOVW and MOVT relocations, ARM........ 122
mri directive i 72
MRI compatibility mode....................... 27
MRI mode, temporarily........................ 72
msecurity command-line option, C-SKY...... 158
MSP 430 floating point (IEEE) 252
MSP 430 identifiers.............. ..., 250
MSP 430 line comment character............. 250
MSP 430 line separator.................c...... 250
MSP 430 machine directives.................. 252

AS Index

MSP 430 Mmacrosc.vvveeneaeiiiaan 250
MSP 430 opcodesvvviiiiiiiii 252
MSP 430 options (none)c..c.o.... 249
MSP 430 profiling capability.................. 252
MSP 430 register names 251
MSP 430 SUPPOTt. . .vveeniee e 249
MSP430 Assembler Extensions................ 251
mspabi_attribute directive, MSP430......... 252
mtrust command-line option, C-SKY 158
mul instruction, i386............ 191
mul instruction, x86-64 191
mvdsp command-line option, C-SKY 158

N

N32K supportcoovviiiiiiiii i 263
TAME . . 381
named section, 76
named sectionsot 38
names, symbol......... ool 43
naming object file oo 29
NDS32 optionsoovvvviiiii i 255
NDS32 processoroovveveiiiiinnnnn. 255
new page, in listings......... oL 60
newblock directive, TIC54X 331
newline (\n) ... 33
newline, required at fileend.................... 32
Nios II line comment character 260
Nios II line separator character 260
Nios II machine directives 261
Nios II machine relocations................... 260
Nios [Topcodes.......coviiiiiiiiiiii .. 262
Nios IToptions ...t 260
Nios IT support............ooooiiiiiiit. 260
Nios support ... 260
no-absolute-literals directive.............. 375

no-force2bsr command-line option, C-SKY .. 157
no-jsri2bsr command-line option, C-SKY ... 157

no-longcalls directive....................... 373
no-relax command-line option, Nios IT....... 260
no-schedule directive........................ 372
no-transform directive....................... 373
nodelay directive, OpenRISC................. 266
nolist directive................ o i, 72
nolist directive, TIC54X..............oii.. 330
nop directive i 72
NOP pseudo op, ARM 128
nops directive i 72
notes for Alpha..........., 100
notes for WebAssembly 360
NS32K line comment character 263
NS32K line separator.................ocouu... 263
null-terminated strings.............. 52
number constants............. 34
number of macros executed 71
numbered subsections.......................... 39
numbers, 16-bit............ol 63
numeric values. i 47

415
nword directive, SPARC 323
O
Object Attribute, RISC-V 286
object attributes........... L 89
object file 22
object file formato 21
object filenamel 29
object file, after errors................... 30
obsolescent directives................ 88
octadirective ... i 72
octal character code (\ddd) 34
octal integers......... oL 34
offset directive............cooiiiiiiiiL, 73
offset directive, V850 ...t 351
opcode mnemonics, VAX 355
opcode names, TILE-Gx...................... 338
opcode names, TILEPro...................... 343
opcode names, Xtensac.oeeeevuunee.... 367
opcode summary, AVR 135
opcode summary, DIOV 162
opcode summary, D30V 166
opcode summary, H8/300..................... 170
opcode summary, LM32 198
opcode summary, OpenRISC 267
opcode summary, SH......................... 313
opcode summary, Z8000 382
opcodes for AArch64 99
opcodes for ARCo 114
opcodes for ARM....................ooa 128
opcodes for BPFol 145
opcodes for MSP 430t 252
opcodes for Nios IT.............. ..., 262
opcodes for PRUl 277
opcodes for V850, 351
opcodes, MB8OX0covviiiieiiiiiiiinn. 211
opcodes, M6BHCI1...............ooiiiio... 217
opcodes, WebAssembly 360
OPENRISC floating point (IEEE) 266
OpenRISC line comment character............ 264
OpenRISC line separator..................... 264
OPENRISC machine directives............... 266
OpenRISC opcode summary.................. 267
OpenRISC registers ... 264
OpenRISC relocations.................o.o.... 264
OPENRISC support.......cooovviininennn... 264
OPENRISC Syntaxoovviiieeeininnenann. 264
operand delimiters, i386 182
operand delimiters, x86-64.................... 182
operand notation, VAX 357
operands in exXpressions........................ 47
operator precedence 48
operators, in exXpressions....................... 47
operators, permitted arguments................ 48
optimization, D10V 11
optimization, D30V.......... 11

optimizations............ oo o L 368

416

option directive.......... il 279
Option directive. ..., 279
option directive, TIC54X......... 331
option SUMMAaryovviuiiii i 1
options for AArch64 (none).................... 94
options for Alpha.................. 100
options for ARC.........oil.. 107
options for ARM (none) 115
options for AVR (none)....................... 132
options for Blackfin (none) 140
options for BPF (none)....................... 144
options for C-SKY....... ... 157
options for i386........ ... 176
options for TA-64 192
options for LM32 (none)...................... 196
options for Meta.................. .. il 223
options for MSP430 (none) 249
options for NDS32.............o i 255
options for Nios IT............ 260
options for PDP-11........................... 268
options for PowerPC 273
options for PRU............ 276
options for 8390 i 293
options for SCORE..................... 309
options for SPARC 314
options for TIC6X.......... ...t 335
options for V850 (none) 346
options for VAX/VMS. ..., 354
options for Visium............ 359
options for x86-64l 176
options for Z80....... i 376
options, all versions of assembler............... 25
options, command line......................... 21
options, CRIS i i, 152
options, DIOV i i 159
options, D30Vo 163
options, Epiphany 167
options, H8/300 168
options, IP2K 195
options, M32C 199
options, M32Rl 201
options, M68OX0. 205
options, M68HCI1........ 213
options, MMIXot 242
options, PJ........ . o 272
options, RL78o 288
options, RX ... o i 290
options, S127Z. ... 219
options, SH o i 311
options, TICH4Xt 325
options, XGATE 362
options, Z8000.coviiiiiiiiiii... 380
org directive i 73
other attribute, of a.out symbol............... 46
output file. ... 22
output section padding 28

Using as

P
p2align directive................ ... ool 73
p2alignl directive............. L 73
p2alignw directive................ L 73
padding the location counter................... 51
padding the location counter given a power of two

... 73
padding the location counter given number of

bytes ..o 52
page, in listings......... ool 60
paper size, for listings 75
paths for .include 26
patterns, writing in memory 62
PDP-11 comments............................ 270
PDP-11 floating-point register syntax......... 270
PDP-11 general-purpose register syntax....... 270
PDP-11 instruction naming................... 270
PDP-11 line separator................cc.ouu.. 270
PDP-11 support ..o 268
PDP-11syntax.............ooooiiiiii i . 270
pic command-line option, C-SKY............. 157
PIC code generation for ARM 121
PIC code generation for M32R................ 201
PIC selection, MIPS.......... 225
PJendianness............ ..ol 13
PJ line comment character 272
PJ line separator............ 272
PJoptions ... 272
PJsupport..... ... 272
plus, permitted arguments..................... 48
pmenm directive, PRU.......... 276
popsection directive oL 74
Position-independent code, CRIS 152
Position-independent code, symbols in, CRIS.. 154
PowerPC architectures 273
PowerPC directives................c..oooo.. 275
PowerPC line comment character............. 275
PowerPC line separator....................... 275
PowerPC options...............ooiiiii.. 273
PowerPC support ...t 273
precedence of operators........................ 48
precision, floating point.............. 35
prefix operators. oo 47
prefixes, 1386o 185
PrePrOCESSING . ..ottt 31
preprocessing, turning on and off............... 31
previous directive..........ol T4
primary attributes, COFF symbols............. 46
print directive...........o ool 74
proc directive, OpenRISC 266
proc directive, SPARC 323
Processor Identification register, ARC 109
profiler directive, MSP 430 252
profiling capability for MSP 430 252
Program Counter, ARC 109
protected directive.......... 75
PRU line comment character 276

PRU machine directives 276

AS Index

PRU machine relocations..................... 276
PRU opcodes............cooiiiiiiiiiii, 277
PRU options ..o 276
PRU support........cooooiiiiiiiii it 276
psect directive, Z80........... 378
pseudo map fd, BPF.......................... 144
pseudo-op .arch, CRIS........................ 156
pseudo-op .dword, CRIS...................... 155
pseudo-op .syntax, CRIS 155
pseudo-op BSPEC, MMIX.................... 247
pseudo-op BYTE, MMIX 246
pseudo-op ESPEC, MMIX.................... 247
pseudo-op GREG, MMIX..................... 245
pseudo-op IS, MMIXt 245
pseudo-op LOC, MMIX....................... 245
pseudo-op LOCAL, MMIX 245
pseudo-op OCTA, MMIX..................... 246
pseudo-op PREFIX, MMIX................... 247
pseudo-op TETRA, MMIX 246
pseudo-op WYDE, MMIX 246
pseudo-opcodes for XStormy16 364
pseudo-opcodes, M680X0............covvii... 211
pseudo-opcodes, M68HC11 217
pseudo-ops for branch, VAX 355
pseudo-ops, CRIS it 155
pseudo-ops, machine independent 51
pseudo-ops, MMIXt 245
psize directiveo oot 75
PSR bits ..o 193
pstring directive, TIC54X 331
psw register, V850l 350
purgem directive.......... oo 5
purpose of GNU assembler...................... 21
pushsection directive 75
Q

quad directive i i 75
quad directive, i386........ ... i 188
quad directive, x86-64 188

R

real-mode code, i386..........l 189
ref directive, TICH4Xt 330
refsym directive, MSP 430.................... 252
register directive, SPARC................... 323
register name prefix character, ARC.......... 108
register names, AArch64....................... 97
register names, Alpha 101
register names, ARC 109
register names, ARM 122
register names, AVR...... 134
register names, BPF 144
register names, CRIS......................... 155
register names, H8/300....................... 168
register names, TA-64......................... 193

register names, LM32......................... 196

417
register names, MMIX........................ 244
register names, MSP 430 251
register names, OpenRISC.................... 264
register names, S127Z............ 220
register names, Sparc..............c..oiiioo... 316
register names, TILE-Gx 338
register names, TILEPro 343
register names, V850 348
register names, VAX 357
register names, Visium 359
register names, Xtensa........................ 367
register names, Z80.............. 377
register naming, s390.............. ... 294
register notation, S12Z 221
register operands, i386.................... ... 182
register operands, x86-64 182
registers, DIOV.......... 161
registers, D30V....... oo 165
registers, i386ol 184
registers, Meta 223
registers, SH i 312
registers, TIC54X memory-mapped 334
registers, x86-64.......... ool 184
registers, Z8000.........o ... 380
relax-all command-line option, Nios IT...... 260
relax-section command-line option, Nios IT.. 260
relaxation ...l i 369
relaxation of ADDI instructions................ 371
relaxation of branch instructions.............. 369
relaxation of call instructions................. 369
relaxation of immediate fields................. 371
relaxation of jump instructions 370
relaxation of L16SI instructions............... 371
relaxation of L16UI instructions............... 371
relaxation of L32I instructions................ 371
relaxation of L8UT instructions................ 371
relaxation of MOVI instructions................ 371
reloc directive ...t 76
relocation ... i 37
relocation example............. ... i 39
relocations, AArch64 97
relocations, Alpha........... 101
relocations, OpenRISC 264
relocations, Sparcoo i 320
relocations, WebAssembly 360
repeat prefixes, 1386 il 186
reporting bugs in assembler................... 383
rept directive oo 76
reserve directive, SPARC.................... 323
return instructions, i386 182
return instructions, x86-64.................... 182
REX prefixes, i386, 186
RISC-V instruction formats................... 282
RISC-V machine directives 279
RISC-V support.......c.oooviiiiiiii ... 278
RL78 assembler directives 288
RL78 line comment character................. 289
RL78 line separator ... 289

418

RL78 modifiers............cooiiiiiiiiinnnnn.. 288
RL78 options.................cooiiii.., 288
RL78 support 288
TSECE oottt 382
RX assembler directive .3byte 292
RX assembler directive .fetchalign 292
RX assembler directives 292
RX floating point.................ooiiiaL. 292
RX line comment character................... 292
RX line separatorooooian 292
RX modifiers..............oooiiiiiL 291
RX options.........oooiiiiiiiiiii 290
RX support ... 290

S

s390 floating point............ 308
s390 instruction aliases 301
s390 instruction formats............... 297
$390 instruction marker....................... 305
s390 instruction mnemonics................... 294
$390 instruction operand modifier............. 304
s390 instruction operands..................... 296
s390 instruction syntax................. 294
8390 line comment character.................. 294
s390 line separator.............cooiiiiiii. 294
s390 literal pool entries....................... 305
$390 OptioNS . . oot 293
s390 register naming................... 294
8390 SUPPOTt ... 293
S127 addressing modesc....o.... 220
S12Z line separator...............ccoeeiuni... 220
S127Z OptionS ..o vvv it 219
S12Z SUPPOTt .« v v i 219
SI12Z syntax.........oooiiiiiiiii i 219
Saved User Stack Pointer, ARC............... 109
sblock directive, TIC54X........ ...t 331
sbttl directive ...t 76
schedule directive. ..., 372
scldirectiveoeiiiiiiii i 76
SCORE architectures......................... 309
SCORE directivescoovviiiiiiin.. 309
SCORE line comment character 310
SCORE line separator........................ 310
SCORE optionsc.oovviiiiiiiinn.n. 309
SCORE processorc..ocouuiinunenno... 309
sdaoff pseudo-op, V850 ..., 352
search path for .include 26
sect directive, TICH54Xoit. 331
section directive (COFF version) 76
section directive (ELF version) 7
section directive, V850 351
section name substitution...................... 7T
section override prefixes, i386................. 185
Section Stack.............. 74,75, 77, 83
section-relative addressing 38
SECHIONS oot 37

sections in messages, internal 39

Using as
sections, 1386o i i 182
sections, named............. ... 38
sections, x86-64 182
seg directive, SPARC 324
SEEIM .ottt 381
set at directive, Nios IT...................... 262
set break directive, Nios IT................... 262
set directiveo i i 81
set directive, Nios IT........... 262
set directive, TIC54Xt 331
set no_warn_regname_label directive, PRU .. 277
set noat directive, Nios IT.................... 261
set nobreak directive, Nios IT 262
set norelax directive, Nios IT 262
set relaxall directive, Nios IT............... 262
set relaxsection directive, Nios II........... 262
SH addressing modes......................... 312
SH floating point (IEEE) 312
SH line comment character 311
SH line separator...........c.ooveveenninnn.... 311
SH machine directives........................ 313
SH opcode summary.......................... 313
SH options........coouiiiiiiiiiiiiiii .. 311
SH registers........ooovviiiiiiiiiii i, 312
SH support. ..o 311
shigh directive, M32R........................ 202
short directive 81
short directive, TICH4Xot 330
signatures, WebAssembly 360
SIMD, 1386 . ..t e iee et 188
SIMD, X86-64ootee et 188
single character constant....................... 34
single directive............ ool 81
single directive, i386............ 188
single directive, x86-64 188
single quote, Z80o 377
sixteen bit integers oL 63
sixteen byte integer............. 72
size directive (COFF version)................. 81
size directive (ELF version)................... 81
size modifiers, D10V 159
size modifiers, D30V 163
size modifiers, M680x0........................ 208
size prefixes, i386........... i 185
size suffixes, H8/300.......................... 170
size, translations, Sparc.............. 322
sizes operands, i386..............., 182
sizes operands, x86-64 182
skip directive oo 81
skip directive, M680xX0....................... 210
skip directive, SPARC 324
sleb128 directive............ ...t 82
small data, MIPS............. 234
SmartMIPS instruction generation override ... 239
SOM symbol attributes........................ 46
SOUTCE PIrOZIAIML . « ¢ e vvvee et eeee e e e eaaaeeenns 22
source, destination operands; i386............. 182
source, destination operands; x86-64 182

AS Index

Spregister. 367
sp register, V850 348
space directive ool 82
space directive, TICH4X 331
space used, maximum for assembly............. 29
Sparc constants ... 318
Sparc line comment character................. 316
Sparc line separator 316
Sparc registers. ... 316
Sparc relocationscooviiiiiiiii., 320
Sparc size translations........................ 322
SPARC architectures......................... 314
SPARC data alignment....................... 316
SPARC floating point (IEEE).................. 323
SPARC machine directives.................... 323
SPARC options.cooiiiiiiiiinia.a.. 314
SPARC SUpportooovviiiiiiiii e 314
SPARC Syntaxcovvuinuinniniineneann.. 316
special characters, M680x0.................... 212
special purpose registers, MSP 430............ 251
sslist directive, TIC54X..................... 331
ssnolist directive, TIC54X 331
stabd directive ... 82
stabn directive ool 82
stabs directive oL 82
stabx directives il 82
stack pointer, ARC......... 109
standard assembler sections.................... 37
standard input, as input file 21
statement separator character.................. 32
statement separator, AArch64 97
statement separator, Alpha................... 101
statement separator, ARC.................... 108
statement separator, ARM.................... 122
statement separator, AVR 134
statement separator, BPF 144
statement separator, CR16 151
statement separator, Epiphany................ 167
statement separator, H8/300.................. 168
statement separator, i386..................... 182
statement separator, IA-64 193
statement separator, IP2K.................... 195
statement separator, LM32................... 198
statement separator, M32C................... 200
statement separator, M68HC11............... 214
statement separator, Meta.................... 223
statement separator, MicroBlaze.............. 224
statement separator, MIPS 241
statement separator, MSP 430................ 250
statement separator, NS32K 263
statement separator, OpenRISC 264
statement separator, PJ........... 272
statement separator, PowerPC................ 275
statement separator, RL78.................... 289
statement separator, RX...................... 292
statement separator, s390..................... 294
statement separator, S127 220
statement separator, SCORE 310

419
statement separator, SH...................... 311
statement separator, Sparc 316
statement separator, TIC54X 334
statement separator, TIC6X 335
statement separator, V850 348
statement separator, VAX 358
statement separator, Visium.................. 359
statement separator, XGATE................. 362
statement separator, XStormyl6.............. 364
statement separator, Z80 377
statement separator, Z8000................... 380
statements, structure of.............. 32
statistics, about assembly............. 29
Status register, ARC 109
STATUS32 saved on exception, ARC 109
stopping the assembly 51
Stored STATUS32 register on entry to level PO
interrupts, ARC 109
string constants o ool 33
string directive........... oo 83
string directive on HPPA 173
string directive, TIC54X........... 331
string literals ool 52
string, copying to object file 83
stringl6 directive...........l 83
string16, copying to object file................. 83
string32 directive........... oL 83
string32, copying to object file................. 83
string64 directive...........l 83
string64, copying to object file................. 83
string8 directive........... il 83
string8, copying to object file.................. 83
struct directive......... ... 83
struct directive, TIC54X., 332
structure debugging, COFF.................... 84
sub-instruction ordering, D10V 160
sub-instruction ordering, D30V 164
sub-instructions, D10V 159
sub-instructions, D30V 163
SUbEXPressions.ovvii i 47
subsection directiveol 83
subsym builtins, TIC54X 333
subtitles for listings..................ooiii... 76
subtraction, permitted arguments.............. 48
summary of options............. o il 1
SUpPpOrt ... 171
supporting files, including...................... 65
SUPPresSing Warningscoeeeueeeeen.. 29
SVAl oo 381
symbol attributes............ ... ool 45
symbol attributes, a.out....................... 46
symbol attributes, COFF 46
symbol attributes, SOM 46
symbol descriptor, COFF 59
symbol modifiers............... 134, 197, 199, 216
symbol modifiers, TILE-Gx................... 339
symbol modifiers, TILEPro................... 344

symbol names oL 43

420

symbol names, ‘¢’ in........... 160, 164, 223, 311
symbol names, local 43
symbol names, temporary...................... 44
symbol prefix character, ARC................. 108
symbol storage class (COFF) 76
Symbol typeo 46
symbol type, COFF 85
symbol type, ELF 85
symbol value oL 45
symbol value, setting 81
symbol values, assigning 43
symbol versioningol 83
symbol, commonol 57
symbol, making visible to linker................ 63
symbolic debuggers, information for............ 82
symbols 43
Symbols in position-independent code, CRIS.. 154
symbols with uppercase, VAX/VMS.......... 354
symbols, assigning values to 60
Symbols, built-in, CRIS 153
Symbols, CRIS, built-in 153
symbols, local common 66
symver directive......... o il 83
syntax compatibility, i386..................... 182
syntax compatibility, x86-64 182
syntax, AVR i 134
syntax, Blackfin.............................. 140
syntax, D10V o i 159
syntax, D30V ... o 163
syntax, LM32ol 197
syntax, M680x0 208
syntax, M68HCI1 214, 216
syntax, machine-independent 31
syntax, OPENRISC 264
syntax, RL78.. 288
syntax, RX.........o o 291
syntax, S127Z i 219
syntax, SPARC....... 316
syntax, TILE-Gx........ 338
syntax, TILEPro............o .. 343
syntax, XGATEo .. 362
syntax, Xtensa assembler..................... 366

T

tab (\B) eoe 33
tab directive, TIC54X 332
tag directive i i 84
tag directive, TICH54Xt 332
TBM, 1386 ..o 189
TBM, x86-64......cc0vuiuiiiiiiiiiiiiii.. 189
tdaoff pseudo-op, V850t 353
temporary symbol names 44
text and data sections, joining................. 29
text directive i 84
text section....... ... 38
tfloat directive, i386............. 188
tfloat directive, x86-64 188

Using as
Thumb support ..., 115
TIC54X builtin math functions............... 326
TIC54X line comment character.............. 334
TIC54X line separator.............c.ccouuuun... 334
TIC54X machine directives................... 328
TIC54X memory-mapped registers............ 334
TIC54X OptioNS « . v vt 325
TIC54X subsym builtins...................... 333
TIC54X SUPPOTt. . vv vt et 325
TIC54X-specific macrosc..ooon... 333
TIC6X big-endian output..................... 335
TIC6X line comment character 335
TIC6X line separator.............c.coovueeenn.. 335
TIC6X little-endian output................... 335
TIC6X machine directives.................... 336
TIC6X Optionsovveieiieii e, 335
TIC6X SUPPOTt . .vvveeeie it 335
TILE-Gx machine directives.................. 341
TILE-Gx modifiers ..., 339
TILE-Gx opcode namesc..o..... 338
TILE-Gx register names...................... 338
TILE-GX SUppOrt.......c.ovueiiiiiiinenna.n. 338
TILE-GX Syntaxooeuiieeenniieannnnn 338
TILEPro machine directives.................. 346
TILEPro modifiers 344
TILEPro opcode names 343
TILEPro register names 343
TILEPro support..............cooiiiiiii.... 343
TILEPro syntax..........ccoviiiiiiiio... 343
time, total for assembly................. 29
title directive...........oooiiiiii i, 85
tls_common directive, 85
tls_gd directive, Nios IT...................... 261
tls_ie directive, Nios IT...................... 261
tls_1dm directive, Nios IT..................... 261
tls_1do directive, Nios IT..................... 261
tls_le directive, Nios IT...................... 261
TMS320C6X Supportvvvvieeennen.. 335
tp register, V850l 349
transform directive 373
trusted compiler..........ol 26
turning preprocessing on and off............... 31
two-byte integerot 88
type directive (COFF version)................. 85
type directive (ELF version)................... 85
type of a symbol............. L 46
U
ualong directive, SH.......... 313
uaquad directive, SH............ 313
uvaword directive, SH........... 313
ubyte directive, TIC54X........... 328
uchar directive, TIC54X.......... 328
uhalf directive, TICH54X 330
uint directive, TIC54X 330
uleb128 directive...........ooiiiiiiiiiii 86

ulong directive, TIC54X...................... 330

AS Index

undefined section 39
union directive, TIC54X.......... ..., 332
UNSEEM . .\ vvvttttt et 381
usect directive, TIC54X.......... 332
ushort directive, TIC54X...........ccciiii.. 330
uword directive, TIC54X.........., 330

A\Y

V850 command-line options 346
V850 floating point (IEEE) 351
V850 line comment character................. 348
V850 line separator............c.ooiueeennn.. 348
V850 machine directives...................... 351
V850 0pcodes . ..vvvv e 351
V850 options (none)................ooooun.... 346
V850 register namesccoiiiiiiiiii.. 348
V850 support........o.ooiiiiiiii 346
val directive ... 86
value attribute, COFF......................... 86
value directive ..o 181
value of a symbol........o 45
var directive, TIC54X 333
Vax-11 C compatibility 354
VAX bitfields not supported.................. 357
VAX branch improvement 355
VAX command-line options ignored........... 354
VAX displacement sizing character............ 357
VAX floating point ..., 355
VAX immediate character 357
VAX indirect character....................... 357
VAX line comment character 358
VAX line separator............cceviviuneenn.. 358
VAX machine directives 355
VAX opcode mnemonics..........c.c.ooeuun... 355
VAX operand notation 357
VAX register namesc..ooviuen... 357
VAX support......cooeiiiiiiiiiiiii .. 353
VAX/VMS options...........cooviiiaia... 354
version directive.............cooiiiiiiiiiia, 86
version directive, TIC54X 333
version of assembler 29
versions of symbols............ol 83
Virtualization instruction generation override
... 239
visibilityo 63, 65, 75
Visium line comment character 359
Visium line separator......................... 359
Visium options..............oooiiiiiiiii 359
Visium registers.............. . .o 359
Visium support...............o oo 359
VMS (VAX) options...........ooeviiiinn... 354
vtable_entry directive 86
vtable_inherit directive...................... 86

A%

warning directive........... ool 87

421
warning for altered difference tables............ 26
WAaTINING MESSAZES . « ¢ v vvee et eeeee e eiaeeeen 23
warnings, causing error 29
warnings, M32Rol 203
warnings, suppressing. 29
warnings, switchingon...................... ... 30
weak directive il 87
weakref directive.............. . ..ol 87
WebAssembly floating point (IEEE) 360
WebAssembly line comment character 360
WebAssembly module layout 360
WebAssembly notes ... 360
WebAssembly opcodes........................ 360
WebAssembly relocations..................... 360
WebAssembly signatures...................... 360
WebAssembly support.................o.... .. 360
WebAssembly Syntax......................... 360
whitespace ... i 31
whitespace, removed by preprocessor........... 31
wide floating point directives, VAX 355
width directive, TIC54X, 330
Width of continuation lines of disassembly output
... 27
Width of first line disassembly output.......... 27
Width of source line output.................... 27
wmsg directive, TICH4X 329
word aligned program counter, ARC.......... 109
word directive 87
word directive, BPF 144
word directive, H8/300.................... ... 170
word directive, i386.......... oL 188
word directive, Nios IT................ 261
word directive, OpenRISC 266
word directive, PRU 276
word directive, SPARC 324
word directive, TIC54Xt 330
word directive, x86-64, 188
writing patterns in memory.................... 62
WVAL oo 381
X
x86 machine directives........................ 181
x86-64 arch directive 189
x86-64 att_syntax pseudo op.................. 182
x86-64 conversion instructions 183
x86-64 extension instructions 184
x86-64 floating point 187
x86-64 immediate operands................... 182
x86-64 instruction naming.................... 183
x86-64 intel_syntax pseudo op 182
x86-64 jump optimization..................... 187
x86-64 jump, call, return 182
x86-64 jump/call operands.................... 182
x86-64 memory references 186
x86-64 options. ... 176
x86-64 register operands................ 182
x86-64 registers........... ...l 184

422

x86-64 sections ..., 182
x86-64 size suffixesl 182
x86-64 source, destination operands........... 182
X86-64 SUPPOTt . oo oot 176
x86-64 syntax compatibility................... 182
xdef directive, Z80 378
xfloat directive, TIC54X..................... 329
XGATE addressing modes.................... 362
XGATE assembler directives.................. 363
XGATE floating point........................ 363
XGATE line comment character.............. 362
XGATE line separator...................c..... 362
XGATE opcodesovvvviiiiiniiii i 364
XGATE optionsoovviiiiii i 362
XGATE Support.....coovviiiiiiniii. 362
XGATE Syntax. ...ooveree e, 362
xlong directive, TIC54X............... 330
xref directive, Z80o i 379
XStormyl6 comment character 364
XStormy16 line comment character........... 364
XStormy16 line separator..................... 364
XStormy16 machine directives................ 364
XStormy16 pseudo-opcodes................... 364
XStormy16 support........c.cooiiiiiiiia... 364
Xtensa architecture.............. oL 365
Xtensa assembler syntax...................... 366
Xtensa directivesl 372
Xtensa opcode NAMES.vvuuiennennn. .. 367

Xtensa register names 367

Using as

Z80 & 377
280 7 377
780 floating pointccovviiiiiaannn. 377
Z80 labels . ..o 377
780 line comment character................... 377
780 line separator, 377
Z80 options . ..o 376
Z80 registers i 377
Z80 SUPPOTt .« e v vttt 376
Z80 SYNtaX ...ttt 376
280, \ 377
780, case sensitivity oL 377
Z80-only directives 378
7800 addressing modesc...... 380
78000 directivesoovuiiiiiiiiii i 381
78000 line comment character 380
78000 line separator.......................... 380
78000 opcode SUMMATYoouuvenneennnnn... 382
78000 OPtIONS « o .vvvv e e 380
78000 registersovutii i 380
Z8000 SUPPOTt .. vvevi et 380
zdaoff pseudo-op, V850t 353
zero directive i i 88
zero register, V850 i 348
zero-terminated strings 52

	Overview
	Structure of this Manual
	The GNU Assembler
	Object File Formats
	Command Line
	Input Files
	Output (Object) File
	Error and Warning Messages

	Command-Line Options
	Enable Listings: -a[cdghlns]
	--alternate
	-D
	Work Faster: -f
	.include Search Path: -I path
	Difference Tables: -K
	Include Local Symbols: -L
	Configuring listing output: --listing
	Assemble in MRI Compatibility Mode: -M
	Dependency Tracking: --MD
	Output Section Padding
	Name the Object File: -o
	Join Data and Text Sections: -R
	Display Assembly Statistics: --statistics
	Compatible Output: --traditional-format
	Announce Version: -v
	Control Warnings: -W, --warn, --no-warn, --fatal-warnings
	Generate Object File in Spite of Errors: -Z

	Syntax
	Preprocessing
	Whitespace
	Comments
	Symbols
	Statements
	Constants
	Character Constants
	Strings
	Characters

	Number Constants
	Integers
	Bignums
	Flonums

	Sections and Relocation
	Background
	Linker Sections
	Assembler Internal Sections
	Sub-Sections
	bss Section

	Symbols
	Labels
	Giving Symbols Other Values
	Symbol Names
	The Special Dot Symbol
	Symbol Attributes
	Value
	Type
	Symbol Attributes: a.out
	Descriptor
	Other

	Symbol Attributes for COFF
	Primary Attributes
	Auxiliary Attributes

	Symbol Attributes for SOM

	Expressions
	Empty Expressions
	Integer Expressions
	Arguments
	Operators
	Prefix Operator
	Infix Operators

	Assembler Directives
	.abort
	.ABORT (COFF)
	.align [abs-expr[, abs-expr[, abs-expr]]]
	.altmacro
	.ascii "string"...{}
	.asciz "string"...{}
	.attach_to_group name
	.balign[wl] [abs-expr[, abs-expr[, abs-expr]]]
	Bundle directives
	.bundle_align_mode abs-expr
	.bundle_lock and .bundle_unlock

	.byte expressions
	CFI directives
	.cfi_sections section_list
	.cfi_startproc [simple]
	.cfi_endproc
	.cfi_personality encoding [, exp]
	.cfi_personality_id id
	.cfi_fde_data [opcode1 [, ...{}]]
	.cfi_lsda encoding [, exp]
	.cfi_inline_lsda [align]
	.cfi_def_cfa register, offset
	.cfi_def_cfa_register register
	.cfi_def_cfa_offset offset
	.cfi_adjust_cfa_offset offset
	.cfi_offset register, offset
	.cfi_val_offset register, offset
	.cfi_rel_offset register, offset
	.cfi_register register1, register2
	.cfi_restore register
	.cfi_undefined register
	.cfi_same_value register
	.cfi_remember_state and .cfi_restore_state
	.cfi_return_column register
	.cfi_signal_frame
	.cfi_window_save
	.cfi_escape expression[, ...{}]
	.cfi_val_encoded_addr register, encoding, label

	.comm symbol , length
	.data subsection
	.dc[size] expressions
	.dcb[size] number [,fill]
	.ds[size] number [,fill]
	.def name
	.desc symbol, abs-expression
	.dim
	.double flonums
	.eject
	.else
	.elseif
	.end
	.endef
	.endfunc
	.endif
	.equ symbol, expression
	.equiv symbol, expression
	.eqv symbol, expression
	.err
	.error "string"
	.exitm
	.extern
	.fail expression
	.file
	.fill repeat , size , value
	.float flonums
	.func name[,label]
	.global symbol, .globl symbol
	.gnu_attribute tag,value
	.hidden names
	.hword expressions
	.ident
	.if absolute expression
	.incbin "file"[,skip[,count]]
	.include "file"
	.int expressions
	.internal names
	.irp symbol,values...{}
	.irpc symbol,values...{}
	.lcomm symbol , length
	.lflags
	.line line-number
	.linkonce [type]
	.list
	.ln line-number
	.loc fileno lineno [column] [options]
	.loc_mark_labels enable
	.local names
	.long expressions
	.macro
	.mri val
	.noaltmacro
	.nolist
	.nop [size]
	.nops size[, control]
	.octa bignums
	.offset loc
	.org new-lc , fill
	.p2align[wl] [abs-expr[, abs-expr[, abs-expr]]]
	.popsection
	.previous
	.print string
	.protected names
	.psize lines , columns
	.purgem name
	.pushsection name [, subsection] [, "flags"[, @type[,arguments]]]
	.quad bignums
	.reloc offset, reloc_name[, expression]
	.rept count
	.sbttl "subheading"
	.scl class
	.section name
	.set symbol, expression
	.short expressions
	.single flonums
	.size
	.skip size [,fill]
	.sleb128 expressions
	.space size [,fill]
	.stabd, .stabn, .stabs
	.string "str", .string8 "str", .string16
	.struct expression
	.subsection name
	.symver
	.tag structname
	.text subsection
	.title "heading"
	.tls_common symbol, length[, alignment]
	.type
	.uleb128 expressions
	.val addr
	.version "string"
	.vtable_entry table, offset
	.vtable_inherit child, parent
	.warning "string"
	.weak names
	.weakref alias, target
	.word expressions
	.zero size
	.2byte expression [, expression]*
	.4byte expression [, expression]*
	.8byte expression [, expression]*
	Deprecated Directives

	Object Attributes
	gnu Object Attributes
	Common gnu attributes
	M680x0 Attributes
	MIPS Attributes
	PowerPC Attributes
	IBM z Systems Attributes
	MSP430 Attributes

	Defining New Object Attributes

	Machine Dependent Features
	AArch64 Dependent Features
	Options
	Architecture Extensions
	Syntax
	Special Characters
	Register Names
	Relocations

	Floating Point
	AArch64 Machine Directives
	Opcodes
	Mapping Symbols

	Alpha Dependent Features
	Notes
	Options
	Syntax
	Special Characters
	Register Names
	Relocations

	Floating Point
	Alpha Assembler Directives
	Opcodes

	ARC Dependent Features
	Options
	Syntax
	Special Characters
	Register Names

	ARC Machine Directives
	ARC Assembler Modifiers
	ARC Pre-defined Symbols
	Opcodes

	ARM Dependent Features
	Options
	Syntax
	Instruction Set Syntax
	Special Characters
	Register Names
	ARM relocation generation
	NEON Alignment Specifiers

	Floating Point
	ARM Machine Directives
	Opcodes
	Mapping Symbols
	Unwinding

	AVR Dependent Features
	Options
	Syntax
	Special Characters
	Register Names
	Relocatable Expression Modifiers

	Opcodes
	Pseudo Instructions

	Blackfin Dependent Features
	Options
	Syntax
	Directives

	BPF Dependent Features
	Options
	Syntax
	Special Characters
	Register Names
	Pseudo Maps

	Machine Directives
	Opcodes
	Arithmetic instructions
	32-bit arithmetic instructions
	Endianness conversion instructions
	64-bit load and pseudo maps
	Load instructions for socket filters
	Generic load/store instructions
	Jump instructions
	Atomic instructions

	CR16 Dependent Features
	CR16 Operand Qualifiers
	CR16 Syntax
	Special Characters

	CRIS Dependent Features
	Command-line Options
	Instruction expansion
	Symbols
	Syntax
	Special Characters
	Symbols in position-independent code
	Register names
	Assembler Directives

	C-SKY Dependent Features
	Options
	Syntax

	D10V Dependent Features
	D10V Options
	Syntax
	Size Modifiers
	Sub-Instructions
	Special Characters
	Register Names
	Addressing Modes
	@WORD Modifier

	Floating Point
	Opcodes

	D30V Dependent Features
	D30V Options
	Syntax
	Size Modifiers
	Sub-Instructions
	Special Characters
	Guarded Execution
	Register Names
	Addressing Modes

	Floating Point
	Opcodes

	Epiphany Dependent Features
	Options
	Epiphany Syntax
	Special Characters

	H8/300 Dependent Features
	Options
	Syntax
	Special Characters
	Register Names
	Addressing Modes

	Floating Point
	H8/300 Machine Directives
	Opcodes

	HPPA Dependent Features
	Notes
	Options
	Syntax
	Floating Point
	HPPA Assembler Directives
	Opcodes

	80386 Dependent Features
	Options
	x86 specific Directives
	i386 Syntactical Considerations
	AT&T Syntax versus Intel Syntax
	Special Characters

	i386-Mnemonics
	Instruction Naming
	AT&T Mnemonic versus Intel Mnemonic

	Register Naming
	Instruction Prefixes
	Memory References
	Handling of Jump Instructions
	Floating Point
	Intel's MMX and AMD's 3DNow! SIMD Operations
	AMD's Lightweight Profiling Instructions
	Bit Manipulation Instructions
	AMD's Trailing Bit Manipulation Instructions
	Writing 16-bit Code
	Specifying CPU Architecture
	AMD64 ISA vs. Intel64 ISA
	AT&T Syntax bugs
	Notes

	IA-64 Dependent Features
	Options
	Syntax
	Special Characters
	Register Names
	IA-64 Processor-Status-Register (PSR) Bit Names
	Relocations

	Opcodes

	IP2K Dependent Features
	IP2K Options
	IP2K Syntax
	Special Characters

	LM32 Dependent Features
	Options
	Syntax
	Register Names
	Relocatable Expression Modifiers
	Special Characters

	Opcodes

	M32C Dependent Features
	M32C Options
	M32C Syntax
	Symbolic Operand Modifiers
	Special Characters

	M32R Dependent Features
	M32R Options
	M32R Directives
	M32R Warnings

	M680x0 Dependent Features
	M680x0 Options
	Syntax
	Motorola Syntax
	Floating Point
	680x0 Machine Directives
	Opcodes
	Branch Improvement
	Special Characters

	M68HC11 and M68HC12 Dependent Features
	M68HC11 and M68HC12 Options
	Syntax
	Symbolic Operand Modifiers
	Assembler Directives
	Floating Point
	Opcodes
	Branch Improvement

	S12Z Dependent Features
	S12Z Options
	Syntax
	Overview
	Addressing Modes
	Register Notation

	Meta Dependent Features
	Options
	Syntax
	Special Characters
	Register Names

	MicroBlaze Dependent Features
	Directives
	Syntax for the MicroBlaze
	Special Characters

	MIPS Dependent Features
	Assembler options
	High-level assembly macros
	Directives to override the size of symbols
	Controlling the use of small data accesses
	Directives to override the ISA level
	Directives to control code generation
	Directives for extending MIPS 16 bit instructions
	Directive to mark data as an instruction
	Directives to control the FP ABI
	History of FP ABIs
	Supported FP ABIs
	Automatic selection of FP ABI
	Linking different FP ABI variants

	Directives to record which NaN encoding is being used
	Directives to save and restore options
	Directives to control generation of MIPS ASE instructions
	Directives to override floating-point options
	Syntactical considerations for the MIPS assembler
	Special Characters

	MMIX Dependent Features
	Command-line Options
	Instruction expansion
	Syntax
	Special Characters
	Symbols
	Register names
	Assembler Directives

	Differences to mmixal

	MSP 430 Dependent Features
	Options
	Syntax
	Macros
	Special Characters
	Register Names
	Assembler Extensions

	Floating Point
	MSP 430 Machine Directives
	Opcodes
	Profiling Capability

	NDS32 Dependent Features
	NDS32 Options
	Syntax
	Special Characters
	Register Names
	Pseudo Instructions

	Nios II Dependent Features
	Options
	Syntax
	Special Characters

	Nios II Machine Relocations
	Nios II Machine Directives
	Opcodes

	NS32K Dependent Features
	Syntax
	Special Characters

	OPENRISC Dependent Features
	OpenRISC Syntax
	Special Characters
	Register Names
	Relocations

	Floating Point
	OpenRISC Machine Directives
	Opcodes

	PDP-11 Dependent Features
	Options
	Code Generation Options
	Instruction Set Extension Options
	CPU Model Options
	Machine Model Options

	Assembler Directives
	PDP-11 Assembly Language Syntax
	Instruction Naming
	Synthetic Instructions

	picoJava Dependent Features
	Options
	PJ Syntax
	Special Characters

	PowerPC Dependent Features
	Options
	PowerPC Assembler Directives
	PowerPC Syntax
	Special Characters

	PRU Dependent Features
	Options
	Syntax
	Special Characters

	PRU Machine Relocations
	PRU Machine Directives
	Opcodes

	RISC-V Dependent Features
	RISC-V Options
	RISC-V Directives
	RISC-V Assembler Modifiers
	RISC-V Instruction Formats
	RISC-V Object Attribute

	RL78 Dependent Features
	RL78 Options
	Symbolic Operand Modifiers
	Assembler Directives
	Syntax for the RL78
	Special Characters

	RX Dependent Features
	RX Options
	Symbolic Operand Modifiers
	Assembler Directives
	Floating Point
	Syntax for the RX
	Special Characters

	IBM S/390 Dependent Features
	Options
	Special Characters
	Instruction syntax
	Register naming
	Instruction Mnemonics
	Instruction Operands
	Instruction Formats
	Instruction Aliases
	Instruction Operand Modifier
	Instruction Marker
	Literal Pool Entries

	Assembler Directives
	Floating Point

	SCORE Dependent Features
	Options
	SCORE Assembler Directives
	SCORE Syntax
	Special Characters

	Renesas / SuperH SH Dependent Features
	Options
	Syntax
	Special Characters
	Register Names
	Addressing Modes

	Floating Point
	SH Machine Directives
	Opcodes

	SPARC Dependent Features
	Options
	Enforcing aligned data
	Sparc Syntax
	Special Characters
	Register Names
	Constants
	Relocations
	Size Translations

	Floating Point
	Sparc Machine Directives

	TIC54X Dependent Features
	Options
	Blocking
	Environment Settings
	Constants Syntax
	String Substitution
	Local Labels
	Math Builtins
	Extended Addressing
	Directives
	Macros
	Memory-mapped Registers
	TIC54X Syntax
	Special Characters

	TIC6X Dependent Features
	TIC6X Options
	TIC6X Syntax
	TIC6X Directives

	TILE-Gx Dependent Features
	Options
	Syntax
	Opcode Names
	Register Names
	Symbolic Operand Modifiers

	TILE-Gx Directives

	TILEPro Dependent Features
	Options
	Syntax
	Opcode Names
	Register Names
	Symbolic Operand Modifiers

	TILEPro Directives

	v850 Dependent Features
	Options
	Syntax
	Special Characters
	Register Names

	Floating Point
	V850 Machine Directives
	Opcodes

	VAX Dependent Features
	VAX Command-Line Options
	VAX Floating Point
	Vax Machine Directives
	VAX Opcodes
	VAX Branch Improvement
	VAX Operands
	Not Supported on VAX
	VAX Syntax
	Special Characters

	Visium Dependent Features
	Options
	Syntax
	Special Characters
	Register Names

	Opcodes

	WebAssembly Dependent Features
	Notes
	Syntax
	Special Characters
	Relocations
	Signatures

	Floating Point
	Regular Opcodes
	WebAssembly Module Layout

	XGATE Dependent Features
	XGATE Options
	Syntax
	Assembler Directives
	Floating Point
	Opcodes

	XStormy16 Dependent Features
	Syntax
	Special Characters

	XStormy16 Machine Directives
	XStormy16 Pseudo-Opcodes

	Xtensa Dependent Features
	Command-line Options
	Assembler Syntax
	Opcode Names
	Register Names

	Xtensa Optimizations
	Using Density Instructions
	Automatic Instruction Alignment

	Xtensa Relaxation
	Conditional Branch Relaxation
	Function Call Relaxation
	Jump Relaxation
	Other Immediate Field Relaxation

	Directives
	schedule
	longcalls
	transform
	literal
	literal_position
	literal_prefix
	absolute-literals

	Z80 Dependent Features
	Command-line Options
	Syntax
	Special Characters
	Register Names
	Case Sensitivity
	Labels

	Floating Point
	Z80 Assembler Directives
	Opcodes

	Z8000 Dependent Features
	Options
	Syntax
	Special Characters
	Register Names
	Addressing Modes

	Assembler Directives for the Z8000
	Opcodes

	Reporting Bugs
	Have You Found a Bug?
	How to Report Bugs

	Acknowledgements
	GNU Free Documentation License
	AS Index

